Markov Chain Monte Carlo Theory and practical applications

Randal Douc and Sylvain Le Corff

Télécom SudParis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Introduction

Goal : For a given function f in some class of functions, approximate

$$
\int \pi(\mathrm{d} x) f(x)
$$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C \tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

- We use a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ such that

- Theory of Markov chains: General definitions, invariant measures, ergodicity, Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, $A B C$). 3 weeks

Introduction

Goal : For a given function f in some class of functions, approximate

$$
\int \pi(\mathrm{d} x) f(x)
$$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C \tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

- We use a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(X_{i}\right) \approx \int \pi(\mathrm{d} x) f(x), \quad n \text { large }
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity, Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks

Introduction

Goal : For a given function f in some class of functions, approximate

$$
\int \pi(\mathrm{d} x) f(x)
$$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C \tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

- We use a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(X_{i}\right) \approx \int \pi(\mathrm{d} x) f(x), \quad n \text { large }
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity, Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks

Introduction

Goal : For a given function f in some class of functions, approximate

$$
\int \pi(\mathrm{d} x) f(x)
$$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C \tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

- We use a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(X_{i}\right) \approx \int \pi(\mathrm{d} x) f(x), \quad n \text { large },
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity, Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks .

Outline

(1) Activities
(2) Markov chains and Markov kernels
(3) Finite dimensional laws
(4) The canonical space
(5) The Markov property

Outline

(1) Activities
(2) Markov chains and Markov kernels
(3) Finite dimensional laws
(4) The canonical space
(5) The Markov property

Activities

To learn the course

(1) Moodle, lecture notes, exercises.
(2) Numerical illustrations through Jupyter Notebook. The source can be run directly in a colaboratory google site by following this link.
(3) Github repo will be given for numerical sessions.
\square

- Written Exam (Multinle choice) in Octoher (the 26th) 25% of the mark.
- Project defense in December. 75\% of the mark.

Activities

To learn the course

(1) Moodle, lecture notes, exercises.
(2) Numerical illustrations through Jupyter Notebook. The source can be run directly in a colaboratory google site by following this link.
(3) Github repo will be given for numerical sessions.

To validate the course

- Written Exam (Multiple choice) in October (the 26th). 25% of the mark.
- Project defense in December. 75% of the mark.

Outline

(1) Activities

(2) Markov chains and Markov kernels
(3) Finite dimensional laws
(4) The canonical space
(5) The Markov property

Definitions

Let (X, \mathcal{X}) be a measurable space.
Definition (of a Markov kernel)
We say that $P: \mathrm{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+}$is a Markov kernel, if for all $(x, A) \in \mathrm{X} \times \mathcal{X}$,

- $y \mapsto P(y, A)$ is $\mathcal{X} / \mathcal{B}\left(\mathbb{R}^{+}\right)$measurable,
- $B \mapsto P(x, B)$ is a probability measure on $(\mathrm{X}, \mathcal{X})$.
- Recall if ν is a measure on $(\mathrm{X}, \mathcal{X}), A \mapsto \nu(A)$ is well-defined
and we can define the integral associated to ν and we use the
notation $\nu(f)=\int f(x) \nu(\mathrm{d} x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal
notation: $P(x, \mathrm{~d} y)$. For example,

Definitions

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

We say that $P: \mathrm{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+}$is a Markov kernel, if for all $(x, A) \in \mathrm{X} \times \mathcal{X}$,

- $y \mapsto P(y, A)$ is $\mathcal{X} / \mathcal{B}\left(\mathbb{R}^{+}\right)$measurable,
- $B \mapsto P(x, B)$ is a probability measure on $(\mathrm{X}, \mathcal{X})$.
- In particular, $P(x, \mathrm{X})=1$ for all $x \in \mathrm{X}$.
- Recall if ν is a measure on $(\mathrm{X}, \mathcal{X}), A \mapsto \nu(A)$ is well-defined
and we can define the integral associated to ν and we use the
notation $\nu(f)=\int f(x) \nu(\mathrm{d} x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal
notation: $P(x, \mathrm{~d} y)$. For example,

Definitions

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

We say that $P: \mathrm{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+}$is a Markov kernel, if for all $(x, A) \in \mathrm{X} \times \mathcal{X}$,

- $y \mapsto P(y, A)$ is $\mathcal{X} / \mathcal{B}\left(\mathbb{R}^{+}\right)$measurable,
- $B \mapsto P(x, B)$ is a probability measure on $(\mathrm{X}, \mathcal{X})$.
- In particular, $P(x, \mathrm{X})=1$ for all $x \in \mathrm{X}$.
- Recall if ν is a measure on $(\mathrm{X}, \mathcal{X}), A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f)=\int f(x) \nu(\mathrm{d} x)$,
notation

Definitions

Let $(\mathrm{X}, \mathcal{X})$ be a measurable space.

