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Abstract

This paper focuses on α-divergence minimisation methods for Variational Inference.1

More precisely, we are interested in algorithms optimising the mixture weights of2

any given mixture model, without any information on the underlying distribution3

of its mixture components parameters. The Power Descent, defined for all α ̸= 1,4

is one such algorithm and we establish in our work the full proof of its convergence5

towards the optimal mixture weights when α < 1. Since the α-divergence recovers6

the widely-used forward Kullback-Leibler when α→ 1, we then extend the Power7

Descent to the case α = 1 and show that we obtain an Entropic Mirror Descent.8

This leads us to investigate the link between Power Descent and Entropic Mirror9

Descent: first-order approximations allow us to introduce the Renyi Descent, a10

novel algorithm for which we prove an O(1/N) convergence rate. Lastly, we11

compare numerically the behavior of the unbiased Power Descent and of the biased12

Renyi Descent and we discuss the potential advantages of one algorithm over the13

other.14

1 Introduction15

Bayesian Inference involves being able to compute or sample from the posterior density. For many16

useful models, the posterior density can only be evaluated up to a normalisation constant and we17

must resort to approximation methods.18

One major category of approximation methods is Variational Inference, a wide class of optimisation19

methods which introduce a simpler density family Q and use it to approximate the posterior density20

(see for example Variational Bayes [1, 2] and Stochastic Variational Inference [3]). The crux of21

these methods consists in being able to find the best approximation of the posterior density among22

the family Q in the sense of a certain divergence, most typically the Kullback-Leibler divergence.23

However, The Kullback-Leibler divergence is known to have some undesirable properties (e.g24

posterior overestimation/underestimation [4]) and as a consequence, the α-divergence [5, 6] and25

Renyi’s α-divergence [7, 8] have gained a lot of attention recently as a more general alternative26

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].27

Noticeably, [17] introduced the (α,Γ)-descent, a general family of gradient-based algorithms that28

are able to optimise the mixture weights of mixture models by α-divergence minimisation, without29

any information on the underlying distribution of its mixture components parameters. The benefit30

of these types of algorithms is that they allow, in an Sequential Monte Carlo fashion [20], to select31

the mixture components according to their overall importance in the set of component parameters.32

From there, one is able to optimise the weights and the components parameters alternatively [17].33

The (α,Γ)-descent framework recovers the Entropic Mirror Descent algorithm (corresponding to34

Γ(v) = e−ηv with η > 0) and includes the Power Descent, an algorithm defined for all α ∈ R \ {1}35

and all η > 0 that sets Γ(v) = [(α−1)v+1]η/(1−α). Although these two algorithms are linked to one36
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another from a theoretical perspective through the (α,Γ)-descent framework, numerical experiments37

in [17] showed that the Power Descent outperforms the Entropic Mirror Descent when α < 1 as the38

dimension increases.39

Nonetheless, the global convergence of the Power Descent algorithm when α < 1, as stated in [17],40

is subjected to the condition that the limit exists. Furthermore, even though the convergence towards41

the global optimum is derived, there is no convergence rate available for the Power Descent when42

α < 1. While there is no general rule yet on how to select the value of α in practice, the case α < 143

has the advantage that it enforces a mass-covering property, as opposed to the mode-seeking property44

exhibited when α ⩾ 1 ([4] and [17]) and which often may lead to posterior variance underestimation.45

We are thus interested in studying Variational Inference methods for optimising the mixture weights of46

mixture models when α < 1. After recalling the basics of the Power Descent algorithm in Section 2,47

we make the following contributions in the paper:48

• In Section 3, we derive the full convergence proof of the Power Descent algorithm towards the49

optimal mixture weights when α < 1 (Theorem 2).50

• Since the α-divergence becomes the traditional forward Kullback-Leibler when α→ 1, we first51

bridge in Section 4 the gap between the cases α < 1 and α > 1 of the Power Descent: we obtain52

that the Power Descent recovers an Entropic Mirror Descent performing forward Kullback-Leibler53

minimisation (Proposition 1). We then keep on investigating the connections between the Power54

Descent and the Entropic Mirror Descent by considering first-order approximations. In doing so, we55

are able to go beyond the (α,Γ)-descent framework and to introduce an algorithm closely-related to56

the Power Descent that we call the Renyi Descent and that is proved in Theorem 3 to converge at an57

O(1/N) rate towards its optimum for all α ∈ R.58

• Finally, we run some numerical experiments in Section 5 to compare the behavior of the Power59

Descent and the Renyi Descent altogether, before discussing the potential benefits of one approach60

over the other.61

2 Background62

We start by introducing some notation. Let (Y,Y, ν) be a measured space, where ν is a σ-finite
measure on (Y,Y). Assume that we have access to some observed variables D generated from a
probabilistic model p(D |y) parameterised by a hidden random variable y ∈ Y that is drawn from a
certain prior p0(y). The posterior density of the latent variable y given the data D is then given by:

p(y|D) =
p(y,D)

p(D)
=

p0(y)p(D |y)
p(D)

,

where the normalisation constant p(D) =
∫
Y
p0(y)p(D |y)ν(dy) is called the marginal likelihood or63

model evidence and is oftentimes unknown.64

To approximate the posterior density, the Power Descent considers a variational familyQ that is large
enough to contain mixture models and that we redefine now: letting (T, T ) be a measurable space,
K : (θ,A) 7→

∫
A
k(θ, y)ν(dy) be a Markov transition kernel on T×Y with kernel density k defined

on T× Y, the Power Descent considers the following approximating family{
y 7→

∫
T

µ(dθ)k(θ, y) : µ ∈ M

}
,

where M is a convenient subset of M1(T), the set of probability measures on (T, T ). This choice of65

approximating family extends the typical parametric family commonly-used in Variational Inference66

since it amounts to putting a prior over the parameter θ (in the form of a measure) and does describe67

the class of mixture models when µ is a weighted sum of Dirac measures.68

Problem statement Denote by P the probability measure on (Y,Y) with corresponding density69

p(·|D) with respect to ν and for all µ ∈ M1(T), for all y ∈ Y, denote µk(y) =
∫
T
µ(dθ)k(θ, y).70

Furthermore, given α ∈ R, let fα be the convex function on (0,+∞) defined by f0(u) = u− 1−71

log(u), f1(u) = 1− u+ u log(u) and fα(u) =
1

α(α−1) [u
α − 1− α(u− 1)] for all α ∈ R \ {0, 1}.72

Then, the α-divergence between µK and P (extended by continuity to the cases α = 0 and α = 1 as73
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for example done in [21]) is given by74

Dα(µK||P) =
∫
Y

fα

(
µk(y)

p(y|D)

)
p(y|D)ν(dy) ,

and the goal of the Power Descent is to find75

arginfµ∈MDα(µK||P) . (1)

More generally, letting p be any measurable positive function on (Y,Y), the Power Descent aims at76

solving77

arginfµ∈MΨα(µ; p) , (2)

where for all µ ∈ M1(T), Ψα(µ; p) =
∫
Y
fα (µk(y)/p(y)) p(y)ν(dy). The Variational Inference78

optimisation problem (1) can then be seen as an instance of (2) that is equivalent to optimising79

Ψα(µ; p) with p(y) = p(y,D) (see Appendix A.1). In the following, the dependency on p in Ψα80

may be dropped throughout the paper for notational ease when no ambiguity occurs and we now81

present the Power Descent algorithm.82

The Power Descent algorithm. The optimisation problem (2) can be solved for all α ∈ R \ {1} by83

using the Power Descent algorithm introduced in [17] : given an initial measure µ1 ∈ M1(T) such84

that Ψα(µ1) <∞, α ∈ R \ {1}, η > 0 and κ such that (α− 1)κ ⩾ 0, the Power descent algorithm85

is an iterative scheme which builds the sequence of probability measures (µn)n∈N⋆86

µn+1 = Iα(µn) , n ∈ N⋆ , (3)

where for all µ ∈ M1(T), the one-step transition µ 7→ Iα(µ) is given by Algorithm 1 and where for87

all v ∈ Domα, Γ(v) = [(α− 1)v + 1]η/(1−α) [and Domα denotes an interval of R such that for all88

θ ∈ T, all µ ∈ M1(T), bµ,α(θ) + κ and µ(bµ,α) + κ ∈ Domα].89

Algorithm 1: Power descent one-step transition (Γ(v) = [(α− 1)v + 1]η/(1−α))

1. Expectation step : bµ,α(θ) =

∫
Y

k(θ, y)f ′
α

(
µk(y)

p(y)

)
ν(dy)

2. Iteration step : Iα(µ)(dθ) =
µ(dθ) · Γ(bµ,α(θ) + κ)

µ(Γ(bµ,α + κ))

