Boost your favorite Markov Chain Monte Carlo using Kac formula: the Kick-Kac Teleportation algorithm.

R. Douc, A. Durmus, A. Enfroy and J. Olsson

Télécom Sudparis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Outline

(1) Introduction to the Kac formula
(2) The memoryless teleportation process
(3) The Markov teleportation process
(4) Extensions
(5) Conclusion

Outline

(1) Introduction to the Kac formula

- The statement
- Proof
(2) The memoryless teleportation process
(3) The Markov teleportation process

4 Extensions
(5) Conclusion

The Kac formula for Markov chains

Definitions and Notation

- First return time to the set $\mathrm{C}: \sigma_{\mathrm{C}}=\inf \left\{k \geqslant 1: X_{k} \in \mathrm{C}\right\}$.
- C is π-accessible iff $\mathbb{P}_{x}\left(\sigma_{\mathrm{C}}<\infty\right)>0$ for π-almost all $x \in \mathrm{X}$.

Theorem (The Kac Formula)

Let P be a Markov kernel on $E \times \mathcal{E}$ with invariant probability
measure π. Then, for all π-accessible sets $C \in \mathcal{E}$, we have
\square where

The Kac formula for Markov chains

Definitions and Notation

- First return time to the set $\mathrm{C}: \sigma_{\mathrm{C}}=\inf \left\{k \geqslant 1: X_{k} \in \mathrm{C}\right\}$.
- C is π-accessible iff $\mathbb{P}_{x}\left(\sigma_{\mathrm{C}}<\infty\right)>0$ for π-almost all $x \in \mathrm{X}$.

Theorem (The Kac Formula)

Let P be a Markov kernel on $\mathrm{E} \times \mathcal{E}$ with invariant probability measure π. Then, for all π-accessible sets $\mathrm{C} \in \mathcal{E}$, we have $\pi=\pi_{\mathrm{C}}^{0}=\pi_{\mathrm{C}}^{1}$, where

$$
\begin{align*}
& \pi_{\mathrm{C}}^{0}(f)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} f\left(X_{k}\right)\right] \tag{1}\\
& \pi_{\mathrm{C}}^{1}(f)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=1}^{\sigma_{\mathrm{C}}} f\left(X_{k}\right)\right] \tag{2}
\end{align*}
$$

Proof of the Kac Theorem I

By the last-exit decomposition and the Markov property, for all bounded functions $f \geqslant 0$ and all $n \geqslant 1$,
$\pi(f)=\mathbb{E}_{\pi}\left[f\left(X_{n}\right)\right]=\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}} \leqslant n\right\}\right]+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right]$

Noting that π is invariant and setting $k=n-\ell$, we finally get

Proof of the Kac Theorem I

By the last-exit decomposition and the Markov property, for all bounded functions $f \geqslant 0$ and all $n \geqslant 1$,

$$
\begin{aligned}
\pi(f) & =\mathbb{E}_{\pi}\left[f\left(X_{n}\right)\right]=\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}} \leqslant n\right\}\right]+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right] \\
& =\sum_{\ell=1}^{n} \underbrace{\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}_{\mathrm{C}}\left(X_{\ell}\right) \prod_{k=\ell+1}^{n} \mathbf{1}_{\mathrm{C}^{c}}\left(X_{k}\right)\right]}_{\mathbb{E}_{\pi}\left[\mathbf{1}_{\mathrm{C}}\left(X_{\ell}\right) \mathbb{E}_{X_{\ell}}\left[f\left(X_{n-\ell}\right) \prod_{k=1}^{n-\ell} \mathbf{1}_{\mathrm{C}^{c}}\left(X_{k}\right)\right]\right]}+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right]
\end{aligned}
$$

Noting that π is invariant and setting $k=n-\ell$, we finally get

By the last-exit decomposition and the Markov property, for all bounded functions $f \geqslant 0$ and all $n \geqslant 1$,

$$
\begin{aligned}
\pi(f) & =\mathbb{E}_{\pi}\left[f\left(X_{n}\right)\right]=\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}} \leqslant n\right\}\right]+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right] \\
& =\sum_{\ell=1}^{n} \underbrace{\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}_{\mathrm{C}}\left(X_{\ell}\right) \prod_{k=\ell+1}^{n} \mathbf{1}_{\mathrm{C}^{c}}\left(X_{k}\right)\right]}_{\mathbb{E}_{\pi}\left[\mathbf{1}_{\mathrm{C}}\left(X_{\ell}\right) \mathbb{E}_{X_{\ell}}\left[f\left(X_{n-\ell)} \prod_{k=1}^{n-\ell} \mathbf{1}_{\mathrm{C}^{c}\left(X_{k}\right)}\right)\right]\right.}+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right]
\end{aligned}
$$

Noting that π is invariant and setting $k=n-\ell$, we finally get

$$
\begin{align*}
\pi(f) & =\sum_{k=0}^{n-1} \int_{C} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[f\left(X_{k}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>k\right\}\right]+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right] \\
& =\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=0}^{(n-1) \wedge\left(\sigma_{\mathrm{C}}-1\right)} f\left(X_{k}\right)\right]+\mathbb{E}_{\pi}\left[f\left(X_{n}\right) \mathbf{1}\left\{\sigma_{\mathrm{C}}>n\right\}\right] \tag{3}
\end{align*}
$$

Checking the π-accessibility.

