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Introduction

These lecture notes are strongly inspired from the courses ”Mesures de risques en finance” by Jean-François
Delmas, given at Ponts et Chaussées, and ”Extremes”, given at Telecom Paristech, (the latter has been
teached by Anne Sabourin during the M2,”Mathématiques de l’aléatoire”,Orsay). Interested readers may
also skim over the following references (but it is not mandatory):

• Resnick, 2007.
• Leadbetter et al., 2012.
• Hahn and Rosenthal, 1948, mainly chapter 1.

Do not hesitate to point out the errors or typos that still remain and to propose any improvements on the
content of this course. My email: randal.douc@it-sudparis.eu

We start with some notation. In what follows,

• i.i.d means independent and identically distributed.
• r.v. means random variables.
• for r,s ∈ N such that r ≤ s, we write [r : s] = {r,r+1, . . . ,s},
• Sn is the set of permutations on [1 : n],
• X |= Y means X and Y are independent random variables,
• X L

= Y means X and Y have the same law.
• Let (Z,Z ) and (X,X ) two measurable spaces. Assume that for all w ∈ Z, the two random vectors X

and Y (w) take values in X and assume the existence of a third random variable W taking values in Z,

then the notation: X |W=w
L
= Y (w) means that for all A ∈X ,

P(X ∈ A|W )|W=w = P(Y (w) ∈ A)

In words, the distribution of X conditionally on W taken on W = w is the same as the unconditonal
distribution of Y (w).

• liminfn an = limn→∞ (infk≥n ak) and similarly, limsupn an = limn→∞

(
supk≥n ak

)
. Moreover, limn an ex-

ists if and only if liminfn an = limsupn an.
• for any a ∈ R, a+ = max(a,0) and a− = max(−a,0) = −min(a,0) and we have |a| = a++ a− and

a = a+−a−.

Moreover, the following notions of convergence for random variables is used throughout these lecture
notes.

▶ Xn
w⇒ X means convergence in distribution (or ”convergence en loi” in French). It is equivalent to

any of the following statements.

(a) for all bounded continuous functions h, we have limnE [h(Xn)] = E [h(X)].
(b) for all A ∈B(R) such that P(X ∈ ∂A) = 0, we have limnP(Xn ∈ A) = P(X ∈ A).
(c) for all x ∈ R such that P(X = x) = 0, we have limnP(Xn ≤ x) = P(X ≤ x).
(d) for all u ∈ R, we have limnE

[
eiuXn

]
= E

[
eiuX

]
In (b), the notation ∂A means the frontier of A, that is, the set of points x such that in any neighborhood
of x, there are an infinite number of distinct points of A and an infinite number of points in Ac. By abuse
of terminology, we may also say that Xn weakly converges to X instead of saying the distribution of
Xn converges weakly to the distribution of X .

▶ Xn
P-prob−→ X means convergence in probability: for all ε > 0,

lim
n→∞

P(|Xn−X |> ε) = 0.

▶ Xn
P-a.s.−→ X means almost sure convergence:
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P( lim
n→∞

Xn = X) = 1 .

Almost sure convergence implies convergence in probability . We recall the following properties.

(i) If Xn
w⇒ X then for all continuous functions f , f (Xn)

w⇒ f (X). Note that this property holds, when f is
continuous (and not necessarily bounded), for example f (u) = u2 so that X2

n
w⇒ X2.

(ii) The Slutsky Lemma If Xn
P-prob−→ c where c is a constant and if Yn

w⇒ Y , then (Xn,Yn)
w⇒ (c,Y ) that is

for all continuous functions f , f (Xn,Yn)
w⇒ f (c,Y ).

(iii) X ∼ N(0,1) iif for all u ≥ 0, E
[
eiuX

]
= e−u2/2. Moreover, X ∼ N(µ,σ2) iif for all u ≥ 0, E

[
eiuX

]
=

e−u2Var(X)/2+iuE(X) and in that case, σ2 = Var (X) and µ = E(X).

(iv) Let c be a constant. Then, Xn
P-prob−→ c if and only if Xn

w⇒ c (in words, convergence in probability to a
constant is equivalent to convergence in distribution to this constant)

Some usual distributions

Name Acronym Parameter density function: fX (x) cdf: FX (x) =
∫ x
−∞

fX (u)du Other properties

Gaussian N(µ,σ2) (µ,σ2) 1√
2πσ2 e−(x−µ)2/(2σ2) No explicit expression E [X ] = µ, Var (X) = σ2

Exponential exp(λ ) λ > 0 λe−λx
1R+(x)

(
1− e−λx

)
1R+(x) E [X ] = 1/λ , Var (X) = 1/λ 2

Gamma Γ (k,θ) (k,θ) ∈
(
R∗+
)2 xk−1e−x/θ

Γ (k)θ k
Γx/θ (k)

Γ (k)

In the above description,

(i) if Xi ∼ Γ (ki,θ) and (Xi) are independent, then ∑
n
i=1 Xi ∼ Γ (∑n

i=1 ki,θ).
(ii)

Γ (k) =

{∫
∞

0 tk−1e−tdt if k ∈ R∗+
k! if k ∈ N.

(▶GAMMA FUNCTION)

Γx(k) =
∫ x

0
tk−1e−tdt (▶INCOMPLETE GAMMA FUNCTION)
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Let X1,X2, . . . be independent and identically distributed random variables. The Law of Large Numbers
(LLN) and the Central Limit Theorem (CLT) deal with the limiting behavior of the empirical mean value

X̄n =
X1 + . . .+Xn

n

as n tends to infinity. Instead, the Extreme Value theory (EVT) is concerned with the limiting behavior, as
n tends to infinity, of extreme values as

X̂n = max(X1, . . . ,Xn) , X̌n = min(X1, . . . ,Xn).

1.1 Order statistics

Let X1,X2, . . . be a sequence of iid random variables and let FX be the associated cumulative distribution
function (cdf) defined by FX (x) = P(X ≤ x) for all x ∈ R. The law of the Maximum and the Minimum of
these random variables can be easily obtained as shown in the next lemma.

Lemma 1.1 For all x ∈ R,

P(X̂n ≤ x) = FX (x)n , P(X̌n ≤ x) = 1− (1−FX (x))n .

PROOF. Since (Xi) are iid, we have for all x ∈ R,

P(X̂n ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) =
n

∏
i=1

P(Xi ≤ x) = FX (x)n .

This proves the first part of the Lemma. To prove the second part, note that X̌n =−max(−X1, . . . ,−Xn). This implies

P(X̌n > x) = P(max(−X1, . . . ,−Xn)<−x) =
n

∏
i=1

P(−Xi <−x) = (1−FX (x))n .

5



6 1 Order statistics

Another way to prove the latter equation is to write P(X̌n > x) = P(X1 > x, . . . ,Xn > x) and to use a similar reasoning as in the
first part. ■

If X has a density fX wrt the Lebesgue measure, we can easily deduce the associated densities of X̂n and
X̌n (at all points x where fX is continuous) by differentiating their cdfs:

• X̂n has the density x 7→ n fX (x)FX (x)n−1 with respect to the Lebesgue measure,
• X̌n has the density x 7→ n fX (x)(1−FX (x))n−1with respect to the Lebesgue measure.

We are now interested in the distribution of the kth term of the order statistics. We start with some defini-
tions.

Definition 1.2 The order statistics of (X1, . . . ,Xn) is defined by (X(1,n), . . . ,X(n,n)) where{
X(i,n) : i ∈ [1 : n]

}
are the {X1, . . . ,Xn} reordered according to their increasing values. Therefore,

there exists a random permutation σn on [1 : n] such that

(X(1,n), . . . ,X(n,n)) = (Xσn(1), . . . ,Xσn(n))

where Xσn(1) ≤ . . .≤ Xσn(n).

Without further assumptions, some of the random variables (Xi) may take the same values. This means
that the random permutation σn is not unique in general. We will add some assumptions in a next step
that guarantee the uniqueness of the permutation σ . Before that, we may link the order statistics with the
maximum and minimum of a data set by noting that

X̂n = max(X1, . . . ,Xn) = X(n,n) , X̌n = min(X1, . . . ,Xn) = X(1,n)

Definition 1.3 For all x ∈ (0,1), the generalized inverse distribution function (or the quantile function) is
defined by

F←X (x) = inf{y ∈ R : FX (y)≥ x} ,

Of course whenever FX is invertible, the generalized inverse distribution function is the classical inverse
function of FX that is F←X = F−1

X . As a cumulative distribution function, FX is nondecreasing but this
function ”jumps” at points x ∈ R where P(X = x) > 0 and remains constant on intervals [α,β ] where
P(X ∈ [α,β ]) = 0. These two situations typically appear for discrete variables or ”continuous” variables
with disconnected supports. For these type of non-decreasing functions FX , inverse functions are not defined
in general and that explains the introduction of generalized inverse functions.

