Markov Chain Monte Carlo Theory and practical applications

Randal Douc and Sylvain Le Corff

Télécom SudParis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Outline

1 Invariant probability measures

2 Reversibility

3 The MH algorithms. Definition and Examples

Outline

Invariant probability measures

2 Reversibility

3 The MH algorithms. Definition and Examples

Activities

Let P be a Markov kernel on $X \times X$.

Definition (Invariant probability measure)

We say that $\pi \in M_1(X)$ is an invariant probability measure for P if $\pi P = \pi$.

If $\pi P = \pi$, then $\pi P^n = \pi P^{n-1} = \ldots = \pi$. Therefore, if $X_0 \sim \pi$ then $X_1 \sim \pi P = \pi$ and more generally, $X_n \sim \pi$.

Activities

Let P be a Markov kernel on $X \times X$.

Definition (Invariant probability measure)

We say that $\pi \in M_1(X)$ is an invariant probability measure for P if $\pi P = \pi$.

If $\pi P = \pi$, then $\pi P^n = \pi P^{n-1} = \ldots = \pi$. Therefore, if $X_0 \sim \pi$ then $X_1 \sim \pi P = \pi$ and more generally, $X_n \sim \pi$.

Outline

1 Invariant probability measures

2 Reversibility

3 The MH algorithms. Definition and Examples

Definition (Reversibility)

Let $\pi \in M_1(X)$ and P be a Markov kernel on $X \times \mathcal{X}$. We say that P is π -reversible if and only if (with infinitesimal notation)

$$\pi(\mathrm{d}x)P(x,\mathrm{d}y) = \pi(\mathrm{d}y)P(y,\mathrm{d}x),\tag{1}$$

In other words, P is π -reversible iff for all measurable bounded or non-negative functions h on $(X^2, \mathcal{X}^{\otimes 2})$,

$$\iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}x) P(x, \mathrm{d}y) = \iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}y) P(y, \mathrm{d}x).$$
(2)

Proposition

If the Markov kernel P is π -reversible, then it is π -invariant.

Definition (Reversibility)

Let $\pi \in M_1(X)$ and P be a Markov kernel on $X \times \mathcal{X}$. We say that P is π -reversible if and only if (with infinitesimal notation)

$$\pi(\mathrm{d}x)P(x,\mathrm{d}y) = \pi(\mathrm{d}y)P(y,\mathrm{d}x),\tag{1}$$

In other words, P is π -reversible iff for all measurable bounded or non-negative functions h on $(X^2, \mathcal{X}^{\otimes 2})$,

$$\iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}x) P(x, \mathrm{d}y) = \iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}y) P(y, \mathrm{d}x).$$
(2)

Proposition

If the Markov kernel P is π -reversible, then it is π -invariant.

Definition (Reversibility)

Let $\pi \in M_1(X)$ and P be a Markov kernel on $X \times \mathcal{X}$. We say that P is π -reversible if and only if (with infinitesimal notation)

$$\pi(\mathrm{d}x)P(x,\mathrm{d}y) = \pi(\mathrm{d}y)P(y,\mathrm{d}x),\tag{1}$$

In other words, P is π -reversible iff for all measurable bounded or non-negative functions h on $(X^2, \mathcal{X}^{\otimes 2})$,

$$\iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}x) P(x, \mathrm{d}y) = \iint_{\mathsf{X}^2} h(x, y) \pi(\mathrm{d}y) P(y, \mathrm{d}x).$$
(2)

Proposition

If the Markov kernel P is π -reversible, then it is π -invariant.

Outline

1 Invariant probability measures

2 Reversibility

3 The MH algorithms. Definition and Examples

Input:n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim Q(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ 2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

Terminology:

- Q is the instrumental kernel or proposition kernel .
- The acceptance probability is usually chosen equal to $\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right) \text{ but other choices are possible.}$

Proposition

The Markov kernel associated to a MH algorithm is π -reversible.