Lemma

Let P be a Markov kernel on $\mathrm{E} \times \mathcal{E}$ with a unique invariant probability measure π. Then, any set $\mathrm{C} \in \mathcal{E}$ such that $\pi(\mathrm{C})>0$ is π-accessible.
P has a unique invariant probability measure \Rightarrow the associated dynamical system $\left(\mathrm{E}^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}, \theta, \mathbb{P}_{\pi}\right)$ is ergodic
\Rightarrow the Birkhoff theorem applies.
Then, for all $C \in \mathcal{E}$ such that $\pi(C)>0$, Thus, $\mathbb{P}_{\pi}\left(\sigma_{\mathrm{C}}<\infty\right)=1$. And therefore $\mathbb{P}_{x}\left(\sigma_{\mathrm{C}}<\infty\right)=1>0$ for π-almost all x

Checking the π-accessibility.

Lemma

Let P be a Markov kernel on $\mathrm{E} \times \mathcal{E}$ with a unique invariant probability measure π. Then, any set $\mathrm{C} \in \mathcal{E}$ such that $\pi(\mathrm{C})>0$ is π-accessible.
P has a unique invariant probability measure \Rightarrow the associated dynamical system $\left(\mathrm{E}^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}, \theta, \mathbb{P}_{\pi}\right)$ is ergodic
\Rightarrow the Birkhoff theorem applies.
Then, for all $\mathrm{C} \in \mathcal{E}$ such that $\pi(\mathrm{C})>0$,

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{k=0}^{n-1} \mathbf{1}_{\mathrm{C}}\left(X_{k}\right)=\pi(\mathrm{C})>0 \quad \mathbb{P}_{\pi}-\text { a.s. }
$$

Checking the π-accessibility.

Lemma

Let P be a Markov kernel on $\mathrm{E} \times \mathcal{E}$ with a unique invariant probability measure π. Then, any set $\mathrm{C} \in \mathcal{E}$ such that $\pi(\mathrm{C})>0$ is π-accessible.
P has a unique invariant probability measure \Rightarrow the associated dynamical system $\left(\mathrm{E}^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}, \theta, \mathbb{P}_{\pi}\right)$ is ergodic
\Rightarrow the Birkhoff theorem applies.
Then, for all $\mathrm{C} \in \mathcal{E}$ such that $\pi(\mathrm{C})>0$,

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{k=0}^{n-1} \mathbf{1}_{\mathrm{C}}\left(X_{k}\right)=\pi(\mathrm{C})>0 \quad \mathbb{P}_{\pi}-\text { a.s. }
$$

Thus, $\mathbb{P}_{\pi}\left(\sigma_{\mathrm{C}}<\infty\right)=1$. And therefore $\mathbb{P}_{x}\left(\sigma_{\mathrm{C}}<\infty\right)=1>0$ for π-almost all $x \in \mathrm{X}$.

Outline

(1) Introduction to the Kac formula
(2) The memoryless teleportation process

- Description of the algorithm
- Some properties
(3) The Markov teleportation process
(4) Extensions
(5) Conclusion

Using the Kac formula

Algorithm: The memoryless teleportation process
(1) Initialization: draw Y_{0}
(2) For $k \leftarrow 1$ to n
(a) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}\right.$, ,
(b) If $Y_{k}^{\star} \notin \mathrm{C}$, set $Y_{k} \leftarrow Y_{k}^{\star}$
(c) Otherwise, draw $Y_{k} \sim \pi_{\mathrm{C}}$ where $\pi_{\mathrm{C}}(\cdot)=\frac{\pi(\cdot \cap \mathrm{C})}{\pi(\mathrm{C})}$

Remarks:
(1) The set C is chosen by the user.
(2) Choose for example $\mathrm{C} \subset\{x \in \mathrm{E}: \pi(x) \leqslant \epsilon q(x)\}$ where q is a density from which we can draw. If $\pi(x) /(\epsilon q(x))$ is computable for Q-almost all $x \in \mathrm{X}$, then we can draw π_{C} by rejection

Using the Kac formula

Recall the formula:

$$
\pi(f)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} f\left(X_{k}\right)\right]
$$