Exercise 1.1. (i) Show that the cdf FX is cadlag (in french, continue à droite, limitée à gauche), that is,
for all x ∈ R, FX is continuous in a right neighbourhood of x and has a limit in a left neighbourhood of
x.

(ii) Show that for all u ∈ (0,1), we have FX (F←X (u))≥ u.
(iii) Show that F←X is nondecreasing on (0,1).
(iv) Show that F←X is left-continuous on (0,1).
(v) Show that the discontinuity points of FX are countable. Deduce that the continuity points of FX are

dense.

Even though it is not possible to write (F←X (u) = v)⇔ (u = FX (v)) since F←X is not the inverse of FX the
following lemma shows a useful identity, which in general is far enough to obtain the desired properties on
F←X .

Lemma 1.4 For all u,v ∈ R,
(F←X (u)≤ v)⇔ (u≤ FX (v))
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PROOF. Define Au = {y ∈ R : FX (y)≥ u}.
⇐ if u≤ FX (v), we have v ∈ Au so that v≥ infy∈Au y = F←X (u).
⇒ if F←X (u)≤ v, then applying the nondecreasing function FX on both sides of the inequality, we get FX (F←X (u))≤ FX (v).

To completes the proof, it remains to show that FX (F←X (u))≥ u. But this follows from Exercise 5.1.

■

The following proposition is particularly useful for sampling a random variable of arbitrary cdf from a
uniform random variable on [0,1], provided that the inverse generalized cdf is explicit.

Proposition 1.5 If U ∼ Unif[0,1], then

F←X (U)
L
= X .

PROOF. By Lemma 1.4, for all u,v ∈ R,
(F←X (u)≤ v)⇔ (u≤ FX (v))

Therefore, if U is a random variable with uniform distribution on [0,1], we have

P(F←X (U)≤ y) = P(U ≤ FX (y)) = FX (y) ,

which completes the proof ■

There is a simple converse to Proposition 1.5. This can be seen in the next exercise.

Exercise 1.2. Show that if FX is increasing and continuous and if X is a random variable with cdf FX , then
FX (X)∼ Unif[0,1].

Exercise 1.3. Let (Xi) be iid random variables with exponential distribution of parameter λ . How can we
sample X̂n using only one random variable uniformly distributed on (0,1)?

From Proposition 1.5, it can be easily seen that

Lemma 1.6 Let {Xi, i ∈ [1 : n]} be iid random variables with cdf FX . Let {Ui, i ∈ [1 : n]} be iid random
variables such that Ui ∼ Unif[0,1]. Then,

(F←X (U(1,n)), . . . ,F
←
X (U(n,n)))

L
= (X(1,n), . . . ,X(n,n))

The proof is easy and left to the reader. We now assume that FX is increasing and continuous, that is
P(X = x) = 0 for all x ∈ R. This additional assumption allows to consider that the data can be uniquely
ordered as seen in the next result.

Lemma 1.7 If FX is continuous and increasing, then, a.s. we have X(1,n) < · · · < X(n,n)(n) and therefore,
the random permutation σn in Definition 1.2 is unique.

PROOF. It is sufficient to prove that P(∃i ̸= j ,Xi = X j) = 0. Using the representation with Ui ∼Unif[0,1] and noting that F←X
is one-to-one,

P(∃i ̸= j ,Xi = X j) = P(∃i ̸= j ,F←X (Ui) = F←X (U j))

= P(∃i ̸= j ,Ui =U j) = 0

since P(Ui =U j) =
∫
[0,1]2 1{u̸=v}dudv = 0. Therefore, a.s., for all i ̸= j, Xi ̸= X j . ■

The main result of this section is the following:

Theorem 1.8. Let (Xi) be a sequence of i.i.d. random variables with cdf FX . If FX is continuous and in-
creasing and if X has a density fX with respect to the Lebesgue measure. Then, σn |= (X(1,n), . . . ,X(n,n)) and
for all σ ∈Sn and A ∈B(R)⊗n,

P(σn = σ) =
1
n!

P((X(1,n), . . . ,X(n,n)) ∈ A) = n!
∫

A
1{x1<...<xn} fX (x1) . . . fX (xn)dx1 . . .dxn
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PROOF. Let σ ∈Sn. Since (Xi) are iid, (X1, . . . ,Xn)
L
= (Xσ(1), . . . ,Xσ(n)) for any σ ∈Sn. This implies that

P(σn = σ ,(X(1,n), . . . ,X(n,n)) ∈ A)

= E
[
1

{
Xσ(1) < .. . < Xσ(n)

}
1A(Xσ(1), . . . ,Xσ(n))

]
= E [1{X1 < .. . < Xn}1A(X1, . . . ,Xn)]

=
∫

A
1{x1 < .. . < xn} fX (x1) . . . fX (xn)dx1 . . .dxn (1.1)

Thanks to this equation, we have the joint law of (σn,(X(1,n), . . . ,X(n,n))). We can get the two marginal distributions by
marginalizing with respect to σn and (X(1,n), . . . ,X(n,n)) and we can prove easily the independence of these random variables.
Let us do that. Setting A = Rn in (1.1), we get

P(σn = σ) = E [1{X1 < .. . < Xn}]

which does not depend on σ . Since card(Sn) = n!, we deduce P(σn = σ) = 1/n!. Moreover, summing the identity (1.1) over
σ ∈Sn, we get

P
(
(X(1,n), . . . ,X(n,n)) ∈ A

)
= ∑

σ∈Sn

P(σn = σ ,(X(1,n), . . . ,X(n,n)) ∈ A)

= n!
∫

A
1x1<...<xn fX (x1) . . . fX (xn)dx1 . . .dxn

Plugging this equality and P(σn = σ) = 1/n! into (1.1) yields

P(σn = σ ,(X(1,n), . . . ,X(n,n)) ∈ A) = P(σn = σ)P((X(1,n), . . . ,X(n,n)) ∈ A)

This shows that σn |= (X(1,n), . . . ,X(n,n)) and the proof is completed. ■

The fact that σn |= (X(1,n), . . . ,X(n,n)) was not obvious at all since σn and (X(1,n), . . . ,X(n,n)) are both con-
structed from the data set in an intricate way, but we have to believe the proof : they are independent! From
Theorem 1.8, we may deduce the marginal law of kth term X(k,n) of the order statistics where k ∈ [1 : n]. The
proof is, at least theoretically, streamlined: since we have the joint law, we only need to use marginalisation
to get the marginal distribution. This is a nice plan of action. Still, by doing so, multivariate integrals appear
on the surface. To obtain explicit calculations of these integrals, some tricks using the law of the maximum
and the minimum are needed as can be seen in the proof.

Lemma 1.9 For all k ∈ [1 : n], and all x ∈ R,

P(X(k,n) ≤ x) =
n!

(k−1)!(n− k)!

∫ FX (x)

0
tk−1(1− t)n−kdt .

PROOF. Combining again Lemma 1.1 with Theorem 1.8 yields

FX (x)n = P(X̂n ≤ x) = P(X(n,n) ≤ x) = n!
∫
Rn
1{x1 < .. . < xn ≤ x} fX (x1) . . . fX (xn)dx1 . . .dxn (1.2)

Similarly, combining again Lemma 1.1 with Theorem 1.8,

[1−FX (x)]n = P(X̌n > x) = P(X(1,n) > x) = n!
∫
Rn
1{x < x1 < .. . < xn} fX (x1) . . . fX (xn)dx1 . . .dxn (1.3)

Moreover, by Theorem 1.8,

P(X(k,n) ≤ x) = n!
∫
Rn
1{x1 < .. . < xk ≤ x}1{xk < xk+1 < .. . < xn} fX (x1) . . . fX (xn)dx1 . . .dxn

= n!
∫ x

−∞

(∫
Rk−1

1{x1 < .. . < xk} fX (x1) . . . fX (xk−1)dx1 . . .dxk−1

)
(1.4)

×
(∫

Rn−k
1{xk < .. . < xn} fX (xk+1) . . . fX (xn)dxk+1 . . .dxn

)
fX (xk)dxk (1.5)

Applying (1.2) with n replaced by k−1 and (1.3) with n replaced by n− k and plugging these equalities into (1.5), we obtain

P(X(k,n) ≤ x) =
n!

(k−1)!(n− k)!

