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Introduction

This course is given at the Master M2 DS. The schedule is roughly the following:

I Chapter 1-2. Lecture, 1.5H. Tutorial: 2H.
I Chapter 2-3. Lecture, 1.5H. Tutorial: 2H.
I Chapter 3-4. Lecture, 1.5H. Tutorial: 2H.
I Chapter 4-5. Lecture, 1.5H. Tutorial: 2H.
I Chapter 5-6. Lecture, 1.5H. Tutorial: 2H.
I Chapter 6. Lecture, 1.5H. Tutorial: 2H.

Numerical illustrations through Jupyter Notebook were given during the course and the source
can be run directly in a colaboratory google site by following this link.

Since we focus here on Markov Chains Monte Carlo algorithms, we only give the �avor of
Markov chains. It can be a bit frustrating to some of you and we strongly encourage the most
curious readers in Markov chains to consult one of the books

� Markov Chains and Stochastic Stability S. Meyn and R. Tweedie. Springer, 2005 (2nd edition).
� Markov Chains by R. Douc, E. Moulines, P. Priouret and P. Soulier. Springer, jan. 2019.

Interested readers on Monte Carlo techniques can �nd some inspiration in

� Monte Carlo Statistical Methods by G. Casella and C. Robert. Springer, 2004.

We thank Kamelia Daudel for her thorough reading and insightful comments.

Notation

We start with some notation. In what follows,

� i.i.d means independent and identically distributed.
� r.v. means random variables.
� for r, s ∈ N such that r ≤ s, we write [r : s] = {r, r + 1, . . . , s},
� X |= Y means X and Y are independent random variables,

� X
L
= Y means X and Y have the same law.

� lim infn an = limn→∞ (infk≥n ak) and similarly, lim supn an = limn→∞
(
supk≥n ak

)
. Moreover,

limn an exists if and only if lim infn an = lim supn an.
� for any a ∈ R, a+ = max(a, 0) and a− = max(−a, 0) = −min(a, 0) and we have |a| = a+ + a−

and a = a+ − a−.

Moreover, the following notions of convergence for random variables is used throughout these
lecture notes.
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I Xn
LP⇒ X means convergence in distribution (or "convergence en loi" in French). It is equiv-

alent to any of the following statements.

(a) for all bounded continuous functions h, we have limn E[h(Xn)] = E[h(X)].
(b) for all A ∈ B(R) such that P(X ∈ ∂A) = 0, we have limn P(Xn ∈ A) = P(X ∈ A).
(c) for all x ∈ R such that P(X = x) = 0, we have limn P(Xn ≤ x) = P(X ≤ x).
(d) for all u ∈ R, we have limn E

[
eiuXn

]
= E

[
eiuX

]
In (b), the notation ∂A means the frontier of A, that is, the set of points x such that in any
neighborhood of x, there are an in�nite number of distinct points of A and an in�nite number

of points in Ac. By abuse of terminology, we may also say that Xn weakly converges to X

instead of saying the distribution of Xn converges weakly to the distribution of X.

I Xn
P−prob−→ X means convergence in probability: for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

I Xn
P-a.s.−→ X means almost sure convergence:

P( lim
n→∞

Xn = X) = 1.

Almost sure convergence implies convergence in probability . We recall the following properties.

(i) If Xn
LP⇒ X then for all continuous functions f , f(Xn)

LP⇒ f(X). Note that this property holds,

when f is continuous (and not necessarily bounded), for example f(u) = u2 so that X2
n
LP⇒ X2.

(ii) The Slutsky Lemma If Xn
P−prob−→ c where c is a constant and if Yn

LP⇒ Y , then (Xn, Yn)
LP⇒

(c, Y ) that is for all continuous functions f , f(Xn, Yn)
LP⇒ f(c, Y ).

(iii) X ∼ N (0, 1) iif for all u ≥ 0, E[eiuX ] = e−u
2/2. Moreover, X ∼ N (µ, σ2) iif for all u ≥ 0,

E[eiuX ] = e−u
2varX/2+iuE[X] and in that case, σ2 = varX and µ = E(X).

(iv) Let c be a constant. Then, Xn
P−prob−→ c if and only if Xn

LP⇒ c (in words, convergence in
probability to a constant is equivalent to convergence in distribution to this constant)
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These short lecture notes introduce very basic tools in the Markov Chain by Monte-Carlo

(MCMC) theory. We only focus on the most fundamental properties that will be useful for our
understanding of Metropolis-Hastings (MH) algorithms. Let us start with a gentle and smooth
introduction to Markov chains.

1.1 Main notation

To start o� on the right foot, we introduce the main notation. Let (X,X ) be a measurable space,

� M+(X) is the set of (non-negative) measures on (X,X ),
� M1(X) is the set of probability measures on (X,X ),
� F(X) is the set of real-valued measurable functions f on X and F+(X) the set of non-negative
measurable functions on X,

� If k ≤ `,

� uk:` means (uk, . . . , u`)
� uk:∞ means (uk+`)`∈N

Other notation will be introduced progressively.

1.2 De�nitions

We �rst describe a Markov kernel, which will then be fundamental for the de�nition of a Markov
chain. In all the course, we consider (X,X ) a measurable space.
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8 1 Basics in Markov chains.

De�nition 1.1. We say that P : X×X → R+ is a Markov kernel, if for all (x,A) ∈ X×X ,

� X 3 y 7→ P (y,A) is X/B(R+) measurable,
� X 3 B 7→ P (x,B) is a probability measure on (X,X ).

In words, for all (x,A) ∈ X×X , as a function of the �rst component only, P (·, A) is measurable
and as a function of the second component only, P (x, ·) is a probability measure. In particular,
P (x,X) = 1 for all x ∈ X. Since P (x, ·) is a measure, we also use the in�nitesimal notation:
P (x, dy). For example, P (x,A) =

∫
X

1A(y)P (x, dy) =
∫
A
P (x, dy).

In almost all the course, Markov kernels P allows to move a point x from a measurable space
(X,X ) to another point on the same measurable space, that is, P is de�ned on X×X (where X is
a σ-�eld on X) but we can more generally de�ne Markov kernel from a measurable space (X,X )
to another measurable space (Y,Y). In such case, P will be a Markov kernel on X× Y.

We can now move on to the de�nition of a Markov chain.

De�nition 1.2. Let {Xk : k ∈ N} be a sequence of random variables on the same probability space
(Ω,G,P) and taking values on X, we say that {Xk : k ∈ N} is a Markov chain with Markov kernel P
and initial distribution ν ∈ M1(X) if and only if

(i) for all (k,A) ∈ N×X , we have P(Xk+1 ∈ A|X0:k) = P (Xk, A), P-a.s.
(ii) P(X0 ∈ A) = ν(A).

Note that in the de�nition we consider P(Xk+1 ∈ A|X0:k), that is, the conditional probability
is with respect to the sigma-�eld σ(X0:k). We can actually replace σ(X0:k) by Fk as soon as we
know that (Xk)k≥0 is (Fk)k≥0-adapted...

What does it mean exactly? Well, recall that if {Fk : k ∈ N} is a sequence of embedded sigma-
�elds on X (that is, Fk ⊂ Fk+1 for all k), then {Fk : k ∈ N} is called a �ltration on X and
we say that (Xk)k≥0 is (Fk)k≥0-adapted if Xk is G/Fk-measurable for all k ∈ N. Of course, the
most natural �ltration for {Xk : k ∈ N} is indeed Fk = σ(X0:k) and unsurprisingly, we call it
the natural �ltration. But other possibilities exist, where Fk is enlarged to include some other
variables alongside with X0:k. For example, let {Yk : k ∈ N} be any other sequence of random
variables on (Ω,G,P) and taking values in X (we don't assume anything on the relation between
the (Xk) and the (Yk)). A typical example corresponds to Xk+1 = g(X0:k, Y0:k) but we don't even
need to assume that for the moment. Set Fk = σ(X0:k, Y0:k) and assume that

P(Xk+1 ∈ A|Fk) = P (Xk, A), P− a.s. (1.1)

Since X` is F`-measurable and F` ⊂ Fk for ` ≤ k, we deduce that σ(X0:k) ⊂ Fk. This allows to
apply the tower property, which yields

P(Xk+1 ∈ A|X0:k) = E [P(Xk+1 ∈ A|Fk)|X0:k]

= E [P (Xk, A)|X0:k] = P (Xk, A), P− a.s.

and therefore if we assume (1.1), then as soon as (Xk)k≥0 is (Fk)k≥0-adapted, we can conclude
that {Xk : k ∈ N} is a Markov chain with Markov kernel P . Why is it useful? Well, sometimes
you de�ne iteratively Xk+1 using other variables rather than X0:k only and therefore, considering
P(Xk+1 ∈ A|Fk) is easier to deal with. Let us see it in action through a very simple example.

Example 1.3. Let {εk : k ≥ 1} be iid random variables on Rp with density f with respect to the
Lebesgue measure on Rp, and let X0 ∼ µ. We assume that X0 is independent of {εk : k ∈ N}.
De�ne
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Xk+1 = aXk + bεk+1 , k ∈ N.

Set F0 = σ(X0) and for k ≥ 1, Fk = σ(X0, ε1:k). Since X` is a deterministic function of X0 and
ε1:`, we deduce that (Xk)k≥0 is (Fk)k≥0-adapted. Therefore we only need to check (1.1). Now, for
any non-negative or bounded measurable function h on X, we have

E[h(Xk+1)|Fk] =

∫ ∞
−∞

h(aXk + bε︸ ︷︷ ︸
y

)f(ε)dε =

∫ ∞
−∞

h(y) f

(
y − aXk

b

)
1

bp
dy︸ ︷︷ ︸

P (Xk,dy)

,

where the last equality follows from an adequate change of variable. Therefore {Xk : k ∈ N} is a
Markov chain with Markov kernel

(x,A) 7→ P (x,A) =

∫
A

f

(
y − ax
b

)
1

bp
dy.

In this example, we can check that Fk is actually the natural �ltration of {Xk : k ∈ N} but we
even don't need to check this property for getting that {Xk : k ∈ N} is a Markov chain.

What have I learned so far? At this stage, I am able to solve typical exercises where some
random variables are given and the question is to determine whether these random variables
form a Markov chain or not and if yes, what is the expression of the associated Markov kernel.

As an illustration, interested readers might try to solve Exercise 7.1.

