Markov Chain Monte Carlo Theory and Practical applications Chapters 2 and 3

Randal Douc and Sylvain Le Corff

Télécom SudParis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3:Markov chains and ergodicity

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

- **1** π -invariant if $\pi P = \pi$
- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t=0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1
 - **1** Draw independently $Y_{t+1} \sim \mathbb{Q}(X_t,\cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0,1)$

$$\textbf{2} \text{ Set } X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

- $\bullet \pi \text{-invariant if } \pi P = \pi$
- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1
 - ① Draw independently $Y_{t+1} \sim \mathsf{Q}\left(X_t,\cdot\right)$ and $U_{t+1} \sim \mathrm{Unif}(0,1)$
 - ② Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

- $\bullet \pi \text{-invariant if } \pi P = \pi$
- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

$$\textbf{2} \text{ Set } X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

- $\bullet \pi \text{-invariant if } \pi P = \pi$
- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1
 - ① Draw independently $Y_{t+1} \sim \mathsf{Q}\left(X_t,\cdot\right)$ and $U_{t+1} \sim \mathrm{Unif}(0,1)$

$$② Set X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

- $\bullet \pi \text{-invariant if } \pi P = \pi$
- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1
 - lacktriangledown Draw independently $Y_{t+1} \sim \frac{\mathbf{Q}}{\mathbf{Q}}(X_t,\cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0,1)$

② Set
$$X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

- **2** π -reversible if $\pi(\mathrm{d}x)P(x,\mathrm{d}y)=\pi(\mathrm{d}y)P(y,\mathrm{d}x)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

- At t=0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

$$\mathbf{2} \text{ Set } X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

The Markov kernel associated to $\{X_n : n \in \mathbb{N}\}$ is given by

$$P_{\langle \pi, Q \rangle}^{MH}(x, dy) = Q(x, dy)\alpha(x, y) + \bar{\alpha}(x)\delta_x(dy).$$

where $\bar{\alpha}(x) = 1 - \int_{\mathsf{X}} Q(x, \mathrm{d}y) \alpha(x, y)$.

Lemma

If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi,Q\rangle}$ is π -reversible and hence, π -invariant.

• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard

The Markov kernel associated to $\{X_n:n\in\mathbb{N}\}$ is given by

$$P_{\langle \pi, Q \rangle}^{MH}(x, dy) = Q(x, dy)\alpha(x, y) + \bar{\alpha}(x)\delta_x(dy).$$

where $\bar{\alpha}(x) = 1 - \int_{\mathsf{X}} Q(x, \mathrm{d}y) \alpha(x, y)$.

Lemma

If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi,Q\rangle}$ is $\pi\text{-reversible}$ and hence, $\pi\text{-invariant}.$

$$\bullet \left[\alpha^{MH}(x,y) = \min \left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1 \right) \right] \text{ or }$$

$$\alpha^b(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)} \text{ satisfy (1)}.$$

• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard

The Markov kernel associated to $\{X_n:n\in\mathbb{N}\}$ is given by

$$P^{MH}_{\langle \pi, Q \rangle}(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y).$$

where $\bar{\alpha}(x) = 1 - \int_{\mathsf{X}} Q(x, \mathrm{d}y) \alpha(x, y)$.

Lemma

If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi,Q\rangle}$ is $\pi\text{-reversible}$ and hence, $\pi\text{-invariant}.$

$$\bullet \left[\alpha^{MH}(x,y) = \min \left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1 \right) \right] \text{ or }$$

$$\alpha^b(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)} \text{ satisfy (1)}.$$

• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard

The Markov kernel associated to $\{X_n:n\in\mathbb{N}\}$ is given by

$$P_{\langle \pi, Q \rangle}^{MH}(x, dy) = Q(x, dy)\alpha(x, y) + \bar{\alpha}(x)\delta_x(dy).$$

where $\bar{\alpha}(x) = 1 - \int_{\mathbf{X}} Q(x, dy) \alpha(x, y)$.

Lemma

If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi,Q\rangle}$ is $\pi\text{-reversible}$ and hence, $\pi\text{-invariant}.$

$$\bullet \left[\alpha^{MH}(x,y) = \min \left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1 \right) \right] \text{ or }$$

$$\alpha^b(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)} \text{ satisfy (1)}.$$

• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard.

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu \in M_+(X)$ satisfying the following property:

● For all $A \in \mathcal{X}$ such that $\mu(A) > 0$ and for all $x \in \mathsf{X}$, there exists $n \in \mathbb{N}$ such that $P^n(x,A) > 0$.

Then, P admits at most one invariant probability measure.

If condition (*) is satisfied, we say that P is μ -irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dx) = \pi(x)\lambda(dx)$ with q>0 and $\pi>0$.

Then $P^{MH}_{\langle \pi, Q \rangle}$ admits π as its unique probability measure

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu \in M_+(X)$ satisfying the following property:

igoplus For all $A \in \mathcal{X}$ such that $\mu(A) > 0$ and for all $x \in X$, there exists $n \in \mathbb{N}$ such that $P^n(x,A) > 0$.

Then, P admits at most one invariant probability measure.

