Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:projet-mda-2025

This is an old revision of the document!


Link to the paper Title & Auteurs Associated team (at most 2 students) Comments
paper 1 A probabilistic approach to convex (φ)-entropy decay for Markov chains — Giovanni Conforti
paper 2 Shifted Composition III: Local Error Framework for KL Divergence — Jason M. Altschuler & Sinho Chewi
paper 3 A probability approximation framework: Markov process approach — Peng Chen, Qi‑Man Shao & Lihu Xu
paper 4 Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula — Xiao Fang, Qi‑Man Shao & Lihu Xu
paper 5 Berry–Es̈een Bounds for Multivariate Nonlinear Statistics with Applications to M‑estimators and Stochastic Gradient Descent Algorithms — Qi‑Man Shao & Zhuo‐Song Zhang
paper 6 Asymptotically unbiased approximation of the QSD of diffusion processes with a decreasing time step Euler scheme — Fabien Panloup & Julien Reygner
paper 7 General Markovian randomized equilibrium existence and construction in zero‑sum Dynkin games for diffusions — Sören Christensen & Kristoffer Lindensjö
paper 8 On spectral gap decomposition for Markov chains — Qian Qin
paper 9 A phase transition in sampling from Restricted Boltzmann Machines — Youngwoo Kwon, Qian Qin, Guanyang Wang & Yuchen Wei
paper 10 Spectral gap bounds for reversible hybrid Gibbs chains — Qian Qin, Nianqiao Ju & Guanyang Wang
paper 11 Analysis of two‑component Gibbs samplers using the theory of two projections — Qian Qin
paper 12 Wasserstein‑based methods for convergence complexity analysis of MCMC with applications — Qian Qin & James P. Hobert
paper 13 On importance sampling and independent Metropolis‑Hastings with an unbounded weight function — George Deligiannidis, Pierre E. Jacob, El Mahdi Khribch & Guanyang Wang
paper 14 The No‑Underrun Sampler: A Locally‑Adaptive, Gradient‑Free MCMC Method — Nawaf Bou‑Rabee, Bob Carpenter, Sifan Liu & Stefan Oberdörster
paper 15 Deep Learning for Computing Convergence Rates of Markov Chains — Y Qu et al.
paper 16 Mixing Time Bounds for the Gibbs Sampler under Isoperimetry — Alexander Goyal, George Deligiannidis & Nikolas Kantas
paper 17 Metropolis–Hastings transition kernel couplings — John O’Leary & Guanyang Wang
world/projet-mda-2025.1762336787.txt.gz · Last modified: 2025/11/05 10:59 by rdouc