1.2.1 Additional notation

We are now ready (and eager) to absorb frantically other notation... For all µ ∈ M+(X), all Markov
kernels P , Q on X×X , and all measurable non-negative or bounded functions on h on X, we use
the following convention and notation

� µP is the (positive) measure: X 3 A 7→ µP (A) =
∫
µ(dx)P (x,A),

� PQ is the Markov kernel: (x,A) 7→
∫
X
P (x, dy)Q(y,A),

� Ph is the measurable function x 7→
∫
X
P (x, dy)h(y).

It is easy to check that if µ is a probability measure, then µP is also a probability measure (since
µP (X) =

∫
X
µ(dx)P (x,X) =

∫
X
µ(dx) = 1). With these notation, one can easily check from Fubini's

theorem,

µ(P (Qh)) = (µP )(Qh) = (µ(PQ))h

= µ((PQ)h) =

∫
· · ·
∫
X3

µ(dx)P (x,dy)Q(y,dz)h(z).

Therefore all these parenthesis can be discarded and we can write µPQh without any ambiguity.
That's excellent news because it is simpler to deal with expressions without all these parenthesis.
To sum up, measures act on the left side of a Markov kernel whereas functions acts on the right
side. To make sure you have mastered all the notation, check your understanding with the following
equalities δxP (A) = P (x,A) = P1A(x).

To �nish up with notation, we now de�ne the iterates of a Markov kernel P , which will come
in very handy thereafter: for a given Markov kernel P on X × X , de�ne P 0 = I where I is the
identity kernel: (x,A) 7→ 1A(x), and set for k ≥ 0, P k+1 = P kP .
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Lemma 1.4. Let {Xk : k ∈ N} be a Markov chain on the same probability space (Ω,G,P) and
taking values on X, with Markov kernel P and with initial distribution ν ∈ M1(X). Then, for

any n ∈ N, the law of X0:n is ν(dx0)
∏n−1
i=0 P (xi,dxi+1) (with the convention that

∏−1
i=0 = 1).

Proof. Recall that for all (n,A) ∈ N×X , P(Xn+1 ∈ A|X0:n) = P (Xn, A), P-a.s. or equivalently for all non-negative
measurable functions hk+1 on X, E [hn+1(Xn+1)|X0:n] = Phn+1(Xn) P-a.s. We now show by induction that for
all n ∈ N,

(Hn) the law of X0:n is ν(dx0)
∏n−1
i=0 P (xi, dxi+1).

We �rst note that (H0) is true since by assumption, X0 ∼ ν. Assume now that (Hn) holds for some n ∈ N.
Then, for all non-negative measurable functions h0, . . . , hn+1 on X, the tower property yields

E

[
n+1∏
i=0

hi(Xi)

]
= E

[(
n∏
i=0

hi(Xi)

)
E [hn+1(Xn+1)|X0:n]

]
= E

[(
n∏
i=0

hi(Xi)

)
Phn+1(Xn)

]
,

and since the inner term in the rhs only depends on X0:n, we can apply (Hn) and thus,

E

[
n+1∏
i=0

hi(Xi)

]
=

∫
· · ·
∫
Xn+1

[
ν(dx0)

n−1∏
i=0

P (xi,dxi+1)

](
n∏
i=0

hi(xi)

)
Phn+1(xn)

=

∫
· · ·
∫
Xn+1

[
ν(dx0)

n∏
i=0

P (xi,dxi+1)

](
n+1∏
i=0

hi(xi)

)
,

showing that the law of X0:n+1 is ν(dx0)
∏n
i=0 P (xi, dxi+1) and (Hn+1) is thus proved. ut

As a consequence, the marginal law of Xn is given by integrating ν(dx0)
∏n−1
i=0 P (xi,dxi+1) over

x0:n−1 and thus, for all A ∈ X ,

P(Xn ∈ A) =

∫
· · ·
∫
Xn+1

1A(Xn)ν(dx0)

n−1∏
i=0

P (xi,dxi+1) = νPn(A),

that is, νPn is the distribution of Xn or in a compact notation, Xn ∼ νPn .

1.3 Canonical space

So far, the situation is the following: the {Xk : k ∈ N} are already given and we check the two items
in the de�nition of a Markov chain (De�nition 1.2) with Markov kernel P and initial distribution
ν. We now turn to the reverse situation where a couple (ν, P ) of initial distribution and Markov
kernel are given beforehand and we intend to construct the random variables {Xk : k ∈ N} on
some convenient (common) probability space (Ω,F ,P) such that {Xk : k ∈ N} is a Markov chain
with Markov kernel P and initial distribution ν.

1.3.1 A simpler problem

We start with an easier problem where we only want to construct {Xk : k ∈ [0 : n− 1]} where n
is some given positive integer. That is, we only consider a �nite range of integers such that the
�rst item in De�nition 1.2 is satis�ed. For a given ν ∈ M1(X), de�ne the triplet (Ωn,Gn,Pν,n) as
follows:
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� Ωn = Xn+1, Gn = X⊗(n+1) and Pν,n is the probability measure de�ned on (Ωn,Gn) by

Gn 3 A 7→ Pν,n(A) =

∫
· · ·
∫
Xn+1

1A(ω0:n)ν(dω0)

n∏
i=1

P (ωi−1,dωi),

and for ω ∈ Ωn, set Xk(ω) = ωk, (that Xk(ω) is the projection of the k-th component of ω).
We aim to show that for all A ∈ X and all k ∈ [0 : n − 1], we have Pν,n(Xk+1 ∈ A|X0:k−1) =

P (Xk, A), Pν,n−a.s. To do so, write for any k ∈ [0 : n−1], any non-negative measurable function
h on Xk+1 and any A ∈ X

Eν,n [h(X0:k)1A(Xk+1)] =

∫
· · ·
∫
Xk+2

h(ω0:k)1A(ωk+1)ν(dω0)

k+1∏
i=1

P (ωi−1,dωi)

=

∫
· · ·
∫
Xk+2

h(ω0:k)P (ωk, A)ν(dω0)

k∏
i=1

P (ωi−1,dωi)

= Eν,n [h(X0:k)P (Xk, A)] .

Since h is arbitrary, this is equivalent to saying that Pν,n(Xk+1 ∈ A|X0:k) = P (Xk, A) , P− a.s.

1.3.2 The general case

We now consider the general case where k ∈ N instead of k ∈ [0 : n − 1]. De�ne the coordinate
process (Xn) by Xn(ω) = ωn for all ω ∈ XN. We will sometimes use Xk:` : ω 7→ (ωk, . . . , ω`) for
k ≤ ` and by extension Xk:∞ : ω 7→ (ωk, . . . , ω`, ω`+1, . . . ). In particular, X0:∞(ω) = I(ω) = ω
where I is the identity function.

Theorem 1.5. (The canonical space) Let (X,X ) be a measurable space and let P be a Markov
kernel on X×X . For every probability measure ν ∈ M1(X), there exists a unique probability measure
Pν on the canonical space (XN,X⊗N) such that, under Pν , the coordinate process {Xn : n ∈ N} is
a Markov chain with Markov kernel P and initial distribution ν.

This result is often referred to as the Ionescu-Tulcea theorem. Its proof goes far beyond the
scope of this course and we will admit it here. Some other, much simpler proofs exist and are
based on the Kolmogorov extension theorem, but they hold at the price of additive assumptions
on the space (in contrast, we only assume here that (X,X ) is a measurable space, which is quite
minimal). In the canonical representation, we therefore set Ω = XN, G = X⊗N and P = Pν . In
the particular case where the initial distribution ν is a Dirac mass, we use the compact notation

Px = Pδx . Thus, the theorem allows to de�ne not only one probability measure but a family of

probability measures (Pν)ν∈M1(X) on the space of trajectories.
What are the relations between the probability measures (Pν)ν∈M1(X)? A consequence

of this theorem is that for all A ∈ X⊗(n+1), Pν(X0:n ∈ A) =
∫
A
ν(dω0)

∏n
i=1 P (ωi−1,dωi). Replac-

ing ν by δx0
and comparing the two obtained expressions, we get

Pν(X0:n ∈ A) =

∫
X

ν(dx0)Px0
(X0:n ∈ A).

We can actually extend this result to any A ∈ X⊗N by replacing the n+ 1 -tuple X0:n by the (in�-
nite) trajectoryX0:∞. First note the following equalities:A = {ω ∈ A} = {ω ∈ Ω : X0:∞(ω) ∈ A} =
{X0:∞ ∈ A}.
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We then obtain the following identity: for all A ∈ X⊗N,

Pν(A) = Pν(X0:∞ ∈ A) =

∫
X

ν(dx0)Px0(X0:∞ ∈ A) =

∫
X

ν(dx0)Px0(A). (1.2)

An illustration is given in Exercise 7.2.

1.3.3 The Markov property.

De�ne the shift operator S by S : XN 3 ω 7→ ω′ ∈ XN where ω = (ωi)i∈N and ω′ = (ωi+1)i∈N

Theorem 1.6. (The Markov property) For any ν ∈ M1(X), any non-negative or bounded
function h on XN and any n ∈ N,

Eν
[
h ◦ Sk|Fk

]
= EXk [h] , Pν − a.s. (1.3)

where Fk = σ(X0:k).

The expression of the Markov property, as it stands, may seem a bit cryptic. Recalling the
de�nition of Xk:∞, we have Pν − a.s.,

Eν [h(Xk:∞)|Fk] = Eν
[
h ◦ Sk ◦X0:∞|Fk

]
= Eν

[
h ◦ Sk ◦ I|Fk

]
= Eν

[
h ◦ Sk|Fk

]
= EXk [h] = EXk [h ◦ I]

= EXk [h(X0:∞)].

Therefore, for any ν ∈ M1(X),

Eν [h(Xk:∞)|Fk] = EXk [h(X0:∞)] , Pν − a.s.

is another equivalent expression of the Markov property. This expression may seem easier
to deal with but the reader has to be at ease with both formulations. A stronger version of the
Markov property exists and is called (as expected) the strong Markov property: its statement is
(1.3) with the exception that k is replaced by a stopping time τ and that the identity only holds
on the event {τ <∞}. The strong Markov property is extremely important in Markov Chain
theory but, quite surprisingly, it is not needed in this basic course. To satisfy readers' curiosity,
Exercise 7.3 states and proves the Strong Markov property.