Definition (of a Markov kernel)

We say that $P: \mathrm{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+}$is a Markov kernel, if for all $(x, A) \in \mathrm{X} \times \mathcal{X}$,

- $y \mapsto P(y, A)$ is $\mathcal{X} / \mathcal{B}\left(\mathbb{R}^{+}\right)$measurable,
- $B \mapsto P(x, B)$ is a probability measure on $(\mathrm{X}, \mathcal{X})$.
- In particular, $P(x, \mathrm{X})=1$ for all $x \in \mathrm{X}$.
- Recall if ν is a measure on $(\mathrm{X}, \mathcal{X}), A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f)=\int f(x) \nu(\mathrm{d} x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal notation: $P(x, \mathrm{~d} y)$. For example,

$$
P(x, A)=\int_{\mathbf{X}} \mathbf{1}_{A}(y) P(x, \mathrm{~d} y)=\int_{A} P(x, \mathrm{~d} y)
$$

Let $\left\{X_{k}: k \in \mathbb{N}\right\}$ be a sequence of random variables on $(\Omega, \mathcal{G}, \mathbb{P})$ and taking values on X.

Definition (of a Markov chain)

We say that $\left\{X_{k}: k \in \mathbb{N}\right\}$ is a Markov chain with Markov kernel P and initial distribution $\nu \in \mathrm{M}_{1}(\mathrm{X})$ if and only if
(1) for all $(k, A) \in \mathbb{N} \times \mathcal{X}, \mathbb{P}\left(X_{k+1} \in A \mid X_{0: k}\right)=P\left(X_{k}, A\right)$, \mathbb{P}-a.s.
(2) $\mathbb{P}\left(X_{0} \in A\right)=\nu(A)$.

Additional notation

Additional notation

For all $\mu \in \mathrm{M}_{+}(\mathrm{X})$, all Markov kernels P, Q on $\mathrm{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X ,
(1) μP is the (positive) measure:

$$
A \mapsto \mu P(A)=\int \mu(\mathrm{d} x) P(x, A),
$$

(2) $P Q$ is the Markov kernel: $(x, A) \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) Q(y, A)$,
(3) $P h$ is the measurable function $x \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) h(y)$.

- Example

- Iterates of a kernel

Additional notation

Additional notation

For all $\mu \in \mathrm{M}_{+}(\mathrm{X})$, all Markov kernels P, Q on $\mathrm{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X ,
(1) μP is the (positive) measure:

$$
A \mapsto \mu P(A)=\int \mu(\mathrm{d} x) P(x, A),
$$

(2) $P Q$ is the Markov kernel: $(x, A) \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) Q(y, A)$,
(3) $P h$ is the measurable function $x \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) h(y)$.

- Example

$$
\begin{aligned}
\mu(P(Q h)) & =(\mu P)(Q h)=(\mu(P Q)) h=\mu((P Q) h) \\
& =\int \cdots \int_{\mathbf{x}^{3}} \mu(\mathrm{~d} x) P(x, \mathrm{~d} y) Q(y, \mathrm{~d} z) h(z)=\mu P Q h
\end{aligned}
$$

- Iterates of a kernel

Additional notation

Additional notation

For all $\mu \in \mathrm{M}_{+}(\mathrm{X})$, all Markov kernels P, Q on $\mathrm{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X ,
(1) μP is the (positive) measure:

$$
A \mapsto \mu P(A)=\int \mu(\mathrm{d} x) P(x, A)
$$

(2) $P Q$ is the Markov kernel: $(x, A) \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) Q(y, A)$,
(3) $P h$ is the measurable function $x \mapsto \int_{\mathrm{X}} P(x, \mathrm{~d} y) h(y)$.

