Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:subworld

This is an old revision of the document!


Subdirectories



For adding a newpage here, choose the namespace (world, here) and the name of your newpage.

You are not allowed to add pages

$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2017/10/07 23:39 · douc

A necessary condition for a Markov kernel to be geometrically ergodic

This result is taken from Roberts and Tweedie, Thm 5.1 (Biometrika 1996): Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms.

Proposition. Let $ P $ be an irreducible Markov kernel with invariant distribution $ \pi $ which is not concentrated on a single point, such that $P(x,\{x\})$ is measurable and $$ \mathrm{ess sup} P(x,\{x\})=1 $$ where the essential supremum is taken wrt the measure $ \pi $. Then the Markov kernel $ P $ is not geometrically ergodic

Proof

The proof works by contradiction. Assume that $P$ is geometrically ergodic, then there exists a $m$-small set $C$ such that $\sup_{x\in C} \PE_x[\beta^{\sigma_C}]<\infty$ for some constant $\beta>1$.

Now, for any $\eta<1$, define $A_\eta=\set{x \in \Xset}{P(x,\{x\})\geq \eta}$. We can assume that $\pi(A_\eta)>0$ (since in the assumptions, the esssup is taken wrt $\pi$). Then, if $x\in A_\eta$, \begin{equation*} \PP_x(X_1=\ldots=X_j=x) \geq \eta^j \end{equation*} Moreover,

  • Using that $C$ is a small set, we can easily show that $\sup_{x \in C} P(x,\{x\})<1$ (indeed, if $C\cap A_\eta$ contains two distincts elements $x,x'$ for $\eta$ sufficiently small, then $\epsilon \nu(\{x\}^c) \leq P^m(x,\{x\}^c) \leq 1-\eta^m$ showing that $\nu(\{x\}^c) + \nu(\{x'\}^c)$ is arbitrary small which is not possible since this sum is bounded from below by $\nu(\Xset)$).
  • This allows to choose $B=A_\eta$ with $\eta$ chosen sufficiently close to $1$ so that $B \cap C=\emptyset$. Then, there exists $w_0\in C$ and $k \in \nset$ such that $\PP_{w_0}(X_k \in B, \sigma_C >k)>0$ (which can be easily seen by contradiction).

Now, write for any $\beta>1$, \begin{align*} \sup_{x\in C} \PE_x[\beta^{\sigma_C}]&\geq \PE_{w_0}[\beta^{\sigma_C}-1]+1=(\beta-1) \sum_{i=0}^{\infty} \beta^i \PP_{w_0}(\sigma_C > i ) +1\\ & \geq (\beta-1) \sum_{j=0}^{\infty} \beta^{k+j} \PP_{w_0}(X_k\in B,\sigma_C > k+j ) +1 \\ & \geq (\beta-1) \sum_{j=0}^{\infty} \beta^{k+j} \PP_{w_0}(X_k\in B,\sigma_C > k, X_k=X_{k+1}= \ldots=X_{k+j} ) +1 \\ & \geq (\beta-1) \sum_{j=0}^{\infty} \beta^{k+j} \PP_{w_0}(X_k\in B,\sigma_C > k) \eta^{j} +1 \end{align*} which is divergent for $\eta$ sufficiently close to 1.

2024/03/04 12:34 · rdouc

Proposition de rdv pour Wojciech, François et Yohan:

Randal: je vous propose 1 heure en zoom pour remplir ensemble certaines rubriques du rapport.

Voici mes prochaines disponibilités. Si vous pouviez ecrire vos initiales dans la rubrique Qui?, ca serait super… A ce moment là, je vous enverrai un lien zoom pour faire ca bien!!!

Jour Créneau Qui?
Mercredi 7 février 12H00-13H00
Mercredi 7 février 15H00-16H00
Mercredi 7 février 16H00-17H00 Wp
Jeudi 8 février 11H00-12H00 Fd
2024/02/06 17:26 · rdouc

$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2017/10/07 23:39 · douc
Associated team (at most 2 students). To register, double click and fill your first name, your family name. And do the same for your classmate. Title Paper Jury (Al: Alain, Rdl: Randal) Defense (Thursday, 25th jan)
Yichuan Huang Log-concave sampling: Metropolis-Hastings algorithms are fast paper (Rdl) Room 1A11 9H45-10H15
Rafaël Digneaux & Côme Eupherte Computable bounds on convergence of Markov chains in Wassertein distance paper (Al) Room 1A09 10h-10h30
Anna Bahrii On the limitations of single-step drift and minorization in Markov chain convergence analysis paper (Rdl) Room 1A11 10H15-10H45
Sturma Thomas & Victor-Emmanuel Grün Lower bounds on the rate of convergence for accept-reject-based Markov chains paper (Al) Room 1A09 11h30-12h
Ekin Arikök & Gaspard Gomez The pseudo-marginal approach for efficient Monte Carlo computations paper (Al) Room 1A09 10h45-11h30
Emile Averous & Nathan de Montgolfier Poincaré inequalities for Markov chains: a meeting with Cheeger, Lyapunov and Metropolis paper (Al) Room 1A09 18/01
Hugo Malafosse & Philippe Sarotte Boost your favorite Markov Chain Monte Carlo sampler using Kac's theorem: the Kick-Kac teleportation algorithm paper (Rdl) Room 1A11 11H00-11H30
Jérôme Taupin & Ales Brahiti Convergence rate bounds for iterative random functions using one-shot coupling paper (Rdl) Room 1A11 11H30-12H00