Algorithm: The memoryless teleportation process
(1) Initialization: draw Y_{0}
(2) For $k \leftarrow 1$ to n
(a) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(b) If $Y_{k}^{\star} \notin \mathrm{C}$, set $Y_{k} \leftarrow Y_{k}^{\star}$
© Otherwise, draw $Y_{k} \sim \pi_{\mathrm{C}}$ where $\pi_{\mathrm{C}}(\cdot)=\frac{\pi(\cdot \cap \mathrm{C})}{\pi(\mathrm{C})}$.
Remarks:
(1) The set C is chosen by the user.
(2) Choose for example $\mathrm{C} \subset\{x \in \mathrm{E}: \pi(x) \leqslant \epsilon q(x)\}$ where q is a
density from which we can draw. If $\pi(x) /(\epsilon q(x))$ is
computable for Q-almost all $x \in \mathrm{X}$, then we can draw π_{C} by rejection

Using the Kac formula

Recall the formula:

$$
\pi(f)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} f\left(X_{k}\right)\right]
$$

Algorithm: The memoryless teleportation process
(1) Initialization: draw Y_{0}
(2) For $k \leftarrow 1$ to n
(a) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(b) If $Y_{k}^{\star} \notin \mathrm{C}$, set $Y_{k} \leftarrow Y_{k}^{\star}$
(Otherwise, draw $Y_{k} \sim \pi_{\mathrm{C}}$ where $\pi_{\mathrm{C}}(\cdot)=\frac{\pi(\cdot \cap \mathrm{C})}{\pi(\mathrm{C})}$.
Remarks:
(1) The set C is chosen by the user.
(2) Choose for example $\mathrm{C} \subset\{x \in \mathrm{E}: \pi(x) \leqslant \epsilon q(x)\}$ where q is a density from which we can draw. If $\pi(x) /(\epsilon q(x))$ is computable for Q-almost all $x \in \mathrm{X}$, then we can draw π_{C} by rejection

Using the Kac formula

Recall the formula:

$$
\pi(f)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} f\left(X_{k}\right)\right]
$$

Algorithm: The memoryless teleportation process
(1) Initialization: draw Y_{0}
(2) For $k \leftarrow 1$ to n
(a) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(b) If $Y_{k}^{\star} \notin \mathrm{C}$, set $Y_{k} \leftarrow Y_{k}^{\star}$
(c) Otherwise, draw $Y_{k} \sim \pi_{\mathrm{C}}$ where $\pi_{\mathrm{C}}(\cdot)=\frac{\pi(\cdot \cap \mathrm{C})}{\pi(\mathrm{C})}$.

Remarks:
(1) The set C is chosen by the user.
(2) Choose for example $\mathrm{C} \subset\{x \in \mathrm{E}: \pi(x) \leqslant \epsilon q(x)\}$ where q is a density from which we can draw. If $\pi(x) /(\epsilon q(x))$ is computable for Q-almost all $x \in \mathrm{X}$, then we can draw π_{C} by rejection.

Figure: MALA (left) versus Memoryless teleportation MALA process (right)

Set $\boldsymbol{D}=[-15,15]^{2}$ and $(\gamma, \epsilon)=(0.1,1.3 / 4 \pi)$. Iterations: 10^{6}.

- Target: $\pi=0.5 \mathcal{N}\left(-a, I_{2}\right)+0.5 \mathcal{N}\left(a, I_{2}\right)$ with $a=(10,0)^{T}$
- The Markov kernel P : MALA with proposal $Y_{k}=X_{k}+\gamma \nabla \ln \pi\left(X_{k}\right)+\sqrt{2 \gamma} \mathcal{N}\left(\mathbf{0}, I_{2}\right)$
- The critical set $\mathrm{C}=\{(x, y) \in \mathrm{D}: \pi(x, y) \leqslant \epsilon q(x, y)\}$ with q the density of $\operatorname{Unif}(\mathrm{D})$.

Some properties of the memoryless teleportation process

Assumption

The Markov kernel P allows an invariant probability measure π such that C is π-accessible.
(1) The kernel S. The memoryless teleportation process is associated to the Markov kernel S defined by: for all $(y, h) \in E \times F_{+}(E)$,
(2) The π-invariance. Integrating wrt π,
\square
and hence, the Markov kernel S is π-invariant

Some properties of the memoryless teleportation process

Assumption

The Markov kernel P allows an invariant probability measure π such that C is π-accessible.
(1) The kernel S. The memoryless teleportation process is associated to the Markov kernel S defined by: for all $(y, h) \in \mathbf{E} \times \mathbf{F}_{+}(\mathbf{E})$,

$$
S h(y)=\int_{\mathrm{C}^{c}} P\left(y, \mathrm{~d} y^{\prime}\right) h\left(y^{\prime}\right)+P(y, \mathrm{C}) \pi_{\mathrm{C}}(h)
$$

(2) The π-invariance. Integrating wrt π,
\square
and hence, the Markov kernel S is π-invariant

Some properties of the memoryless teleportation process

Assumption

The Markov kernel P allows an invariant probability measure π such that C is π-accessible.
(1) The kernel S. The memoryless teleportation process is associated to the Markov kernel S defined by: for all $(y, h) \in \mathbf{E} \times \mathbf{F}_{+}(\mathbf{E})$,

$$
S h(y)=\int_{\mathrm{C}^{c}} P\left(y, \mathrm{~d} y^{\prime}\right) h\left(y^{\prime}\right)+P(y, \mathrm{C}) \pi_{\mathrm{C}}(h)
$$

(2) The π-invariance. Integrating wrt π,

$$
\pi S h=\pi P\left(\mathbf{1}_{\mathrm{C}^{c}} h\right)+\pi P(\mathrm{C}) \pi_{\mathrm{C}}(h)=\pi\left(\mathbf{1}_{\mathrm{C}^{c}} h\right)+\pi\left(\mathbf{1}_{\mathrm{C}} h\right)=\pi(h)
$$

and hence, the Markov kernel S is π-invariant.

