Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:inverse_fourier

$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2017/10/07 23:39 · douc

$$ \newcommand{\bfourier}[1]{\bar{\mathcal F}_{#1}} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\bbC}{\mathbb C} $$

The inversion formula for the Fourier transform

Proposition Let $f$ be a function on $\lone(\rset)$. Assume that its Fourier transform $\tilde f$ is also in $\lone(\rset)$. Then, $f(x)=\bfourier{\tilde{f}}(x)$ for every $x\in \rset$ such that $f(x)=\lim_{y \to x}f(y)$.

$\bproof$ Recall that for any complex number $\lambda \in \bbC$, and for all real number $\sigma \neq 0$, \begin{equation} \label{eq:caract} \int \frac{\rme^{-x^2/(2\sigma^2)}}{\sqrt{2\pi \sigma^2}} \rme^{\lambda x} \rmd x=\rme^{\lambda^2 \sigma^2/2} \end{equation} Set $$ A_\sigma(x)=\int \tilde f(\nu) \rme^{2 i \pi \nu x}e^{-\nu^2/(2 \sigma^2)}\rmd \nu $$ As $\tilde f \in \lone(\rset)$, the dominated convergence theorem shows that $\lim_{\sigma\to \infty}A_\sigma(x)=\bfourier{\tilde f}(x)$. Then, \begin{align*} A_\sigma(x)&\stackrel{(a)}{=}\int f(y) \lr{\int \rme^{-2 i \pi \nu (y-x)} e^{-\nu^2/(2\sigma^2)}\rmd \nu} \rmd y\\ &\stackrel{(b)}{=}\int f(y) \rme^{-2 \pi^2 (y-x)^2 \sigma^2}\sqrt{2\pi \sigma^2} \rmd y\\ &\stackrel{(c)}{=}\int f(x+s/\sigma) \rme^{-2 \pi^2 s^2}\sqrt{2\pi} \rmd s \end{align*} where $(a)$ is obtained by replacing $\tilde f$ by its expression in terms of $f$ and by using Fubini, $(b)$ comes from \eqref{eq:caract} applied to $\lambda=-2 i \pi(y-x)$. And $(c)$ follows from the change of variable $y=x+s/\sigma$. Set $\phi(s)=\rme^{-2 \pi^2 s^2}\sqrt{2\pi}$ and by applying \eqref{eq:caract} to $\sigma^2=1/(4\pi^2)$ et $\lambda=0$, we deduce $\int \phi(s) \rmd s=1$, (we can shorten the proof if we note that $\phi$ is the density of a normal centered distribution with variance $1/(4 \pi^2)$. Posons $g_x(u)=f(x+u)-f(x)$. Since $x$ is a continuity point of $f$, we have $\lim_{ u \to 0} g_x(u)=0$. Then, \begin{align*} |A_\sigma(x)-f(x)|&=\left|\int g_x(s/\sigma) \phi(s) \rmd s\right| \leq \sup_{|s| < \sqrt{\sigma}} |g_x(s/\sigma)|+\int_{|s| \geq \sqrt{\sigma}} g_x(s/\sigma) \phi(s) \rmd s\\ & \leq \sup_{|u| < 1/\sqrt{\sigma}} |g_x(u)|+\int_{|u| \geq1/ \sqrt{\sigma}} |g_x(u)| \phi(\sigma u) \sigma\rmd u\\ & \leq \sup_{|u| < 1/\sqrt{\sigma}} |g_x(u)|+\underbrace{\int |g_x(u)| \rmd u}_{<\infty\, (\mbox{car }f \in \lone(\rset))}\times \lr{ \rme^{-2\pi^2 \sigma} \sqrt{2\pi} \sigma} \end{align*} The proof is finished by letting $\sigma$ goes to infinity. $\eproof$

world/inverse_fourier.txt · Last modified: 2022/03/16 07:40 (external edit)