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Recall that a Markov kernel P is

@ m-invariant if 7P =7
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Recall that a Markov kernel P is
@ m-invariant if 7P =7
@® m-reversible if w(dz)P(z,dy) = n(dy)P(y, dx)

© m-reversible implies w-invariance.

The Metropolis-Hastings algorithm

Input: n
Output: Xy,..., X,
® At t =0, draw X according to some arbitrary distribution

Randal Douc and Sylvain Le Corff, Telecom Sudparis M2DS: MCMC Theory and Applications



Recall that a Markov kernel P is
@ m-invariant if 7P =7
@® m-reversible if w(dz)P(z,dy) = n(dy)P(y, dx)

© m-reversible implies w-invariance.

The Metropolis-Hastings algorithm

Input: n
Output: Xy,..., X,
® At t =0, draw X according to some arbitrary distribution
® Fort<0Oton—1
@ Draw independently Y311 ~ Q (Xt,-) and U1 ~ Unif(0, 1)
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Recall that a Markov kernel P is
@ m-invariant if 7P =7
@® m-reversible if w(dz)P(z,dy) = n(dy)P(y, dx)

© m-reversible implies w-invariance.

The Metropolis-Hastings algorithm

Input: n
Output: Xy,..., X,
® At t =0, draw X according to some arbitrary distribution
® Fort<0Oton—1
@ Draw independently Y311 ~ Q (Xt,-) and U1 ~ Unif(0, 1)

@ Set X, | = Yepr i Ut+1.< (X, Yit1)
X;  otherwise

MH ( m(y)q(y,x) )

where a(z,y) =« z,y) = min (w(x)q(x,y)’ 1
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The Markov kernel associated to {X,, : n € N} is given by

where a(z _1—fx (z, dy)o(z, ).
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The Markov kernel associated to {X,, : n € N} is given by
Py 8 (x,dy) = Q(z, dy)a(w, y) + a(z)5.(dy).

where a(z) =1 — [, Q(z,dy)a(z,y).

Lemma

If the detailed balance condition

7m(dx)Q(x, dy)a(x, y) = n(dy)Q(y, dx)a(y, ) (1)

is satisfied, then P{‘;Ig) is m-reversible and hence, m-invariant.

Randal Douc and Sylvain Le Corff, Telecom Sudparis M2DS: MCMC Theory and Applications



The Markov kernel associated to {X,, : n € N} is given by
Py 8 (x,dy) = Q(z, dy)a(w, y) + a(z)5.(dy).

where a(z) =1 — [, Q(z,dy)a(z,y).

Lemma

If the detailed balance condition

7m(dx)Q(x, dy)a(x, y) = n(dy)Q(y, dx)a(y, ) (1)

is satisfied, then P{‘;Ig) is m-reversible and hence, m-invariant.

° aMH( or

R w(y)q(y,x
r,y) = min <7r8)ggay;’ 1)

ol(2,y) = it i satisfy (1),
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The Markov kernel associated to {X,, : n € N} is given by
Py 8 (x,dy) = Q(z, dy)a(w, y) + a(z)5.(dy).

where a(z) =1 — [, Q(z,dy)a(z,y).

Lemma

If the detailed balance condition

7m(dx)Q(x, dy)a(x, y) = n(dy)Q(y, dx)a(y, ) (1)

is satisfied, then P{‘;Ig) is m-reversible and hence, m-invariant.

° aMH( or

R w(y)q(y,x
r,y) = min <7r8)ggay;’ 1)

ol(2,y) = it i satisfy (1),

® For all « satisfying (1), we have a < o™ . To be done on
the blackboard.
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Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure p € M4 (X) satisfying
the following property:

@® For all A € X such that u(A) > 0 and for all x € X, there
exists n € N such that P"(z, A) > 0.

Then, P admits at most one invariant probability measure.
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Then, P admits at most one invariant probability measure.

If condition (x) is satisfied, we say that P is p-irreducible.

Randal Douc and Sylvain Le Corff, Telecom Sudparis M2DS: MCMC Theory and Applications



Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure p € M4 (X) satisfying
the following property:

@® For all A € X such that u(A) > 0 and for all x € X, there
exists n € N such that P"(z, A) > 0.

Then, P admits at most one invariant probability measure.

If condition (x) is satisfied, we say that P is p-irreducible.

Application: Metropolis-Hastings algorithms

Assume that

® Q(x,dy) = q(z,y)\(dy) and w(dx) = 7(x)A(dz) with
qg>0and ™ > 0.

Then P<]7‘r4g> admits 7 as its unique probability measure .
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Proof of the uniqueness of the invariant probability
measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also
admits distinct invariant probability measures my and 71 that are
mutually singular, i.e., such that there exists A € X such that
7T0(A) = 7T1(AC) =0.
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Proof of the uniqueness of the invariant probability
measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also
admits distinct invariant probability measures my and 71 that are
mutually singular, i.e., such that there exists A € X such that
7T0(A) = 7T1(Ac) =0.

To be done on the blackboard.

