This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
world:homepage [2023/09/27 16:32] rdouc [Welcome to Randal Douc's homepage] |
world:homepage [2024/10/07 18:12] (current) rdouc [Table] |
||
---|---|---|---|
Line 5: | Line 5: | ||
{{ :world:randaldoucjuillet2021.jpg?200|}} | {{ :world:randaldoucjuillet2021.jpg?200|}} | ||
- | * **Current position**: Full professor at Telecom Sudparis (since jan. 2008). | + | * **Current position**: Full professor at Telecom Sudparis (2008-current). |
- | * **Former position**: Full time "Professeur chargé de cours", Ecole Polytechnique, 2001-2007. Part-time “Professeur chargé de cours”, Ecole Polytechnique, 2017-2023. | + | * **Former position**: |
+ | * Full time position: "Professeur chargé de cours", Ecole Polytechnique, 2001-2007. | ||
+ | * Part-time position: “Professeur chargé de cours”, Ecole Polytechnique, 2017-2023. | ||
* **Area of Interest**: Computational Statistics, Applied Probability, Machine Learning. | * **Area of Interest**: Computational Statistics, Applied Probability, Machine Learning. | ||
* **Keywords**: Hidden Markov Models, latent variable models, sequential Monte Carlo methods, Markov chains Monte Carlo, variational inference, statistical inference. | * **Keywords**: Hidden Markov Models, latent variable models, sequential Monte Carlo methods, Markov chains Monte Carlo, variational inference, statistical inference. | ||
Line 21: | Line 23: | ||
- **Book**: R. Douc, E. Moulines, P. Priouret and P. Soulier: //Markov chains.// Springer Edition, 2018. | - **Book**: R. Douc, E. Moulines, P. Priouret and P. Soulier: //Markov chains.// Springer Edition, 2018. | ||
- | If you click below, you can find a list of my published papers: | + | <color /yellow> If you click below, you can find a list of my published papers: </color> |
- | <hidden ====Click here to see my published papers====> | + | <hidden ====Click here to see my published papers====> |
<sortable r1> | <sortable r1> | ||
<searchtable> | <searchtable> | ||
Line 53: | Line 55: | ||
| 25 | R. Douc and E. Moulines | Asymptotic properties of the maximum likelihood estimation in misspecified Hidden Markov models | Annals of Statistics | 2012 | Oct. 2012, Volume 40, Number 5 (2012), 2697-2732. | | | | 25 | R. Douc and E. Moulines | Asymptotic properties of the maximum likelihood estimation in misspecified Hidden Markov models | Annals of Statistics | 2012 | Oct. 2012, Volume 40, Number 5 (2012), 2697-2732. | | | ||
| 26 | R. Douc, P. Doukhan and E. Moulines | Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator | Stochastic Processes and their Applications | 2013 | Volume 123, Issue 7, July 2013, Pages 2620-2647 | | | | 26 | R. Douc, P. Doukhan and E. Moulines | Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator | Stochastic Processes and their Applications | 2013 | Volume 123, Issue 7, July 2013, Pages 2620-2647 | | | ||
- | | 28 | M. Bédard, R. Douc and E. Moulines | Scaling analysis of Delayed Rejection MCMC methods | Methodology and Computing in Applied ProbabilitY | 2014 | Volume 16, Issue 4, P 811-838 | | | + | | 28 | M. Bédard, R. Douc and E. Moulines | Scaling analysis of Delayed Rejection MCMC methods | Methodology and Computing in Applied Probability | 2014 | Volume 16, Issue 4, P 811-838 | | |
| 27 | C. Dubarry, R. Douc | Calibrating the exponential Ornstein-Uhlenbeck multiscale stochastic volatility model | Quantitative finance | 2013 | Volume 14, Issue 3, p 443-456 | | | | 27 | C. Dubarry, R. Douc | Calibrating the exponential Ornstein-Uhlenbeck multiscale stochastic volatility model | Quantitative finance | 2013 | Volume 14, Issue 3, p 443-456 | | | ||
| 29 | R. Douc, E. Moulines and J. Olsson | Long-term stability of sequential Monte Carlo methods under verifiable conditions | Annals of Applied Probability | 2014 | Volume 24, No. 5, p 1767–1802 | | | | 29 | R. Douc, E. Moulines and J. Olsson | Long-term stability of sequential Monte Carlo methods under verifiable conditions | Annals of Applied Probability | 2014 | Volume 24, No. 5, p 1767–1802 | | | ||
Line 64: | Line 66: | ||
| 36 | R. Douc and J. Olsson | Numerically stable online estimation of variance in particle filters | Bernoulli | 2019 | Volume 25, Number 2, 1504-1535 | | | | 36 | R. Douc and J. Olsson | Numerically stable online estimation of variance in particle filters | Bernoulli | 2019 | Volume 25, Number 2, 1504-1535 | | | ||