∫ x

−∞

FX (y)k−1(1−FX (y))n−k fX (y)dy .
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Setting t = FX (y), we get the desired result. ■

Exercise 1.4. Using Lemma 1.9, check that we can obtain Lemma 1.1.

1.2 Asymptotic properties of the empirical quantiles

1.2.1 Consistency

By definition of X(k,n), there are k indexes j in the data set such that X j ≤ X(k,n). The proportion of Xi which
are less or equal than X(k,n) is therefore k/n.

#
{

i ∈ [1 : n] : Xi ≤ X(k,n)
}

n
=

k
n

This leads to the following idea: if we let k depend on n and if we let kn/n tends to p, then we may expect
that X(k,n) tends to the point xp such that when X follows a distribution of cdf FX , the event {X ≤ xp} holds
with probability p. That is FX (xp) = p. This will be the main result of this section, which is now stated and
proved.

Proposition 1.10 Let p ∈ (0,1). Assume that FX is continuous and that there exists a unique solution xp to
the equation FX (x) = p. Let {kn,n ∈N} be a sequence of integers such that kn ∈ [1 : n], and limn→∞ kn/n =
p. Then, {X(kn,n), n ∈ N} converges a.s. to xp

PROOF. Fix x ∈ R. Denote Sn(x) = ∑
n
i=11{Xi ≤ x}. Note that for all k ∈ N, we have the equivalence {Sn(x)≥ k} if and only

if there is at least k indexes i ∈ [1 : n] such that Xi ≤ x. We deduce

{Sn(x)≥ k}= {X(k,n) ≤ x} (1.6)

By taking the complement, we also have
{Sn(x)< k}= {X(k,n) > x}

This implies the equality between these two events

{∃n0 ∈ N,∀n≥ n0 X(kn,n) ≤ x}= {∃n0 ∈ N,∀n≥ n0 Sn(x)≥ kn}

Using limn kn/n = p and the strong law of large numbers,

lim
n→∞

Sn(x)
kn

= lim
n→∞

Sn(x)
n

n
kn

=
E [1{X1 ≤ x}]

p
=

FX (x)
FX (xp)

P − a.s.

Therefore if x > xp, i.e. if FX (x)> FX (xp),

P(∃n0 ∈ N,∀n≥ n0,X(kn,n) ≤ x) = P(∃n0 ∈ N,∀n≥ n0,Sn(x)≥ kn) = 1

Conversely, with a similar reasoning, if x < xp i.e. if FX (x)< FX (xp),

P(∃n0 ∈ N,∀n≥ n0,X(kn,n) > x) = P(∃n0 ∈ N,∀n≥ n0,Sn(x)< kn) = 1

This shows that limn X(kn,n) = xp, P − a.s. ■

An inspection of the previous proof shows that if we want to have properties on X(k,n), it is more convenient
to express these properties in terms of Sn(x) = ∑

n
i=11{Xi ≤ x} which are much more easy to deal with,

since it is just a sum of iid random variables... We now consider the extremal cases: p ∈ {0,1}.

Lemma 1.11 We have the two following results:

(i) If limn kn/n = 1 then,

X(kn,n)
P-a.s.−→

{
∞ if FX (x)< 1 for all x ∈ R
inf{x ∈ R : FX (x) = 1} otherwise
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(ii) If limn kn/n = 0 then,

X(kn,n)
P-a.s.−→

{
−∞ if FX (x)> 0 for all x ∈ R
sup{x ∈ R : FX (x) = 0} otherwise

Exercise 1.5. Prove Lemma 1.11 along the lines of Proposition 1.10.

1.3 Asymptotic normality

The main result of this section is the following.

Proposition 1.12 Let p ∈ (0,1). Assume that X has a density fX which is continuous at xp such that
FX (xp) = p and fX (xp)> 0. Assume moreover that kn = np+o(n1/2). Then,

(i)

n1/2 (X(kn,n)− xp
) w⇒n→∞ N

(
0,

p(1− p)
f 2
X (xp)

)
(ii) Let α > 0 and denote by aα the quantile associated to 1−α/2 for the standard gaussian distribution.

Then, the random intervalX(kn,n)−aα

(
p(1− p)

f 2
X (X(kn,n))

)1/2

,X(kn,n)+aα

(
p(1− p)

f 2
X (X(kn,n))

)1/2


is a confidence interval for xp associated to the asymptotic level 1−α .

PROOF.

(i) We use the same notation as in the proof of Proposition 1.10. Denote for x ∈ R, Sn(x) = ∑
n
i=11{Xi ≤ x} and recall that

(1.6) yields
{Sn(x)≥ kn}= {X(kn,n) ≤ x}

Therefore,

P(n1/2 (X(kn,n)− xp
)
≤ x)=P

Sn

xp +n−1/2x︸ ︷︷ ︸
yn

≥ kn

=P

n1/2
(

Sn(yn)

n
− pn

)
︸ ︷︷ ︸

Vn

≥ n1/2
(

kn

n
− pn

)
︸ ︷︷ ︸

zn

=P(Vn≥ zn)

where we have set pn = FX (yn). We will show that limn zn = −x fX (xp) and Vn
w⇒ N(0, p(1− p)), and we will use the

Slutsky Lemma. We start with limn zn =−x fX (xp). Since kn = np+o(n1/2), we have by definition of zn , pn and yn,

zn = n1/2
(

kn

n
− pn

)
= n1/2(p− pn)+o(1)= n1/2

p−FX ( yn︸︷︷︸
xp+n−1/2x

)

+o(1)= n1/2

p−FX (xp)︸ ︷︷ ︸
p

−n−1/2xF ′X (xp)︸ ︷︷ ︸
fX (xp)

+o(1) .

Thus, limn zn =−x fX (xp). We now turn to Vn
w⇒ N(0, p(1− p)). For all u ∈ R,

E
[
eiuVn

]
= E

(
e

iu∑
n
j=1

(
1{X j≤vn}−pn

)
/n1/2

)
=

(
E
(

eiu
(
1{X1≤vn}−pn

)
/n1/2

))n

=
[

pneiu(1−pn)/n1/2
+(1− pn)e−iupn/n1/2

]n

(1.7)
By a Taylor expansion of the term between brackets,
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pneiu(1−pn)/n1/2
+(1− pn)e−iupn/n1/2

= pn

(
1+

iu
n1/2 (1− pn)−

u2

2n
(1− pn)

2 +o(n−1)

)
+(1− pn)

(
1− iu

n1/2 pn−
u2

2n
p2

n +o(n−1)

)
= 1− u2

2n
pn(1− pn)+o(n−1) = 1− u2

2n
p(1− p)+O(n−3/2)

Therefore, plugging into (1.7) yields

E
[
eiuVn

]
=

(
1− u2

2n
p(1− p)+O(n−3/2)

)n

→n→∞ e−u2 p(1−p)/2

Finally, Vn
w⇒V where V ∼ N(0, p(1− p)) and by Slutsky’s lemma,

P(n1/2 (X(kn,n)− xp
)
≤ x) = P(Vn ≥ zn)→ P(V ≥−x fX (xp)) = P

(
−V

fX (xp)
≤ x
)

Therefore,

n1/2 (X(kn,n)− xp
) w⇒n→∞

−V
fX (xp)

∼ N
(

0,
p(1− p)
f 2
X (xp)

)
(ii) The density function fX being continuous at xp , we obtain by Proposition 1.10, limn fX (X(k,n)) = fX (xp) P − a.s.This

implies by Slutsky’s lemma:

n1/2 fX (X(kn,n))

(p(1− p))1/2

(
X(kn,n)− xp

) w⇒ N(0,1)

which completes the proof.

■

In the previous proposition, the confidence interval is expressed according to fX but this quantity is most
presumably not known if we are interested in the estimation of an empirical quantile. In the next result, we
obtain a confidence interval for xp without any further information on fX .

Proposition 1.13 Let p ∈ (0,1) and denote by aα the quantile associated to 1−α/2 for the standard
gaussian distribution. Define

in = ⌊np−aα [np(1− p)]1/2⌋ , and jn = ⌊np+aα [np(1− p)]1/2⌋

Then, for sufficiently large n, (in, jn) ∈ [1 : n]× [1 : n]. Moreover, the random interval [X(in,n),X( jn,n)] is
a confidence interval for xp with asymptotic level 1−α .