90

In this algorithm, bµ,α can be understood as the gradient of Ψα. Algorithm 1 then consists in applying91

the transform function Γ to the translated gradient bµ,α + κ and projecting back onto the space of92

probability measures.93

A remarkable property of the Power Descent algorithm, which has been proven in [17] (it is a special94

case of [17, Theorem 1] with Γ(v) = [(α− 1)v + 1]η/(1−α)), is that under (A1) as defined below95

(A1) The density kernel k on T× Y, the function p on Y and the σ-finite measure ν on96

(Y,Y) satisfy, for all (θ, y) ∈ T× Y, k(θ, y) > 0, p(y) > 0 and
∫
Y
p(y)ν(dy) <∞.97

the Power Descent ensures a monotonic decrease in the α-divergence at each step for all η ∈ (0, 1]98

(this result is recalled in Theorem 4 of Appendix A.2 for the sake of completeness). Under the99

additional assumptions that κ > 0 and100

sup
θ∈T,µ∈M1(T)

|bµ,α| <∞ and Ψα(µ1) <∞ , (4)

the Power Descent is also known to converge towards its optimal value at an O(1/N) rate when101

α > 1 [17, Theorem 3]. On the other hand, when α < 1, the convergence towards the optimum as102

written in [17] holds under different assumptions including103

(A2) (i) T is a compact metric space and T is the associated Borel σ-field;104

(ii) for all y ∈ Y, θ 7→ k(θ, y) is continuous;105
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(iii) we have
∫
Y
supθ∈T k(θ, y)× supθ′∈T

(
k(θ′,y)
p(y)

)α−1

ν(dy) <∞.106

If α = 0, assume in addition that
∫
Y
supθ∈T

∣∣∣log (k(θ,y)
p(y)

)∣∣∣p(y)ν(dy) <∞.107

so that [17, Theorem 4], that is recalled below under the form of Theorem 1, states the convergence108

of the Power Descent algorithm towards the global optimum.109

Theorem 1 ([17, Theorem 4]). Assume (A1) and (A2). Let α < 1 and let κ ⩽ 0. Then, for all110

µ ∈ M1(T), Ψα(µ) < ∞ and any η > 0 satisfies 0 < µ(Γ(bµ,α + κ)) < ∞. Further assume111

that η ∈ (0, 1] and that there exist µ1, µ
⋆ ∈ M1(T) such that the (well-defined) sequence (µn)n∈N⋆112

defined by (3) weakly converges to µ⋆ as n→∞. Finally, denote by M1,µ1(T) the set of probability113

measures dominated by µ1. Then the following assertions hold114

(i) (Ψα(µn))n∈N⋆ is nonincreasing,115

(ii) µ⋆ is a fixed point of Iα,116

(iii) Ψα(µ
⋆) = infζ∈M1,µ1

(T) Ψα(ζ).117

The above result assumes there must exist µ1, µ
⋆ ∈ M1(T) such that the sequence (µn)n∈N⋆ defined118

by (3) weakly converges to µ⋆ as n → ∞, that is it assumes the limit already exists. Our first119

contribution consists in showing that this assumption can be alleviated when µ is chosen a weighted120

sum of Dirac measures, that is when we seek to perform mixture weights optimisation by α-divergence121

minimisation.122

3 Convergence of the Power Descent algorithm in the mixture case123

Before we state our convergence result, let us first make two comments on the assumptions from124

Theorem 1 that shall be retained in our upcoming convergence result.125

A first comment is that (A1) is mild since the assumption that p(y) > 0 for all y ∈ Y can be discarded126

and is kept for convenience [17, Remark 4]. A second comment is that (A2) is also mild and covers127

(4) as it amounts to assuming that bµ,α(θ) and Ψα(µ) are uniformly bounded with respect to µ and θ.128

To see this, we give below an example for which (A2) is satisfied.129

Example 1. Consider the case Y = Rd with α ∈ [0, 1). Let r > 0 and let T = B(0, r) ⊂ Rd.130

Furtheremore, let Kh be a Gaussian transition kernel with bandwidth h and denote by kh its associ-131

ated kernel density. Finally, let p be a mixture density of two d-dimensional Gaussian distributions132

multiplied by a positive constant c such that p(y) = c× [0.5N (y; θ⋆1 , Id) + 0.5N (y; θ⋆2 , Id)] for all133

y ∈ Y where θ⋆1 , θ
⋆
2 ∈ T and Id is the identity matrix. Then, (A2) holds (see Appendix B.1).134

Next, we introduce some notation that are specific to the case of mixture models we aim at studying
in this section. Given J ∈ N⋆, we introduce the simplex of RJ :

SJ =

λ = (λ1, . . . , λJ) ∈ RJ : ∀j ∈ {1, . . . , J} , λj ⩾ 0 and
J∑

j=1

λj = 1


and we also define S+J = {λ ∈ SJ : ∀j ∈ {1, . . . , J} , λj > 0}. We let Θ = (θ1, . . . , θJ) ∈ TJ135

be fixed and for all λ ∈ SJ , we define µλ,Θ ∈ M1(T) by µλ,Θ =
∑J

j=1 λjδθj .136

Consequently, µλ,Θk(y) =
∑J

j=1 λjk(θj , y) corresponds to a mixture model and if we let (µn)n∈N⋆137

be defined by µ1 = µλ,Θ and (3), an immediate induction yields that for every n ∈ N⋆, µn can138

be expressed as µn =
∑J

j=1 λj,nδθj where λn = (λ1,n, . . . , λJ,n) ∈ SJ satisfies the initialisation139

λ1 = λ and the update formula:140

λn+1 = Imixt
α (λn) , n ∈ N⋆ , (5)

where for all λ ∈ SJ ,

Imixt
α (λ) :=

(
λjΓ(bµλ,Θ,α(θj) + κ)∑J
ℓ=1 λℓΓ(bµλ,Θ,α(θℓ) + κ)

)
1⩽j⩽J
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with Γ(v) = [(α− 1)v + 1]
η

1−α for all v ∈ Domα. Finally, let us rewrite (A2) in the simplified case141

where µ is a sum of Dirac measures, which gives (A3) below.142

(A3) (i) For all y ∈ Y, θ 7→ k(θ, y) is continuous;143

(ii) we have
∫
Y

max
1⩽j⩽J

k(θj , y)× max
1⩽j′⩽J

(
k(θj′ ,y)

p(y)

)α−1

ν(dy) <∞.144

If α = 0, we assume in addition that
∫
Y

max
1⩽j⩽J

∣∣∣log (k(θj ,y)
p(y)

)∣∣∣ p(y)ν(dy) <∞.145

We then have the following theorem, which establishes the full proof of the global convergence146

towards the optimum for the mixture weights when α < 1.147

Theorem 2. Assume (A1) and (A3). Let α < 1, let Θ = (θ1, . . . , θJ) ∈ TJ be fixed and let κ be such148

that κ ⩽ 0. Then for all λ ∈ SJ , Ψα(µλ,Θ) <∞ and for any η > 0 the sequence (λn)n∈N⋆ defined149

by λ1 ∈ SJ and (5) is well-defined. If in addition (λ1, η) ∈ S+J ×(0, 1] and {K(θ1, ·), . . . ,K(θJ , ·)}150

are linearly independent, then151

(i) (Ψα(µλn,Θ))n∈N⋆ is nonincreasing,152

(ii) the sequence (λn)n∈N⋆ converges to some λ⋆ ∈ SJ which is a fixed point of Imixt
α ,153

(iii) Ψα(µλ⋆,Θ) = infλ′∈SJ
Ψα(µλ′,Θ).154

The proof of this result builds on Theorem 1 and Theorem 4 and is deferred to Appendix B.2. Notice155

that since Ψα depends on λ through µλ,ΘK in Theorem 2, an identifiably condition was to be156

expected in order to achieve the convergence of the sequence (λn)n∈N⋆ . Following Example 1, this157

identifiably condition notably holds for J ⩽ d under the assumption that the θ1, ..., θJ are full-rank.158

We thus have the convergence of the Power Descent under less stringent conditions when α < 1159

and when we consider the particular case of mixture models. This algorithm can easily become160

feasible for any choice of kernel K by resorting to an unbiased estimator of (bµλn,Θ,α(θj))1⩽j⩽J in161

the update formula (5) (see Algorithm 3 of Appendix B.3).162

Nevertheless, contrary to the case α > 1 we still do not have a convergence rate for the Power Descent163

when α < 1. Furthermore, the important case α → 1, which corresponds to performing forward164