Randal Douc and Sylvain Le Corff, Telecom Sudparis M2DS: MCMC Theory and Applications



Outline

©® Chap 3: Dynamical systems

Randal Douc and Sylvain Le Corff, Telecom Sudparis M2DS: MCMC Theory and Applications 9 /17



Dynamical systems

Definition

(Dynamical systems) A dynamical system D is a quadruplet
D = (Q,F,P,T) where (Q, F,P) is a probability space and

T :Q — Q is a measurable mapping such that .
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T :Q — Q is a measurable mapping such that .

Lemma

(Invariant sets) The collection of sets
I={A€F :14=140T} is a o-field and any set in T is called
an invariant set.
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Dynamical systems

Definition

(Dynamical systems) A dynamical system D is a quadruplet
D = (Q,F,P,T) where (Q, F,P) is a probability space and

T :Q — Q is a measurable mapping such that .

Lemma

(Invariant sets) The collection of sets
I={A€F :14=140T} is a o-field and any set in T is called
an invariant set.

(Ergodicity) A dynamical system (Q2, F,IP,T) is said to be
ergodic if invariant sets are P-trivial that is if A € Z then either
P(A) =0 or P(A) = 1.
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The Birkhoff theorem

(The Birkhoff theorem) Let D = (Q, F,P,T) be an
ergodic dynamical system and let h € L1(2). Then,

n—1
lim n'Y hoT*=E[h], P-as.

n—00
k=0
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Let S be the shift operator: if w = (wg)ren € XV, we set
S(w) = w’ € XN where w}, = wy41 for all k € N.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability
measure 7. Then, the quadruplet (XN, X®N P, S) is a
dynamical system .
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Let P be a Markov kernel admitting an invariant probability
measure 7. Then, the quadruplet (XN, X®N P, S) is a
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Theorem (MC and ergodicity)

Let P be a Markov kernel on X x X. Assume that P admits a

unique invariant probability measure w. Then, the dynamical
system (XN, XN P, S) is ergodic .
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Let S be the shift operator: if w = (wg)ren € XV, we set
S(w) = w’ € XN where w}, = wy41 for all k € N.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability
measure 7. Then, the quadruplet (XN, X®N P, S) is a
dynamical system .

Theorem (MC and ergodicity)

Let P be a Markov kernel on X x X. Assume that P admits a
unique invariant probability measure w. Then, the dynamical
system (XN, XN P, S) is ergodic .

The proof of the Theorem will be done on the blackboard.
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Theorem (The Birkhoff theorem for MC)

Let P be a Markov kernel admitting a unique invariant probability
measure . Then, for all h € F(XY) such that E;[|h]] < oo, we

have )
. 1 . _
nh_}rgon kz_o h(Xk.0o) =Ez[h], Pr—a.s.
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Theorem (The Birkhoff theorem for MC)

Let P be a Markov kernel admitting a unique invariant probability
measure . Then, for all h € F(XY) such that E;[|h]] < oo, we

have .
nh_}rgon kZOh Xik:oo) =Er[h], Pr—a.s.

Corollary (LLN Starting from stationarity)

Let P be a Markov kernel admitting a unique invariant probability
measure 7. Then, for all f € F(X) such that
7(|f]) = [y 7(dz)|f(x)] < oo, we have

n—1
lim n' Y f(X) =7(f), Pr—as. (2)
k=0

n—o0
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Corollary (Other starting points)

Let P be a Markov kernel admitting a unique invariant probability
measure w. Then, for all f € F(X) such that
7(|f]) = [x 7(dz)|f(x)] < oo, we have for m-almost all x € X ,

n—oo

n—1
lim n~ 'Y f(Xp) =7(f), Po—a.s. (3)
k=0
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Assume that Q(z,dy) = q(z, y)A(dy) and 7 (dy) = 7 (y)A(dy)
where ¢ >0, # > 0 and A is a o-finite measure on (X, X).

Theorem

The Markov chain {X,, : n € N} generated by the
Metropolis-Hastings algorithm is such that: for all initial
distributions v € M(X) and all f € F(X) such that

m(1f) = Jx m(dz)|f(2)| < oo,

n—1

lim n~* Z f(Xg)==(f), P,—a.s (4)

n—00
k=0
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What if P is not the Markov kernel of a Metropolis-Hastings
algorithm?

Theorem

If P is a Markov kernel on X X X that admits a unique invariant

probability measure w. Assume in addition that for all bounded
functions h and all measures v € My (X),

lim vP"h = 7(h) (5)

n—o0
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What if P is not the Markov kernel of a Metropolis-Hastings
algorithm?

If P is a Markov kernel on X X X that admits a unique invariant

probability measure w. Assume in addition that for all bounded
functions h and all measures v € My (X),

7711—)Irolo vP"h = m(h) (5)

Then, for all initial distributions v € My(X) and all f € F(X)
such that 7(|f|) = [y n(dx)|f(z)| < oo,

n—1
lim o~ > f(Xp)=n(f), P,—as (6)
k=0
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