PROOF. Set Zn = n1/2 Sn/n−p
[p(1−p)]1/2 where Sn = ∑

n
i=11{Xi≤xp}. From the central limit theorem, the sequence of random variables

{Zn, n ∈N} converges in distribution to a standard gaussian variable, that is Zn
w⇒ Z where Z ∼ N(0,1). For sufficiently large

n, we have 1≤ in ≤ jn ≤ n and

P(X(in,n) ≤ xp < X( jn,n)) = P(in ≤ Sn < jn) = P

n1/2 in/n− p
[p(1− p)]1/2︸ ︷︷ ︸

an

≤ Zn < n1/2 jn/n− p
[p(1− p)]1/2︸ ︷︷ ︸

bn


= P(Zn < bn)−P(Zn < an) = P(Zn−bn < 0)−P(Zn−an < 0)

We will use twice Slutsky’s lemma to show that(
Zn
bn

)
w⇒
(

Z
aα

)
and

(
Zn
an

)
w⇒
(

Z
−aα

)
(1.8)

Since
np−aα [np(1− p)]1/2−1 < in ≤ np−aα [np(1− p)]1/2

we get −aα − 1/
√

np(1− p) < an ≤ −aα , which implies that limn an = −aα . Similarly, limn bn = aα . Finally, Slutsky’s
lemma yields (1.8). And this, in turn, implies that Zn−bn

w⇒ Z−aα and Zn−an
w⇒ Z +aα . Finally
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lim
n→∞

P(X(in,n) ≤ xp < X( jn,n)) = P(Z−aα < 0)−P(Z +aα < 0) = P(−aα ≤ Z < aα ) = 1−α

which concludes the proof. ■

Note that in Proposition 1.13, p ∈ (0,1), that is, we exclude the extremal values for p. A natural question
would be the following: can we expect the same type of CLT when p∈ {0,1}? It turns out that the situation
is more complicated. First we have to find sequences of constants (an) and (bn) such that an > 0 and
a−1

n (X̂n− bn) converges in distribution to some limiting distribution and second, we will show that this
limiting distribution is not gaussian!!!

1.4 Highlights

1.4.1 North Sea flood of 1953

Fig. 1.1 North Sea flood of
1953.

The 1953 North Sea flood was a major flood caused by a heavy storm that
occurred on the night of Saturday, 31 January 1953 and morning of Sunday,
1 February 1953. The floods struck the Netherlands, Belgium, England and
Scotland.

A combination of a high spring tide and a severe European windstorm over
the North Sea caused a storm tide; the combination of wind, high tide, and
low pressure led to a water level of more than 5.6 metres (18.4 ft) above mean
sea level in some locations. The flood and waves overwhelmed sea defences
and caused extensive flooding. The Netherlands, a country with 20% of its
territory below mean sea level and 50% less than 1 metre (3.3 ft) above sea
level and which relies heavily on sea defences, was worst affected, recording
1,836 deaths and widespread property damage. Most of the casualties occurred in the southern province of
Zeeland. In England, 307 people were killed in the counties of Lincolnshire, Norfolk, Suffolk and Essex.
Nineteen were killed in Scotland. Twenty-eight people were killed in West Flanders, Belgium.

In addition, more than 230 deaths occurred on water craft along Northern European coasts as well as
on ships in deeper waters of the North Sea. The ferry MV Princess Victoria was lost at sea in the North
Channel east of Belfast with 133 fatalities, and many fishing trawlers sank.

Realising that such infrequent events could recur, the Netherlands particularly, and the United Kingdom
carried out major studies on strengthening of coastal defences. The Netherlands developed the Delta Works,
an extensive system of dams and storm surge barriers. The UK constructed storm surge barriers on the River
Thames below London and on the River Hull where it meets the Humber Estuary.
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Let (Xi) be a sequence of iid random variables . If E
[
X2
]
< ∞, the CLT may be written as

√
n(X̄n−E [X ])

w⇒n→∞ N(0,Var (X))

We are adopting the same approach in this chapter but we replace X̄n. To be specific, we find examples
where, setting X̂n = max{Xi : i ∈ [1 : n]}, a−1

n (X̂n− bn) weakly converges and we give the form of the
limiting distribution.

2.1 The uniform distribution

Let X1∼Unif [0,θ ] where θ > 0. The cdf of this distribution is FX : x 7→ x/θ . Since inf{x ∈ R : FX (x) = 1}=
θ , limn X̂n = θ P − a.s. by Lemma 1.11.

Lemma 2.1 The sequence {n
(

X̂n
θ
−1
)
, n ∈ N∗} converges in distribution to W with cdf

x 7→ P(W ≤ x) = ex , x≤ 0 .

This limiting distribution is a special case of the Weibull distribution.

13
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PROOF. Let Fn be the cdf of the random variable n
(

X̂n
θ
−1
)

. As X̂n < θ , we have Fn(x) = 1 for all x≥ 0. Now, consider the
case x < 0,

Fn(x) = P
(

X̂n ≤ θ +θ
x
n

)
=
[
P
(

X1 ≤ θ +θ
x
n

)]n
=
(

1+
x
n

)n

Therefore limn Fn(x) = ex for x < 0. We deduce that n
(

X̂n
θ
−1
)

converges in distribution to a random variable W with cdf
x 7→min(ex,1). ■

2.2 The exponential distribution

Let X1 ∼ exp(λ ) where λ > 0. The cdf of this distribution is FX : x 7→ (1− exp(−λx))1R+(x). Since
inf{x ∈ R : FX (x) = 1}= ∞, limn X̂n = ∞ P − a.s. by Lemma 1.11.

Lemma 2.2 The sequence {
[
λ X̂n− logn

]
, n ∈ N∗} converges in distribution to G with cdf

x 7→ P(G≤ x) = e−e−x
, x ∈ R .

This limiting distribution is a special case of the Gumbel distribution.

PROOF. Let Fn be the cdf of λ X̂n− logn. We have

Fn(x) = P(λ X̂n− logn≤ x) = P
(
X̂n ≤ (x+ logn)/λ

)
= [P(X1 ≤ (x+ logn)/λ )]n =

(
1− e−x

n

)n

.

Letting n goes to infinity, we get limn Fn(x) = exp(−e−x) which completes the proof. ■

2.3 The Cauchy distribution

Let X1 ∼ C(a) where a is the parameter of the Cauchy distribution. For simplicity, we suppose a = 1.
The density of this distribution is x 7→ 1

π(1+x2)
. As the support of this density is R, it is clear that

inf{x ∈ R : FX (x) = 1}= ∞. Thus, limn X̂n = ∞ P − a.s. by Lemma 1.11.

Lemma 2.3 The sequence {πX̂n
n , n ∈ N∗} converges in distribution to W with cdf

x 7→ P(W ≤ x) = e−1/x , x > 0 .

This limiting distribution is a special case of the Frechet distribution.

PROOF. Let Fn be the cdf of πX̂n
n . We have

Fn(x) = P(X̂n ≤ nx/π) = [P(X1 ≤ nx/π)]n =

(
1−

∫
∞

nx/π

1
π(1+ y2)

dy
)n

.

For x > 0, we have ∫
∞

nx/π

1
π(1+ y2)

dy =
∫

∞

nx/π

1
πy2 dy+

∫
∞

nx/π

[
1

π(1+ y2)
− 1

πy2

]
dy =

1
nx

+o(1/n) .
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This implies that for x > 0, Fn(x) =
(
1− 1

nx +o(1/n)
)n

. Therefore, limn Fn(x) = e−1/x for x > 0. And the sequence { πX̂n
n , n ∈

N∗} converges in distribution to W with cdf

P(W ≤ x) = e−1/x , x≥ 0 .

This completes the proof of the Lemma. ■

2.4 The Bernoulli distribution

Let {Xn, n ∈ N∗} be a sequence of iid random variables such that X1 ∼ Be(p) where p ∈ (0,1). We have
X̂n = 1 if n ≥ T = inf{k ≥ 1 : Xk = 1}. Thus T follows a geometric distribution with success probability
p. Therefore, T is P − a.s. finite and this implies that X̂n is P − a.s. constant and equal to 1 for sufficiently
large n. It means that there does not exist a sequence of constants {(an,bn), n∈N∗} such that a−1

n (X̂n−bn)
converges in distribution to a non trivial limit, that is, a limit which is different from an P − a.s. constant
random variable.

2.5 Highlights

2.5.1 Gumbel (1891-1966). Source: wikipedia.

Fig. 2.1 Emil Gumbel.

Emil Julius Gumbel (18 July 1891, Munich – 10 September 1966, New York
City) was a German mathematician and political writer.

Born in Munich, he graduated from the University of Munich shortly be-
fore the outbreak of the First World War. He was Professor of Mathematical
Statistics at the University of Heidelberg.