1.4 After studying this chapter...

a) I can write perfectly expression of Markov kernels if it is asked.
b) I understand the di�erent notation µPQf...
c) I perfectly understand the canonical space.
d) I can understand (1.2).
e) I perfectly understand the Markov property (1.3).
f) I love Markov chains.
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Highlights

1.A Andrey Markov (source: wikipedia).

Andrey Andreyevich Markov (1856�1922) was a Russian mathemati-
cian best known for his work on stochastic processes. A primary sub-
ject of his research later became known as Markov chains and Markov
processes.

Markov and his younger brother Vladimir Andreevich Markov (1871�
1897) proved the Markov brothers' inequality. His son, another Andrei
Andreyevich Markov (1903�1979), was also a notable mathematician,
making contributions to constructive mathematics and recursive func-
tion theory.

Andrey Markov was born on 14 June 1856 in Russia. He attended
Petersburg Grammar, where he was seen as a rebellious student by a se-
lect few teachers. In his academics he performed poorly in most subjects
other than mathematics. Later in life he attended Petersburg Univer-

sity; among his teachers were Yulian Sokhotski (di�erential calculus, higher algebra), Konstantin
Posse (analytic geometry), Yegor Zolotarev (integral calculus), Pafnuty Chebyshev (number theory
and probability theory), Aleksandr Korkin (ordinary and partial di�erential equations), Mikhail
Okatov (mechanism theory), Osip Somov (mechanics), and Nikolai Budaev (descriptive and higher
geometry). He completed his studies at the University and was later asked if he would like to stay
and have a career as a Mathematician. He later taught at high schools and continued his own
mathematical studies. In this time he found a practical use for his mathematical skills. He �gured
out that he could use chains to model the alliteration of vowels and consonants in Russian liter-
ature. He also contributed to many other mathematical aspects in his time. He died at age 66 on
20 July 1922.
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2.1 Invariant probability measures: existence

De�nition 2.1. We say that π ∈ M1(X) is an invariant probability measure for the Markov kernel
P on X×X if πP = π.

In words, if (Xk) is a Markov chain with Markov kernel P and assuming that X0 ∼ π, then for
all k ≥ 1, we have Xk ∼ π. (This is due to the fact that applying P k on both sides of πP = π
shows that πP k+1 = πP kand therefore, for all k ∈ N, πP k = π). This result on the (marginal)
distribution of Xk may be extended to n-tuples.

More precisely, it can be readily checked that if π is an invariant probability measure for P ,
then the sequence of random variables {Xk : k ∈ N} is a strongly stationary sequence under Pπ
(in the sense that for all n, p ∈ N∗, and all n-tuple k1:n, the random vector (Xk1 , . . . , Xkn) follows
the same distribution as (Xk1+p, . . . , Xkn+p)).

Exercises 7.4 and 7.5 illustrate the existence of stationary distributions for Markov chains. We
now introduce the notion of reversibility for a Markov kernel. This will be of crucial importance
for designing Markov kernels with a given invariant probability measure.

De�nition 2.2. Let π ∈ M1(X) and P be a Markov kernel on X×X . We say that P is π-reversible if
and only if (with in�nitesimal notation)

π(dx)P (x,dy) = π(dy)P (y,dx), (2.1)

15
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that is, for all measurable bounded or non-negative functions h on
(
X2,X⊗2

)
,∫∫

X2

h(x, y)π(dx)P (x, dy) =

∫∫
X2

h(x, y)π(dy)P (y,dx). (2.2)

In words, a Markov kernel P is π-reversible if and only if the probability measure π(dx)P (x, dy)
is symmetric with respect to (x, y).

Proposition 2.3. Let P be a Markov kernel on X×X . Let π ∈ M1(X) such that P is π-reversible,
then the Markov kernel P is π-invariant.

Proof. For any A ∈ X , we have by the reversibility relation

πP (A) =

∫∫
X2

1A(y)π(dx)P (x, dy) =

∫∫
X2

1A(y)π(dy)P (y,dx) =

∫
A

π(dy)P (y,X)︸ ︷︷ ︸
1

= π(A),

which �nishes the proof. ut

What are the consequences? If you want to check easily that a kernel P is π-invariant,
it is su�cient to check that it is π-reversible.

Exercise 7.6 gives an example of π-reversible kernel.

2.1.1 Metropolis-Hastings (MH) algorithms

In this section, we are given a probability measure π ∈ M1(X) and the idea now is to construct a
Markov chain {Xk : k ∈ N} admitting π as invariant probability measure, in which case we say
that π is a target distribution. In other words, we try to �nd a Markov kernel P on X × X such
that P is π-invariant. The reason for that is that an invariant probability measure will be a good
candidate for the �limiting� distribution of {Xk : k ∈ N} (in some sense to be de�ned) and this
in turn, will allow us to provide an approximation π(h):

π(h) =

∫
X

h(x)π(dx) ≈ n−1
n−1∑
k=0

h(Xi).

2.1.1.1 Construction of the kernel

For simplicity we now assume that π has a density with respect to some dominating σ-�nite
measure λ and by abuse of notation, we also denote by π this density, that is we write π(dx) =
π(x)λ(dx) and we assume that this density π is positive.

Moreover, let Q be Markov kernel on X×X such that Q(x, dy) = q(x, y)λ(dy), that is, for any
x ∈ X, Q(x, ·) is also dominated by λ and denoting by q(x, ·) this density, we assume for simplicity
that q(x, y) is positive for all x, y ∈ X. At this stage, there is almost no link between Q and the
target distribution π.

For a given function α : X2 → [0, 1], consider the following Algorithm 1.
In words, Q allows to propose a candidate for the next value of the Markov chain (Xk) and this

candidate will be accepted or refused according to a probability that depends on the function α.
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input : n
output: X0, . . . , Xn

At t = 0, draw X0 according to some arbitrary distribution
for t← 0 to n− 1 do
• Draw independently Yt+1 ∼ Q(Xt, ·) and Ut+1 ∼ Unif(0, 1)

• Set Xt+1 =

{
Yt+1 if Ut+1 ≤ α(Xt, Yt+1)

Xt otherwise

end

Algorithm 1: The Metropolis Algorithm

We will now choose conveniently α in such a way that (Xk) is a Markov chain with invariant
probability measure π. The concept of π-reversibility will help us. To do so, let us assume that for
all x, y ∈ X,

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x), (2.3)

and let us show that it implies that the Markov kernel P associated to (Xk) is π-reversible.
First, we write down the Markov kernel associated to (Xk): in passing, this is an excellent

opportunity to check if we are able to express explicitly a Markov kernel by analyzing conveniently
the update transition. Denote Ft = σ(X0, U1:t, Y1:t) and note that (Xt) is adapted to the �ltration
(Ft) (which is equivalent to σ(X0,t) ⊂ Ft). Then, setting ᾱ(x) = 1 −

∫
X
Q(x, dy)α(x, y), we have

for any bounded or non-negative measurable function h on X and any t ∈ N,

E [h(Xt+1)|Ft] = E
[
1{Ut+1<α(Xt,Yt+1)}h(Yt+1)|Ft

]
+ E

[
1{Ut+1≥α(Xt,Yt+1)}|Ft

]
h(Xt)

=

∫
X

Q(Xt,dy)α(Xt, y)h(y) + ᾱ(Xt)h(Xt)

=

∫
X

Q(Xt,dy)α(Xt, y) + ᾱ(Xt)δXt(dy)︸ ︷︷ ︸
PMH〈π,Q〉(Xt,dy)

h(y) = PMH
〈π,Q〉h(Xt).

Therefore, {Xt : t ∈ N} is a Markov chain with Markov kernel

PMH
〈π,Q〉(x, dy) = Q(x, dy)α(x, y) + ᾱ(x)δx(dy). (2.4)

Lemma 2.4. The Markov kernel PMH
〈π,Q〉 is π-reversible if and only if

π(dx)Q(x, dy)α(x, y) = π(dy)Q(y,dx)α(y, x). (2.5)

In this literature, (2.5) is often called the detailed balance condition.

Proof. First, note that
π(dx)ᾱ(x)δx(dy) = π(dy)ᾱ(y)δy(dx). (2.6)

Indeed, for any measurable function h on X2, we have

∫∫
X2
h(x, y)π(dx)ᾱ(x)δx (dy) =

∫
X

h(x, x)π(dx)ᾱ(x)

=

∫
X

h(y, y)π(dy)ᾱ(y) =

∫∫
X2
h(x, y)π(dy)ᾱ(y)δy(dx).
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Combining (2.4) with (2.6), we obtain that PMH
〈π,Q〉 is π-reversible if and only if the detailed balance condition

(2.5) is satis�ed. This completes the proof. ut

2.1.1.2 Acceptance probability

We now make use of Lemma 2.4 in order to �nd an explicit expression of the acceptance probability
α. We have the following lemma.

Lemma 2.5. Denote αMH(x, y) = min
(
π(y)q(y,x)
π(x)q(x,y) , 1

)
and αb(x, y) = π(y)q(y,x)

π(x)q(x,y)+π(y)q(y,x) .

Then, any α ∈
{
αMH , αb

}
satis�es the detailed balance condition (2.5). Moreover, any other

α ∈ [0, 1] that satis�es the detailed balance condition is dominated by αMH in the sense that:
for λ⊗2-almost all x, y ∈ X,

α(x, y) ≤ αMH(x, y). (2.7)

Proof. The fact that any α ∈
{
αMH , αb

}
satis�es π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x) for λ⊗2-almost all x, y ∈

X, is immediate, by replacing α by its expression. It remains to check (2.7) . Assume now that for λ⊗2-almost all
x, y ∈ X,

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x).

then, using that α(y, x) ≤ 1 shows that α(x, y) ≤ π(y)q(y,x)
π(x)q(x,y)

. Moreover, α(x, y) ≤ 1 and this �nally implies

α(x, y) ≤ min

(
π(y)q(y, x)

π(x)q(x, y)
, 1

)
= αMH(x, y),

which completes the proof. ut

According to (2.7), αMH is actually the highest acceptance probability among the acceptance
probabilities such that PMH

〈π,Q〉 is π-reversible and therefore, this acceptance is widely used in prac-

tice (in the sense that we expect that a Markov kernel that accepts often, explores the space
more rapidly and therefore is preferable to another one with less acceptance probability). In what
follows, unless otherwise stated, we implicitly assume that the Markov kernel PMH

〈π,Q〉 is

associated to the acceptance probability αMH .
Exercise 7.7 shows other examples of possible acceptance probabilities.