Input:n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim Q(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ **2** Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

Terminology:

- Q is the instrumental kernel or proposition kernel .
- The acceptance probability is usually chosen equal to $\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right) \text{ but other choices are possible.}$

Proposition

The Markov kernel associated to a MH algorithm is π -reversible.

Input:n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim Q(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ 2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

Terminology:

- Q is the instrumental kernel or proposition kernel .
- The acceptance probability is usually chosen equal to $\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right) \text{ but other choices are possible.}$

Proposition

The Markov kernel associated to a MH algorithm is π -reversible.

Input:n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim Q(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ 2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

Terminology:

- Q is the instrumental kernel or proposition kernel.
- The acceptance probability is usually chosen equal to $\alpha(x, y) = \alpha^{MH}(x, y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1\right)$ but other choices are possible.

Proposition

The Markov kernel associated to a MH algorithm is π -reversible.

Input:n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim Q(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ 2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leqslant \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

Terminology:

- Q is the instrumental kernel or proposition kernel.
- The acceptance probability is usually chosen equal to $\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$ but other choices are possible.

Proposition

The Markov kernel associated to a MH algorithm is $\pi\text{-reversible}.$

The independence sampler

- If the proposition update is $Y_{t+1} \sim q(\cdot)$, then the proposed candidate is drawn irrespective of the current value of the Markov chain.
- 2 The proposition kernel is then $Q(x, dy) = q(y)\lambda(dy)$ where q is a density wrt λ on X, and in such case, the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)q(x)}{\pi(x)q(y)}, 1\right)$
- Such Metropolis-Hastings algorithm is called the Independence Sampler.

The independence sampler

- If the proposition update is $Y_{t+1} \sim q(\cdot)$, then the proposed candidate is drawn irrespective of the current value of the Markov chain.
- **2** The proposition kernel is then $Q(x, dy) = q(y)\lambda(dy)$ where q is a density wrt λ on X, and in such case, the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)q(x)}{\pi(x)q(y)}, 1\right)$
- Such Metropolis-Hastings algorithm is called the Independence Sampler.

The independence sampler

- If the proposition update is $Y_{t+1} \sim q(\cdot)$, then the proposed candidate is drawn irrespective of the current value of the Markov chain.
- **2** The proposition kernel is then $Q(x, dy) = q(y)\lambda(dy)$ where q is a density wrt λ on X, and in such case, the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)q(x)}{\pi(x)q(y)}, 1\right)$
- Such Metropolis-Hastings algorithm is called the Independence Sampler.

Random Walk MH algorithm

- In this algorithm, the proposition update is $Y_{t+1} = X_k + \eta_k$ where $\eta_k \sim q(\cdot)$ where q(u) = q(-u) for all $u \in X$ and $X = \mathbb{R}^p$.
- **2** In such case, the proposition kernel is $Q(x, dy) = q(y x)\lambda(dy)$ and the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$.
- The associated algorithm is called the *(symmetric)* Random Walk Metropolis-Hasting.

Random Walk MH algorithm

- In this algorithm, the proposition update is $Y_{t+1} = X_k + \eta_k$ where $\eta_k \sim q(\cdot)$ where q(u) = q(-u) for all $u \in X$ and $X = \mathbb{R}^p$.
- **2** In such case, the proposition kernel is $Q(x, dy) = q(y x)\lambda(dy)$ and the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$.
- The associated algorithm is called the (symmetric) Random Walk Metropolis-Hasting.

Random Walk MH algorithm

- In this algorithm, the proposition update is $Y_{t+1} = X_k + \eta_k$ where $\eta_k \sim q(\cdot)$ where q(u) = q(-u) for all $u \in X$ and $X = \mathbb{R}^p$.
- **2** In such case, the proposition kernel is $Q(x, dy) = q(y x)\lambda(dy)$ and the acceptance probability is $\alpha(x, y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$.
- The associated algorithm is called the *(symmetric)* Random Walk Metropolis-Hasting.