Kullback-Leibler minimisation, is not covered by the Power Descent algorithm. In the next section,165

we extend the Power Descent to the case α = 1. As we shall see, this will lead us to investigate the166

connections between the Power Descent and the Entropic Mirror Descent beyond the (α,Γ)-descent167

framework. As a result, we will introduce a novel algorithm closely-related to the Power Descent168

that yields an O(1/N) convergence rate when µ = µλ,Θ and α < 1 (and more generally when169

µ ∈ M1(T) and α ∈ R).170

4 Power Descent and Entropic Mirror Descent171

Recall from Section 2 that the Power Descent is defined for all α ∈ R \ {1}. In this section, we172

first establish in Proposition 1 that the Power Descent can be extended to the case α = 1 and173

that we recover an Entropic Mirror Descent, showing that a deeper connection runs between the174

two approaches beyond the one identified by the (α,Γ)-descent framework. This result relies on175

typical convergence and differentiability assumptions summarised in (D1) and which are deferred to176

Appendix C.1, alongside with the proof of Proposition 1.177

Proposition 1 (Limiting case α→ 1). Assume (A1) and (D1). Then, for all continuous and bounded
real-valued functions h on T, we have that

lim
α→1

[Iα(µ)](h) = [I1(µ)](h) ,

where for all µ ∈ M1(T) and all θ ∈ T, we have set178

I1(µ)(dθ) =
µ(dθ)e−ηbµ,1(θ)

µ (e−ηbµ,1)
and bµ,1(θ) =

∫
Y

k(θ, y) log

(
µk(y)

p(y)

)
ν(dy) . (6)

Here, we recognise the one-step transition associated to the Entropic Mirror Descent applied to Ψ1.179

This algorithm is a special case of [17] with Γ(v) = e−ηv and α = 1 and as such, it is known to180
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lead to a systematic decrease in the forward Kullback-Leibler divergence and to enjoy an O(1/N)181

convergence rate under the assumptions that (4) holds and η ∈ (0, 1) [17, Theorem 3].182

We have thus obtained that the Power Descent coincides exactly with the Entropic Mirror Descent183

applied to Ψ1 when α = 1 and we now focus on understanding the links between Power Descent and184

Entropic Mirror Descent when α ∈ R \ {1}. For this purpose, let κ be such that (α− 1)κ ⩾ 0 and185

let us study first-order approximations of the Power Descent and the Entropic Mirror Descent applied186

to Ψα when bµn,α(θ) ≈ µn(bµn,α) for all θ ∈ T.187

Letting η > 0, we have that the update formula for the Power Descent is given by

µn+1(dθ) =
µn(dθ) [(α− 1)(bµn,α(θ) + κ) + 1]

η
1−α

µn([(α− 1)(bµn,α + κ) + 1]
η

1−α )
, n ∈ N⋆ .

Now using the first order approximation u
η

1−α ≈ v
η

1−α − η
α−1v

η
1−α−1(u − v) with u =

(α−1)(bµn,α(θ)+κ)+1
(α−1)(µ(bµn,α)+κ)+1 and v = 1, we can deduce the following approximated update formula

µn+1(dθ) = µn(dθ)

[
1− η

α− 1

bµn,α(θ)− µn(bµn,α)

µn(bµn,α) + κ+ 1/(α− 1)

]
, n ∈ N⋆ .

Letting η′ > 0, the update formula for the Entropic Mirror Descent applied to Ψα can be written as188

µn+1(dθ) =
µn(dθ) exp [−η′(bµn,α(θ) + κ)]

µn(exp [−η′(bµn,α + κ)])
, n ∈ N⋆ , (7)

and we obtain in a similar fashion that an approximated version of this iterative scheme is
µn+1(dθ) = µn(dθ) [1− η′ (bµn,α(θ)− µn(bµn,α))] , n ∈ N⋆ .

Thus, for the two approximated formulas above to coincide, we need to set η′ =189

η [(α− 1)(µn(bµn,α) + κ) + 1]
−1. Now coming back to (7), we see that this leads us to consider190

the update formula given by191

µn+1(dθ) =
µn(dθ) exp

[
−η bµn,α(θ)

(α−1)(µn(bµn,α)+κ)+1

]
µn

(
exp

[
−η bµn,α

(α−1)(µn(bµn,α)+κ)+1

]) , n ∈ N⋆ . (8)

Observe then that (8) can again be seen as an Entropic Mirror Descent, but applied this time to the192

objective function defined for all α ∈ R \ {0, 1} by193

ΨAR
α (µ) :=

1

α(α− 1)
log

(∫
Y

µk(y)αp(y)1−αν(dy) + (α− 1)κ

)
,

meaning we have applied the monotonic transformation

u 7→ 1

α(α− 1)
log

(
α(α− 1)u+ α+ (1− α)

∫
Y

p(y)ν(dy) + (α− 1)κ

)
to the initial objective function Ψα (see Appendix C.2 for the derivation of (8) based on the objective194

function ΨAR
α ). Hence, in the spirit of Renyi’s α-divergence gradient-based methods for Variational195

Inference (e.g [9, 10]), we can motivate the iterative scheme (8) by observing that we recover the196

Variational Renyi bound introduced in [10] up to a constant −α−1 when we let p = p(·,D), κ = 0197

and α > 0 in ΨAR
α . For this reason we call the algorithm given by (8) the Renyi Descent thereafter.198

Contrary to the Entropic Mirror Descent applied to Ψα, the Renyi Descent now shares the same199

first-order approximation as the Power Descent. This might explain why the behavior of the Entropic200

Mirror Descent applied to Ψα and of the Power Descent differed greatly when α < 1 in the numerical201

experiments from [17] despite their theoretical connection through the (α,Γ)-descent framework (the202

former performing poorly numerically compared to the later as the dimension increased).203

Strikingly, we can prove an O(1/N) convergence rate towards the global optimum for the Renyi
Descent. Letting κ′ ∈ R, denoting by DomAR

α an interval of R such that for all θ ∈ T and all
µ ∈ M1(T),

bµ,α(θ) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ and

µ(bµ,α) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ ∈ DomAR

α

and introducing the assumption on η204
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Table 1: Summary of the theoretical results obtained in this paper compared to [17]
Power Descent Renyi Descent

[17] α < 1: convergence under restrictive assumptions; not covered
α > 1: O(1/N) convergence rate

This paper α < 1: full proof of convergence for mixture weights; O(1/N)
extension to α = 1 with O(1/N) convergence rate convergence rate

(A4) For all v ∈ DomAR
α , 1− η(α− 1)(v − κ′) ⩾ 0.205

we indeed have the following convergence result.206

Theorem 3. Assume (A1) and (A4). Let α ∈ R \ {1} and let κ be such that (α− 1)κ > 0. Define207

|B|∞,α := supθ∈T,µ∈M1(T) |bµ,α(θ) + 1/(α − 1)| and assume that |B|∞,α < ∞. Moreover, let208

µ1 ∈ M1(T) be such that Ψα(µ1) <∞. Then, the following assertions hold.209

(i) The sequence (µn)n∈N⋆ defined by (8) is well-defined and the sequence (Ψα(µn))n∈N⋆ is210

non-increasing.211

(ii) For all N ∈ N⋆, we have212

Ψα(µN )−Ψα(µ
⋆) ⩽

Lα,2

N

[
KL(µ⋆||µ1) + L

Lα,3

Lα,1(α− 1)κ
∆1

]
, (9)

where µ⋆ is such that Ψα(µ
⋆) = infζ∈M1,µ1 (T)

Ψα(ζ), M1,µ1(T) denotes the set of213

probability measures dominated by µ1, KL(µ⋆||µ1) =
∫
T
log (dµ⋆/dµ1) dµ

⋆, ∆1 =214

Ψα(µ1)−Ψα(µ
⋆) and Lα,2, L, Lα,3, Lα,1 are finite constants defined in (20).215

The proof of this result is deferred to Appendix C.3 and we present in the next example an application216

of this theorem to the particular case of mixture models.217

Example 2. Let α ∈ R\{1}, let J ∈ N⋆, let Θ = (θ1, . . . , θJ) ∈ TJ , let µ1 = J−1
∑J

j=1 δθj and let

DomAR
α = [− |B|∞,α

(α−1)κ+κ′,
|B|∞,α

(α−1)κ+κ′] with κ′ ∈ R. In addition, assume that 1−η|κ|−1|B|∞,α > 0.