Example 2.6. (The independence sampler) If the proposition kernel is Q(x,dy) = q(y)λ(dy)
where q is a density wrt λ on X, then at each time step, the proposed candidate is drawn irrespective
of the current value of the Markov chain (this is because, Q(x, dy) does not depend on x), that
is, in the step 2(a) of Algorithm 1, we draw Yt+1 ∼ q (·). In such case, the acceptance probability

is α(x, y) = min
(
π(y)q(x)
π(x)q(y) , 1

)
and the Metropolis-Hastings algorithm is called the Independence

Sampler.

Another important example is the following.

Example 2.7. (The random walk MH sampler) If X = Rp and if the proposition kernel is
Q(x, dy) = q(y − x)λ(dy) where q is a symmetric density wrt λ on X, (by symmetric, we mean
that q(u) = q(−u) for all u ∈ X) then at each time step in Algorithm 1, we draw a candidate

Yt+1 ∼ q (y −Xk)λ(dy). In such case, the acceptance probability is α(x, y) = min
(
π(y)
π(x) , 1

)
and

the associated algorithm is called the (symmetric) Random Walk Metropolis-Hasting. Another way
of writing the proposition update is Yt+1 = Xk + ηk where ηk ∼ q(·).
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2.2 Invariant probability measure: uniqueness

We start with a very simple lemma that will be useful for �nding su�cient conditions for unique-
ness.

Lemma 2.8. If P admits two distinct invariant probability measures, it also admits distinct
invariant probability measures π0 and π1 that are mutually singular, i.e., such that there exists
A ∈ X such that π0(A) = π1(Ac) = 0.

Proof. Let ζ0, ζ1 be two distinct invariant probability measures for P . Both have densities with respect to some
common dominating measure (for example, taking ζ = ζ1 + ζ2, we have that ζ dominates both ζ0 and ζ1, which
can be seen from the implication ζ(A) = 0 ⇒ (ζ1(A) = 0 and ζ2(A) = 0) for any A ∈ X and according to
the Radon Nikodym theorem, if a measure dominates another one, the latter has a density with respect to the
former). Write then ζ0(dx) = f0(x)ζ(dx) and ζ1(dx) = f1(x)ζ(dx) where f0, f1 are non-negative measurable
functions on X. De�ne the positive part (ζ1 − ζ0)+and the negative part (ζ1 − ζ0)− of the signed measure ζ1 − ζ0
by (ζ1 − ζ0)+(dx) = [f1(x)− f0(x)]+ζ(dx) and (ζ1 − ζ0)−(dx) = [f1(x)− f0(x)]−ζ(dx). Then,

(ζ1 − ζ0)+P1A =

∫
X

ζ(dx)[f1(x)− f0(x)]+P (x,A)

≥
∫
X

ζ(dx)[f1(x)− f0(x)]P (x,A)

≥ ζ1P (A)− ζ0P (A) = ζ1(A)− ζ0(A).

Therefore, (ζ1 − ζ0)+P is a (non-negative) measure that is greater than the signed measure ζ1 − ζ0. Since the
positive part (ζ1 − ζ0)+ is also the smallest (non-negative) measure that is greater than ζ1 − ζ0, we conclude that
(ζ1 − ζ0)+ ≤ (ζ1 − ζ0)+P . The measure (ζ1 − ζ0)+P − (ζ1 − ζ0)+ is therefore non-negative and we have

[(ζ1 − ζ0)+P − (ζ1 − ζ0)+](X) =

∫
X

(ζ1 − ζ0)+(dx)P (x,X)︸ ︷︷ ︸
1

−(ζ1 − ζ0)+(X) = 0.

Finally, (ζ1 − ζ0)+ = (ζ1 − ζ0)+P . The probability measure π0 =
(ζ1−ζ0)+

(ζ1−ζ0)+(X)
is thus an invariant probability

measure for P . Replacing (ζ1−ζ0)+ by (ζ1−ζ0)−, we obtain in the same way that π1 =
(ζ1−ζ0)−

(ζ1−ζ0)−(X)
is an invariant

probability measure. We can easily check that taking A = {f0 ≥ f1}, we have π0(A) = π1(Ac) = 0, showing that
these probability measures are mutually singular. ut

To be rigorous, in the course of the proof, we actually need some results on the positive and
negative part of a signed-measure. The interested reader may work on the following exercise to
fully understand the previous proof:

Exercise 2.9. De�ne Ms(X) the set of signed-measures. Let µ ∈ Ms(X) and assume that µ � ζ
where ζ ∈ M+(X) (in the sense that we have the implication: if for some A ∈ X , ζ(A) = 0,
then µ(A) = 0). According to the Radon-Nikodym theorem, there exists a measurable function
h such that µ(dx) = h(x)ζ(dx). De�ne µ+(dx) = |h(x)|ζ(dx).

1. Show that the measure µ+is well-de�ned (in the sense that the measure |h(x)|ζ(dx) does
not depend on the measure ζ, provided that the ζ dominates µ.)

2. Show that for ζ-almost all x ∈ X, |h(x)| ≤ 1.
3. Assume that there exists ν ∈ M+(X) such that for all A ∈ X , we have µ(A) ≤ ν(A). Show
that µ+(A) ≤ ν(A) for all A ∈ X .

We now make use of Lemma 2.8 in order to give a su�cient condition for uniqueness.
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Proposition 2.10. Assume that there exists a non-null measure µ ∈ M+(X) satisfying the follow-
ing property:

� For all A ∈ X such that µ(A) > 0 and for all x ∈ X, there exists n ∈ N such that Pn(x,A) > 0.

Then, P admits at most one invariant probability measure.

If the assumption of Proposition 2.10 holds, we say that P is µ-irreducible and in such case,
µ is called an irreducibility measure for P .

Proof. The proof is by contradiction. Assume that there exists two distinct invariant probability measures. Accord-
ing to Lemma 2.8, we can consider two invariant probability measures π1 and π2 that are mutually singular. Under
the assumptions of the Proposition, let A ∈ X such that µ(A) > 0. Then, for any i ∈ {1, 2} ,we have

0 <

∫
X

πi(dx)

∞∑
n=0

Pn(x,A)︸ ︷︷ ︸
>0

=

∞∑
n=0

πiP
n(A) =

∞∑
n=0

πi(A),

which in turn implies that πi(A) > 0. The contraposed implication gives that if for some i ∈ {1, 2}, πi(A) = 0, then
µ(A) = 0. Now, since {πi : i ∈ {1, 2}} are mutually singular, there exists A ∈ X such that π1(A) = π2(Ac) = 0
and this shows that µ(A) = µ(Ac) = 0 which is impossible. ut

Exercise 7.9 gives an example where Proposition 2.10 applies.

2.2.1 Application to Metropolis-Hastings algorithms.

We have already seen that PMH
〈π,Q〉is π-invariant and we have assumed that Q(x, dy) = q(x, y)λ(dy)

and π(dy) = π(y)λ(dy) and for simplicity, we said that for all x, y ∈ X, q(x, y) > 0 and π(y) > 0.
This in turn implies that α(x, y) = αMH(x, y) > 0 and therefore if λ(A) > 0, then for all x ∈ X,

P (x,A) ≥
∫
A

q(x, y)α(x, y)︸ ︷︷ ︸
>0

λ(dy) > 0.

This shows that P is λ-irreducible and therefore π is the unique invariant probability mea-
sure for P .

2.3 After studying this chapter...

a) I can understand the link between reversibility and invariant measure.
b) If asked, I can check that MH chains are reversible.
c) I understand the form of the acceptance probability.
d) Independence sampling and random walk MH have no secrets for me and I am able

to implement them.
e) If asked, I can show that an invariant measure is unique by using Proposition 2.10
f) I �nd that Metropolis-Hasting algorithms are magical.
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Highlights

2.A Monte Carlo methods. Source: Wikipedia

The term "Monte Carlo method" was coined in the 1940s by physicists working on nuclear weapon
projects in the Los Alamos National Laboratory.

Enrico Fermi in the 1930s and Stanislaw Ulam in 1946 �rst had the idea. Ulam later contacted
John Von Neumann to work on it.

Physicists at Los Alamos Scienti�c Laboratory were investigating radiation shielding and the
distance that neutrons would likely travel through various materials. Despite having most of the
necessary data, such as the average distance a neutron would travel in a substance before it collided
with an atomic nucleus or how much energy the neutron was likely to give o� following a collision,
the problem could not be solved with analytical calculations. John von Neumann and Stanislaw
Ulam suggested that the problem be solved by modeling the experiment on a computer using
chance. Being secret, their work required a code name. Von Neumann chose the name "Monte
Carlo". The name is a reference to the Monte Carlo Casino in Monaco where Ulam's uncle would
borrow money to gamble.

Random methods of computation and experimentation (generally considered forms of stochastic
simulation) can be arguably traced back to the earliest pioneers of probability theory (see, e.g.,
Bu�on's needle, and the work on small samples by William Sealy Gosset), but are more speci�cally
traced to the pre-electronic computing era. The general di�erence usually described about a Monte
Carlo form of simulation is that it systematically "inverts" the typical mode of simulation, treating
deterministic problems by �rst �nding a probabilistic analog (see Simulated annealing). Previous
methods of simulation and statistical sampling generally did the opposite: using simulation to test
a previously understood deterministic problem. Though examples of an "inverted" approach do
exist historically, they were not considered a general method until the popularity of the Monte
Carlo method spread.

Monte Carlo methods were central to the simulations required for the Manhattan Project,
though were severely limited by the computational tools at the time. Therefore, it was only after
electronic computers were �rst built (from 1945 on) that Monte Carlo methods began to be
studied in depth. In the 1950s they were used at Los Alamos for early work relating to the
development of the hydrogen bomb, and became popularized in the �elds of physics, physical
chemistry, and operations research. The Rand Corporation and the U.S. Air Force were two of
the major organizations responsible for funding and disseminating information on Monte Carlo
methods during this time, and they began to �nd a wide application in many di�erent �elds.

