Wiki
Wiki
Courses and public working groups
Courses and public working groups
Private Working Groups
Private Working Groups
- New!!! Reading Group
- Theatre
- Admin
- Research
- Teaching
This is an old revision of the document!
on
$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lp}[1]{\mathsf{L}_{{#1}}} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$
De Finetti's Theorem: Let $(X_i)_{i\in\mathbb{N}}$ be a family of exchangeable random elements taking balues on a measurable space $(\mathsf{X},\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, conditionally on $\mathcal{G}_\infty$, the random variables $(X_i)_{i\in\mathbb{N}}$ are independent and identically distributed (i.i.d.).
The proof is based on the paper “Uses of exchangeability” by J. F. Kingman Click here to see the paper.
Without loss of generality, we model $(X_i)_{i\in\mathbb{N}}$ as the coordinate projections on the canonical probability space $(\mathsf{X}^{\mathbb{N}},\mathcal{X}^{\otimes\mathbb{N}},\mathbb{P})$. We proceed as follows:
1. Reverse filtration construction:
$$ f(x_1,\ldots,x_n,x_{n+1},\ldots)=f(x_{\pi(1)},\ldots,x_{\pi(n)},x_{n+1},\ldots). $$
$$ \mathcal{G}_\infty=\bigcap_{n\in\mathbb{N}}\mathcal{G}_n. $$
2. Conditional expectation and empirical averages:
$$ \mathbb{E}\!\left[\left(\frac1n\sum_{i=1}^n h(X_i)\right)\mathbf1_A\right] =\frac1n\sum_{i=1}^n \mathbb{E}\!\left[\left( h(X_i)\right)\mathbf1_A\right] =\mathbb{E}[h(X_1)\mathbf1_A]. $$
$$ \frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{G}_n], \quad a.s. $$
$$ \frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{G}_\infty]. $$
3. Multivariate functions:
$$ \mathbb{E}[f(X_1,\ldots,X_k)\mid\mathcal{G}_\infty] =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{i_{1:k} \in [1:n]^k\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}). $$
$$ \frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{i_{1:k} \in [1:n]^k\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}) + O\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},\ldots,X_{i_k}). $$
$$ \mathbb{E}[f_1(X_1)\cdots f_k(X_k)\mid\mathcal{G}_\infty] =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty]. $$
If $(X_i)$ are real-valued random variables, then, since the distribution of any random variable $X$ is completely determined by the values $\mathbb{P}(X \le x)$ for $x \in \mathbb{Q}$, we can replace $\mathcal{G}_\infty$ with the $\sigma$-field generated by the countable family of random variables \[ \left\{ \mathbb{E}\big[\mathbf{1}_{\{X_1 \le x\}} \mid \mathcal{G}_\infty \big] : x \in \mathbb{Q} \right\}. \] It follows that there exists a random variable $S$ such that, conditional on $S$, the sequence $(X_i)$ is independent and identically distributed. $\square$
The previous approach allows to prove the strong law of large numbers (for a proof of the LLN using only the dominated convergence theorem, click here)
Let \((X_i)\) be a sequence of independent and identically distributed (i.i.d.) random variables such that \(\mathbb{E}[|X_1|] < \infty\). Then, \[ \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} \mathbb{E}[X_1]. \]
Proof: By the reverse martingale convergence theorem (see Upcrossing Inequality and Martingale Convergence), the empirical average converges almost surely to the conditional expectation with respect to the tail σ-field \(\mathcal{G}_\infty\): \[ \frac{1}{n} \sum_{i=1}^n X_i = \mathbb{E}[X_1|\mathcal{G}_n] \xrightarrow{a.s.} \mathbb{E}[X_1|\mathcal{G}_\infty]. \]
The Hewitt-Savage 0-1 Law states that any \(\mathcal{G}_\infty\)-measurable random variable is almost surely constant. Consequently, the conditional expectation \(\mathbb{E}[X_1|\mathcal{G}_\infty]\) is almost surely equal to its unconditional expectation: \[ \mathbb{E}[X_1|\mathcal{G}_\infty] = \mathbb{E}[X_1] \quad \text{a.s.} \]
Thus, the empirical average converges almost surely to the theoretical expectation: \[ \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} \mathbb{E}[X_1]. \]