Instructions

  • Defense with Alain: Thursday 25 jan. Room 1A9.
  • Defense with Randal: Thursday 25 jan. Room 1A11.
  • A short summary (5 pages max) of the paper is requested before the defense by sending an email to Alain or Randal (depending on your jury) before Tuesday, 23rd of January, 12H00. You can add technical appendix (with no limitation size) if needed.
  • The defense will be 20 minutes long per project + questions.
  • Be as pedagogical as possible, you can highlight a particular proof that interests you if you find it interesting.
  • Please read the guidelines for the report.
  • If there is any question, please contact Alain Durmus or Randal Douc.
2023/12/03 19:49 · rdouc

$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2017/10/07 23:39 · douc

Forward and Backward Kolmogorov equations

Consider the following SDE:

$$ \rmd X_s = \mu_s(X_s)\rmd s + \sigma_s(X_s)\rmd W_s $$

We provide only the ideas of the proofs. Additional assumptions are necessary to justify the use of all the tools.

In what follows, we consider $s\leq t$ and we let $y\mapsto \condtrans{t|s}{y}{x}$ be the density of $X_t$ starting from $X_s=x$.

Forward Kolmogorov equation

The Forward Kolmogorov equation writes $$ \partial_t \condtrans{t|s}{y}{x} = - \partial_y \lrb{{\mu_t(y) \condtrans{t|s}{y}{x}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma_t^2(y) \condtrans{t|s}{y}{x}} $$

Set $ Y_u=h(X_u) $ where $h$ is $C^2$ with bounded support. By Itô's Formula, $$ \rmd Y_u=h'(X_u) \rmd X_u + \frac 1 2 h''(X_u) \rmd\cro{X}_u=\lrb{h'(X_u) \mu_u(X_u)+\frac 1 2 h''(X_u) \sigma_u^2(X_u)} \rmd u + h'(X_u) \sigma_u(X_u) \rmd W_u $$ Hence, \begin{align*} \int_\rset h(y) \condtrans{t|s}{y}{x} \rmd y - h(x) &= \PE[h(X_t)|X_s]|_{X_s=x}-h(x) \\ & =\PE_x\lrb{\int_s^t h'(X_u) \mu_u(X_u)+\frac 1 2 h''(X_u) \sigma_u^2(X_u) \rmd u } \\ & =\int_s^t \lr{\int_\rset h'(y) \mu_u(y) \condtrans{u|s}{y}{x}\rmd y +\frac 1 2 \int_\rset h''(y) \sigma^2_u(y) \condtrans{u|s}{y}{x} \rmd y}\rmd u \\ & = \int_s^t \lr{-\int_\rset h(y) \partial_y \lrb{{\mu_u(y) \condtrans{u|s}{y}{x}}}\rmd y +\frac 1 2 \int_\rset h(y) \partial^2_{yy} \lrb{\sigma^2_u(y) \condtrans{u|s}{y}{x}} \rmd y}\rmd u \end{align*} where the last equality is obtained from integration by parts. Differentiating both sides of the equation wrt $t$ yields $$ \partial_t \condtrans{t|s}{y}{x} = - \partial_y \lrb{{\mu_t(y) \condtrans{t|s}{y}{x}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma_t^2(y) \condtrans{t|s}{y}{x}} $$

Backward Kolmogorov equation

The Backward Kolmogorov equation writes $$ -\partial_s \condtrans{t|s}{y}{x}= \mu_s(x) \partial_x \condtrans{t|s}{y}{x} + \frac 1 2 \sigma^2_s(x) \partial^2_{xx} \condtrans{t|s}{y}{x} $$

Recall that $$ \rmd X_v=\mu_v(X_v) \rmd v + \sigma_v(X_v) \rmd W_v $$ Now, define for $ s\leq t $, $u_s(x)=\left. \PE[h(X_t)|X_s] \right|_{X_s=x}=\int h(y) \condtrans{t|s}{y}{x} \rmd y$.

