Wiki
Wiki
Courses and public working groups
Courses and public working groups
Private Working Groups
Private Working Groups
- New!!! Reading Group
- Theatre
- Admin
- Research
- Teaching
This is an old revision of the document!
De Finetti's Theorem: Let $(X_i)_{i\in\mathbb{N}}$ be a family of exchangeable random elements defined on a measurable space $(\mathsf{X},\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{F}_\infty$ such that, conditionally on $\mathcal{F}_\infty$, the random variables $(X_i)_{i\in\mathbb{N}}$ are independent and identically distributed (i.i.d.).
Without loss of generality, we model $(X_i)_{i\in\mathbb{N}}$ as the coordinate projections on the canonical probability space $(\mathsf{X}^{\mathbb{N}},\mathcal{X}^{\otimes\mathbb{N}},\mathbb{P})$. We proceed as follows:
1. Reverse filtration construction:
$$ f(x_1,\ldots,x_n,x_{n+1},\ldots)=f(x_{\pi(1)},\ldots,x_{\pi(n)},x_{n+1},\ldots). $$
$$ \mathcal{F}_\infty=\bigcap_{n\in\mathbb{N}}\mathcal{F}_n. $$
2. Conditional expectation and empirical averages:
$$ \mathbb{E}\!\left[\left(\frac1n\sum_{i=1}^n h(X_i)\right)\mathbf1_A\right] =\mathbb{E}[h(X_1)\mathbf1_A]. $$
$$ \frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{F}_n]. $$
$$ \frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{F}_\infty]. $$
3. Multivariate functions:
$$ \mathbb{E}[f(X_1,\ldots,X_k)\mid\mathcal{F}_\infty] =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{1\le i_1,\ldots,i_k\le n\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}). $$
$$ \lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{1\le i_1,\ldots,i_k\le n\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}) = \lim_{n\to\infty}\frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},\ldots,X_{i_k}). $$
$$ \mathbb{E}[f_1(X_1)\cdots f_k(X_k)\mid\mathcal{F}_\infty] =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{F}_\infty]. $$