The Markov kernel S is not in general π-reversible

Proposition

Assume A 1 and $\mathcal{E}_{\mathrm{C}^{c}}$ is countably generated. Then
S is π-reversible if and only if the following two conditions are satisfied,
(e) $\int_{E \times E} 1_{\mathrm{A}}(x, y) \pi(\mathrm{d} x) P(x, \mathrm{~d} y)=\int_{\mathrm{E} \times \mathrm{E}} \mathbf{1}_{\mathrm{A}}(y, x) \pi(\mathrm{d} x) P(x, \mathrm{~d} y)$ for all $\mathrm{A} \in \mathcal{E}_{\mathrm{C}^{c}} \otimes \mathcal{E}_{\mathrm{C}^{c}}$;
(D) there exists a measure μ on $\left(\mathrm{C}^{c}, \mathcal{E}_{\mathrm{C}^{c}}\right)$ such that $\left.P(y, \cdot)\right|_{\mathrm{c}^{c}}=\mu$ for π-almost all $y \in \mathrm{C}$.
(1) The condition (b) is restrictive. The Markov kernel S is "mostly" non-reversible.
(3) Caveat: Sampling exactly from π_{c} may restrict the choice of the critical set C.

Proposition

Assume A1 and $\mathcal{E}_{\mathrm{C}^{c}}$ is countably generated. Then
S is π-reversible if and only if the following two conditions are satisfied,
(e) $\int_{\mathrm{E} \times \mathrm{E}} \mathbf{1}_{\mathrm{A}}(x, y) \pi(\mathrm{d} x) P(x, \mathrm{~d} y)=\int_{\mathrm{E} \times \mathrm{E}} \mathbf{1}_{\mathrm{A}}(y, x) \pi(\mathrm{d} x) P(x, \mathrm{~d} y)$ for all $A \in \mathcal{E}_{\mathrm{C}^{c}} \otimes \mathcal{E}_{\mathrm{C}^{c}}$;
(D) there exists a measure μ on $\left(\mathrm{C}^{c}, \mathcal{E}_{\mathrm{C}^{c}}\right)$ such that $\left.P(y, \cdot)\right|_{\mathrm{c}^{c}}=\mu$ for π-almost all $y \in \mathrm{C}$.
(1) The condition (b) is restrictive. The Markov kernel S is "mostly" non-reversible.
(2) Caveat: Sampling exactly from π_{C} may restrict the choice of the critical set C.

Outline

(1) Introduction to the Kac formula
(2) The memoryless teleportation process
(3) The Markov teleportation process

- Description of the algorithm
- The extended Markov chain
- The Strong Law of Large Numbers
- Geometric ergodicity

4) Extensions
(5) Conclusion

The Markov teleportation process

Assumption

The Markov kernel Q on $\mathrm{C} \times \mathcal{C}$ allows the restriction π_{C} as invariant probability measure.

THE KEY IDEA

Assumption

The Markov kernel Q on $\mathrm{C} \times \mathcal{C}$ allows the restriction π_{C} as invariant probability measure.

The key idea

If the candidate Y_{k}^{\star} falls into the region C , instead of sampling according to π_{C}, we pick in the past history of $\left\{Y_{k}: k \in \mathbb{N}\right\}$ the last index where the process is in C and we move according to Q.

Algorithm: the Markov teleportation process.

(1) Initialization: draw $\left(Y_{0}, Z_{0}\right)$
(2) for $k \leftarrow 1$ to n
(1) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(2) if $Y_{k}^{\star} \notin \mathrm{C}$, set $\left(Y_{k}, Z_{k}\right) \leftarrow\left(Y_{k}^{\star}, Z_{k-1}\right)$
(3) Otherwise draw $Z_{k} \sim Q\left(Z_{k-1}, \cdot\right)$ and set $Y_{k} \leftarrow Z_{k}$
(1) $\left\{Y_{k}: k \in \mathbb{N}\right\}$ is not a Markov chain in general
(2) $\left\{\left(Y_{k}, Z_{k}\right): k \in \mathbb{N}\right\}$ is a Markov chain with kernel

Algorithm: the Markov teleportation process.