Then, taking κ′ = −3 |B|∞,α

(α−1)κ , we obtain

Ψα(µN )−Ψα(µ
⋆) ⩽

|α− 1|(|B|∞,α + |κ|)
N

[
log J

η
+

√
2 log(J)|B|∞,α

(α− 1)κ(1− η|κ|−1|B|∞,α)

]
,

where we have used that KL(µ⋆||µ1) ⩽ log J , ∆1 ⩽
√
2 log J |B|∞,α and that the constants defined218

in (20) satisfy Lα,2 = η−1|α − 1|(|B|∞,α + |κ|), L = η2eη
|B|∞,α
(α−1)κ

−ηκ′
, Lα,3 = eη

|B|∞,α
(α−1)κ

+ηκ′
and219

Lα,1 = (1− η|κ|−1|B|∞,α)ηe
−η

|B|∞,α
(α−1)κ

−ηκ′
.220

To put things into perspective, notice that the Renyi Descent enjoys an O(1/
√
N) convergence221

rate as a Entropic Mirror Descent algorithm for the sequence (Ψα(N
−1
∑N

n=1 µn))N∈N⋆ under our222

assumptions when η is proportional to 1/
√
N , N being fixed (see [22] or [23, Theorem 4.2.]).223

The improvement thus lies in the fact that deriving an O(1/N) convergence rate usually requires224

stronger smoothness assumptions on Ψα [23, Theorem 6.2] that we do not assume in Theorem 3.225

Furthermore, due to the monotonicity property, our result only involves the measure µN at time N226

while typical Entropic Mirror Result are expressed in terms of the average N−1
∑N

n=1 µn.227

Finally, observe that the Renyi Descent becomes feasible in practice for any choice of kernel K by228

letting µ be a weighted sum of Dirac measures i.e µ = µλ,Θ and by resorting to an unbiased estimate229

of (bµ,α(θj))1⩽j⩽J (see Algorithm 4 of Appendix C.4).230

The theoretical results we have obtained are summarised in Table 1 and we next move on to numerical231

experiments.232
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5 Simulation study233

Let the target p be a mixture density of two d-dimensional Gaussian distributions multiplied by a
positive constant c such that p(y) = c× [0.5N (y;−sud, Id) + 0.5N (y; sud, Id)], where ud is the
d-dimensional vector whose coordinates are all equal to 1, s = 2, c = 2 and Id is the identity matrix.
Given J ∈ N⋆, the approximating family is described byy 7→ µλkh(y) =

J∑
j=1

λjkh(y − θj) : λ ∈ SJ , θ1, . . . , θJ ∈ T

 ,

where Kh is a Gaussian transition kernel with bandwidth h and kh denotes its associated kernel234

density.235

Since the Power Descent and the Renyi Descent operate only on the mixture weights λ of µλkh236

during the optimisation, a fully adaptive algorithm can be obtained by alternating T times between237

an Exploitation step where the mixture weights are optimised and an Exploration step where the238

θ1, . . . , θJ are updated, as written in Algorithm 2.239

Algorithm 2: Complete Exploitation-Exploration Algorithm
Input: p: measurable positive function, α: α-divergence parameter, q0: initial sampler, Kh:
Gaussian transition kernel, T : total number of iterations, J : dimension of the parameter set.

Output: Optimised weights λ and parameter set Θ.
Draw θ1,1, . . . , θJ,1 from q0.
for t = 1 . . . T do

Exploitation step : Set Θ = {θ1,t, . . . , θJ,t}. Perform the Power Descent or Renyi Descent
and obtain the optimised mixture weights λ.
Exploration step : Perform any exploration step of our choice and obtain
θ1,t+1, . . . , θJ,t+1.

240

Many choices of Exploration step can be envisioned in Algorithm 2 since there is no constraint on241

{θ1, . . . , θJ}. Here, we consider the same Exploration step as the one they used in [17]: h is set to be242

proportional to J−1/(4+d) and the particles are updated by i.i.d sampling according to µλ,Θkh (and243

we refer to Appendix C.5 for some details about alternative possible choices of Exploration step).244

As for the Power Descent and Renyi Descent, we perform N transitions of these algorithms at245

each time t = 1 . . . T according to Algorithm 3 and 4, in which the initial weights are set to246

be [1/J, . . . , 1/J ], η = η0/
√
N with η0 > 0 and M samples are used in the estimation of247

(bµλ,Θ,α(θj,t))1⩽J at each iteration n = 1 . . . N . We take J = 100, M ∈ {100, 1000, 2000},248

α = 0.5, κ = 0, η0 = 0.3 and the initial particles θ1, . . . , θJ are sampled from a centered normal249

distribution q0 with covariance matrix 5Id. We let T = 10, N = 20 and we replicate the experiment250

100 times independently in dimension d = 16 for each algorithm. The convergence is assessed using251

a Monte Carlo estimate of the Variational Renyi bound introduced in [10] (which requires next to252

none additional computations).253

The results for the Power Descent and the Renyi Descent are displayed on Figure 1 below and we254

add the Entropic Mirror Descent applied to Ψα as a reference.255

We then observe that the Renyi Descent is indeed better-behaved compared to the Entropic Mirror256

Descent applied to Ψα, which fails in dimension 16. Furthermore, it matches the performances of the257

Power Descent as M increases in our numerical experiment, which illustrates the link between the258

two algorithms we have established in the previous section.259

Discussion From a theoretical standpoint, no convergence rate is yet available for the Power Descent260

algorithm when α < 1. An advantage of the novel Renyi Descent algorithm is then that while being261

close to the Power Descent, it also benefits from the Entropic Mirror Descent optimisation literature262

and as such O(1/
√
N) convergence rates hold, which we have been able to improve to O(1/N)263

convergence rates.264

A practical use of the Power Descent and of the Renyi Descent algorithms requires approximations to265

handle intractable integrals appearing in the update formulas so that the Power Descent applies the266

8



Figure 1: Plotted is the average Variational Renyi bound for the Power Descent (PD), the Renyi
Descent (RD) and the Entropic Mirror Descent applied to Ψα (EMD) in dimension d = 16 computed
over 100 replicates with η0 = 0.3 and α = 0.5 and an increasing number of samples M .

function Γ(v) = [(α−1)v+1]η/(1−α) to an unbiased estimator of the translated gradient bµ,α(θ)+κ267

before renormalising, while the the Renyi Descent applies the Entropic Mirror Descent function268

Γ(v) = e−ηv to a biased estimator of bµn,α(θ)/(µn(bµn,α) + κ+ 1/(α− 1)) before renormalising.269

Finding which approach is most suitable between biased and unbiased α-divergence minimisation270

is still an open issue in the literature, both theoretically and empirically [15, 16, 19]. Due to the271

exponentiation, considering the α-divergence instead of Renyi’s α-divergence has for example been272

said to lead to high-variance gradients [11, 10] and low Signal-to-Noise ratio when α ̸= 0 [16] during273

the stochastic gradient descent optimization.274

In that regard, our work sheds light on additional links between unbiased and biased α-divergence275

methods beyond the framework of stochastic gradient descent algorithms, as both the unbiased Power276

Descent and the biased Renyi Descent share the same first order approximation.277

6 Conclusion278

We investigated algorithms that can be used to perform mixture weights optimisation for α-divergence279

minimisation regardless of how the mixture parameters are obtained. We have established the full280

proof of the convergence of the Power Descent algorithm in the case α < 1 when we consider mixture281

models and bridged the gap with the case α = 1. We also introduced a closely-related algorithm282

called the Renyi Descent. We proved it enjoys an O(1/N) convergence rate and illustrated in practice283

the proximity between these two algorithms when the number of samples M increases.284

Further work could include establishing theoretical results regarding the stochastic version of these285

two algorithms, as well as providing complementary empirical results comparing the performances286

of the unbiased α-divergence-based Power Descent algorithm to those of the biased Renyi’s α-287

divergence-based Renyi Descent. Since our contributions are mainly theoretical, we believe these288

will not result in any negative societal impacts.289
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A384

A.1 Equivalence between (1) and (2) with p(y) = p(y,D)385

• Case α = 1 with f1(u) = 1− u+ u log(u) for all u > 0. Then,386

D1(µK||P) =
∫
Y

f1

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

µk(y) log

(
µk(y)

p(y|D)

)
ν(dy) + 0

=

∫
Y

µk(y) log

(
µk(y)

p(y,D)

)
ν(dy) + log p(D)

=

∫
Y

f1

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) + 1− p(D) + log p(D)

Thus,
arginfµ∈MD1(µK||P) = arginfµ∈MΨ1(µ; p) with p(y) = p(y,D)

• Case α = 0 with f0(u) = u− 1− log(u) for all u > 0.387

D0(µK||P) =
∫
Y

f0

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

− log

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

− log

(
µk(y)

p(y,D)

)
p(y|D)ν(dy)− log p(D)

=
1

p(D)

[∫
Y

f1

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) + p(D)− 1− p(D) log p(D)

]
Thus

arginfµ∈MD0(µK||P) = arginfµ∈MΨ0(µ; p) with p(y) = p(y,D)