Uses of Monte Carlo methods require large amounts of random numbers, and it was their use
that spurred the development of pseudorandom number generators, which were far quicker to use
than the tables of random numbers which had been previously used for statistical sampling.
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We now focus on properties of Markov chains with unique invariant probability measures. We

will show in this part that such Markov chains turn out to be ergodic in some sense to be de�ned
(actually in this type of ergodicity is linked with ergodic dynamical systems) and this, in turn,
allows to apply the Birkho� ergodic theorem so that a law of large number will hold.

Let us start with a refresher on ergodic results.

3.1 Dynamical systems.

De�nition 3.1. (Dynamical system) A dynamical system D is a quadruplet D = (Ω,F ,P, T ) where
(Ω,F ,P) is a probability space and T : Ω → Ω is a measurable mapping such that P = P ◦ T−1.

Lemma 3.2. The collection of sets I = {A ∈ F : 1A = 1A ◦ T} is a σ-�eld and any set in I is

called an invariant set.

Proof. Indeed, obviously Ω ∈ I . Moreover, if A ∈ I, then for all ω ∈ Ω,

1Ac (ω) = 1− 1A(ω) = 1− 1A ◦ T (ω) = 1Ac ◦ T (ω),

showing that Ac ∈ I. Now, consider a countable family of Ai ∈ I where i ∈ N. Then ω ∈ ∩i∈NAi if and only if for
all i ∈ N, ω ∈ Ai which is in turn equivalent to T (ω) ∈ Ai. All in all we have shown that ω ∈ ∩i∈NAi if and only if
T (ω) ∈ ∩i∈NAi. This shows that I is a σ-�eld. ut

De�nition 3.3. (Ergodicity) A dynamical system (Ω,F ,P, T ) is said to be ergodic if I is trivial, that
is, A ∈ I implies that either P(A) = 0 or P(A) = 1.

23
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What interests us in the �rst place is that ergodic dynamical system satis�es the Birkho�
ergodic theorem, as detailed below. We �rst de�ne the iterates of T by T 0 = I, and for all k ≥ 1,
T k = T k−1 ◦ T .

Theorem 3.4. (The Birkho� theorem) Let D = (Ω,F ,P, T ) be an ergodic dynamical
system and let h ∈ L1(Ω). Then,

lim
n→∞

n−1
n−1∑
k=0

h ◦ T k = E[h] , P− a.s.

Exercise 7.11 proves this theorem.

3.2 Markov chains and ergodicity

Let us now relate Markov chains to dynamical systems. Recall the shift operator S : XN 3 ω 7→ ω′ ∈
XN where ω = (ωi)i∈N and ω′ = (ωi+1)i∈N. It is important to note that in general (XN,X⊗N,Pν , S)
is not a dynamical system except if the initial distribution ν is actually invariant wrt P .

Lemma 3.5. Let P be a Markov kernel admitting an invariant probability measure π. Then,
the quadruplet (XN,X⊗N,Pπ, S) is a dynamical system.

Proof. Indeed, the relation Pπ = Pπ ◦ S−1 is equivalent to the fact that for any A ∈ X⊗N, Pπ(A) = Pπ(X0:∞ ∈
A) = Pπ

(
X0:∞ ∈ S−1(A)

)
= Pπ(X1:∞ ∈ A), which is a consequence of the fact that the sequence of random

variables {Xk : k ∈ N} is strongly stationary under Pπ . ut

The relation Pπ = Pπ ◦ S−1 tells us that for any A ∈ X⊗N, we have

Eπ[1A] = Pπ(A) = Pπ ◦ S−1(A) = Pπ(S−1(A)) = Eπ[1S−1(A)] = Eπ[1A ◦ S],

This, in turn, implies that for any h ∈ F+(X),

Eπ[h] = Eπ[h ◦ S].

We now provide conditions under which a Markov kernel induces an ergodic dynamical system
(XN,X⊗N,Pπ, S). In what follows, Fk = σ(X0:k). Since invariant sets A belong to X⊗N, it can be
(and it will be) useful to get approximations of A by sets in Fk where k is conveniently chosen.

Lemma 3.6. (The approximation lemma) Any set A ∈ X⊗N satis�es the following approxi-
mation property:

� for all δ > 0, there exist k ∈ N and B ∈ Fk such that

Eπ[|1A − 1B |] ≤ δ. (3.1)

Proof. This is a typical use of the mononotone class theorem. Consider the class M of sets A ∈ X⊗N, for which
the approximation (3.1) holds.

� If A0, A1 ∈M and A0 ⊂ A1, then A1 \A0 ∈M. This is actually immediate from the following identities, valid
for all sets A0, A1, B0, B1,
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1A1\A0
− 1B1\B0

= 1A1
− 1A1

1A0
−
(
1B1
− 1B1

1B0

)
= 1A1

− 1B1
− 1A1

(
1A0
− 1B0

)
+
(
1B1
− 1A1

)
1B0

,

which implies E[|1A1\A0
− 1B1\B0

|] ≤ 2E[|1A1
− 1B1

|] + E[|1A0
− 1B0

|]
� If An ↑ A where An ∈M and An ⊂ An+1 for all n ≥ 0. Then, setting A = ∪nAn ∈M, we have

lim
n→∞

1An = 1A,

and this immediately implies that A ∈M (check it carefully).

Then, M is a monotone class that contains all the (Fk)k≥0 and therefore, it contains σ(∪∞k=0Fk) = X⊗N. This
�nishes the proof. ut

We now have all the tools to state and prove an extremely powerful result on Markov chains
and ergodicity.

Theorem 3.7. Let P be a Markov kernel on X × X . Assume that P admits a unique invariant
probability measure π. Then, the dynamical system (XN,X⊗N,Pπ, S) is ergodic.

Proof. Let P be a Markov kernel that admits a unique invariant probability measure π and let A ∈ I ={
A ∈ X⊗N : 1A = 1A ◦ S

}
.

Assume that Pπ(A) > 0. We will show that Pπ(A) = 1 and this will prove that the dynamical system
(XN,X⊗N,Pπ , S) is ergodic.

Before diving into the proof, let us take a few minutes to analyse the situation... The quantity of interest is
Pπ(A) while the assumption is on π (it is the unique invariant probability measure for P ). A �rst step is to relate
Pπ(A) with π... That reminds us (1.2), which allows to write

Pπ(A) =

∫
X

π(dx)Ex[1A] = π(hA) , where we have set hA(x) = Ex[1A].

The proof proceeds in two steps. We �rst establish some results on hA and then, deduce properties on Pπ(A) by
constructing, from π and A, another invariant probability measure πA.

(i) (hA(Xn) does not depend on n, Pπ − a.s.). To see this, �rst write for any n ∈ N,

Eπ [|hA(X0)− 1A|] = Eπ [|hA(X0)− 1A| ◦ Sn] (3.2)

= Eπ [|hA(X0 ◦ Sn︸ ︷︷ ︸
Xn

)− 1A ◦ Sn︸ ︷︷ ︸
1A

|] = Eπ [|hA(Xn)− 1A|].

We now show that the rhs tends to 0. First, we �nd another expression for hA(Xn). De�ne Fn = σ(X0, . . . , Xn).
Then, Pπ − a.s.,

hA(Xn) = EXn [1A]
(1)
= Eπ [1A ◦ Sn|Fn]

(2)
= Eπ [1A|Fn] ,

where
(1)
= comes from the Markov property and

(2)
= from the fact that A ∈ I. Fix some k ∈ N and let B ∈ Fk.

Then, for all n ≥ k, we have E[1B |Fn] = 1B and thus,

Eπ [|hA(Xn)− 1B |] = Eπ [|Eπ [1A − 1B |Fn]|] ≤ Eπ [Eπ [|1A − 1B ||Fn]] = Eπ [|1B − 1A|]

This implies, by using the triangular inequality and then taking the limsup,

lim sup
n→∞

Eπ [|hA(Xn)− 1A|] ≤ 2Eπ [|1B − 1A|].

Now, according to the approximation lemma (Lemma 3.6), the rhs can be made arbitrarily small for a convenient
choice of k and B ∈ Fk. Therefore, limn→∞ Eπ [|hA(Xn)−1A|] = 0. Combining this limiting result with (3.2),
we deduce that Eπ [|hA(Xn)− 1A|] is a constant that tends to 0 as n tends to in�nity. It is thus equal to 0 for
all n ∈ N, and we have

hA(X0) = hA(Xn) = 1A , Pπ − a.s. (3.3)

(ii) Now, de�ne the probability measure πA on (X,X ) by πA(f) =
Eπ [hA(X0)f(X0)]

Pπ(A)
for any non-negative measurable

function f on X. Then, using the Markov property, (3.3) with n = 1 and X1
L
= X0 under Pπ (that is, they

share the same distribution under Pπ), we get
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Eπ [hA(X0)× Pf(X0)] = Eπ [hA(X0)× f(X1)] = Eπ [hA(X1)× f(X1)]

= Eπ [hA(X0)× f(X0)] ,

Therefore, πAP (f) = πA(Pf) = πA(f), showing that πA is an invariant probability measure for P and thus,
π = πA. Then,

Pπ(A) =

∫
X

π(dx)Px(A) = π(hA) = πA(hA) =
Eπ [hA(X0)× hA(X0)]

Pπ(A)
.

Applying again (3.3) yields Pπ(A) = Eπ [1A × 1A] /Pπ(A) = 1 which completes the proof of the theorem.

ut

As a consequence, the Birkho� theorem for dynamical systems, Theorem 3.4, yields

Theorem 3.8. Let P be a Markov kernel admitting a unique invariant probability measure π.
Then, for all h ∈ F(XN) such that Eπ[|h|] <∞, we have

lim
n→∞

n−1
n−1∑
k=0

h(Xk:∞) = Eπ[h] , Pπ − a.s.

or equivalently,

lim
n→∞

n−1
n−1∑
k=0

h ◦ Sk = Eπ[h] , Pπ − a.s.

A particular case of Theorem 3.8 is when h(X0:∞) = f(X0). In such case, we have the following
corollary.

Corollary 3.9. Let P be a Markov kernel admitting a unique invariant probability measure π.
Then, for all f ∈ F(X) such that π(|f |) =

∫
X
π(dx)|f(x)| <∞, we have

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pπ − a.s. (3.4)

The limiting result (3.4) is nice but it holds Pπ − a.s. We now try to overcome this issue.

Under the assumptions of Corollary 3.9, set A =
{

limn→∞ n−1
∑n−1
k=0 f(Xk)− π(f)

}
. Combining

Theorem 3.8 with (1.2), 0 = Pπ(Ac) =
∫
X
π(dx)Px(Ac) and this implies that Px(Ac) = 0 (i.e.

