Processing math: 0%

Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:martingale

This is an old revision of the document!


\newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lp}[1]{\mathsf{L}_{{#1}}} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}}

2023/11/14 18:37

Supermartingale convergence results

Theorem. Let \mcf=(\mcf_n)_{n\in\nset} be a filtration and let \seq{X_n}{n\in\nset} be an \mcf-adapted sequence of \lone-random variables such that

  • M=\sup_{n\in\nset} \PE[(X_n)^-]<\infty
  • for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\leq X_{n-1}.

that is, \seq{X_n}{n\in\nset} is a (\mcf_n)_{n\in\nset}-supermartingale, with negative part bounded in \lone. Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is in \lone.

Proof

Let a<b and define C_1=\indiacc{X_0<a} and for n\geq 2, C_n=\indiacc{C_{n-1}=1,X_{n-1} \leq b}+\indiacc{C_{n-1}=0,X_{n-1} < a} In words, the first time C_n flags 1 is when X_{n-1}<a. Then it flags 1 until X_{n-1} goes above b. Then it flags 0 until X_n goes below a. So consecutive sequences of C_n=1 are linked with upcrossings of [a,b] for (X_n) . Now, define Y_n=\sum_{k=1}^n C_k(X_k-X_{k-1}).

Define U_N[a,b] the number of upcrossings of [a,b] for (X_n)_{0\leq n \leq N } . Then, Y_N=\sum_{k=1}^N C_k(X_k-X_{k-1}) \geq (b-a) U_N[a,b]-(X_N-a)^- From the fact that \seq{X_n}{n\in\nset} is a \mcf-supermartingale and (C_n)_{n\in\nset} is \mcf-previsible, we deduce that \seq{Y_n}{n\in\nset} is also a \mcf-supermartingale so that \PE[Y_N]\leq 0. Then, (b-a) \PE[U_N[a,b]] \leq \PE[(X_N-a)^-]=\PE[(a-X_N)^+] \leq a^+ + \PE[(-X_N)^+]\leq a^+ + M Letting N goes to infinity, the monotone convergence theorem yields: (b-a) \PE[U_\infty[a,b]] \leq a^+ + M and thus, \PP(U_\infty[a,b]<\infty)=1 for all a<b. Now, \begin{align*} \PP(\liminf_n X_n<\limsup_n X_n) &\leq \sum_{a,b\in \mathbb{Q}, a<b} \PP\lr{\liminf_n X_n <a<b<\limsup_n X_n}\\ & \leq \sum_{a,b\in \mathbb{Q}, a<b} \PP(U_\infty[a,b]=\infty)=0 \end{align*} which shows that X_\infty=\lim_{n \to \infty} X_n exits almost surely.

Moreover, \PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n] so that \sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} \leq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<\infty which implies by Fatou's lemma that \PE[|X_\infty|]=\PE[\liminf_{n}|X_n|] \leq \liminf_{n} \PE[|X_n|] \leq \sup_n \PE[|X_n|]<\infty. The proof is completed.

Corollary: Submartingale convergence results

As a consequence, the conclusion also holds if \seq{X_n}{n\in\nset} is a \mcf-submartingale, with positive part bounded in \lone : indeed, we only need to apply the previous result to -X_n.

Corollary Assume that \mcf=(\mcf_n)_{n\in\nset} is a filtration and let \seq{X_n}{n\in\nset} be an \mcf-adapted sequence of \lone random variables such that

  • M=\sup_{n\in\nset} \PE[(X_n)^+]<\infty
  • for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}.

that is, \seq{X_n}{n\in\nset} is a \mcf-submartingale, with positive part bounded in \lone. Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is in \lone.

world/martingale.1616888974.txt.gz · Last modified: 2022/03/16 01:37 (external edit)