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Geometric ergodicity means that there exists constants C > 0
and ϱ ∈ (0, 1) such that for all n ∈ N,

∥µPn − π∥TV ⩽ Cϱn

where ∥·∥TV is the total variation norm (to be defined later)
between two measures.

1 µPn is the law of Xn starting from X0 ∼ µ

2 π is the law of Xn starting from X0 ∼ π

3 Geometric ergodicity for Markov chains should not be
confused with the notion of ergodic dynamical systems

CLT means that

n−1/2
n−1∑
k=0

{h(Xk)− π(h)}
LPπ⇒ N (0, σ2

π(h))

where h belongs to some class of functions and σπ should be
explicit.
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What is a coupling?

Definition

Let (X,X ) be a measurable space and let ν, µ be two
probability measures µ, ν ∈ M1(X). We define C(µ, ν), the
coupling set associated to (µ, ν) as follows

C(µ, ν) =
{
γ ∈ M1(X

2) : γ(· × X) = µ(·), γ(X× ·) = ν(·)
}

Any γ ∈ C(µ, ν) is called a coupling of (µ, ν).

1 In words, γ is a coupling of (µ, ν) if the following

property holds: if (X,Y ) ∼ γ, then we have the
marginal conditions : X ∼ µ and Y ∼ ν.

2 Example: The law of (X,X) where X ∼ µ is a coupling
of (µ, µ). Other example if X ∼ µ and Y ∼ µ and
X ⊥⊥ Y , then, the law of (X,Y ) is a coupling of (µ, µ).

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 6 / 18
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What are the different expressions of the total
variation norm?

Definition

Let (X,X ) be a measurable space and let ν, µ be two
probability measures µ, ν ∈ M1(X). Then the
total variation norm between µ and ν noted ∥µ− ν∥TV, is
defined by

∥µ− ν∥TV = 2 sup {|µ(f)− ν(f)| : f ∈ F(X), 0 ⩽ f ⩽ 1}

(1)

=

∫
|φ0 − φ1|(x)ζ(dx) (2)

= 2 inf {P(X ̸= Y ) : (X,Y ) ∼ γ where γ ∈ C(µ, ν)}
(3)

where µ(dx) = φ0(x)ζ(dx) and ν(dx) = φ1(x)ζ(dx) .

Proof is given in the lecture notes

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 7 / 18
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Two types of assumptions

Assumption A1

[ Minorizing condition ] for all d > 0, there exists ϵd > 0 and
a probability measure νd such that

∀x ∈ Cd := {V ⩽ d}, P (x, ·) ⩾ ϵdνd(·) (4)

Assumption A2

[ Drift condition ] there exists a constants (λ, b) ∈ (0, 1)×R+

such that for all x ∈ X,

PV (x) ⩽ λV (x) + b

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 9 / 18
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Geometric ergodicity and initial condition

Theorem

(Forgetting of the initialization) Assume (A1) and (A2) for
some measurable function V ⩾ 1. Then, there exists a
constant ϱ ∈ (0, 1) such that for all x, x′ ∈ X and all n ∈ N,∥∥Pn(x, ·)− Pn(x′, ·)

∥∥
TV

⩽ ϱn
[
V (x) + V (x′)

]
.

Proof is hard. It is given in the lecture notes.
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The geometric ergodicity theorem

Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold
for some measurable function V ⩾ 1. Then, the Markov kernel
P admits a unique invariant probability measure π. Moreover,
π(V ) < ∞ and there exists constants (ϱ, α) ∈ (0, 1)×R+ such
that for all µ ∈ M1(X) and all n ∈ N,

∥µPn − π∥TV ⩽ αϱnµ(V ).

Proof should be done on the blackboard

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 11 / 18
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Let (Mn)n∈N be a sequence of random variables on the same
probability space (Ω,F ,P) and let (Fn)n∈N be a filtration (ie
for all n ∈ N, Fn ⊂ Fn+1 ⊂ F).