Following the murder of a friend, he attended the trial where he saw that the
judge completely ignored evidence against the Nazi Brownshirts. Horrified,
he ardently investigated many similar political murders that had occurred and
published his findings in Four Years of Political Murder in 1922. In 1928,
he published Causes of Political Murder and also tried to create a political
group to counter Nazism. Gumbel was also one of the 33 signers of the 1932
Dringender Appell.

Among the Nazis’ most-hated public intellectuals, he was forced out of
his position in Heidelberg in 1932. Gumbel then moved to France, where he
taught in Paris and Lyon, and then to the United States in 1940. He taught at the École Libre Des Hautes
Études in Paris and at the New School for Social Research and Columbia University in New York City
until his death in 1966. As a mathematician, Gumbel was instrumental in the development of extreme
value theory, along with Leonard Tippett and Ronald Fisher. In 1958, Gumbel published a key book on the
topic: Statistics of Extremes. He derived and analyzed the probability distribution that is now known as the
Gumbel distribution in his honor.

When he died, Gumbel’s papers were made a part of The Emil J. Gumbel Collection, Political Papers
of an Anti-Nazi Scholar in Weimar and Exile. These papers include reels of microfilm that document his
activities against the Nazis.

2.5.2 Weibull (1887-1979)
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Fig. 2.2 Weibull.

Ernst Hjalmar Waloddi Weibull (18 June 1887 – 12 October 1979) was a
Swedish engineer, scientist, and mathematician.

Weibull came from a family that had strong ties to Scania. He was a cousin
of the historian brothers Lauritz, Carl Gustaf and Curt Weibull, of whom es-
pecially the first is noteworthy for introducing a stricter criticism in the inter-
pretation of medieval Scandinavian sources.

He joined the Swedish Coast Guard in 1904 as a midshipman. Weibull
moved up the ranks with promotion to sublieutenant in 1907, Captain in 1916
and Major in 1940. While in the coast guard he took courses at the Royal
Institute of Technology. In 1924 he graduated and became a full professor.
Weibull obtained his doctorate from the University of Uppsala in 1932. He
was employed in Swedish and German industry as a consulting engineer.

In 1914, while on expeditions to the Mediterranean, the Caribbean and the
Pacific Ocean on the research ship Albatross, Weibull wrote his first paper on
the propagation of explosive waves. He developed the technique of using explosive charges to determine
the type of ocean bottom sediments and their thickness. The same technique is still used today in offshore
oil exploration.

In 1939 he published his paper on the Weibull distribution in probability theory and statistics. In 1941
he received a personal research professorship in Technical Physics at the Royal Institute of Technology in
Stockholm from the arms producer Bofors.

Weibull published many papers on strength of materials, fatigue, rupture in solids, bearings, and of
course, the Weibull distribution, as well as one book on fatigue analysis in 1961. Twenty seven of these
papers were reports to the US Air Force at Wright Field on Weibull analysis.

In 1951 he presented his most famous paper to the American Society of Mechanical Engineers (ASME)
on the Weibull distribution, using seven case studies.

The American Society of Mechanical Engineers awarded Weibull their gold medal in 1972. The Great
Gold Medal from the Royal Swedish Academy of Engineering Sciences was personally presented to him
by King Carl XVI Gustaf of Sweden in 1978.

Weibull died on October 12, 1979 in Annecy, France.

2.5.3 Frechet (1878-1973). Source: wikipedia.

Fig. 2.3 Maurice Frechet

Maurice Fréchet (2 September 1878 – 4 June 1973) was a French mathemati-
cian. He made major contributions to the topology of point sets and intro-
duced the entire concept of metric spaces. He also made several important
contributions to the field of statistics and probability, as well as calculus. His
dissertation opened the entire field of functionals on metric spaces and intro-
duced the notion of compactness. Independently of Riesz, he discovered the
representation theorem in the space of Lebesgue square integrable functions.

He was born to a Protestant family in Maligny, Yonne to Jacques and Zoé
Fréchet. At the time of his birth, his father was a director of a Protestant or-
phanage in Maligny and was later in his youth appointed a head of a Protestant
school. However, the newly established Third Republic was not sympathetic
to religious education and so the laws were enacted requiring all education
to be secular. As a result, his father lost his job. To generate some income
his mother set up a boarding house for foreigners in Paris. His father was able
later to obtain another teaching position within the secular system – it was not a job of a headship, however,
and the family could not expect as high standards as they might have otherwise.

Maurice attended the secondary school Lycée Buffon in Paris where he was taught mathematics by
Jacques Hadamard. Hadamard recognised the potential of young Maurice and decided to tutor him on an
individual basis. After Hadamard moved to the University of Bordeaux in 1894, Hadamard continuously
wrote to Fréchet, setting him mathematical problems and harshly criticising his errors. Much later Fréchet
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admitted that the problems caused him to live in a continual fear of not being able to solve some of them,
even though he was very grateful for the special relationship with Hadamard he was privileged to enjoy.

After completing high-school Fréchet was required to enroll in the military service. This is the time
when he was deciding whether to study mathematics or physics – he chose mathematics out of dislike
of chemistry classes he would have had to take otherwise. Thus in 1900 he enrolled to École Normale
Supérieure to study mathematics.

He started publishing quite early, having published four papers in 1903. He also published some of his
early papers in the American Mathematical Society due to his contact with American mathematicians in
Paris—particularly Edwin Wilson.

Fréchet served at many different institutions during his academic career. From 1907–1908 he served as
a professor of mathematics at the Lycée in Besançon, then moved in 1908 to the Lycée in Nantes to stay
there for a year. After that he served at the University of Poitiers between 1910–1919.

He married in 1908 to Suzanne Carrive (1881-1945) and had four children: Hélène, Henri, Denise and
Alain.

Fréchet was planning to spend a year in the United States at the University of Illinois but his plan was
disrupted when the First World War broke out in 1914. He was mobilised on 4 August the same year.
Because of his diverse language skills, gained when his mother ran the establishment for foreigners, he
served as an interpreter for the British Army. However, this was not a safe job; he spent two and a half
years very near to or at the front. French egalitarian ideals caused many academics to be mobilised. They
served in the trenches and many of them were lost during the war. It is remarkable that during his service
in the war, he still managed to produce cutting edge mathematical papers frequently, despite having little
time to devote to mathematics.

After the end of the war, Fréchet was chosen to go to Strasbourg to help with the reestablishment of the
university. He served as a professor of higher analysis and Director of the Mathematics Institute. Despite
being burdened with administrative work, he was again able to produce a large amount of high quality
research.

In 1928 Fréchet decided to move back to Paris, thanks to encouragement from Borel, who was then
Chair in the Calculus of Probabilities and Mathematical Physics at the Sorbonne. Fréchet briefly held a
position of lecturer at the Sorbonne’s Rockefeller Foundation and from 1928 was a Professor (without a
Chair). Fréchet was promoted to tenured Chair of General Mathematics in 1933 and to Chair of Differential
and Integral Calculus in 1935. In 1941 Fréchet succeeded Borel as Chair in the Calculus of Probabilities
and Mathematical Physics, a position Fréchet held until he retired in 1949. From 1928 to 1935 Fréchet
was also put in charge of lectures at the École Normale Supérieure; in this latter capacity Fréchet was able
to direct a significant number of young mathematicians toward research in probability, including Doeblin,
Fortet, Loeve, and Ville.

Despite his major achievements, Fréchet was not overly appreciated in France. As an illustration, while
being nominated numerous times, he was not elected a member of the Academy of Sciences until the age
of 78.[citation needed]. In 1929 he became foreign member of the Polish Academy of Science and Arts
and in 1950 foreign member of the Royal Netherlands Academy of Arts and Sciences.

Fréchet was an Esperantist, publishing some papers and articles in that constructed language. He also
served as president of the Internacia Scienca Asocio Esperantista (”International Scientific Esperantist
Association”) from 1950–53.
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In this chapter, setting X̂n = max{Xi : i ∈ [1 : n]}, we will obtain a general form for the limiting distribu-
tions of a−1

n (X̂n−bn), whenever the weak limit of this quantity exists as n goes to infinity. This generalizes
the results of the previous chapter.

3.1 The Fisher-Tippet-Gnedenko theorem

We start with a useful and intuitive technical lemma.

Lemma 3.1 Suppose that { fn, n ∈ N} is a sequence of nondecreasing functions and g is a nondecreasing
function. Let a < b and suppose that for each x ∈ (a,b) that is a continuity point of g, limn fn(x) = g(x).
Let f←n and g← be the generalized inverse of fn and g. Then, for each x ∈ (g(a),g(b)) that is a continuity
point of g←, we have

lim
n

f←n (x) = g←(x) .