Px(A) = 1) for π-almost all x ∈ X. Therefore, we �nally get:

Corollary 3.10. Let P be a Markov kernel admitting a unique invariant probability measure π.
Then, for all f ∈ F(X) such that π(|f |) =

∫
X
π(dx)|f(x)| <∞, we have for π-almost all x ∈ X,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Px − a.s. (3.5)

What about Metropolis-Hastings algorithms? In Section 2.2.1, we have seen that π is
the unique invariant probability measure for PMH

〈π,Q〉 provided that Q(x,dy) = q(x, y)λ(dy) and
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π(dy) = π(y)λ(dy) with q > 0 and π > 0. Therefore, (3.4) and (3.5) hold. Actually we can have
an even stronger result!!!

Theorem 3.11. Let Q be a Markov kernel on X × X and π ∈ M1(X). Assume that Q(x, dy) =
q(x, y)λ(dy) and π(dy) = π(y)λ(dy) where q > 0, π > 0 and λ is a σ-�nite measure on (X,X ).
Then, the Markov chain {Xn : n ∈ N} with Markov kernel PMH

〈π,Q〉, i.e. the Markov chain generated

by the Metropolis-Hastings algorithm is such that: for all initial distributions ν ∈ M1(X) and all
f ∈ F(X) such that π(|f |) =

∫
X
π(dx)|f(x)| <∞,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s (3.6)

Proof. Let ν ∈ M1(X). Set A =
{

limn→∞ n−1
∑n−1
k=0 f(Xk) = π(f)

}
. From Section 2.2.1, we know that π is the

unique invariant probability measure for PMH
〈π,Q〉 and therefore by Corollary 3.9, 0 = Pπ(Ac) =

∫
X
π(dx)hAc (x) =

π(hAc ) where we have set hAc (x) = Ex[1Ac ]. Fix an arbitrary x ∈ X. Since(
lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f)

)
⇔

(
lim
n→∞

n−1
n∑
k=1

f(Xk) = π(f)

)
,

the set A ∈ I and hence Ac ∈ I since I is a σ-�eld. Then, using the Markov property and 1Ac ◦S = 1Ac , we obtain

PMH
〈π,Q〉hAc (x) = Ex

[
EX1

[1Ac ]
]

= Ex [Ex[1Ac ◦ S|F1]] = Ex[1Ac ◦ S] = Ex[1Ac ] = hAc (x).

This implies, by combining with (2.4)

hAc (x) = PMH
〈π,Q〉hAc (x) =

∫
q(x, y)α(x, y)

π(y)
hAc (y)π(y)λ(dy) + ᾱ(x)hAc (x).

Since q > 0 and π > 0, we can easily check that α > 0 and ᾱ(x) < 1 (check it carefully). The �rst term in
the rhs is null since π(hAc ) = 0. Therefore, (1− ᾱ(x))hAc (x) = 0 and since ᾱ(x) < 1, we can conclude that
hAc (x) = Ex[1Ac ] = 0. Finally, x being arbitrary, we obtain

Pν(Ac) =

∫
X

ν(dx)Ex[1Ac ] = 0,

and this is equivalent to Pν
(
limn−1

∑n−1
k=0 f(Xk) = π(f)

)
= 1. The proof is concluded. ut

Theorem 3.11 is nice since the LLN holds Pν-a.s. for all starting distributions ν but the problem
is that the result of Theorem 3.11 only concerns MH kernels. For a general kernel P , we have the
nice following result.

Theorem 3.12. If P is a Markov kernel on X × X that admits a unique invariant probability
measure π. Assume in addition that for all bounded functions h and all measures ν ∈ M1(X),

lim
n→∞

νPnh = π(h) (3.7)

Then, for all initial distributions ν ∈ M1(X) and all f ∈ F(X) such that π(|f |) =
∫
X
π(dx)|f(x)| <

∞,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s (3.8)
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Proof. We start as in the proof of Theorem 3.11. Let ν ∈ M1(X). Set A =
{

limn→∞ n−1
∑n−1
k=0 f(Xk) = π(f)

}
.

Since π is the unique invariant probability measure for P , we have, by Corollary 3.9, 0 = Pπ(Ac) =
∫
X
π(dx)hAc (x) =

π(hAc ) where we have set hAc (x) = Ex[1Ac ]. As in the proof of Theorem 3.11, Ac ∈ I. Moreover,

νPnhAc = Eν [hAc (Xn)] = Eν [EXn [1Ac ]]
(1)
= Eν [Eν [1Ac ◦ Sn|Fn]]

(2)
= Eν [1Ac ◦ Sn]

(3)
= Pν(Ac)

where
(1)
= follows from the Markov property,

(2)
= is the tower property, and

(1)
= follows from 1Ac ◦ Sn = 1Ac , since

Ac ∈ I.
Combined with (3.7), we get

Pν(Ac) = νPhhAc = π(hAc ) =

∫
π(dx)Ex[1Ac ] = Pπ(Ac) = 0

Finally Pν(Ac) = 0, that is Pν(A) = 1, which is equivalent to

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s

ut

3.3 After studying this chapter...

a) I understand that I can use the LLN (Law of Large Numbers) for any MH algorithm
starting from anywhere...

b) If I want to check a LLN, I �rst check if there is a unique invariant measure (Theo-
rem 3.7)

c) I understand the proof of Theorem 3.7, which is hard but so beautiful...

Highlights

3.A Nicholas Metropolis (source: wikipedia).

Nicholas Constantine Metropolis (June 11, 1915 � October 17, 1999)
was a Greek-American physicist.

Metropolis received his BSc (1937) and PhD (1941) degrees in physics
at the University of Chicago. Shortly afterwards, Robert Oppenheimer
recruited him from Chicago, where he was at the time collaborating
with Enrico Fermi and Edward Teller on the �rst nuclear reactors, to
the Los Alamos National Laboratory. He arrived in Los Alamos in April
1943, as a member of the original sta� of �fty scientists.

After World War II, he returned to the faculty of the University of
Chicago as an assistant professor. He came back to Los Alamos in 1948
to lead the group in the Theoretical Division that designed and built the
MANIAC I computer in 1952 that was modeled on the IAS machine,
and the MANIAC II in 1957. (He chose the name MANIAC in the hope
of stopping the rash of such acronyms for machine names, but may
have, instead, only further stimulated such use.) (John von Neumann
thought this acronym was too frivolous.) From 1957 to 1965 he was

Professor of Physics at the University of Chicago and was the founding Director of its Institute for
Computer Research. In 1965 he returned to Los Alamos where he was made a Laboratory Senior
Fellow in 1980.
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In his memoirs, Stanislaw Ulam remembers that a small group, including himself, Metropolis,
Calkin, Konopinski, Kistiakowsky, Teller and von Neumann, spent several evenings at Los Alamos
playing poker. They played for very small sums, but: "Metropolis once described what a triumph
it was to win ten dollars from John von Neumann, author of a famous treatise on game theory.
He then bought his book for �ve dollars and pasted the other �ve inside the cover as a symbol
of his victory." In another passage of his book, Ulam describes Metropolis as "a Greek-American
with a wonderful personality."

3.B Wilfried Keith Hastings (source: Je�rey Rosenthal's homepage).

The Metropolis-Hastings algorithm (or, Hastings-Metropolis algorithm)
is the most common Markov chain Monte Carlo (MCMC) method. It is
extremely widely used in applied statistics and in statistical physics and
computer science and �nance and more, to sample from complicated,
high-dimensional probability distributions. A primary source for this
algorithm is the paper:

� W.K. Hastings (1970), Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57, 97-109.

This paper has been cited well over two thousand times -- a huge num-
ber. However, despite this paper's importance, very little information
about W.K. Hastings himself is publicly available. The following brief
biography is intended to (partially) answer that need.

W. Keith Hastings was born on July 21, 1930, in Toronto, Ontario,
Canada. He received his B.A. in Applied Mathematics from the University of Toronto in 1953, and
then worked from 1955-59 as a "Consultant in Computer Applications" for the Toronto company
H.S. Gellman & Co. Hastings recalls:

Harvey Gellman was a good mentor and encouraged me to pursue my ideas. Some of the projects
involved simulations and this was my �rst contact with statistics and generation of samples from
probability distributions.

Overlapping somewhat with this, Hastings received his M.A. in 1958, and his Ph.D. in 1962,
both from the University of Toronto's Department of Mathematics (which included Statistics at
that time). His Ph.D. thesis title was "Invariant Fiducial Distributions". His Ph.D. supervisor
was initially Don Fraser (who mentioned Hastings' thesis results in a 1962 letter to R.A. Fisher),
and later Geo�rey Watson (while Fraser visited Stanford in 1961-62). After completing his Ph.D.,
Hastings worked brie�y at the University of Canterbury in New Zealand (1962-64), and at Bell
Labs in New Jersey (1964-66). Hastings writes:

I was never comfortable working on statistical inference for my thesis. My investigations led
to too many dead ends and the work seemed to involve more mathematical considerations than
statistical ones. When Geo� took over as my supervisor I brie�y considered changing topics, but
ended up sticking with my original topic and completed my thesis. In New Zealand, I continued
this work for a while but eventually gave it up, the �nal blow coming when I learned that Fiducial
Probability was declared 'dead' in a session during a statistics conference held in Ottawa. Bell Labs
provided a welcome and e�ective antidote to all this as I gradually turned towards the computational
aspects of statistics. In e�ect, I was then returning to my professional roots.

From 1966 to 1971, Hastings was an Associate Professor in the Department of Mathematics
at the University of Toronto. During this period, he wrote the famous paper listed above (which
generalised the work of N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller
(1953), "Equations of state calculations by fast computing machines", J. Chem. Phys. 21, 1087-
1091). Hastings explains:

When I returned to the University of Toronto, after my time at Bell Labs, I focused on Monte
Carlo methods and at �rst on methods of sampling from probability distributions with no particular
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area of application in mind. [University of Toronto Chemistry professor] John Valleau and his
associates consulted me concerning their work. They were using Metropolis's method to estimate the
mean energy of a system of particles in a de�ned potential �eld. With 6 coordinates per particle, a
system of just 100 particles involved a dimension of 600. When I learned how easy it was to generate
samples from high dimensional distributions using Markov chains, I realised how important this
was for Statistics, and I devoted all my time to this method and its variants which resulted in the
1970 paper.

