Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:optimal-classifier

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
world:optimal-classifier [2023/11/04 12:18]
rdouc created
world:optimal-classifier [2023/11/04 14:03] (current)
rdouc [Bayes Optimal Classifier]
Line 1: Line 1:
 {{page>:​defs}} {{page>:​defs}}
  
-=== Bayes Optimal Classifier === +====== Bayes Optimal Classifier ​ ======
  
 Let $(X,Y)$ be random vector on $ (\Omega,​\mcf,​\PP) $, taking values on $\rset^k \times [1:p]$. We are interested in solving the optimization problem ​ Let $(X,Y)$ be random vector on $ (\Omega,​\mcf,​\PP) $, taking values on $\rset^k \times [1:p]$. We are interested in solving the optimization problem ​
Line 9: Line 9:
 where $\sf{F}$ is the set of measurable functions from $\rset^k$ to $[1:p]$ where we equip $\rset^k$ with the $\sigma$-field $\mcbb(\rset^k)$ and $[1:p]$ with the $\sigma$-field $\mc{P}([1:​p])$. ​ where $\sf{F}$ is the set of measurable functions from $\rset^k$ to $[1:p]$ where we equip $\rset^k$ with the $\sigma$-field $\mcbb(\rset^k)$ and $[1:p]$ with the $\sigma$-field $\mc{P}([1:​p])$. ​
  
-Proposition ​ +<WRAP center round tip 90%> 
 +**__Proposition__** ​
 $$ $$
 \inf_{\phi \in \sf{F}} \PP(Y\neq \phi(X))= \PE\lrb{\min_{i \in [1:p]} \PP(Y \neq i|X)}=\PP(Y \neq \phi^\star(X)) \inf_{\phi \in \sf{F}} \PP(Y\neq \phi(X))= \PE\lrb{\min_{i \in [1:p]} \PP(Y \neq i|X)}=\PP(Y \neq \phi^\star(X))
 $$ $$
 where $\phi^\star(X)=\argmax_{i \in [1:p]} \PP(Y=i|X)$. ​ where $\phi^\star(X)=\argmax_{i \in [1:p]} \PP(Y=i|X)$. ​
 +</​WRAP>​
  
-Proof+===== Proof =====
  
 For any classifier $\phi$, decomposing into the disjoint events $\{\phi(X)=i\}$ and using the tower property, ​ For any classifier $\phi$, decomposing into the disjoint events $\{\phi(X)=i\}$ and using the tower property, ​
Line 27: Line 28:
 \phi^\star(X)= \argmin_{i \in [1:p]} \PP(Y \neq i|X)=\argmax_{i \in [1:p]} \PP(Y=i|X) \phi^\star(X)= \argmin_{i \in [1:p]} \PP(Y \neq i|X)=\argmax_{i \in [1:p]} \PP(Y=i|X)
 $$ $$
-which concludes the proof. ​+where the last equality follows from the identity $\PP(Y \neq i|X)=1-\PP(Y=i|X)$. This concludes the proof. ​
world/optimal-classifier.1699096730.txt.gz · Last modified: 2023/11/04 12:18 by rdouc