(1) Initialization: draw $\left(Y_{0}, Z_{0}\right)$
(2) for $k \leftarrow 1$ to n
(1) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(2) if $Y_{k}^{\star} \notin \mathrm{C}$, set $\left(Y_{k}, Z_{k}\right) \leftarrow\left(Y_{k}^{\star}, Z_{k-1}\right)$
(3) Otherwise draw $Z_{k} \sim Q\left(Z_{k-1}, \cdot\right)$ and set $Y_{k} \leftarrow Z_{k}$
(1) $\left\{Y_{k}: k \in \mathbb{N}\right\}$ is not a Markov chain in general
(2) $\left\{\left(Y_{k}, Z_{k}\right): k \in \mathbb{N}\right\}$ is a Markov chain with kernel

Algorithm: the Markov teleportation process.

(1) Initialization: draw $\left(Y_{0}, Z_{0}\right)$
(2) for $k \leftarrow 1$ to n
(1) draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$
(2) if $Y_{k}^{\star} \notin \mathrm{C}$, set $\left(Y_{k}, Z_{k}\right) \leftarrow\left(Y_{k}^{\star}, Z_{k-1}\right)$
(3) Otherwise draw $Z_{k} \sim Q\left(Z_{k-1}, \cdot\right)$ and set $Y_{k} \leftarrow Z_{k}$
(1) $\left\{Y_{k}: k \in \mathbb{N}\right\}$ is not a Markov chain in general
(2) $\left\{\left(Y_{k}, Z_{k}\right): k \in \mathbb{N}\right\}$ is a Markov chain with kernel

$$
\begin{equation*}
R h(y, z)=\int_{\mathrm{C}^{c}} P\left(y, \mathrm{~d} y^{\prime}\right) h\left(y^{\prime}, z\right)+P(y, \mathrm{C}) \int_{\mathrm{C}} Q\left(z, \mathrm{~d} z^{\prime}\right) h\left(z^{\prime}, z^{\prime}\right) \tag{4}
\end{equation*}
$$

Define the measure $\bar{\pi}$ by: for all $h \in \mathrm{~F}_{+}(\mathrm{E} \times \mathrm{C})$

$$
\bar{\pi}(h)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}^{P}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} h\left(X_{k}, x\right)\right]
$$

Lemma
 (2) Assume A1. Then, the marginal of $\bar{\pi}$ on the first component
 (b) If in addition A 2 holds, then $\bar{\pi}$ is an invariant probability measure for the Markov kernel R.

Define the measure $\bar{\pi}$ by: for all $h \in \mathrm{~F}_{+}(\mathrm{E} \times \mathrm{C})$

$$
\bar{\pi}(h)=\int_{\mathrm{C}} \pi(\mathrm{~d} x) \mathbb{E}_{x}^{P}\left[\sum_{k=0}^{\sigma_{\mathrm{C}}-1} h\left(X_{k}, x\right)\right]
$$

Lemma

(e) Assume A1. Then, the marginal of $\bar{\pi}$ on the first component is π.
(1) If in addition A2 holds, then $\bar{\pi}$ is an invariant probability measure for the Markov kernel R.

Figure: MALA (left) versus teleportation RW+MALA process (right)

Set $\gamma=0.8$. Iterations: 10^{6}

- Target: Mixture of Gaussian densities and of a density $\propto \mathrm{e}^{-\left\|x-x_{0}\right\|^{4}}$
- The Markov kernel P : MALA with proposal $Y_{k}=X_{k}+\gamma \nabla \ln \pi\left(X_{k}\right)+\sqrt{2 \gamma} \mathcal{N}\left(\mathbf{0}, I_{2}\right)$
- The Markov kernel Q : RW with proposal $Y_{k}=X_{k}+\sqrt{2 \gamma} \mathcal{N}\left(\mathbf{0}, I_{2}\right)$
- The critical set $\mathrm{C}=\{(x, y) \in \mathrm{D}:-\log (14.8 \pi(x))>2\}$

The ergodicity of the associated dynamical system

Proposition

Assume A1 and A2. In addition suppose that
(1) π is the unique invariant probability measure for P
(2) π_{C} is the unique invariant probability measure for Q

Then, R admits a unique invariant probability measure $\bar{\pi}$.

```
Consequence: }R\mathrm{ has a unique invariant probability measure
the associated dynamical system
is ergodic
=> the Birkhoff theorem applies
Then, for all functions f such that }\overline{\pi}(|f|)<\infty\mathrm{ ,
```


The ergodicity of the associated dynamical system

Proposition

Assume A1 and A2. In addition suppose that
(1) π is the unique invariant probability measure for P
(2) π_{C} is the unique invariant probability measure for Q

Then, R admits a unique invariant probability measure $\bar{\pi}$.
Consequence: $\quad R$ has a unique invariant probability measure \Rightarrow the associated dynamical system

$$
\left((\mathrm{E} \times \mathrm{C})^{\mathbb{N}},(\mathcal{E} \times \mathcal{C})^{\otimes \mathbb{N}}, \Theta, \mathbb{P}_{\bar{\pi}}^{R}\right)
$$

is ergodic
\Rightarrow the Birkhoff theorem applies.
Then, for all functions f such that $\bar{\pi}(|f|)<\infty$