PROOF. Let x be a continuity point of g← and fix ε > 0. We have to prove that there exists n0 ∈ N such that for all n≥ n0,

f←n (x)− ε ≤ g←(x)≤ f←n (x)+ ε .

We only prove the right inequality. The proof of the left-hand inequality is similar.
Choose 0 < ε1 < ε such that g←(x)− ε1 is a continuity point of g. This is possible since the continuity points of g

form a dense set. Since g← is continuous in x, g←(x) is a point of increase for g; hence g(g←(x)− ε1) < x. Choose δ <

x−g(g←(x)−ε1). Since g←(x)−ε1 is a continuity point of g, there exists n0 such that fn(g←(x)−ε1)< g(g←(x)−ε1)+δ < x
for n > n0. The definition of the function f←n then implies g←(x)− ε1 < f←n (x). ■

We have now all the ingredients for proving the main result of the course.

Theorem 3.2. Let {Xi, i ∈N∗} be a sequence of iid random variables. Assume that there exists a sequence
{(an,bn), n ∈ N∗} and a distribution L0 such that an > 0 and
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maxi∈[1:n] Xi−bn

an

w⇒ Z where Z ∼L0 .

Then, up to a translation and multiplication by a positive constant, the cdf of the distribution L0 is one of
the following cdf:

(i) The Weibull distribution : x 7→Ψα(x) =

{
e−(−x)α

, x≤ 0
1 , x > 0

and α > 0.

(ii) The Gumbel distribution: x 7→Λ(x) = e−e−x
, x ∈ R.

(iii) The Frechet distribution: x 7→Φα(x) =

{
0 , x≤ 0
e−x−α

, x > 0
and α > 0.

PROOF. We only sketch the proof and give the main ideas. Denote FX the cdf of the random variable X and G the cdf of Z.
Then, under the assumptions of the theorem, for all continuity point x of G,

lim
n→∞

P(a−1
n (X̂n−bn)≤ x) = lim

n→∞
Fn

X (anx+bn) = G(x) .

Taking the log, we get limn→∞ n logFX (anx+bn) = logG(x) and noting that log(u)∼u∼1 u−1, we obtain

lim
n→∞

1
n [1−FX (anx+bn)]

=− 1
logG(x)

Denote by U the generalized inverse of 1/(1−FX ) and by D the generalized inverse of − 1
logG . Note that since G is nonde-

creasing, D is also nondecreasing. Then,

U(x) = F←X

(
1− 1

x

)
, D(x) = G←(e−1/x) .

By applying Lemma 3.1, we then obtain for all x > 0,

lim
n

U(nx)−bn

an
= D(x)

More generally, we will find conditions on D such that there exists two functions a and b such that

lim
t→∞

U(tx)−b(t)
a(t)

= D(x)

If 1 is a continuity point of D, we can get rid of b by writing

lim
t→∞

U(tx)−U(t)
a(t)

= lim
t→∞

(
U(tx)−b(t)

a(t)
− U(t)−b(t)

a(t)

)
= D(x)−D(1) = E(x) ,

with the initial condition E(1)=D(1)−D(1)= 0. To simplify, we will assume that all the involved functions are differentiable.
Write

U(txy)−U(t)
a(t)

=
U(txy)−U(ty)

a(ty)
a(ty)
a(t)

+
U(ty)−U(t)

a(t)
.

Letting t tends to infinity, we deduce that A(y) = limt a(ty)/a(t) exists and

E(xy) = E(x)A(y)+E(y) and E(1) = 0 .

Noting that

A(xy) = lim
t→∞

a(txy)
a(t)

= lim
t→∞

a(txy)
a(ty)

a(ty)
a(t)

= A(x)A(y)

and noting that A(1) = 1, we get by differentiating wrt x, yA′(xy) = A′(x)A(y) and taking x = 1, we deduce A′(y)/A(y) =
A′(1)/y so that A(y) = yξ (since we have A(1) = 1) for some ξ ∈ R. Therefore,

E(xy) = E(x)yξ +E(y) and E(1) = 0 .
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(a) If ξ ̸= 0, then by differentiating the above equation wrt x, we get yE ′(xy) = E ′(x)yξ and taking x = 1, it yields E ′(y) =
E ′(1)yξ−1 with E ′(1) > 0 since D and consequently E is nondecreasing. Then, E(y) = c

ξ
(yξ − 1) for some positive

constant c = E ′(1). This implies there exists a constant β such that for all y≥ 0,

G←(e−1/y) = D(y) = D(1)+E(y) = cyξ /ξ +β

which implies e−1/y = G(cyξ /ξ +β︸ ︷︷ ︸
x

). Thus, y =
(

x−β

c/ξ

)1/ξ

, which implies G(x) = exp
[
−
(

x−β

c/ξ

)−1/ξ
]

. Then, up to a

translation and multiplication by a positive constant,

G(x) = Hξ (x) = e−(1+ξ x)−1/ξ

, where 1+ξ x > 0 .

Moreover, taking ξ =−1/α with α > 0,

ψα (x) = H−1/α (α(x+1)), x < 0 (▶WEIBULL CDF)

And taking ξ = 1/α with α > 0,

φα (x) = H1/α (α(x−1)), x > 0 (▶FRECHET CDF)

(b) If ξ = 0, then E(x) = c log(x) for some positive constant c (c is positive since D and consequently E is nondecreasing).
Then, following the same arguments, we have up to a translation and multiplication by a positive constant,

G(x) = e−e−x
, x ∈ R . (▶GUMBEL CDF)

■

Fig. 3.1 Extreme value densities, i.e. associated to the cdf Hξ (x) = e−(1+ξ x)−1/ξ

where 1+ξ x > 0

We end up this chapter with the definition of max-stable distributions. Of course, the Weibull, the Gum-
bel and the Frechet distributions are max-stable.
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Definition 3.3 A distribution L0 is max-stable if for all n ≥ 2, if {Wi, i ∈ [1 : n]} are iid with distribution
L0 then there exists constants an > 0 and bn ∈R such that a−1

n
(
maxi∈[1:n]Wi−bn

)
is distributed according

to L0.

3.2 Highlights

3.2.1 Ronald Fisher (1890-1962). Source: wikipedia.

Fig. 3.2 Fisher as a child.

Sir Ronald Aylmer Fisher FRS (17 February 1890 – 29 July 1962), who pub-
lished as R. A. Fisher, was an English statistician and biologist who used
mathematics to combine Mendelian genetics and natural selection. This con-
tributed to the revival of Darwinism in the early 20th century revision of the
theory of evolution known as the modern synthesis. He was a prominent eu-
genicist in the early part of his life.

He worked at Rothamsted Research for 14 years from 1919, where he de-
veloped the analysis of variance (ANOVA) to analyse its immense data from
crop experiments since the 1840s, and established his reputation there in the
following years as a biostatistician. He is known as one of the three princi-
pal founders of population genetics. He outlined Fisher’s principle as well as
the Fisherian runaway and sexy son hypothesis theories of sexual selection.
He also made important contributions to statistics, including the maximum
likelihood, fiducial inference, the derivation of various sampling distributions
among many others.

Anders Hald called him ”a genius who almost single-handedly created the foundations for modern
statistical science”, while Richard Dawkins named him ”the greatest biologist since Darwin”:

Not only was he the most original and constructive of the architects of the neo-Darwinian synthesis,
Fisher also was the father of modern statistics and experimental design. He therefore could be said to have
provided researchers in biology and medicine with their most important research tools, as well as with the
modern version of biology’s central theorem.

Geoffrey Miller said of him:
”To biologists, he was an architect of the ”modern synthesis” that used mathematical models to inte-

grate Mendelian genetics with Darwin’s selection theories. To psychologists, Fisher was the inventor of
various statistical tests that are still supposed to be used whenever possible in psychology journals. To
farmers, Fisher was the founder of experimental agricultural research, saving millions from starvation
through rational crop breeding programs.”

Fisher was born in East Finchley in London, England, one of twins with the other being still-born and
grew up the youngest with three sisters and one brother. From 1896 until 1904 they lived at Inverforth
House in London, where English Heritage installed a blue plaque in 2002, before moving to Streatham.
His mother, Kate, died from acute peritonitis when he was 14, and his father, George, then lost his business
as a successful partner in Robinson & Fisher, auctioneers and fine art dealers, 18 months later.

Lifelong poor eyesight caused his rejection by the British Army for World War I, but also developed
his ability to visualize problems in geometrical terms, but not in writing mathematical solutions, or proofs.
He entered Harrow School age 14 and won the school’s Neeld Medal in mathematics. In 1909, he won a
scholarship to Gonville and Caius College, Cambridge.