• Case α ∈ R \ {1} with fα(u) =
1

α(α−1) [u
α − 1− α(u− 1)] for all u > 0.388

Dα(µK||P)

=

∫
Y

fα

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

1

α(α− 1)

[(
µk(y)

p(y|D)

)α

− 1

]
p(y|D)ν(dy)

= p(D)α−1

∫
Y

1

α(α− 1)

[(
µk(y)

p(y,D)

)α

− 1

]
p(y,D)ν(dy) +

p(D)α − 1

α(α− 1)

= p(D)α−1

∫
Y

fα

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) +

αp(D)α−1 + (1− α)p(D)α − 1

α(α− 1)
(10)

Thus,
arginfµ∈MDα(µK||P) = arginfµ∈MΨα(µ; p) with p(y) = p(y,D)

A.2 [17, Theorem 1] with Γ(v) = [(α− 1)v + 1]η/(1−α)389

Theorem 4 ([17, Theorem 1] with Γ(v) = [(α− 1)v + 1]η/(1−α)). Assume that p and k are as in390

(A1). Let α ∈ R \ {1}, let κ be such that (α − 1)κ ⩾ 0, let µ ∈ M1(T) and let η ∈ (0, 1] be such391

that392

0 < µ(Γ(bµ,α + κ)) <∞ (11)
holds and Ψα(µ) <∞. Then, the two following assertions hold.393

(i) We have Ψα ◦ Iα(µ) ⩽ Ψα(µ).394

(ii) We have Ψα ◦ Iα(µ) = Ψα(µ) if and only if µ = Iα(µ).395
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B396

B.1 Proof that (A2) is satisfied in Example 1397

Proof that (A2) is satisfied in Example 1.398

399

We have kh(θ, y) = e−∥y−θ∥2/(2h2)

(2πh2)d/2
and p(y) = c×

[
0.5 e−∥y−θ⋆1∥2/2

(2π)d/2
+ 0.5 e−∥y−θ⋆2∥2/2

(2π)d/2

]
for all θ ∈ T400

and all y ∈ Y. Recall that by assumption T = B(0, r) ⊂ Rd with r > 0. Then, for all α ∈ [0, 1), we401

are interested in proving402 ∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) <∞ (12)

and403 ∫
Y

sup
θ∈T

∣∣∣∣log(kh(θ, y)

p(y)

)∣∣∣∣ p(y)ν(dy) <∞ . (13)

(i) We start by proving (12). First note that for all θ, θ′ ∈ T and for all y ∈ Y we can write404

kh(θ, y)

kh(θ′, y)
= e

−∥y−θ∥2+∥y−θ′∥2

2h2 = e
2<y,θ−θ′>−∥θ∥2+∥θ′∥2

2h2

⩽ e
2|<y,θ−θ′>|+∥θ∥2+∥θ′∥2

2h2 ⩽ e
∥y∥∥θ−θ′∥+r2

h2 .

from which we deduce that for all θ, θ′ ∈ T and for all y ∈ Y,405

kh(θ, y)

kh(θ′, y)
⩽ e

∥y∥2r+r2

h2 (14)

and that∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) ⩽
∫
Y

k(θ, y)e
∥y∥2r+r2

h2 sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy).

Additionally, Jensen’s inequality applied to the concave function u 7→ u1−α implies406 ∫
Y

k(θ, y)e
∥y∥2r+r2

h2 sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) ⩽

(∫
Y

k(θ, y)e
∥y∥2r+r2

(1−α)h2 sup
θ′∈T

p(y)

k(θ′, y)
ν(dy)

)1−α

⩽

(∫
Y

sup
θ,θ′∈T

kh(θ, y)

kh(θ′, y)
e

∥y∥2r+r2

(1−α)h2 p(y)ν(dy)

)1−α

Now using (14), we can deduce∫
Y

sup
θ,θ′∈T

kh(θ, y)

kh(θ′, y)
e

∥y∥2r+r2

(1−α)h2 p(y)ν(dy) ⩽
∫
Y

e
∥y∥2r+r2

h2 (1+ 1
1−α )p(y)ν(dy) <∞ ,

which yields the desired result.407

(ii) We now prove (13). For all y ∈ Y and all θ ∈ T, we have408

e− supθ∈T
∥y−θ∥2

2h2 ⩽ (2πh2)d/2kh(θ, y) ⩽ 1

e−maxi∈{1,2}
∥y−θ⋆i ∥2

2 ⩽ c−1(2π)d/2p(y) ⩽ 1

and we can deduce for all y ∈ Y and all θ ∈ T409 ∣∣∣∣log(kh(θ, y)

p(y)

)∣∣∣∣ ⩽ sup
θ∈T

∥y − θ∥2

2h2
+ max

i∈{1,2}

∥y − θ⋆i ∥2

2
+ d| log h|+ | log c|

⩽
(∥y∥+ r)2

2

[
1

h2
+ 1

]
+ d| log h|+ | log c| . (15)

Since we have ∫
Y

(
(∥y∥+ r)2

2

[
1

h2
+ 1

]
+ d| log h|+ | log c|

)
p(y)ν(dy) <∞

we deduce that (13) holds.410
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411

B.2 Proof of Theorem 2412

We start with some preliminary results. Let ζ, ζ ′ ∈ M1(T). Recall that we say that ζRζ ′ if and only413

if ζK = ζ ′K and that M1,ζ(T) denotes the set of probability measures dominated by ζ.414

Lemma 2. Assume (A1). Let M be a convex subset of M1(T) and let ζ1, ζ2 ∈ M1(T) be such that
Ψα(ζ1) = Ψα(ζ2) = inf

ζ∈M
Ψα(ζ).

Then, we have ζ1Rζ2.415

Proof. For all y ∈ Y, set uy = ζ1k(y)/p(y) and vy = ζ2k(y)/p(y). Then, for all y ∈ Y and for all416

t ∈ (0, 1), fα(tuy + (1− t)vy) ⩽ tfα(uy) + (1− t)fα(vy) by convexity of fα and we obtain417

Ψα(tζ1 + (1− t)ζ2) ⩽ tΨα(ζ1) + (1− t)Ψα(ζ2) = inf
ζ∈M

Ψα(ζ) . (16)

Furthermore, tζ1 + (1− t)ζ2 ∈ M which implies that we have equality in (16).418

Consequently, for all t ∈ (0, 1) :∫
Y

[tfα(uy) + (1− t)fα(vy)− fα(tuy + (1− t)vy)]︸ ︷︷ ︸
⩾0

p(y)ν(dy) = 0 .

Now using that fα is strictly convex, we deduce that for p-almost all y ∈ Y, ζ1k(y) = ζ2k(y) that is419

ζ1Rζ.420

Lemma 3. Assume (A1). Let α ∈ R \ {1}, let κ be such that (α− 1)κ ⩾ 0 and let µ⋆ ∈ M1(T) be421

a fixed point of Iα. Then,422

Ψα(µ
⋆) = inf

ζ∈M1,µ⋆ (T)
Ψα(ζ) . (17)

Furthermore, for all ζ ∈ M1,µ⋆(T), Ψα(µ
⋆) = Ψα(ζ) implies that µ⋆Rζ.423

Proof. Let ζ ∈ M1,µ⋆(T) be such that Ψα(ζ) ⩽ Ψα(µ
⋆). We have that424

ζ (bµ⋆,α − µ⋆(bµ⋆,α)) ⩽ Ψα(ζ)−Ψα(µ
⋆) ⩽ 0 . (18)

Furthermore, since µ⋆ is a fixed point of Iα, Γ(bµ⋆,α+κ), hence |bµ⋆,α+κ+1/(α−1)| is µ⋆-almost425

all constant. In addition, bµ⋆,α+κ+1/(α−1) is of constant sign by assumption on κ. Since ζ ⪯ µ⋆,426

we thus deduce that427

ζ (bµ⋆,α − µ⋆(bµ⋆,α)) = 0 .

Combining this result with (18) yields Ψα(ζ) = Ψα(µ
⋆) and we recover (17).428

Finally, assume there exists ζ ∈ M1,µ⋆(T) such that Ψα(µ
⋆) = Ψα(ζ). Then, since M1,µ⋆(T) is a429

convex set, we have by Lemma 2 that µ⋆Rζ.430

We now move on to the proof of Theorem 2.431

Proof of Theorem 2. For convenience, we define the notation Ψα,Θ(λ) := Ψα (µλ,Θ) for all λ ∈ SJ .432

In this proof, we will use the equivalence relationR defined by: ζRζ ′ if and only if ζK = ζ ′K and433

we write M1,ζ(T) the set of probability measures dominated by ζ.434

(i) Any possible limit of convergent subsequence of (λn)n∈N⋆ is a fixed point of Imixt
α .435

First note that by (A3), we have that |Ψα,Θ(λ)| <∞ and that (11) is satisfied for all µλ,Θ such that
λ ∈ SJ . This means that the sequence (λn)n∈N⋆ defined by (5) is well-defined, that the sequence
(Ψα,Θ(λn))n∈N⋆ is lower-bounded and that Ψα,Θ(λn) is finite for all n ∈ N⋆. As (Ψα,Θ(λn))n∈N⋆

is nonincreasing by Theorem 4-(i), it converges in R and in particular we have

lim
n→∞

Ψα,Θ ◦ Imixt
α (λn)−Ψα,Θ(λn) = 0 .