The ergodicity of the associated dynamical system

Proposition

Assume A1 and A2. In addition suppose that
(1) π is the unique invariant probability measure for P
(2) π_{C} is the unique invariant probability measure for Q

Then, R admits a unique invariant probability measure $\bar{\pi}$.
Consequence: $\quad R$ has a unique invariant probability measure \Rightarrow the associated dynamical system

$$
\left((\mathrm{E} \times \mathrm{C})^{\mathbb{N}},(\mathcal{E} \times \mathcal{C})^{\otimes \mathbb{N}}, \Theta, \mathbb{P}_{\bar{\pi}}^{R}\right)
$$

is ergodic
\Rightarrow the Birkhoff theorem applies.
Then, for all functions f such that $\bar{\pi}(|f|)<\infty$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(Y_{k}, Z_{k}\right)=\bar{\pi}(f), \quad \mathbb{P}_{\bar{\pi}}^{R}-a . s .
$$

Theorem

Assume A1 and A2. In addition suppose that R has a unique invariant probability measure $\bar{\pi}$. Then, the two conditions (a) and
(b) defined by
(a) for any $x \in \mathrm{E}, \mathbb{P}_{x}^{P}\left(\sigma_{\mathrm{C}}<\infty\right)=1$;
(b) for any $x \in \mathrm{C}$ and any bounded measurable function $h: C \rightarrow \mathbb{R}$,

$$
\lim _{\ell \rightarrow \infty} \ell^{-1} \sum_{k=0}^{\ell-1} h\left(X_{k}\right)=\pi_{\mathrm{C}}(h), \quad \mathbb{P}_{x}^{Q}-\text { a.s. }
$$

are equivalent to the following property: for any $f: \mathrm{E} \times \mathrm{C} \rightarrow \mathbb{R}$ such that $\bar{\pi}(|f|)<\infty$, for any $(y, z) \in \mathrm{E} \times \mathrm{C}$, we get that

Theorem

Assume A1 and A2. In addition suppose that R has a unique invariant probability measure $\bar{\pi}$. Then, the two conditions (a) and
(b) defined by
(a) for any $x \in \mathrm{E}, \mathbb{P}_{x}^{P}\left(\sigma_{\mathrm{C}}<\infty\right)=1$;
(b) for any $x \in \mathrm{C}$ and any bounded measurable function $h: C \rightarrow \mathbb{R}$,

$$
\lim _{\ell \rightarrow \infty} \ell^{-1} \sum_{k=0}^{\ell-1} h\left(X_{k}\right)=\pi_{\mathrm{C}}(h), \quad \mathbb{P}_{x}^{Q}-\text { a.s. }
$$

are equivalent to the following property: for any $f: \mathrm{E} \times \mathrm{C} \rightarrow \mathbb{R}$ such that $\bar{\pi}(|f|)<\infty$, for any $(y, z) \in \mathrm{E} \times \mathrm{C}$, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \sum_{k=0}^{n-1} f\left(Y_{k}, Z_{k}\right)=\bar{\pi}(f), \quad \mathbb{P}_{(y, z)}^{R} \text { - a.s. } \tag{5}
\end{equation*}
$$

First idea: decompose $\sum_{k=0}^{n-1} f\left(Y_{k}, Z_{k}\right)$ into cycles outside $\mathrm{C} \times \mathrm{C}$ and using triangular arrays,

$$
\left.m^{-1} \sum_{\ell=0}^{m-1}\left(\sum_{i=\sigma_{C \times C}^{\ell}}^{\sigma_{\times 1}^{\ell+1}-1} f\left(Y_{i}, Z_{i}\right)-\mathbb{E}_{\left(Y_{\sigma_{C \times C}}^{R}\right.}^{R}, Z_{\sigma_{C \times C}^{\ell}}\right)\left[\sum_{i=0}^{\sigma_{C \times c}-1} f\left(Y_{i}, Z_{i}\right)\right]\right)
$$

converges to 0 almost surely as m goes to infinity. sufficient conditions for the LLN only.

constant.

First idea: decompose $\sum_{k=0}^{n-1} f\left(Y_{k}, Z_{k}\right)$ into cycles outside $\mathrm{C} \times \mathrm{C}$ and using triangular arrays,

$$
\left.m^{-1} \sum_{\ell=0}^{m-1}\left(\sum_{i=\sigma_{\mathrm{C} \times \mathrm{C}}^{\ell}}^{\sigma_{\mathrm{C} \times \mathrm{C}}^{\ell+1}-1} f\left(Y_{i}, Z_{i}\right)-\mathbb{E}_{\left(Y_{\mathrm{C} \times \mathrm{C}}{ }^{\ell}, Z_{\sigma_{\mathrm{C} \times \mathrm{C}}^{\ell}}\right)}\right)\left[\sum_{i=0}^{\sigma_{\mathrm{Cx} \times \mathrm{C}}-1} f\left(Y_{i}, Z_{i}\right)\right]\right)
$$

converges to 0 almost surely as m goes to infinity. sufficient conditions for the LLN only. Instead, we propose to use:

Proposition

The two following conditions are equivalent.
(1) For any $\xi \in \mathrm{M}_{1}(\mathcal{E})$ and $g: \mathrm{E} \rightarrow \mathbb{R}$ measurable, $\pi(|g|)<\infty$,

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{k=0}^{n-1} g\left(X_{k}\right)=\pi(g), \quad \mathbb{P}_{\xi}^{P}-\text { a.s. }
$$

(i) Any bounded harmonic function h for $P($ ie $P h=h)$ is constant.