| 37 | R. Douc, J. Olsson and F. Roueff | Posterior consistency for partially observed Markov models | Stochastic Processes and their applications | 2020 | Volume 130, Issue 2, february 2020, Pages 733-759 | | | | 37 | R. Douc, J. Olsson and F. Roueff | Posterior consistency for partially observed Markov models | Stochastic Processes and their applications | 2020 | Volume 130, Issue 2, february 2020, Pages 733-759 | | | ||
- | | 38 | R. Douc, F. Roueff and T. Sim | Necessary and sufficient conditions for the identifiability of observation-driven models | Journal of Time Series Analysis (JTSA) | 2021 (march) | Volume 42, Issue 2, p140-160 | | | + | | 38 | R. Douc, F. Roueff and T. Sim | Necessary and sufficient conditions for the identifiability of observation-driven models | Journal of Time Series Analysis (JTSA) | 2021 | Volume 42, Issue 2, p140-160 | | |
- | | 39 | R. Douc, F. Roueff, T. Sim | General-order observation-driven models: Ergodicity and consistency of the maximum likelihood estimator | Electronic Journal of Statistics | 2021. June | Vol. 15, No. 1, 3349-3393 | | | + | | 39 | R. Douc, F. Roueff, T. Sim | General-order observation-driven models: Ergodicity and consistency of the maximum likelihood estimator | Electronic Journal of Statistics | 2021 | Vol. 15, No. 1, 3349-3393 | | |
- | | 40 | K. Daudel, R. Douc, F. Portier | Infinite-dimensional gradient-based descent for alpha-divergence minimisation | Annals of Statistics | 2021. Oct. | Vol. 49, No. 4, 2250–2270 | | | + | | 40 | K. Daudel, R. Douc, F. Portier | Infinite-dimensional gradient-based descent for alpha-divergence minimisation | Annals of Statistics | 2021 | Vol. 49, No. 4, 2250–2270 | | |
| 41 | K. Daudel, R. Douc | Mixture weights optimisation for Alpha-Divergence Variational Inference | Advances in Neural Information Processing Systems, (Neurips) | 2021.\\ Nov. | 34 | | | | 41 | K. Daudel, R. Douc | Mixture weights optimisation for Alpha-Divergence Variational Inference | Advances in Neural Information Processing Systems, (Neurips) | 2021.\\ Nov. | 34 | | | ||
| 42 | M. Gerber, R. Douc | A Global Stochastic Optimization Particle Filter Algorithm | Biometrika | 2022 | Volume 109, Issue 4, December 2022, Pages 937–955. | | | | 42 | M. Gerber, R. Douc | A Global Stochastic Optimization Particle Filter Algorithm | Biometrika | 2022 | Volume 109, Issue 4, December 2022, Pages 937–955. | | | ||
| 43 | K. Daudel, R. Douc, F. Roueff | Monotonic alpha-divergence minimisation | Journal of Machine Learning Research (JMLR) | 2023 | (62):1−76, 2023. Vol 24. | | | | 43 | K. Daudel, R. Douc, F. Roueff | Monotonic alpha-divergence minimisation | Journal of Machine Learning Research (JMLR) | 2023 | (62):1−76, 2023. Vol 24. | | | ||
- | | 44 | R. Douc, A. Durmus, A. Enfroy, J. Olsson | Boost your favorite Markov Chain Monte Carlo sampler using Kac's theorem: the Kick-Kac teleportation algorithm | Submitted. [[https://arxiv.org/abs/2201.05002|Arxiv]] | 2023 | | | | + | | 44 | C. Andral, R. Douc, C.P. Robert | The Importance Markov chain | Stochastic Processes and their applications | 2024 | Vol 171, May 2024. | | |
- | | 45 | R. Douc, P. Jacob, A. Lee, D. Vats | Solving the Poisson equation using coupled Markov chains | Submitted. [[https://arxiv.org/abs/2206.05691|Arxiv]] | 2023 | | | | + | | 45 | R. Douc, A. Durmus, A. Enfroy, J. Olsson | Boost your favorite Markov Chain Monte Carlo sampler using Kac's theorem: the Kick-Kac teleportation algorithm | Submitted. [[https://arxiv.org/abs/2201.05002|Arxiv]] | 2023 | | | |
- | | 46 | C. Andral, R. Douc, C.P. Robert | The Importance Markov chain | Submitted. [[https://arxiv.org/abs/2207.08271|Arxiv]] | 2023 | | | | + | | 46 | R. Douc, P. Jacob, A. Lee, D. Vats | Solving the Poisson equation using coupled Markov chains | Submitted. [[https://arxiv.org/abs/2206.05691|Arxiv]] | 2023 | | | |
| 47 | R. Douc, S. Le Corff | Asymptotic convergence of iterative optimization algorithms | Submitted. [[https://arxiv.org/pdf/2302.12544.pdf|Arxiv]] | 2023 | | | | | 47 | R. Douc, S. Le Corff | Asymptotic convergence of iterative optimization algorithms | Submitted. [[https://arxiv.org/pdf/2302.12544.pdf|Arxiv]] | 2023 | | | | ||
<pagemod result>| @@Id@@ | @@Authors@@ | @@Title@@ | @@Journal@@ | @@Year@@ | @@References@@ | @@Links@@ | | <pagemod result>| @@Id@@ | @@Authors@@ | @@Title@@ | @@Journal@@ | @@Year@@ | @@References@@ | @@Links@@ | |