Chapter 4

Exercices Week 3

4.1 Dirichlet and Poisson problems

Definition 4.1 (Dirichlet Problem) Let P be a Markov kernel on $\mathrm{X} \times \mathscr{X}, A \in \mathscr{X}$ and $g \in \mathbb{F}_{+}(\mathrm{X})$. A nonnegative function $u \in \mathbb{F}_{+}(\mathrm{X})$ is a solution to the Dirichlet problem if

$$
u(x)= \begin{cases}g(x), & x \in A \tag{4.1}\\ P u(x), & x \in A^{c}\end{cases}
$$

For $A \in \mathscr{X}$, we define a submarkovian kernel P_{A} for $x \in \mathrm{X}$ and $B \in \mathscr{X}$ by

$$
\begin{equation*}
P_{A}(x, B)=\mathbb{E}_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\infty\right\}} \mathbb{1}_{B}\left(X_{\tau_{A}}\right)\right]=\mathbb{P}_{x}\left(\tau_{A}<\infty, X_{\tau_{A}} \in B\right) \tag{4.2}
\end{equation*}
$$

which is the probability that the chain starting from x eventually hits the set $A \cap B$.
4.1. For any $A \in \mathscr{X}$ and $g \in \mathbb{F}_{+}(\mathrm{X})$, the function $P_{A} g$ is a solution to the Dirichlet problem (4.1)

Definition 4.2 (Poisson problem) Let P be a Markov kernel on $\mathrm{X} \times \mathscr{X}, A \in \mathscr{X}$ and $f: A^{c} \rightarrow \mathbb{R}_{+}$be a measurable function. A nonnegative function $u \in \mathbb{F}_{+}(\mathrm{X})$ is a solution to the Poisson problem if

$$
u(x)= \begin{cases}0, & x \in A \tag{4.3}\\ P u(x)+f(x), & x \in A^{c}\end{cases}
$$

For $A \in \mathscr{X}$ and $h \in \mathbb{F}_{+}(\mathrm{X})$ define

$$
\begin{equation*}
G_{A} h(x)=\mathbb{1}_{A^{c}}(x) \mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1} h\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1} h\left(X_{k}\right)\right] \tag{4.4}
\end{equation*}
$$

where we have used the convention $\sum_{k=0}^{-1} \cdot=0$. Note that $G_{A} h$ is nonnegative but we do not assume that it is finite.
4.2. Let P be a Markov kernel on $\mathrm{X} \times \mathscr{X}, A \in \mathscr{X}$ and $f: A^{c} \rightarrow \mathbb{R}_{+}$be a measurable function. The function $G_{A} f$ is a solution to the Poisson problem (4.3).
4.3. Let P be a Markov kernel on $\mathrm{X} \times \mathscr{X}$ and $A \in \mathscr{X}$. Let $f \in \mathbb{F}_{+}\left(A, \mathscr{X}_{A}\right)$ and $g \in \mathbb{F}_{+}\left(A^{c}, \mathscr{X}_{A^{c}}\right)$.

1. Show that the function $P_{A} g+G_{A} f$ is a solution to the Poisson-Dirichlet problem

$$
u(x)= \begin{cases}g(x), & x \in A \tag{4.5}\\ P u(x)+f(x), & x \in A^{c}\end{cases}
$$

2. Show that if $v \in \mathbb{F}_{+}(\mathrm{X})$ satisfies

$$
v(x) \geq \begin{cases}g(x), & x \in A \tag{4.6}\\ \operatorname{Pv}(x)+f(x), & x \in A^{c}\end{cases}
$$

then $v \geq P_{A} g+G_{A} f$.
4.4. Show that the function $x \mapsto \mathbb{P}_{x}\left(\tau_{A}<\infty\right)$ is the smallest positive solution to the system

$$
v(x) \geq \begin{cases}1 & \text { if } x \in A \\ P v(x) & \text { if } x \notin A\end{cases}
$$

4.5. Show that the function $x \mapsto \mathbb{E}_{x}\left[\tau_{A}\right]$ is the smallest positive solution to the system

$$
v(x) \geq \begin{cases}0 & \text { if } x \in A \\ P v(x)+1 & \text { if } x \notin A\end{cases}
$$

4.6. Let P be a Markov kernel on $\mathrm{X} \times \mathscr{X}$. Assume that P admits an atom α and an invariant probability measure π.

1. If $\pi(\alpha)>0$, show that α is recurrent.
2. If α is accessible, show that $\pi(\alpha)>0$ and α (and hence P) are recurrent.

Solutions to exercises

4.1 If $x \in A$, then by definition, $P_{A} g(x)=g(x)$. For $x \in X$, the identity $\sigma_{A}=1+\tau_{A} \circ \theta_{1}$ and the Markov property yield

$$
\begin{aligned}
P P_{A} g(x) & =\mathbb{E}_{x}\left[P_{A} g\left(X_{1}\right)\right]=\mathbb{E}_{x}\left[\left\{\mathbb{1}_{\left\{\tau_{A}<\infty\right\}} g\left(X_{\tau_{A}}\right)\right\} \circ \theta_{1}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{1}_{\left\{\tau_{A} \circ \theta_{1}<\infty\right\}} g\left(X_{1+\tau_{A} \circ \theta_{1}}\right)\right]=\mathbb{E}_{x}\left[\mathbb{1}_{\left\{\sigma_{A}<\infty\right\}} g\left(X_{\sigma_{A}}\right)\right] .
\end{aligned}
$$