Assumptions for getting the geometric ergodicity

Assumption

There exist $(\lambda, b) \in(0,1) \times(0, \infty)$ and a measurable function $V_{P}: \mathrm{E} \rightarrow[1, \infty)$ such that

$$
P V_{P} \leqslant \lambda V_{P}+b \mathbf{1}_{\mathrm{C}} \quad \text { and } \quad \sup _{y \in \mathrm{C}} V_{P}(y)<\infty .
$$

Assumption A1 is a typical geometric drift condition.

We say that $\mathrm{D} \in \mathcal{E}_{\mathrm{C}}$ is a $(1, \epsilon \nu)$-small set if for any $x \in \mathrm{D}$ and $\mathrm{A} \in \mathcal{E}_{\mathrm{C}}, Q(x, \mathrm{~A}) \geqslant \epsilon \nu(\mathrm{A})$.

Assumption

(1) There exists an accessible $(1, \epsilon \nu)$-small set $\mathrm{D} \in \mathcal{C}$ for Q such that $\nu(\mathrm{D})>0$.
(1) $\delta=\inf _{z \in \mathrm{D}} P(z, \mathrm{C})>0$.
(ii) There exist constants $(\lambda, b) \in(0,1) \times(0, \infty)$ and a measurable function $V_{Q}: \mathrm{C} \rightarrow[1, \infty)$ such that

$$
Q V_{Q} \leqslant \lambda V_{Q}+b \mathbf{1}_{\mathrm{D}} \quad \text { and } \quad \sup _{z \in \mathrm{D}} V_{Q}(z)<\infty
$$

Theorem

Assume A1, A2, G1 and G2. Then, there exist constants $C>0$ and $\varrho \in(0,1)$ such that for any probability measure μ on $(\mathrm{E} \times \mathrm{C}, \mathcal{E} \otimes \mathcal{C})$ and any $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\mu R^{n}-\bar{\pi}\right\|_{\mathrm{TV}} \leqslant C \varrho^{n} \mu\left(V_{P} \otimes V_{Q}\right) \tag{6}
\end{equation*}
$$

where $V_{P} \otimes V_{Q}$ is the function $V_{P} \otimes V_{Q}(y, z)=V_{P}(y) V_{Q}(z)$ for all $(y, z) \in \mathrm{E} \times \mathrm{C}$.

Outline

(1) Introduction to the Kac formula
(2) The memoryless teleportation process
(3) The Markov teleportation process
(4) Extensions

- The extended Kac formula
- Revisiting any MH algorithm
(5) Conclusion

The Markov teleportation process combines two different kernels:

- P with invariant probability measure π
- Q with invariant probability measure π_{C} where π_{C} is the restriction of π to a given set C.

|Idea: Replace the auxiliary distribution π_{C} by a more general $\tilde{\pi}$ which is a probability measure on $(\mathrm{E}, \mathcal{E})$ such that for some M,

$$
\begin{equation*}
\frac{\mathrm{d} \tilde{\pi}}{\mathrm{~d} \pi}(x) \leqslant M \tag{7}
\end{equation*}
$$

for π-almost all $x \in \mathrm{E}$.

- Adding a second component Define $\overline{\mathrm{E}}=\mathrm{E} \times[0,1]$ and $\overline{\mathcal{E}}=\mathcal{E} \otimes \mathcal{B}([0,1])$. Let \bar{P} be the Markov kernel on $\overline{\mathrm{E}} \times \overline{\mathcal{E}}$ defined by: for all $\bar{x}=(x, u) \in \overline{\mathrm{E}}$ and $A \in \overline{\mathcal{E}}$,

$$
\begin{equation*}
\bar{P}(\bar{x}, \mathrm{~A})=\int P\left(x, \mathrm{~d} x^{\prime}\right) \mathbf{1}_{[0,1]}\left(u^{\prime}\right) \mathbf{1}_{\mathrm{A}}\left(x^{\prime}, u^{\prime}\right) \mathrm{d} u^{\prime} \tag{8}
\end{equation*}
$$