Definition

We say that (Mn)n∈N is a (Fn)-martingale if for all n ∈ N,
Mn is integrable and for all n ⩾ 1,

E[Mn|Fn−1] = Mn−1

The increment process of the martingale is by definition
(Mn+1 −Mn)n∈N.

Theorem

If a sequence (Mn)n∈N is a (Fn)-martingale with stationary

and square integrable increments , then

n−1/2Mn
LP⇒ N

(
0,E[(M1 −M0)

2]
)

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 13 / 18
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What is the Poisson equation ?

Definition

For a given measurable function h such that π|h| < ∞, the
Poisson equation is defined by

ĥ− Pĥ = h− π(h) (5)

A solution to the Poisson equation is a function ĥ for which (5)
holds provided that P |ĥ|(x) < ∞ for all x ∈ X.

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 14 / 18
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Link between Poisson equations and Martingales

Link between Poisson equations and Martingales

Define

Sn(h) =

n−1∑
k=0

{h(Xk)− π(h)}

= Mn(ĥ) + ĥ(X0)− ĥ(Xn)

where

Mn(ĥ) =

n∑
k=1

{
ĥ(Xk)− Pĥ(Xk−1)

}
(6)

Note that
{
Mn(ĥ)

}
n∈N

is indeed a (Fk)-martingale where

Fk = σ(X0, . . . , Xk). Indeed we have

E[Mn(ĥ)|Fn−1]−Mn−1(h) = E[ĥ(Xn)− Pĥ(Xn−1)|Fn−1]

= Pĥ(Xn−1)− Pĥ(Xn−1) = 0

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 15 / 18
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Define

Sn(h) =

n−1∑
k=0

{h(Xk)− π(h)}

= Mn(ĥ) + ĥ(X0)− ĥ(Xn)

where

Mn(ĥ) =

n∑
k=1

{
ĥ(Xk)− Pĥ(Xk−1)

}
(6)

Note that
{
Mn(ĥ)

}
n∈N

is indeed a (Fk)-martingale where

Fk = σ(X0, . . . , Xk). Indeed we have

E[Mn(ĥ)|Fn−1]−Mn−1(h) = E[ĥ(Xn)− Pĥ(Xn−1)|Fn−1]

= Pĥ(Xn−1)− Pĥ(Xn−1) = 0
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How can we express the solution of a Poisson
equation?

Theorem

Assume that (A1) and (A2) hold for some measurable function
V ⩾ 1. Then, for any function h such that |h| ⩽ V , the
function

ĥ =

∞∑
n=0

{Pnh− π(h)} (7)

is well-defined. Moreover, ĥ is a solution of the Poisson
equation associated to h and there exists a constant γ such

that for all x ∈ X,
|ĥ(x)| ⩽ γV (x)

Proof should be done on the blackboard
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Theorem

(CLT with Poisson assumption) Let P be a Markov kernel

with a unique invariant probability measure π. Let h ∈ L2(π).

Assume that there exists a solution ĥ ∈ L2(π) to the Poisson

equation ĥ− Pĥ = h. Then

n−1/2
n−1∑
k=0

{h(Xk)− π(h)}
LPπ⇒ N (0, σ2

π(h)) ,

where
σ2
π(h) = Eπ[{ĥ(X1)− Pĥ(X0)}2] (8)

Proof should be done on the blackboard
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(A2) hold for some function V . Then, for all measurable
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and ĥ is defined as in (7).

Proof should be done on the blackboard

R. Douc and S. Schechtman , Telecom Sudparis MCMC: Theory and Applications 18 / 18



MCMC:
Theory and
Applications

R. Douc and
S.

Schechtman

Introduction

Coupling and
total variation

Geometric
ergodicity

Central Limit
theorem

Recap on martingales

The Poisson equation

Central limit
theorems

CLT

Theorem

(CLT with A1-A2 assumptions) Assume that (A1 and

(A2) hold for some function V . Then, for all measurable
functions h such that |h|2 ⩽ V ,

n−1/2
n−1∑
k=0

{h(Xk)− π(h)}
LPπ⇒ N (0, σ2

π(h)) ,

where
σ2
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