Set $Y_v=u_v(X_v)$. By Itô's Formula, \begin{align*} \rmd Y_v&=\partial_s u_v(X_v) \rmd s + \partial_x u_v(X_v) \rmd X_v + \frac 1 2 \partial^2_{xx}u_v(X_v) \rmd\cro{X}_v \\ & = \lrb{\partial_s u_v + \mu_v \partial_x u_v + \frac 1 2 \sigma_v^2 \partial^2_{xx}u_v}(X_v) \rmd s + \lrb{\sigma_v \partial_{x}u_v} (X_v) \rmd W_v \end{align*}

Note that $Y_t=h(X_t)$ and $Y_s=\left. \PE[h(X_t)|X_s]\right|_{X_s=x}$. Hence, \begin{align*} 0= \PE[Y_t-Y_s| X_s]|_{X_s=x}= \left. \PE \lrb{\left. \int_s^t \lrb{\partial_s u_v + \mu_v \partial_x u_v + \frac 1 2 \sigma_v^2 \partial^2_{xx}u_v}(X_v) \rmd v \right| X_s} \right|_{X_s=x} \end{align*} Dividing by $t-s$ and letting $t\to s$, we get $$ \lr{\partial_s u_s + \mu_s \partial_x u_s + \frac 1 2 \sigma_s^2 \partial^2_{xx}u_s}(x)=0 $$ Since $u_s(x)=\int h(y) \condtrans{t|s}{y}{x} \rmd y$, we finally obtain $$ \partial_s \condtrans{t|s}{y}{x}+ \mu_s(x) \partial_x \condtrans{t|s}{y}{x} + \frac 1 2 \sigma^2_s(x) \partial^2_{xx} \condtrans{t|s}{y}{x}=0 $$ which completes the proof.

2023/11/12 18:33 · rdouc

$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2017/10/07 23:39 · douc

Kullback-Leibler divergence for normal distributions

Let $\mu_0,\mu_1 \in \rset^p$ and $ \Sigma_0,\Sigma_1 \in \rset^{p \times p}$ where $\Sigma_0,\Sigma_1$ are symmetric definite positive. Then, $$ \klbck{\N(\mu_0,\Sigma_0)}{\N(\mu_1,\Sigma_1)}=-\frac{p}{2} + \frac{(\mu_0-\mu_1)^T \Sigma_1^{-1} (\mu_0-\mu_1) }{2} + \frac{Tr\lr{\Sigma_1^{-1} \Sigma_0}}{2} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1} $$

Proof

Assume that $X_0\sim \N(\mu_0,\Sigma_0)$ then $X_0= \mu_0 + \Sigma_0^{1/2} U_0$ where $U_0\sim \N(0,I_p)$ \begin{align*} \klbck{\N(\mu_0,\Sigma_0)}{\N(\mu_1,\Sigma_1)}&= \PE\lrb{\log \frac{\rme^{-(X_0-\mu_0)^T \Sigma_0^{-1} (X_0-\mu_0) / 2}}{\rme^{-(X_0-\mu_1)^T \Sigma_1^{-1} (X_0-\mu_1) / 2}}} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1} \\ & = \PE\lrb{-\frac{U_0^T U_0}{2}}+\frac{1}{2} \PE\lrb{(\mu_0-\mu_1 + \Sigma_0^{1/2}U_0)^T \Sigma_1^{-1} (\mu_0-\mu_1 + \Sigma_0^{1/2}U_0)} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1} \\ &= -\frac{p}{2} + \frac{(\mu_0-\mu_1)^T \Sigma_1^{-1} (\mu_0-\mu_1) }{2} + \frac 1 2 \PE\lrb{U_0^T \Sigma_0^{1/2} \Sigma_1^{-1} \Sigma_0^{1/2} U_0} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1}\\ &= -\frac{p}{2} + \frac{(\mu_0-\mu_1)^T \Sigma_1^{-1} (\mu_0-\mu_1) }{2} + \frac 1 2 \PE\lrb{U_0^T \Sigma_0^{1/2} \Sigma_1^{-1} \Sigma_0^{1/2} U_0} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1}\\ &= -\frac{p}{2} + \frac{(\mu_0-\mu_1)^T \Sigma_1^{-1} (\mu_0-\mu_1) }{2} + \frac{Tr\lr{\Sigma_1^{-1} \Sigma_0}}{2} - \frac{1}{2} \log \frac{\mathrm{det} \Sigma_0}{\mathrm{det} \Sigma_1} \end{align*} where in the last line, we have used that

\begin{align*} \PE\lrb{U_0^T \Sigma_0^{1/2} \Sigma_1^{-1} \Sigma_0^{1/2} U_0}&=\lr{\PE\lrb{Tr\lr{U_0^T \Sigma_0^{1/2} \Sigma_1^{-1} \Sigma_0^{1/2} U_0}}}=Tr\lr{\PE\lrb{\Sigma_1^{-1} \Sigma_0^{1/2} U_0 U_0^T \Sigma_0^{1/2} }} \\ &=Tr\lr{\Sigma_1^{-1} \Sigma_0^{1/2} \PE\lrb{U_0 U_0^T} \Sigma_0^{1/2} }=Tr\lr{\Sigma_1^{-1} \Sigma_0} \end{align*}

2023/11/10 10:08 · rdouc
world/subworld.1584636617.txt.gz · Last modified: 2022/03/16 01:37 (external edit)