Let (λφ(n))n∈N⋆ be a convergent subsequence of (λn)n∈N⋆ and denote by λ̄ its limit. Since the436

function λ 7→ Ψα,Θ◦Imixt
α (λ)−Ψα,Θ(λ) is continuous we obtain that Ψα,Θ◦Imixt

α (λ̄) = Ψα,Θ(λ̄)437

and hence by Theorem 4-(ii), λ̄ is a fixed point of Imixt
α .438
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(ii) The set F =
{
λ ∈ SJ : λ = Imixt

α (λ)
}

of fixed points of Imixt
α is finite.439

For any subset R ⊂ {1, . . . , J}, define440

SJ,R = {λ ∈ SJ : ∀i ∈ Rc, λi = 0,∀j ∈ Rc, λj ̸= 0} ,

S̃J,R = {λ ∈ SJ : ∀i ∈ Rc, λi = 0} ,

and write
F =

⋃
R⊂{1,...,J}

(SJ,R ∩ F ) .

In order to show that F is finite, we prove by contradiction that for any R ⊂ {1, . . . , J}, SJ,R ∩ F441

contains at most one element. Assume indeed the existence of two distinct elements λ ̸= λ′442

belonging to SJ,R ∩ F . Since M1,µλ,Θ
(T) = M1,µλ′,Θ

(T) =
{
µλ′′,Θ : λ′′ ∈ S̃J,R

}
, Lemma 3443

implies that444

Ψα,Θ(λ) = inf
λ′′∈S̃J,R

Ψα,Θ

(
λ′′) = Ψα,Θ(λ

′) .

Applying again Lemma 3, we get µλ,ΘRµλ′,Θ, that is, µλ,ΘK = µλ′,ΘK. This means that445 ∑J
j=1(λj − λ′

j)K(θj , ·) is the null measure, which in turns implies the identity λ = λ′ since the446

family of measures {K(θ1, ·), . . . ,K(θJ , ·)} is assumed to be linearly independent.447

(iii) Conclusion.448

According to Lemma 2 applied to the convex subset of measures M = SJ , the function Ψα,Θ attains
its global infimum at a unique λ⋆ ∈ SJ . The uniqueness of λ⋆ actually follows from the fact that, as
shown above, µλ,ΘRµλ′,Θ if and only if λ = λ′. Then, by Theorem 4-(i) and by definition of λ⋆

Ψα,Θ ◦ Imixt
α (λ⋆) ⩽ Ψα,Θ(λ⋆) = inf

λ′∈SJ

Ψα,Θ(λ
′) ⩽ Ψα,Θ ◦ Imixt

α (λ⋆) ,

and hence, Ψα,Θ ◦Imixt
α (λ⋆) = Ψα,Θ(λ⋆), showing that λ⋆ ∈ F by Theorem 4-(ii). Since by (ii), F449

is finite, there exists L ⩾ 1 such that F =
{
λℓ : 1 ⩽ ℓ ⩽ L

}
, where for i ̸= j, λi ̸= λj . Without450

any loss of generality, we set λ1 = λ⋆ to simplify the notation.451

We now introduce a sequence (Wℓ)1⩽ℓ⩽L of disjoint open neighborhoods of (λℓ)1⩽ℓ⩽L such that452

for any ℓ ∈ {1, . . . , L},453

Imixt
α (Wℓ) ∩

⋃
j ̸=ℓ

Wj

 = ∅ (19)

This is possible since Imixt
α (λℓ) = λℓ and λ 7→ Imixt

α (λ) is continuous.454

By (i) , the set F contains all the possible limits of any subsequence of (λn)n∈N⋆ . As a consequence,455

there exists N > 0 such that for all n ⩾ N , λn ∈
⋃

1⩽ℓ⩽L Wℓ. Combining with (19), there exists456

ℓ ∈ {1, . . . , L} such that for all n ⩾ N , λn ∈ Wℓ. Therefore λℓ is the only possible limit of any457

convergent subsequence of (λn)n∈N⋆ and as a consequence, limn→∞ λn = λℓ.458

Thus, the sequence (µλn,Θ)n∈N⋆ weakly converges to µλℓ,Θ as n → ∞ and Theorem 1 can be

applied. Since λ1 ∈ S+J , we have M1,µλ1,Θ
(T) =

{
µλ′,Θ : λ′ ∈ SJ

}
and Theorem 1-(iii) then

shows that µλℓ,Θ is the global arginf of Ψα over all
{
µλ′,Θ : λ′ ∈ SJ

}
. Therefore, ℓ = 1, i.e.,

λℓ = λ1 = λ⋆ and
Ψα,Θ(λ⋆) = inf

λ′∈SJ

Ψα,Θ(λ
′) .

459

B.3 The Power Descent for mixture models: practical version460

The algorithm below provides one possible approximated version of the Power Descent algorithm,461

where we have set Γ(v) = [(α− 1)v + 1]
η

1−α with η ∈ (0, 1].462
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Algorithm 3: Practical version of the Power Descent for mixture models
Input: p: measurable positive function, K: Markov transition kernel, M : number of samples,
Θ = {θ1, . . . , θJ} ⊂ T: parameter set, Γ(v) = [(α− 1)v + 1]

η
1−α with η ∈ (0, 1], N : total

number of iterations.
Output: Optimised weights λ.
Set λ = [λ1,1, . . . , λJ,1].
for n = 1 . . . N do

Sampling step : Draw independently M samples Y1, . . . , YM from µλ,Θk.

Expectation step : Compute Bλ = (bj)1⩽j⩽J where for all j = 1 . . . J

bj =
1

M

M∑
m=1

k(θj , Ym)

µλ,Θk(Ym)
f ′
α

(
µλ,Θk(Ym)

p(Ym)

)
and deduce Wλ = (λjΓ(bj + κ))1⩽j⩽J and wλ =

∑J
j=1 λjΓ(bj + κ).

Iteration step : Set

λ ← 1

wλ
Wλ

C463

C.1 Proof of Proposition 1464

We first state (D1), which summarises the necessary convergence and differentiability assumptions465

needed in the proof of proposition 1.466

(D1) (i) we have
∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′,y)
p(y)

)α−1

ν(dy) <∞;467

(ii) we have
∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

∣∣∣log (k(θ′,y)
p(y)

)∣∣∣× sup
θ′′∈T

(
k(θ′′,y)
p(y)

)α−1

ν(dy) <∞;468

(iii) we have
∫
Y

inf
θ∈T

k(θ, y)× inf
θ′∈T

(
k(θ′,y)
p(y)

)α−1

ν(dy) > 0.469

Note that these assumptions are mild if we assume that T is a compact metric space, which is470

generally the case. Assumption (D1)-(iii) is only required when α > 1 to ensure that the quantity471

[(α− 1)(bµ,α + κ) + 1]
η

1−α is bounded from above. This assumption could also be replaced by the472

assumption that κ is such that (α− 1)κ > 0.473

Proof of proposition 1. For all θ ∈ T, the Dominated Convergence Theorem and (D1)-(i) yield

lim
α→1

(α− 1)(bµ,α(θ) + κ) + 1 = lim
α→1

∫
Y

k(θ, y)

(
µk(y)

p(y)

)α−1

ν(dy) + 0 = 1 .

Then, using (D1)-(ii) we have that for all θ ∈ T,474

lim
α→1

[(α− 1)(bµ,α(θ) + κ) + 1]
η

1−α = exp

(
lim
α→1
−η log [(α− 1)(bµ,α(θ) + κ) + 1]

α− 1

)

= exp

 lim
α→1
−η

∫
Y
k(θ, y)

(
µk(y)
p(y)

)α−1

log
(

µk(y)
p(y)

)
ν(dy) + κ∫

Y
k(θ, y)

(
µk(y)
p(y)

)α−1

ν(dy) + (α− 1)κ


= exp

[
−η
∫
Y

k(θ, y) log

(
µk(y)

p(y)

)
ν(dy)

]
exp (−ηκ)
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In addition, by the Dominated Convergence Theorem (and (D1)-(iii) when α > 1), we have

lim
α→1

µ
(
[(α− 1)(bµ,α + κ) + 1]

η
1−α

)
= µ

(
exp

[
−η
∫
Y

k(·, y) log
(
µk(y)

p(y)

)
ν(dy)

])
exp (−ηκ) .