While at the University of Toronto, Hastings also supervised his one Ph.D. student, Peter
Peskun (now at York University), whose 1970 dissertation "The Choice Of Transition Matrix In
Monte Carlo Sampling Methods Using Markov Chains" developed the Peskun ordering on Markov
chain kernels. Peskun recalls:

Dr. Hastings was down to earth and very good natured. I can still picture him tugging at his
waist band as he chuckled over some comment he had just made. It was a pleasure having Dr.
Hastings as my Ph.D. supervisor. He never meddled in what I was trying to do but was always
happy to hear and listen to any new results that I came up with. He did make one important
suggestion to me which was to express my initial heuristic results in matrix form. This was of
tremendous help in proving, in particular, Peskun orderings.

In 1971, Hastings joined the Department of Mathematics at the University of Victoria (in British
Columbia, on the west coast of Canada) as an Associate Professor, and was granted tenure there
in 1974. He taught at Victoria for 21 years, usually teaching six one-semester courses per year. He
did not supervise any more Ph.D. students, but he did supervise two M.Sc. students, and serve on
the committees of four Ph.D. and two M.Sc. students. He held NSERC research grants from 1969
to 1980. Hastings' C.V. lists only two other refereed research papers besides the famous (1970)
one:

� W.K. Hastings (1972), Test Data for Statistical Algorithms: Least Squares and ANOVA. J.
Amer. Statist. Assoc. 67, 874-879.

� W.K. Hastings (1974), Variance Reduction and Non-normality. Biometrika 61, 143-149.

It also lists one non-refereed publication ("Death and Taxes", American Studies in Papyrology 10,
joint with A.E. Samuel, A.K. Bowman, and R.S. Bagnall), and a couple of memoranda for Bell
Labs (including the suggestive-sounding "An Overview of Statistical Computing Software", 1966).
Hastings retired from the University of Victoria in 1992. He passed away peacefully in Victoria on
May 13, 2016, at the age of 85.
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Let (Xn) be a Markov chain with Markov kernel P and assume that P admits an invariant
probability measure π. In this chapter, we are interested in �nding conditions under which we can
have bound of the error between the marginal distribution of Xn and the distribution π. To do
so, we �rst need to de�ne some notion of "distance" between probability measures (we will de�ne
here the total variation distance). Then, we will compare π and Pn(x, ·), the distribution of the
n-th iterate of the Markov kernel starting from an arbitrary point x ∈ X, by bounding the total
variation distance between them.

4.1 Total variation norm and coupling

We start with the notion of coupling between probability measures. In words, if µ, ν are two
probability measures on (X,X ), then a coupling γ of (µ, ν) is a probability measure on the product
space (X2,X⊗2) such that if (X,Y ) ∼ γ, then we have the marginal conditions: X ∼ µ and Y ∼ ν.

De�nition 4.1. Let (X,X ) be a measurable space and let ν, µ be two probability measures µ, ν ∈
M1(X). We de�ne C(µ, ν), the coupling set associated to (µ, ν) as follows

C(µ, ν) =
{
γ ∈ M1(X2) : ∀A ∈ X , γ(A× X) = µ(A), γ(X×A) = ν(A)

}
Any γ ∈ C(µ, ν) is called a coupling of (µ, ν).

31
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Just to play with the de�nition of coupling, you can for example construct a coupling of (µ, µ)
by sampling X ∼ µ and by setting Y = X. The distribution of (X,Y ) is then a coupling of
(µ, µ). This is a very "dependent" coupling (since we chose X = Y by construction). We can
also construct an "independent" coupling as follows: draw independently X and Y according to
the same distribution µ, then the distribution of (X,Y ) is a coupling of (µ, µ) (since X ∼ µ and
Y ∼ µ).

But then, which coupling is interesting? As we shall see in what follows, there is a real degree
of freedom for choosing an adequate coupling. We will present some useful couplings but there is
no general rule.

Before going further into coupling techniques, let us de�ne the total variation norm and let us
link it with coupling.

De�nition 4.2. Let (X,X ) be a measurable space and let ν, µ be two probability measures µ, ν ∈
M1(X). Then the total variation norm between µ and ν noted ‖µ− ν‖TV, is de�ned by

‖µ− ν‖TV = 2 sup {|µ(f)− ν(f)| : f ∈ F(X), 0 ≤ f ≤ 1} (4.1)

=

∫
|ϕ0 − ϕ1|(x)ζ(dx) (4.2)

= 2 inf {P(X 6= Y ) : (X,Y ) ∼ γ where γ ∈ C(µ, ν)} (4.3)

where µ(dx) = ϕ0(x)ζ(dx) and ν(dx) = ϕ1(x)ζ(dx).

Before showing that these di�erent expressions of the total variation are indeed equivalent, let
us make a few comments.

(a) The reader might wonder why we can always write µ(dx) = ϕ0(x)ζ(dx) and ν(dx) =
ϕ1(x)ζ(dx) for some well-chosen measure ζ, and measurable functions ϕ0 and ϕ1. Actually,
if we take µ, ν ∈ M1(X), then setting ζ = µ+ ν yields the two iimplications:

(ζ(A) = 0) =⇒ (µ(A) = 0) and (ζ(A) = 0) =⇒ (ν(A) = 0)

Therefore, the measure ζ dominates the measure µ and it also dominates the measure ν.
By the Radon Nikodym theorem, the measures µ and ν have densities wrt ζ, densities that
we call ϕ0 and ϕ1 in De�nition 4.2.

(b) The �rst de�nition, (4.1), is expressed as a supremum over functions, while the last one
is an in�mum over coupling measures... These two equalities can thus be considered as a
duality formula.

(c) The expression in the middle allows to write the total variation as a L1-norm between the
two densities of the distributions wrt to a common dominating measure.

(d) An immediate consequence of the equivalenit de�nitions of the total variation norm is that
if f is a measurable function taking values in [0, 1] and if X,Y are random variables such
that (X,Y ) ∼ γ with γ ∈ C(µ, ν), then we have the coupling inequality

|µ(f)− ν(f)| ≤ P(X 6= Y )

This inequality will often be used in practice. It is due to such inequalities that coupling
technique are so successful.

Proof of the equivalences in De�nition 4.2. Call A, B and C the quantities that appear respectively in (4.1), (4.2)
and (4.3). Any function f satis�es 0 ≤ f ≤ 1 if and only if the function g = 2f − 1 satis�es |g| ≤ 1. This implies
immediately



4.1 Total variation norm and coupling 33

A = 2 sup {|µ(f)− ν(f)| : f ∈ F(X), 0 ≤ f ≤ 1} = sup {|µ(g)− ν(g)| : g ∈ F(X), |g| ≤ 1}

Moreover, for any g ∈ F(X) such that |g| ≤ 1,

|µ(g)− ν(g)| =
∣∣∣∣∫ (ϕ1 − ϕ0)(x)g(x)ζ(dx)

∣∣∣∣ ≤ ∫ |ϕ1 − ϕ0|(x) |g(x)|︸ ︷︷ ︸
≤1

ζ(dx) = B

Therefore, A ≤ B. Moreover, setting g∗(x) = sign(ϕ0(x)− ϕ1(x)), we have |g∗| = 1 and therefore,

B =

∫
|ϕ0 − ϕ1|(x)ζ(dx) =

∫
(ϕ0(x)− ϕ1(x)) g∗(x)ζ(dx)

= µ(g∗)− ν(g∗) ≤ sup {|µ(g)− ν(g)| : g ∈ F(X), |g| ≤ 1} = A

Thus A = B . Now let f ∈ F(X) be such that 0 ≤ f ≤ 1 and let X,Y be random variables such that (X,Y ) ∼ γ

with γ ∈ C(µ, ν), then

|µ(f)− ν(f)| = |E[f(X)− f(Y )]| = |E
[
{f(X)− f(Y )}1X 6=Y

]
| ≤ E[|f(X)− f(Y )|︸ ︷︷ ︸

≤1

1X 6=Y ] ≤ P(X 6= Y )

This shows that A ≤ C . To �nish the proof, we will show that C ≤ B and to do so, we will exhibit an optimal

coupling of (µ, ν).

De�ne

ε =

∫
X

ϕ0 ∧ ϕ1(x)ζ(dx) and ζ′(dx) =
ϕ0 ∧ ϕ1(x)

ε
ζ(dx)

Then, it can be readily checked that ζ′ ∈ M1(X), and µ(dx) ≥ εζ′(dx) and ν(dx) ≥ εζ′(dx). This implies that
there exist µ1, ν1 ∈ M1(X) such that

µ(dx) = εζ′(dx) + (1− ε)µ1(dx)

ν(dx) = εζ′(dx) + (1− ε)ν1(dx)

De�ne γ(dxdy) = εζ′(dx)δx(dy)+(1−ε)µ1(dx)ν1(dy). Obviously, γ ∈ C(µ, ν). Let X,Y be two random variables
such that (X,Y ) ∼ γ. We can draw (X,Y ) in the following way: draw a Bernoulli variable U ∼ Ber(ε). If U = 1,
draw X ∼ ζ′ and set Y = X. If U = 0, then draw independently X ∼ µ1 and Y ∼ ν1. Then, clearly

P(X 6= Y ) = 1− P(X = Y ) ≤ 1− ε = 1−
∫
X

ϕ0 ∧ ϕ1(x)ζ(dx)

=
1

2

∫
X

ϕ0 + ϕ1(x)− 2ϕ0 ∧ ϕ1(x)︸ ︷︷ ︸
|ϕ0−ϕ1(x)|

ζ(dx)

This shows that C ≤ B and the proof is completed. ut

Exercise 4.3. Show that the supremum in (4.1) is attained with a convenient choice of f .

Another equivalent expression of the total variation distance is

‖µ− ν‖TV = 2 inf {γ(∆) : γ ∈ C(µ, ν)} (4.4)

where we have used the notation∆(x, y) = 1x 6=y (we also say that∆(x, y) is the Hamming distance
between x and y).