Fisher worked for six years as a statistician in the City of London and taught physics and maths at a
sequence of public schools, and at the Thames Nautical Training College, and Bradfield College where he
settled with his new bride, Eileen Guinness, with whom he had two sons and six daughters. In 1919 he
began working at Rothamsted Research.
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His fame grew and he began to travel and lecture widely. In 1931, he spent six weeks at the Statis-
tical Laboratory at Iowa State College where he gave three lectures per week, and met many American
statisticians, including George W. Snedecor before returning again in 1936. In 1937, he visited the In-
dian Statistical Institute in Calcutta, and its one part-time employee, P. C. Mahalanobis, often returning to
encourage its development, being the guest of honour at its 25th anniversary in 1957 when it had 2000
employees.

Memorial plaque over his mortal remains, lectern-side aisle of St Peter’s Cathedral, Adelaide His mar-
riage disintegrated during World War II and his oldest son George, an aviator, was killed in combat. His
daughter and one of his biographers, Joan, married the noted statistician George E. P. Box. In 1957, a retired
Fisher emigrated to Australia where he spent time as a senior research fellow at the Australian Common-
wealth Scientific and Industrial Research Organisation (CSIRO) in Adelaide, where he died in 1962, with
his remains interred within St Peter’s Cathedral.
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Definition 4.1 If L is a distribution with cdf FX such that there exist {an, n∈N} and {bn, n∈N} sequence
of constants and {Xn, n ∈ N} a sequence of iid random variables such that Xi ∼L such that an > 0 and

maxi∈[1:n] Xi−bn

an

w⇒L0

Then we say that L belongs to the domain of attraction of L0 and we write L ∈ D (L0). By abuse of
notation, we also identify the set of probability measures D (L0) with the set of the associated cdfs and in
that case, we will also write FX ∈D (L0).

4.1 General characterization

Let U be the function defined by

U(t) = F←X

(
1− 1

t

)
, t > 1

For ξ ∈ R, define
Hξ (x) = exp

{
−(1+ξ x)−1/ξ

}
if 1+ ξ x > 0. Note that Hξ is a cdf and write Hξ the associated distribution. The following proposition
is admitted. The interested reader may get some intuition of the result from inspection of the proof of the
Fisher-Tippet Theorem.

25



26 4 The domain of attraction

Proposition 4.2 Let ξ ∈ R. Then, FX ∈D
(
Hξ

)
if and only if for all x,y > 0, y ̸= 1

lim
s→∞

U(sx)−U(s)
U(sy)−U(s)

=

 xξ−1
yξ−1

if ξ ̸= 0
log(x)
log(y) otherwise

Define FX (x) = 1−FX (x) = P(X > x).

Proposition 4.3 Let ξ ∈ R. Then,

FX ∈D
(
Hξ

)
⇐⇒ lim

n→∞
nFX (xan +bn) =− logHξ (x)

for some sequence of constants {an, n ∈N} and {bn, n ∈N} such that an > 0. Moreover, in that case,

a−1
n (X̂n−bn)

w⇒ Z where Z ∼Hξ

PROOF. Let FX ∈D
(
Hξ

)
. Then, limn

(
1−FX (xan +bn)

)n
=Hξ (x) for some sequence of constants {an, n∈N} and {bn, n∈

N} such that an > 0. Taking the logarithm, we obtain

lim
n→∞

n log
(
1−FX (xan +bn)

)
= logHξ (x) .

This implies that for 1+ξ x > 0, FX (xan +bn) tends to 0 and by a Taylor expansion of the log,

lim
n→∞

nFX (xan +bn) =− logHξ (x) .

The converse is obvious. ■

Let xFX = F←X (1) = inf{x ∈ R : FX (x)≥ 1}= inf{x ∈ R : FX (x) = 1} . We have the following more
general result.

Proposition 4.4 Let ξ ∈ R. Then, FX ∈ D
(
Hξ

)
if and only if there exists a function α such that for

all x satisfying 1+ξ x > 0, we have

lim
u→x−FX

FX (xα(u)+u)
FX (u)

=

{
(1+ξ x)−1/ξ if ξ ̸= 0
e−x if ξ = 0

PROOF. Assume that there exists a function α that satisfies the limit described in the statement of the Proposition. As-
sume for simplicity that FX is continuous. Then, choosing bn = U(n), we have FX (bn) = 1/n. Taking u = bn, we thus have
limn→∞ nFX (xα(bn)+bn) =− logHξ (x). This implies that FX ∈D

(
Hξ

)
by Proposition 4.3

The converse is more involved and is admitted in this course.
■
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4.2 Domain of attraction for the Frechet and Weibull distributions

Definition 4.5 We say that a function L is slowly-varying if L(t) > 0 for sufficiently large t and for all
x > 0,

lim
t→∞

L(tx)
L(t)

= 1 .

The following representation theorem gives the general expression of the slowly-varying functions.

Proposition 4.6 Let L be a slowly-varying function. Then, there exist two measurable functions c and
κ such that

lim
x→∞

c(x) = c0 ∈ (0,∞) , et lim
x→∞

κ(x) = 0 ,

and a ∈ R such that for all x≥ a,

L(x) = c(x)exp
∫ x

a

κ(u)
u

du

Remark 4.7 If t 7→ g(t) is positive for sufficiently large t and if for all x > 0, limt→∞ g(tx)/g(t) = xβ , then
g(x) = xβ L(x) where L is slowly varying. In such a case, we say that g is varying at order β .

Theorem 4.8. The cdf function FX belongs to the domain of attraction of the Frechet distribution with

parameter α > 0 if and only if FX (x) = x−α L(x) for all x > 0 where the function L is slowly-varying.

In particular, xFX = ∞. Moreover, if FX ∈ D (Φα), then, letting an = U(n) = F←X
(
1− 1

n

)
, the sequence

{a−1
n X̂n, n ∈ N∗} converges in distribution to a random variable of cdf Φα .

PROOF. Assume that FX (x) = x−α L(x) where L is slowly-varying. We use the notation of Proposition 4.6. We have FX (x)∼∞

g(x) where g(x) = x−α c0 exp
∫ x

a
κ(u)

u du is a continuous function. Set an =U(n). We have FX (an)≤ 1/n≤ FX (a−n ) in general
but to simplify, we assume that FX is continuous at an and therefore FX (an) = 1/n. For x > 0, we thus have

lim
n→∞

nFX (anx) = lim
n→∞

FX (anx)
FX (an)

= x−α .

As in the proof of Proposition 4.3, this implies that FX ∈D (Φα ). The converse is admitted. ■

Theorem 4.9. The cdf function FX belongs to the domain of attraction of the Weibull distribution with

parameter α > 0 if and only if xFX < ∞ and FX

(
xFX −

1
x

)
= x−α L(x) for all x > 0 where the function

L is slowly-varying. Moreover, if FX ∈ D (Ψα), then, letting an = xFX −U(n) = xFX − F←X
(
1− 1

n

)
, the

sequence {a−1
n (X̂n− xFX ), n ∈ N∗} converges in distribution to a random variable of cdf Ψα .

PROOF. The proof is similar to the one of Theorem 4.8 and is omitted for brevity. ■

We admit the following result.
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Proposition 4.10 (Von Mises criterium) (i) Assume that

lim
x→∞

x f (x)
FX (x)

= α > 0 ,

then FX belongs to the domain of attraction of the Frechet distribution of parameter α .
(ii) Suppose that the density fX is positive on an interval (z,xFX ) where xFX < ∞. Assume that

lim
x→x−FX

(xFX − x) fX (x)
FX (x)

= α > 0 ,

then FX belongs to the domain of attraction of the Weibull distribution of parameter α .

4.3 Highlights

4.3.1 Gnedenko (1912-1995). Source: wikipedia.

Fig. 4.1 Boris Gnedenko.

Boris Vladimirovich Gnedenko (January 1, 1912 – December 27, 1995) was a
Soviet mathematician and a student of Andrey Nikolaevich Kolmogorov. He
was born in Simbirsk (now Ulyanovsk), Russia, and died in Moscow. He is
perhaps best known for his work with Kolmogorov, and his contributions to
the study of probability theory, particularly extreme value theory, with such
results as the Fisher–Tippett–Gnedenko theorem. Gnedenko was appointed as
Head of the Physics, Mathematics and Chemistry Section of the Ukrainian
Academy of Sciences in 1949, and also became Director of the Kiev Institute
of Mathematics in the same year.