Thus,

lim
α→1

[Iα(µ)](h) =
∫
T

µ(dθ)h(θ)e−η
∫
Y
k(θ,y) log(µk(y)

p(y) )ν(dy)

µ
(
e−η

∫
Y
k(·,y) log(µk(y)

p(y) )ν(dy)
) = [I1(µ)](h) .

475

C.2 Derivation of the update formula for the Renyi Descent476

For all α ∈ R \ {0, 1} and κ such that (α− 1)κ ⩾ 0, we are interested applying the Entropic Mirror477

Descent algorithm to the following objective function478

ΨAR
α (µ) :=

1

α(α− 1)
log

(∫
Y

µk(y)αp(y)1−αν(dy) + (α− 1)κ

)
Lemma 4. Assume (A1). The gradient of ΨAR

α (µ) is given by θ 7→ bµ,α(θ)+1/(α−1)
(α−1)(µ(bµ,α)+κ)+1 .479

Proof. Let ε > 0 be small and let µ, µ′ ∈ M1(T). Then,480

ΨAR
α (µ+ εµ′) =

1

α(α− 1)
log

(∫
Y

[(µ+ εµ′)k(y)]αp(y)1−αν(dy) + (α− 1)κ

)
=

1

α(α− 1)
log

(∫
Y

µk(y)α
[
1 + αε

µ′k(y)

µk(y)

]
p(y)1−αν(dy) + (α− 1)κ+ o(ε)

)
where we used that (1 + u)α = 1 + αu+ o(u) as u→ 0. Thus,481

ΨAR
α (µ+ εµ′) = ΨAR

α (µ) +
1

α(α− 1)
log

1 + αε

∫
Y
µ′k(y)

(
µk(y)
p(y)

)α−1

ν(dy)∫
Y
µk(y)αp(y)1−αν(dy) + (α− 1)κ

+ o(ε)


= ΨAR

α (µ) + ε
1

α− 1

∫
Y
µ′k(y)

(
µk(y)
p(y)

)α−1

ν(dy)∫
Y
µk(y)αp(y)1−αν(dy) + (α− 1)κ

+ o(ε)

= ΨAR
α (µ) + ε

∫
T

µ′(dθ)
1

α− 1

bµ,α(θ) + 1/(α− 1)

µ(bµ,α) + κ+ 1/(α− 1)
+ o(ε)

using that log(1 + u) = u+ o(u) as u→ 0.482

Consequently, the iterative update formula for the Entropic Mirror Descent applied to the objective483

function ΨAR
α is given by484

µn+1(dθ) = µn(dθ)
e
− η

α−1

bµn,α(θ)

µn(bµn,α)+κ+1/(α−1)

µn(e
− η

α−1

bµn,α
µn(bµn,α)+κ+1/(α−1) )

, n ∈ N⋆ .

C.3 Proof of Theorem 3485

As we shall see, the proof can be adapted from the proof of [17, Theorem 2]. For all µ ∈ M1(T), we
will use the notation

IAR
α (µ)(dθ) =

µ(dθ) exp
[
−η bµ,α(θ)

(α−1)(µ(bµ,α)+κ)+1

]
µ
(
exp

[
−η bµ,α

(α−1)(µn(bµ,α)+κ)+1

])
17



to designate the one-step transition of the Renyi Descent algorithm. Note in passing that for all
κ′ ∈ R, this definition can also be rewritten under the form

IAR
α (µ)(dθ) =

µ(dθ) exp
[
−η bµ,α(θ)

(α−1)(µ(bµ,α)+κ)+1 + κ′
]

µ
(
exp

[
−η bµ,α

(α−1)(µn(bµ,α)+κ)+1 + κ′
]) .

We also define486

Lα,2 = η−1 sup
θ∈T,µ∈M1(T)

[(α− 1)(bµ,α(θ) + κ) + 1]

L = η2 sup
v∈DomAR

α

e−ηv

Lα,3 = sup
v∈DomAR

α

eηv

Lα,1 = inf
v∈DomAR

α

{1− η(α− 1)(v − κ′)} × η inf
v∈DomAR

α

e−ηv . (20)

C.3.1 Recalling [17, Lemma 5]487

Let (ζ, µ) be a couple of probability measures where ζ is dominated by µ which we denote by ζ ⪯ µ488

and define489

Aα :=

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)f ′
α

(
g(θ)µk(y)

p(y)

)
[1− g(θ)] , (21)

where g is the density of ζ w.r.t µ, i.e. ζ(dθ) = µ(dθ)g(θ). We recall [17, Lemma 5] in Lemma 5490

below.491

Lemma 5. [17, Lemma 5] Assume (A1). Then, for all µ, ζ ∈ M1(T) such that ζ ⪯ µ and492

Ψα(µ) <∞, we have493

Aα ⩽ Ψα(µ)−Ψα(ζ) . (22)
Moreover, equality holds in (22) if and only if ζ = µ.494

C.3.2 Adaptation of [17, Theorem 1]495

Lemma 6. Assume (A1) and (A4). Let α ∈ R \ {1}, let κ be such that (α − 1)κ ⩾ 0 and let496

µ ∈ M1(T) be such that497

0 < µ

{
exp

(
−η bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)}
<∞ (23)

holds and Ψα(µ) <∞. Then, the two following assertions hold.498

(i) We have Ψα ◦ IAR
α (µ) ⩽ Ψα(µ).499

(ii) We have Ψα ◦ IAR
α (µ) = Ψα(µ) if and only if µ = IAR

α (µ).500

Proof. The proof builds on the proof of [17, Theorem 1] in the particular case α ∈ R \ {1}. Indeed,501

in this case,502

Aα =

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)
1

α− 1

[(
g(θ)µk(y)

p(y)

)α−1

− 1

]
[1− g(θ)]

=

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)
1

α− 1

(
µk(y)

p(y)

)α−1

g(θ)α−1 [1− g(θ)]

=

∫
T

µ(dθ)

[
bµ,α(θ) +

1

α− 1

]
g(θ)α−1 [1− g(θ)] .

so that503

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]×
∫
T

µ(dθ)
bµ,α(θ) +

1
α−1

(α− 1)(µ(bµ,α) + κ) + 1
g(θ)α−1 [1− g(θ)]
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where (α− 1)(µ(bµ,α) + κ) + 1 > 0 under (A1). Set

g = Γ̃ ◦
(

bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
where for all v ∈ DomAR

α ,

Γ̃(v) =
e−ηv

µ
{
exp

(
−η bµ,α+1/(α−1)

(α−1)(µ(bµ,α)+κ)+1 − ηκ′
)} .

Finally, let us consider the probability space (T, T , µ) and let V be the random variable

V (θ) =
bµ,α(θ) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ .

Then, we have E[1− Γ̃(V )] = 0 and we can write504

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]× E[(V − κ′)Γ̃α−1(V )(1− Γ̃(V ))]

= [(α− 1)(µ(bµ,α) + κ) + 1]× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V )) . (24)

Under (A4) with α ∈ R \ {1}, v 7→ (v − κ′)Γ̃α−1(v) and v 7→ 1− Γ̃(v) are increasing on DomAR
α505

which implies Cov(V Γ̃α−1(V ), 1− Γ̃(V )) ⩾ 0 and thus Aα ⩾ 0 since (α− 1)(µ(bµ,α) + κ) + 1 >506

0.507

C.3.3 Adaptation of [17, Lemma 6]508

Consider the probability space (T, T , µ) and denote by Varµ the associated variance operator.509

Lemma 7. Assume (A1) and (A4). Let α ∈ R \ {1}, let κ be such that (α − 1)κ > 0, and let510

µ ∈ M1(T) be such that (23) holds and Ψα(µ) <∞. Then,511

(α− 1)κLα,1

2
Varµ

(
bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
⩽ Ψα(µ)−Ψα ◦ IAR

α (µ) , (25)

where
Lα,1 := inf

v∈DomAR
α

{1− η(α− 1)(v − κ′)} × inf
v∈DomAR

α

ηe−ηv .