If condition (\star) is satisfied, we say that P is μ -irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dx) = \pi(x)\lambda(dx)$ with q>0 and $\pi>0$.

Then $P^{MH}_{\langle \pi, Q \rangle}$ admits π as its unique probability measure .

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu \in M_+(X)$ satisfying the following property:

 $lackbox{ For all } A \in \mathcal{X} \text{ such that } \mu(A) > 0 \text{ and for all } x \in \mathsf{X}, \text{ there exists } n \in \mathbb{N} \text{ such that } P^n(x,A) > 0.$

Then, P admits at most one invariant probability measure.

If condition (\star) is satisfied, we say that P is μ -irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, \mathrm{d}y) = q(x,y)\lambda(\mathrm{d}y)$ and $\pi(\mathrm{d}x) = \pi(x)\lambda(\mathrm{d}x)$ with q>0 and $\pi>0$.

Then $P^{MH}_{\langle \pi,Q \rangle}$ admits π as its unique probability measure .

Proof of the uniqueness of the invariant probability measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also admits distinct invariant probability measures π_0 and π_1 that are mutually singular, i.e., such that there exists $A \in \mathcal{X}$ such that $\pi_0(A) = \pi_1(A^c) = 0$.

To be done on the blackboard

Proof of the uniqueness of the invariant probability measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also admits distinct invariant probability measures π_0 and π_1 that are mutually singular, i.e., such that there exists $A \in \mathcal{X}$ such that $\pi_0(A) = \pi_1(A^c) = 0$.

To be done on the blackboard.

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T: \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

Lemma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be ergodic if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T: \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

Lemma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be ergodic if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T: \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

Lemma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be ergodic if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

The Birkhoff theorem

Theorem

(The Birkhoff theorem) Let $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ be an ergodic dynamical system and let $h \in L_1(\Omega)$. Then,

$$\lim_{n\to\infty} n^{-1} \sum_{k=0}^{n-1} h \circ T^k = \mathbb{E}[h] \ , \quad \mathbb{P}-a.s.$$

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3:Markov chains and ergodicity

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega_k' = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is a dynamical system .

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times \mathcal{X}$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega_k' = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is a dynamical system.

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times \mathcal{X}$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega_k' = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(\mathsf{X}^\mathbb{N}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_\pi, S)$ is a dynamical system .

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times \mathcal{X}$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Theorem (The Birkhoff theorem for MC)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $h \in F(X^{\mathbb{N}})$ such that $\mathbb{E}_{\pi}[|h|] < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_{k:\infty}) = \mathbb{E}_{\pi}[h], \quad \mathbb{P}_{\pi} - a.s.$$

Corollary (LLN Starting from stationarity)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x)|f(x)| < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_{\pi} - a.s. \tag{2}$$

Theorem (The Birkhoff theorem for MC)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $h \in F(X^{\mathbb{N}})$ such that $\mathbb{E}_{\pi}[|h|] < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_{k:\infty}) = \mathbb{E}_{\pi}[h], \quad \mathbb{P}_{\pi} - a.s.$$

Corollary (LLN Starting from stationarity)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x) |f(x)| < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f), \quad \mathbb{P}_{\pi} - a.s.$$
 (2)

Corollary (Other starting points)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x)|f(x)| < \infty$, we have for π -almost all $x \in X$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_x - a.s. \tag{3}$$

Assume that $Q(x, \mathrm{d}y) = q(x,y)\lambda(\mathrm{d}y)$ and $\pi(\mathrm{d}y) = \pi(y)\lambda(\mathrm{d}y)$ where $q>0, \, \pi>0$ and λ is a σ -finite measure on (X,\mathcal{X}) .

Theorem

The Markov chain $\{X_n:n\in\mathbb{N}\}$ generated by the Metropolis-Hastings algorithm is such that: for all initial distributions $\nu\in M_1(X)$ and all $f\in F(X)$ such that $\pi(|f|)=\int_X \pi(\mathrm{d}x)|f(x)|<\infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f), \quad \mathbb{P}_{\nu} - a.s$$
 (4)

What if P is not the Markov kernel of a Metropolis-Hastings algorithm?

Theorem

If P is a Markov kernel on $X \times \mathcal{X}$ that admits a unique invariant probability measure π . Assume in addition that for all bounded functions h and all measures $\nu \in \mathsf{M}_1(\mathsf{X})$,

$$\lim_{n \to \infty} \nu P^n h = \pi(h) \tag{5}$$

Then, for all initial distributions $\nu \in M_1(X)$ and all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x)|f(x)| < \infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f), \quad \mathbb{P}_{\nu} - a.s$$
 (6)

What if P is not the Markov kernel of a Metropolis-Hastings algorithm?

Theorem

If P is a Markov kernel on $X \times \mathcal{X}$ that admits a unique invariant probability measure π . Assume in addition that for all bounded functions h and all measures $\nu \in M_1(X)$,

$$\lim_{n \to \infty} \nu P^n h = \pi(h) \tag{5}$$

Then, for all initial distributions $\nu \in M_1(X)$ and all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x)|f(x)| < \infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f), \quad \mathbb{P}_{\nu} - a.s$$
 (6)