- Example

$$
\begin{aligned}
\mu(P(Q h)) & =(\mu P)(Q h)=(\mu(P Q)) h=\mu((P Q) h) \\
& =\int \cdots \int_{\mathbf{x}^{3}} \mu(\mathrm{~d} x) P(x, \mathrm{~d} y) Q(y, \mathrm{~d} z) h(z)=\mu P Q h
\end{aligned}
$$

- Iterates of a kernel
- define $P^{0}=I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_{A}(x)$
- set for $k \geqslant 0, P^{k+1}=P^{k} P$.

Outline

(1) Activities
(2) Markov chains and Markov kernels
(3) Finite dimensional laws
(4) The canonical space
(5) The Markov property

Finite dimensional law

Let $\left\{X_{k}: k \in \mathbb{N}\right\}$ be a Markov chain with Markov kernel P and initial distribution $\nu \in \mathrm{M}_{1}(\mathrm{X})$

Lemma (The joint law)

For any $n \in \mathbb{N}$, the joint law of $X_{0: n}$ is

$$
\nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n} P\left(x_{i-1}, \mathrm{~d} x_{i}\right)
$$

(with the convention that $\prod_{i=0}^{-1}=1$). In particular, the law of X_{n} is νP^{n}.

Outline

(1) Activities
(2) Markov chains and Markov kernels
(3) Finite dimensional laws
(4) The canonical space
(5) The Markov property
(1) let P be a Markov kernel on $\mathrm{X} \times \mathcal{X}$
(2) let $\nu \in \mathrm{M}_{1}(\mathrm{X})$

Theorem

(The canonical space) Given (1) and (2), there exists a unique probability measure \mathbb{P}_{ν} on the canonical space $\left(\mathrm{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}\right)$ such that

- under \mathbb{P}_{ν}, the coordinate process $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a Markov chain with Markov kernel P and initial distribution ν.
(1) We use the notation: $\mathbb{P}_{x}=\mathbb{P}_{\delta_{x}}$.
(2) For any $A \in \mathcal{X}^{\otimes(n+1)}$

(3) We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

(1) We use the notation: $\mathbb{P}_{x}=\mathbb{P}_{\delta_{x}}$.
(2) For any $A \in \mathcal{X}^{\otimes(n+1)}$

$$
\mathbb{P}_{\nu}\left(X_{0: n} \in A\right)=\int_{\mathrm{X}} \nu\left(\mathrm{~d} x_{0}\right) \mathbb{P}_{x_{0}}\left(X_{0: n} \in A\right)
$$

(3) We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,
(1) We use the notation: $\mathbb{P}_{x}=\mathbb{P}_{\delta_{x}}$.
(2) For any $A \in \mathcal{X}^{\otimes(n+1)}$

$$
\mathbb{P}_{\nu}\left(X_{0: n} \in A\right)=\int_{\mathrm{X}} \nu\left(\mathrm{~d} x_{0}\right) \mathbb{P}_{x_{0}}\left(X_{0: n} \in A\right)
$$

(3) We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

$$
\begin{aligned}
\mathbb{P}_{\nu}(A) & =\mathbb{P}_{\nu}\left(X_{0: \infty} \in A\right)=\int_{\mathbf{X}} \nu\left(\mathrm{d} x_{0}\right) \mathbb{P}_{x_{0}}\left(X_{0: \infty} \in A\right) \\
& =\int_{\mathbf{X}} \nu\left(\mathrm{d} x_{0}\right) \mathbb{P}_{x_{0}}(A)
\end{aligned}
$$

Outline

(1) Activities
(2) Markov chains and Markov kernels
(3) Finite dimensional laws
4) The canonical space
(5) The Markov property

Theorem

(The Markov property) For any $\nu \in \mathrm{M}_{1}(\mathrm{X})$, any non-negative or bounded function h on $\mathrm{X}^{\mathbb{N}}$ and any $k \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[h\left(X_{k: \infty}\right) \mid \mathcal{F}_{k}\right]=\mathbb{E}_{X_{k}}\left[h\left(X_{0: \infty}\right)\right], \quad \mathbb{P}_{\nu} \text { - a.s. } \tag{1}
\end{equation*}
$$

where $\mathcal{F}_{k}=\sigma\left(X_{0: k}\right)$.