Proof. The proof of Lemma 7 builds on the proof of [17, Lemma 6], which can be found in the512

supplementary material of [17]. Using (24) combined with the fact that under (A1), (α−1)(µ(bµ,α)+513

κ) + 1 > (α− 1)κ > 0514

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

> (α− 1)κ× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

Furthermore,515

Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

=
1

2
E
[
((U − κ′)Γ̃α−1(U)− (V − κ′)Γ̃α−1(V ))(−Γ̃(U) + Γ̃(V ))

]
=

1

2
E

[
(U − κ′)Γ̃α−1(U)− (V − κ′)Γ̃α−1(V )

U − V

−Γ̃(U) + Γ̃(V )

U − V
(U − V )2

]

⩾
Lα,1

2
Varµ

(
bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
and we thus obtain (25).516
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C.3.4 Adaptation of the proof of [17, Theorem 2] to obtain Theorem 3517

Proof of Theorem 3. The proof of Theorem 3 builds on the proof of [17, Theorem 2], which can be518

found in the supplementary material of [17]. We prove the assertions successively.519

(i) The proof of (i) simply consists in verifying that we can apply Lemma 6. For all µ ∈ M1(T), (23)520

with µ = µn holds for all n ∈ N⋆ by assumption on |B|∞,α and since at each step n ∈ N⋆, Lemma 6521

combined with Ψα(µn) <∞ implies that Ψα(µn+1) ⩽ Ψα(µn) <∞, we obtain by induction that522

(Ψα(µn))n∈N⋆ is non-increasing.523

(ii) Let n ∈ N⋆, set ∆n = Ψα(µn)−Ψα(µ
⋆) and for all θ ∈ T, Vn(θ) =

bµn,α(θ)+ 1
α−1

(α−1)(µn(bµn,α)+κ)+1+κ′,524

such that dµn+1 ∝ e−ηVndµn.525

We first show that526

∆n ⩽ Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ⋆ +

L

2
Varµn

(Vn)Lα,3

]
. (26)

The convexity of fα implies that527

∆n ⩽
∫
T

bµn,α(dµn − dµ⋆) (27)

=

∫
T

(
bµn,α +

1

α− 1

)
(dµn − dµ⋆)

=
(α− 1)(µn(bµn,α) + κ) + 1

η

∫
T

(µn(ηVn)− ηVn)dµ
⋆ . (28)

Then, noting that

−ηVn = logµn

(
e−ηVn

)
+ log

(
dµn+1

dµn

)
we deduce528

∆n ⩽ Lα,2

∫
T

[
µn(ηVn) + log µn

(
e−ηVn

)
+ log

(
dµn+1

dµn

)]
dµ⋆ . (29)

Since v 7→ e−ηv is L-smooth on DomAR
α , for all θ ∈ T and for all n ∈ N⋆ we can write529

e−ηVn(θ) ⩽ e−ηµn(Vn) + ηe−ηµn(Vn)(Vn(θ)− µn(Vn)) +
L

2
(Vn(θ)− µn(Vn))

2

which in turn implies

µn(e
−ηVn) ⩽ e−ηµn(Vn) +

L

2
Varµn

(Vn) .

Finally, we obtain

logµn(e
−ηVn) ⩽ log e−ηµn(Vn) + log

(
1 +

L

2

Varµn
(Vn)

e−ηµn(Vn)

)
.

Using that log(1 + u) ⩽ u when u ⩾ 0 and by definition of Lα,3, we deduce

logµn(e
−ηVn) ⩽ −ηµn(Vn) +

L

2
Varµn(Vn)Lα,3 ,

which combined with (29) implies (26). To conclude, we apply Lemma 7 to g = dµn+1

dµn
and

combining with (26), we obtain

∆n ⩽ Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ⋆ +

LLα,3

Lα,1(α− 1)κ
(∆n −∆n+1)

]
,

where by assumption Lα,1, Lα,2 and Lα,3 > 0. As the r.h.s involves two telescopic sums, we deduce530

1

N

N∑
n=1

Ψα(µn)−Ψα(µ
⋆) ⩽

Lα,2

N

[
KL(µ⋆||µ1)−KL(µ⋆||µN+1) + L

Lα,3

Lα,1(α− 1)κ
(∆1 −∆N+1)

]
and we recover (9) using (i), that KL(µ⋆||µN+1) ⩾ 0 and that ∆N+1 ⩾ 0.531

532
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C.4 The Renyi Descent for mixture models: practical version533

The algorithm below provides one possible approximated version of the Renyi Descent algorithm,534

where we have set Γ(v) = e−ηv with η > 0.535

Algorithm 4: Practical version of the Renyi Descent for mixture models
Input: p: measurable positive function, K: Markov transition kernel, M : number of samples,
Θ = {θ1, . . . , θJ} ⊂ T: parameter set, Γ(v) = e−ηv with η > 0, N : total number of iterations.

Output: Optimised weights λ.
Set λ = [λ1,1, . . . , λJ,1].
for n = 1 . . . N do

Sampling step : Draw independently M samples Y1, . . . , YM from µλ,Θk.

Expectation step : Compute Bλ = (b′j)1⩽j⩽J where for all j = 1 . . . J

bj =
1

M

M∑
m=1

k(θj , Ym)

µλ,Θk(Ym)
f ′
α

(
µλ,Θk(Ym)

p(Ym)

)
and for all j = 1 . . . J

b′j =
bj

(α− 1)(
∑J

ℓ=1 bℓ + κ) + 1

and deduce Wλ = (λjΓ(b
′
j + κ′))1⩽j⩽J and wλ =

∑J
j=1 λjΓ(b

′
j + κ′).

Iteration step : Set

λ ← 1

wλ
Wλ

C.5 Alternative Exploration step in Algorithm 2536

We present here several possible alternative choices of Exploration step in Algorithm 2, beyond the537

one we have made in Section 5 and that is based on [18]. Our goal here is not to discriminate between538

all of them, but to illustrate the generality of our approach.539

Gradient Descent. One could use a Gradient Descent approach to optimise the mixture components540

parameters {θ1,t+1, . . . , θJ,t+1} in the spirit of Renyi’s α-divergence gradient-based methods (e.g541

[9, 10]) or α-divergence gradient-based methods (e.g [11, 12]).542

The particular case α ∈ [0, 1). Following [18], if we consider the specific case α ∈ [0, 1) another543

possibility would be to set at time t: for all j = 1 . . . J544

θj,t+1 = argmaxθj∈T

∫
Y

γt
j,α(y) log(k(θj , y))ν(dy) (30)

where for all y ∈ Y,545

γt
j,α(y) = k(θj,t, y)

(
µλ,Θk(y)

p(y)

)α−1

.

Indeed, [18] showed that the above update formulas for {θ1,t+1, . . . , θJ,t+1} ensure a systematic546

decrease in the α-divergence and they notably explained how these update formulas could even547

outperform typical Renyi’s α / α-divergence gradient-based approaches (we refer to [18] for details).548

Furthermore, in the particular case of d-dimensional Gaussian kernels with k(θj,t, y) =549

N (y;mj,t,Σj,t) and where θj,t = (mj,t,Σj,t) ∈ T denotes the mean and covariance matrix of550

the j-th Gaussian component density, they obtained that the maximisation procedure (30) amounts to551
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setting552

∀j = 1 . . . J, mj,t+1 =

∫
Y
γt
j,α(y)y ν(dy)∫

Y
γt
j,α(y)ν(dy)

Σj,t+1 =

∫
Y
γt
j,α(y)(y −mj,t)(y −mj,t)

T ν(dy)∫
Y
γt
j,α(y)ν(dy)

.

These update formulas can then always be made feasible by resorting to Monte Carlo approximations553

and can be used as a valid Exploration step. If we were to focus on solely updating the means554

(mj,t+1)1⩽j⩽J , we could for example consider the Exploration step given by:555

∀j = 1 . . . J, θj,t+1 = mj,t+1 =

∑M
m=1 γ̂

(t)
j (Y ′

m;λ) · Y ′
m∑M

m=1 γ̂
(t)
j (Y ′

m;λ)

where the M samples (Y ′
m)1⩽m⩽M have been drawn independently from the proposal µλ,Θ and

where we have set

γ̂
(t)
j (y;λ) =

k(θj,t, y)

µλ,Θk(y)

(
µλ,Θk(y)

p(y)

)α−1

.

We ran Algorithm 2 over 100 replicates for this choice of Exploration step with M ∈ {100, 500} (and556

keeping the same target p, initial sampler q0, and hyperparameters N = 20, T = 10, η = η0/
√
N557

with η0 = 0.3, α = 0.5, J = 100, κ = 0. and d = 16 as those chosen in Section 5). The results558

when using the Power and the Renyi Descent as Exploitation steps can be visualised in the figure559

below.560

Figure 2: Plotted is the average Variational Renyi bound for the Power Descent (PD) and the Renyi
Descent (RD) in dimension d = 16 computed over 100 replicates with η0 = 0.3 and α = 0.5 and an
increasing number of samples M .

We then observe a similar behavior for the Power and the Renyi Descent, which illustrates the561

closeness between both algorithms, irrespective of the choice of the Exploration step.562
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