Gnedenko was a leading member of the Russian school of probability the-
ory and statistics. He also worked on applications of statistics to reliability
and quality control in manufacturing. He wrote a history of mathematics in
Russia (published 1946) and with O. B. Sheynin the section on the history of
probability theory in the history of mathematics by Andrei Kolmogorov and
Adolph P. Yushkevich (published 1992). In 1958 he was a plenary speaker at the International Congress of
Mathematicians in Edinburgh with a talk entitled ”Limit theorems of probability theory”.
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List of exercises

Exercise 5.1. (i) Show that the cdf FX is cadlag (in french, continue à droite, limitée à gauche), that is,
for all x ∈ R, FX is continuous in a right neighbourhood of x and has a limit in a left neighbourhood of
x.

(ii) Show that for all u ∈ (0,1), we have FX (F←X (u))≥ u.
(iii) Show that F←X is nondecreasing on (0,1).
(iv) Show that F←X is left-continuous on (0,1).
(v) Show that the discontinuity points of FX are countable. Deduce tqqhat the continuity points of FX are

dense.

PROOF.

(i) By the dominated convergence theorem, limt→t+0
E
[
1X≤t

]
= E

[
limt→t+0

1X≤t

]
= E

[
1X≤t0

]
. Therefore, limt→t+0

P(X ≤
t) = P(X ≤ t0), which shows that FX is right-continuous. Similarly, using again the dominated convergence theorem,

limt→t−0
E
[
1X≤t

]
= E

[
limt→t−0

1X≤t

]
= E

[
1X<t0

]
. Therefore, limt→t−0

P(X ≤ t) = P(X < t0), which shows that FX has a

left-limit P(X < t0), which is in general different from P(X ≤ t0), except if P(X = t0) = 0. We can sum up this question
by saying that

P(X = t0) = P(X ≤ t0)−P(X < t0) = P(X ≤ t0)− lim
t↗t0

P(X ≤ t)

(ii) By definition of F←X , there exists a sequence (yn) such that for all n ∈ N, FX (yn) ≥ u and yn ↘ F←X (u). Since FX is
right-continuous, we have that limn FX (yn) = FX (F←X (u)). Combining with the fact that FX (yn) ≥ u holds for all n ∈ N,
we conclude that FX (F←X (u))≥ u.

(iii) If u≤ v < 1. Then,
{y ∈ R : FX (y)≥ v} ⊂ {y ∈ R : FX (y)≥ u}

Taking the infimum in both sides yields:

F←X (v) = inf{y ∈ R : FX (y)≥ v} ≥ inf{y ∈ R : FX (y)≥ u}= F←X (u)

This shows that F←X is nondecreasing.
(iv) Let u0 ∈ (0,1). By the previous question, F←X is nondecreasing. This implies that limu↗u0 F←X (u) exists and is less than

F←X (u0). We now show by contradiction that this limit is F←X (u0). Assume that this is not the case. Then, there exists
y ∈ R such that

lim
u↗u0

F←X (u)< y < F←X (u0) (5.1)

Since F←X is nondecreasing, the first inequality above shows that y > F←X (u) for all u < u0. Applying the nondecreasing
function FX , we get:

FX (y)≥ FX ◦F←X (u)≥ u

Letting u↗ u0, we obtain FX (y)≥ u0, this in turn implies that

F←X (u0) = inf{x ∈ R : FX (x)≥ u0} ≤ y

which contradicts (5.1)
(v) If x is a discontinuity point of FX , we have seen in the first question that P(X = x) = FX (x)− limy↗x FX (y)> 0. We can

thus associate to each discontinuity point of FX a rational number in the interval (limy↗x FX (y),FX (x)]. Since each of these

29
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intervals are disjoint, we conclude that discontinuity points are countable. Any countable set has a dense complement
and this concludes the proof.

■

Exercise 5.2. Show that if FX is increasing and continuous and if X is a random variable with cdf FX , then
FX (X)∼ Unif[0,1].

Exercise 5.3. Let (Xi) be iid random variables with exponential distribution of parameter λ . How can we
sample X̂n and X̌n using only one random variable uniformly distributed on (0,1)?

Exercise 5.4. Let (Xi) be iid random variables with Cauchy distribution x→ 1
π(1+x2)

. How can we sample

X̂n and X̌n using only one random variable uniformly distributed on (0,1)?

Exercise 5.5. Prove Lemma 1.6

Exercise 5.6. Using Lemma 1.9, check that we can obtain Lemma 1.1.

Exercise 5.7. Prove Lemma 1.11 along the lines of Proposition 1.10.

Exercise 5.8. Let (Ui)1≤i≤n be iid random variables according to a uniform distribution on [0,1]. Write
(U(1,n), . . . ,U(n,n)) the associated order statistics.

1. Show that U(n,n) has the same distribution as U
1
n

1 .
2. Find the distribution of the vector (U(1,n), . . . ,U(n,n)).

3. Show that (U(n,n),
U(n−1,n)

U(n,n)
, . . . ,

U(1,n)
U(2,n)

) has the same distribution as (U
1
n

n ,U
1

n−1
n−1 , . . . ,U1).

4. Deduce a way to draw a n-uplet of random variables with the same distribution as (U(i,n))1≤i≤n.

Exercise 5.9. We admit that a sequence of random vectors (Zn) taking values in Rp converges in distribu-
tion to Z if and only if one of the following equivalent conditions is satisfied:

• for all constant vectors u ∈ Rp; we have limnE
[
eiuT Zn

]
= E

[
eiuT Z

]
,

• for all real valued bounded functions f : Rp → R such that P(Z ∈ D f ) = 0 where D f is the set of
discontinuity points of f , we have limnE [ f (Zn)] = E [ f (Z)].

1. Show the Slutsky lemma: If Xn
P-prob−→ c where c is a constant and if Yn

w⇒Y , then (Xn,Yn)
w⇒ (c,Y ) that is

for all continuous functions f , f (Xn,Yn)
w⇒ f (c,Y ). Hint: We can admit that to show (Xn,Yn)

w⇒ (c,Y )

is equivalent to show that for all u,v ∈ R, limn→∞E
[
ei(uXn+vYn)

]
= E

[
ei(uc+vY )

]
.

2. Extend the Slutsky lemma in the case where Xn and Yn are random vectors.
3. With the notation introduced in Proposition 1.13 and its proof, set

An = n1/2 in/n− p
[p(1− p)]1/2 Bn = n1/2 jn/n− p

[p(1− p)]1/2

and show the convergence of these quantities. Apply the extended Slutsky’s lemma to obtain an alter-
native proof of Proposition 1.13.

Exercise 5.10. Let (Xn) be iid random variables such that X1 ∼Unif [0,θ ] where θ > 0. Find a confidence
interval for θ using X̂n and Lemma 2.1. Compare with a confidence interval based on X̄n and the Central
Limit Theorem.

Exercise 5.11. Let (Xn) be iid random variables such that X1 ∼Unif [0,θ ] where θ > 0. Using Lemma 1.9,
show that the sequence {n

(
X(n−1,n)

θ
−1
)
, n ∈N∗} converges in distribution to some random variable Z and

give the expression for the cdf of Z.
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Exercise 5.12. Let (Xn) be iid random variables such that X1 ∼ Unif [0,θ ] where θ > 0. Using several
times the Slutsky lemma and Lemma 2.1, proves that

√
n
(

X̄n
X̂n
−1/2

)
converges in distribution to some

random variable and give the limiting distribution.

Exercise 5.13. In the proof of Theorem 3.2, show that we get a Gumbel distribution in the case ξ = 0.

Exercise 5.14. From inspection of the proof of Theorem 3.2, explain Proposition 4.2

Exercise 5.15. Show the converse implication of Proposition 4.6.

Exercise 5.16. Let (En)n≥0 be iid random variables such that E1 ∼ exp(1). Set Sk = E1 + . . .+Ek for all
k ∈ N. Then, show that (

S1

Sn+1
, . . . ,

Sn

Sn+1

)
L
=
(
U(1,n), . . . ,U(n,n)

)
where

(
U(1,n), . . . ,U(n,n)

)
is the order statistics associated to iid random variables according to the uniform

distribution on [0,1].

Exercise 5.17. Use Proposition 4.2, Theorem 4.8, Theorem 4.9 and to obtain the domain of attraction
of a uniform distribution on [0,θ ], of an exponential distribution of parameter λ > 0 and of the Cauchy
distribution of density x 7→ 1

π(1+x2)
.

Show that the geometric distribution does not belong to any domain of attraction.

Exercise 5.18. Show that a discrete distribution with finite support does not belong to any domain of
attraction.

(λ̂ , λ̂ ′) =

((
x̄k +

√
x̄2

k − (x̄k)2

)
, 1√

x̄2
k−(x̄k)

2

)
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