Notation

- Denote by $\overline{\mathbb{P}}_{\mu}$ the associated probability measure induced on ($\overline{\mathrm{E}}^{\mathbb{N}}, \overline{\mathcal{E}}^{\otimes \mathbb{N}}$) by the Markov kernel \bar{P} and initial distribution μ.
- Whenever $\overline{\mathbb{E}}_{x, u}[\varphi]$ does not depend on $u \in[0,1]$, we simply write $\overline{\mathbb{E}}_{x, *}[\varphi]$.
Define

$$
\begin{aligned}
\overline{\mathrm{C}} & =\{(x, u) \in \overline{\mathrm{E}}: u \leqslant \alpha(x)\} \quad \text { where } \quad \alpha(x)=\frac{1}{M} \frac{\mathrm{~d} \tilde{\pi}}{\mathrm{~d} \pi}(x) \\
\sigma_{\overline{\mathrm{C}}} & =\inf \left\{k \geqslant 1:\left(X_{k}, U_{k}\right) \in \overline{\mathrm{C}}\right\}
\end{aligned}
$$

Proposition

Let P be a Markov kernel on $\mathrm{E} \times \mathcal{E}$ with invariant probability measure π. Let $\alpha: \mathrm{E} \rightarrow[0,1]$ be a measurable function such that $\{\alpha>0\}$ is π-accessible for P. Then,

$$
\begin{equation*}
\pi=\pi_{\alpha}^{0}=\pi_{\alpha}^{1} \tag{9}
\end{equation*}
$$

where for all nonnegative or bounded functions f on $(\mathrm{E}, \mathcal{E})$,

$$
\begin{aligned}
& \pi_{\alpha}^{0}(f)=\int_{\mathrm{E}} \pi(\mathrm{~d} x) \alpha(x) \overline{\mathbb{E}}_{x, *}\left[\sum_{k=0}^{\sigma_{\bar{c}}-1} f\left(X_{k}\right)\right] \\
& \pi_{\alpha}^{1}(f)=\int_{\mathrm{E}} \pi(\mathrm{~d} x) \alpha(x) \overline{\mathbb{E}}_{x, *}\left[\sum_{k=1}^{\sigma_{\overline{\mathrm{C}}}} f\left(X_{k}\right)\right]
\end{aligned}
$$

Extended teleportation process

If P is π-invariant and Q is $\tilde{\pi}$-invariant.

Algorithm 3

(1) Initialization Draw $\left(Y_{0}, Z_{0}\right)$.
(2) for $k \leftarrow 1$ to n
(a) $\operatorname{Draw}\left(Y_{k}^{\star}, U_{k}\right) \sim P\left(Y_{k-1}, \cdot\right) \otimes \operatorname{Unif}([0,1])$
(5) If $U_{k} \geqslant \alpha\left(Y_{k}^{\star}\right)$, set $\left(Y_{k}, Z_{k}\right) \leftarrow\left(Y_{k}^{\star}, Z_{k-1}\right)$
(c) Otherwise draw $Z_{k} \sim Q\left(Z_{k-1}, \cdot\right)$ and set $Y_{k} \leftarrow Z_{k}$.

An alternative to Lines a-b in Algorithm 3 would be to replace them by:
a": Draw $Y_{k}^{\star} \sim P\left(Y_{k-1}, \cdot\right)$ and conditionally to Y_{k}^{\star}, draw $B_{k} \sim \operatorname{Bern}\left(\alpha\left(Y_{k}^{\star}\right)\right)$
b": if $B_{k}=0$ then, set $\left(Y_{k}, Z_{k}\right) \leftarrow\left(Y_{k}^{\star}, Z_{k-1}\right)$

Revisiting any MH algorithm.

Any MH can be seen as a
particular extended teleportation process by defining

- the probability measure $\tilde{\pi}$ on $(\mathrm{E}, \mathcal{E})$ by

$$
\tilde{\pi}(h)=\frac{\int_{\mathrm{E}} \pi(\mathrm{~d} x) \alpha(x) h(x)}{\int_{\mathrm{E}} \pi(\mathrm{~d} x) \alpha(x)}, \quad h \in \mathbf{F}_{+}(\mathbf{E})
$$

where $\alpha(x)=\int Q(x, \mathrm{~d} y) \alpha^{M H}(x, y)$

- the π-invariant Markov kernel P is defined by: for all $x \in \mathrm{E}$, $P(x, \cdot)=\delta_{x}$
- the $\tilde{\pi}$-invariant Markov kernel Q_{α} is defined by:

$$
Q_{\alpha}(x, A)=\frac{\int_{A} Q(x, \mathrm{~d} y) \alpha^{M H}(x, y)}{\int_{\mathrm{E}} Q(x, \mathrm{~d} z) \alpha^{M H}(x, z)}, \quad(x, A) \in \mathrm{E} \times \mathcal{E}
$$

Outline

(1) Introduction to the Kac formula
(2) The memoryless teleportation process
(3) The Markov teleportation process

4 Extensions
(5) Conclusion

About the teleportation algorithm:

- it allows to combine smoothly two Markov kernels targetting different distributions.
- Embedded sets $\left(C_{i}\right)$.
- Non markovian ways of targetting the auxiliary distribution.
- Practical ways of choosing C or more generally α and $\tilde{\pi}$.