For $x \notin A$, then $\sigma_{A}=\tau_{A} \mathbb{P}_{x}-$ a.s. and we obtain

$$
P P_{A} g(x)=\mathbb{E}_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\infty\right\}} g\left(X_{\tau_{A}}\right)\right]=P_{A} g(x) .
$$

4.2 Set $u(x)=G_{A} f(x)=\mathbb{E}_{x}[S]$ where $S=\mathbb{1}_{A^{c}}\left(X_{0}\right) \sum_{k=0}^{\tau_{A}-1} f\left(X_{k}\right)$. By convention $u(x)=0$ for $x \in A$. Applying the Markov property and the relation $\sigma_{A}=1+\tau_{A} \circ \theta_{1}$, we obtain

$$
\begin{align*}
\operatorname{Pu}(x) & =\mathbb{E}_{x}\left[u\left(X_{1}\right)\right]=\mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[S]\right]=\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[S \circ \theta_{1} \mid \mathscr{F}_{1}\right]\right] \tag{4.7}\\
& =\mathbb{E}_{x}\left[S \circ \theta_{1}\right]=\mathbb{E}_{x}\left[\mathbb{1}_{A^{c}}\left(X_{1}\right) \sum_{k=1}^{\tau_{A} \circ \theta_{1}} f\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[\sum_{k=1}^{\sigma_{A}-1} f\left(X_{k}\right)\right],
\end{align*}
$$

where the last equality follows from $\mathbb{1}_{A}\left(X_{1}\right) \sum_{k=1}^{\sigma_{A}-1} f\left(X_{k}\right)=0$. For $x \notin A, \sigma_{A}=\tau_{A} \mathbb{P}_{x}-$ a.s. and thus

$$
f(x)+P u(x)=f(x)+\mathbb{E}_{x}\left[\sum_{k=1}^{\sigma_{A}-1} f\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[\mathbb{1}_{A^{c}}\left(X_{0}\right) \sum_{k=0}^{\tau_{A}-1} f\left(X_{k}\right)\right]=u(x) .
$$

4.3 1. (4.5) follows by combining Exercise 4.1 with Exercise 4.2 .
2. Assume now that (4.6) holds. Eq. (4.6) implies

$$
P v+f \mathbb{1}_{A^{c}}+g \mathbb{1}_{A} \leq v+\mathbb{1}_{A} P v .
$$

Applying Theorem 4.3.1 (in the book) with $V_{n}=v, Z_{n}=f \mathbb{1}_{A^{c}}+g \mathbb{1}_{A}, g=\mathbb{1}_{A} P v$ and $\tau=\tau_{A}$, we obtain for all $x \in A^{c}$,

$$
\begin{aligned}
P_{A} g(x)+G_{A} f(x)= & \mathbb{E}_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\infty\right\}} g\left(X_{\tau_{A}}\right)\right]+\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1} f\left(X_{k}\right)\right] \\
\leq & \mathbb{E}_{x}\left[\mathbb{1}_{\left\{\tau_{A}<\infty\right\}} v\left(X_{\tau_{A}}\right)\right] \\
& +\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1}\left\{f\left(X_{k}\right) \mathbb{1}_{A^{c}}\left(X_{k}\right)+\mathbb{1}_{A}\left(X_{k}\right) g\left(X_{k}\right)\right\}\right] \\
\leq & v(x)+\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1} \mathbb{1}_{A}\left(X_{k}\right) P v\left(X_{k}\right)\right]=v(x) .
\end{aligned}
$$

On the other hand, $v(x) \geq g(x)=P_{A} g(x)+G_{A} f(x)$ for $x \in A$ by construction.
4.4 Apply Exercise 4.3 with $g=\mathbb{1}_{A}$ and $f=0$.
4.5 We apply Exercise 4.3 with $g=0$ and $f=\mathbb{1}_{A^{c}}$. In that case, the solution is given by

$$
\mathbb{1}_{A^{c}}(x) \mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{A}-1} \mathbb{1}_{A^{c}}\left(X_{k}\right)\right]=\mathbb{1}_{A^{c}}(x) \mathbb{E}_{x}\left[\tau_{A}\right]=\mathbb{E}_{x}\left[\tau_{A}\right]
$$

4.1 (i) Since π is invariant, we have

$$
\begin{equation*}
\pi U(\alpha)=\sum_{n=0}^{\infty} \pi P^{n}(\alpha)=\sum_{n=0}^{\infty} \pi(\alpha) \tag{4.8}
\end{equation*}
$$

Therefore, if $\pi(\alpha)>0$ the atomic version of the maximum principle yields

$$
\infty=\pi U(\alpha)=\int_{\mathrm{X}} \pi(\mathrm{~d} y) U(y, \alpha) \leq U(\alpha, \alpha) \int_{\mathrm{X}} \pi(\mathrm{~d} y)=U(\alpha, \alpha)
$$

(ii) Since α is an accessible atom, $K_{a_{\varepsilon}}(x, \alpha)>0$ for all $x \in \mathrm{X}$ and $\varepsilon \in(0,1)$. Therefore, we get that

$$
\pi(\alpha)=\pi K_{a_{\varepsilon}}(\alpha)=\int_{\mathrm{X}} \pi(\mathrm{~d} x) K_{a_{\varepsilon}}(x, \alpha)>0
$$

Therefore α is recurrent by 1 and therefore P is recurrent.

