# Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

• Theatre
• Research
• Teaching

### Miscellanous

world:reflectional_coupling

$$\newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}}$$

2017/10/07 23:39 ·

# Reflection coupling

Let $I$ be the identity matrix with $d$ components.

We want to find a coupling of $N(0,I)$ and $N(a,I)$ where $a \in \rset^d$. For all $b \in \rset^d$, denote $f_b$ the density of $N(b,I)$. The reflection coupling is based on the following result: Set $R_a=\Id -2 \frac{aa^T}{\|a\|^2}$ as the orthogonal reflection wrt to $\{\rset a\}^\perp$.

Lemma

• draw independently $X \sim N(0,I)$ and $U \sim \unif(0,1)$
• set
• $Y=X$ if $U \leq \frac{f_0\wedge f_a(X)}{f_0(X)}$
• $Y=a+R_aX$ otherwise.

Then, $Y \sim N(a,I)$.

## Proof

Since $R_a^2=\Id$, we get $R_a=R_a^{-1}$. Then, $y=a+R_a x$ is equivalent to $R_a(y-a)=x$. Moreover, $(\det R_a)^2=\det R_a^2=1$ so that $|\det R_a|=1$. Then, \begin{align*} \PE\lrb{h(Y)}&=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(a+R_ax) (f_0- f_a)^+(x) \rmd x\\ &=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(y) (f_0- f_a)^+(R_a(y-a)) \underbrace{|\det R_a|}_{1} \rmd y \end{align*} Now, noting that $R_a$ is an isometry and that $R_aa=-a$, we get \begin{align*} \|R_a(y-a)\|^2&=\|y-a\|^2\\ \|R_a(y-a)-a\|^2&=\|R_ay\|^2=\|y\|^2 \end{align*} which implies that $f_0(R_a(y-a))=f_a(y)$ and $f_a(R_a(y-a))=f_0(y)$. Finally, $$\PE\lrb{h(Y)}=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(y) (f_a- f_0)^+(y)\rmd y =\int h(x) f_a(x)\rmd x$$ which concludes the proof.

## Corollary

We now intend to construct a coupling of $N(x,h I)$ and $N(y,h I)$. We use the Lemma with $N(0,I)$ and $N(a,I)$ where $a=(y-x)/\sqrt{h}$ to construct a coupling $(Z,Z')$ and we set $X=x+\sqrt{h}Z$ and $Y=x+\sqrt{h}Z'$. This is is equivalent to the following coupling. Write $\varphi_{b,\Gamma}$ the density of $N(b,\Gamma)$,

• Draw independently $Z \sim N(0,I)$ and $U \sim \unif(0,1)$
• Set $X=x+\sqrt{h}Z$ and set
• $Y=X$ if $U \leq \frac{f_0\wedge f_a(Z)}{f_0(Z)}=\frac{\varphi_{x,h I}\wedge \varphi_{y,h I}(X)}{\varphi_{x,h I}(X)}$
• $Y=y+R_{y-x} (\sqrt{h}Z)$ otherwise.