Example 4.4. See Figure 4.1. Let µ = N (−1, 1) and ν = N (1, 1). Let X ∼ N (−1, 1) and set
Y = X+2. Then, (X,Y ) is a coupling of (µ, ν) but it is not the optimal coupling for the Hamming
distance since P(X 6= Y ) = 1, whereas using De�nition 4.2,

‖µ− ν‖TV = 2

(
1−

∫ ∞
−∞

φ(x+ 1) ∧ φ(x− 1)dx

)
= 2

(
1− 2

∫ ∞
1

e−u
2/2

√
2π

du

)
,

where φ the density of the standard Gaussian distribution.
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X X'

Fig. 4.1 An example of coupling of two probability measures.

4.2 Geometric ergodicity

In what follows, we assume that for some measurable function V : X→ [1,∞), we have

(A1) [Minorizing condition] for all d > 0, there exists εd > 0 and a probability measure νd such
that

∀x ∈ Cd := {V ≤ d}, P (x, ·) ≥ εdνd(·) (4.5)

(A2) [Drift condition] there exists a constants (λ, b) ∈ (0, 1)× R+ such that for all x ∈ X,

PV (x) ≤ λV (x) + b

Typically, the function V is unbounded (but in particular situations, it can also be bounded)
and the level set {V ≤ d} is typically compact (when the chain takes value a topological space)...
Roughly speaking, (A1) tells you that wherever x moves in a set Cd, the measure P (x, ·) is lower
bounded by the non-trivial measure εdνd(·). In many cases, X = Rn, and P is dominated by the
Lebesgue measure: P (x, dy) = p(x, y)dy. In that case, we usually take P (x,A) ≥ εdνd(A) where

εd =

∫
X

[
inf
x∈Cd

p(x, y)

]
dy, νd(A) =

∫
A

infx∈Cd p(x, y)dy

εd

i.e. we only need to bound from below the kernel density p(x, y) when x ∈ Cd. If Cd is compact,
then it is quite easy to check such lower-bound. In the Markov chain terminology, if (4.5) holds,
we say that Cd is a small set.

The drift condition (A2) tells you that in the mean sense, the drift function V is shrinked by a
factor λ up to the additive constant b... Intuitively speaking, the Markov kernel P does not bring
to regions where V is too large so that the chain does not go to in�nity too quickly (since limited
values of V corresponds typically to bounded sets). And we can easily imagine that such chains
will have nice ergodic properties.

Before stating the result, we must say that, in practise, for a given Markov kernel P , there is no
general rule for guessing the expression of a drift function V that satis�es (A2), and we have to try
di�erent functions V for checking the assumptions... For example, if Xk+1 = αXk + εk where (εk)
are iid and α ∈ (0, 1). If we know that E[|ε1|r] <∞, then we can try a drift function V (x) = |x|r
and if E[eβε1 ] < ∞, then we can try V (x) = eβx. For MH algorithms, we also sometimes use a
negative power of the target density. But once again, the choice of V is very model speci�c (and
in some sense, this is a good opportunity to be imaginative!!!). We now show that assumptions
(A1) and (A2) imply that the Markov kernel P is "geometrically ergodic" in the following sense.
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Theorem 4.5. [Geometric ergodicity] Assume (A1) and (A2) for some measurable function
V ≥ 1. Then, there exists a constant % ∈ (0, 1) such that for all x, x′ ∈ X and all n ∈ N,

‖Pn(x, ·)− Pn(x′, ·)‖TV ≤ %
n [V (x) + V (x′)] .

Remark 4.6. Assume that there exist a constant ε > 0 and a probability measure ν such that for
all x ∈ X, P (x, ·) ≥ εν(·). In that case, (A1) and (A2) are satis�ed with the constant function
V (x) = 1 and Theorem 4.5 then shows that

‖Pn(x, ·)− Pn(x′, ·)‖TV ≤ 2%n.

for some constant % ∈ (0, 1). Such a Markov chain is usually said to be uniformly ergodic.

The proof needs several steps. To bound ‖Pn(x, ·)− Pn(x′, ·)‖TV, we will construct a bivariate
Markov chain (Xk, X

′
k) such that �rst component process (Xk) behaves marginally as a Markov

chain starting from x with Markov kernel P , while the second component process (Xk) behaves
marginally as a Markov chain starting from x′ with Markov kernel P . Let us be more speci�c... In
what follows, we choose d su�ciently large so that

λ̄ := λ+
2b

1 + d
< 1 (4.6)

De�nition of the joint kernel P̄

De�ne Q(xk,dxk+1) = P (xk,dxk+1)−εdνd(dxk+1)
1−εd and set

P̄ ((xk, x
′
k),dxk+1dx′k+1) = 1xk=x′k

P (xk,dxk+1)δxk+1
(x′k+1)

+ 1xk 6=x′k1(xk,x′k)/∈C2
d

[
P (xk,dxk+1)P (x′k,dx

′
k+1)

]
+ 1xk 6=x′k1(xk,x′k)∈C2

d

[
εdνd(dxk+1)δxk+1

(x′k+1) + (1− εd)Q(xk,dxk+1)Q(x′k,dx
′
k+1)

]
Actually, P̄ is a Markov kernel on X2 ×X⊗2 and it can be easily checked that

P̄ ((x, x′), ·) ∈ C(P (x, ·), P (x′, ·)) (4.7)

This will indeed imply by induction that for any n ∈ N,

P̄n((x, x′), ·) ∈ C(Pn(x, ·), Pn(x′, ·)) (4.8)

Interpretation of the joint kernel P̄

Set X̄k = (Xk, X
′
k) and C̄d = Cc × Cd. If (X̄k)k∈N is a Markov chain with the Markov kernel P̄ ,

the transition from X̄k = (xk, x
′
k) to X̄k+1 = (Xk+1, X

′
k+1) can be seen as follows

� If xk = x′k, draw Xk+1 ∼ P (xk, ·) and set X ′k+1 = Xk+1.
� Otherwise,

� If (xk, x
′
k) /∈ C̄d, then

· Draw independently Xk+1 ∼ P (xk, ·) and X ′k+1 ∼ P (x′k, ·)
� If (xk, x

′
k) ∈ C̄d, then

· Draw U ∼ Ber(εd).
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· If U = 1, draw Xk+1 ∼ νd and set X ′k+1 = Xk+1.
· If U = 0, draw independently Xk+1 ∼ Q(xk, ·) and X ′k+1 ∼ Q(x′k, ·).

� Set X̄k+1 = (Xk+1, X
′
k+1).

Therefore, the bivariate Markov chain (X̄k)k∈N = (Xk, X
′
k)k∈N is such that it tries to couple its

two components with probability εd each time it falls into C̄d and once it couples (ie Xk = X ′k)
then, it stays together for ever (ie for all n ≥ k, Xn = X ′n).

Some nice properties of P̄

The following inequalities are immediate:

1. Set ∆(x, x′) = 1x6=x′ , then

(a) if (x, x′) ∈ C̄d, P̄∆(x, x′) ≤ (1− εd)∆(x, x′)
(b) if (x, x′) /∈ C̄d, P̄∆(x, x′) ≤ ∆(x, x′)

2. Setting V̄ (x, x′) = (V (x)+V (x′))/2, we have P̄ V̄ (x, x′) = 2−1(PV (x)+PV (x′)) ≤ λV̄ (x, x′)+
b. This implies

(a) if (x, x′) ∈ C̄d, P̄ V̄ (x, x′) ≤ (λ+ b)V̄ (x, x′)

(b) if (x, x′) /∈ C̄d, P̄ V̄ (x, x′) ≤
(
λ+

2b

1 + d︸ ︷︷ ︸
λ̄

)
V̄ (x, x′)

We now have all the tools for proving Theorem 4.5.

of Theorem 4.5. For any β ∈ (0, 1), de�ne

%β = max((1− εd)1−β(λ+ b)β , λ̄β) (4.9)

The expression of %β may seem a bit complicated (we will understand why we choose %β like this in (4.10) below)

but, since λ̄ and 1− εd are both in (0, 1), we can always pick β su�ciently small (but positive) so that %β ∈ (0, 1) .

This %β being chosen, set W = ∆1−β V̄ β . Then, using Holder's inequality and the inequalities in the section Some
nice properties of P̄ , we have for all (x, x′) ∈ X2,

P̄W (x, x′) = P̄ (∆1−β V̄ β)(x, x′) ≤ (P̄∆(x, x′))1−β(P̄ V̄ (x, x′))β

≤ (∆1−β V̄ β)(x, x′)×

{
(1− εd)1−β(λ+ b)β if (x, x′) ∈ C2

d

λ̄β if (x, x′) /∈ C2
d

≤ %βW (x, x′)

This implies by induction that for all n ∈ N and all (x, x′) ∈ X2,

P̄nW (x, x′) ≤ %nβW (x, x′) (4.10)

Then ∥∥Pn(x, ·)− Pn(x′, ·)
∥∥
TV

(1)

≤ 2P̄n∆(x, x′)
(2)

≤ 2P̄nW (x, x′)
(3)

≤ 2%nβW (x, x′)
(4)

≤ %nβ(V (x) + V (x′))

where (1) comes from (4.8) and (4.4), (2) from ∆(x, x′) = ∆1−β(x, x′) ≤ W (x, x′) because V ≥ 1, (3) from (4.10)
and (4) from

W (x, x′) ≤
(
V (x) + V (x′)

2

)β
≤
V (x) + V (x′)

2

since V ≥ 1 and β ∈ (0, 1). ut

Corollary 4.7. Assume that (A1) and (A2) hold for some measurable function V ≥ 1. Then, the
Markov kernel P admits a unique invariant probability measure π. Moreover, π(V ) <∞ and there
exists constants (%, α) ∈ (0, 1)× R+ such that for all µ ∈ M1(X) and all n ∈ N,
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‖µPn − π‖TV ≤ α%
nµ(V ).

Proof. For any µ, ν ∈ M1(X) and any h ∈ F(X) such that |h| ≤ 1, we have, using Theorem 4.5,

|µPnh− νPnh| = |
∫
X2
µ(dx)ν(dy)[Pnh(x)− Pnh(y)]| ≤

∫
X2
µ(dx)ν(dy)|[Pnh(x)− Pnh(y)]| ≤ %n[µ(V ) + ν(V )]

Thus,
‖µPn − νPn‖TV ≤ %

n[µ(V ) + ν(V )] (4.11)

Replacing µ by δx and ν by P (x, ·), we get for all x ∈ X,∥∥Pn(x, ·)− Pn+1(x, ·)
∥∥
TV
≤ %n[V (x) + PV (x)] ≤ %n[(1 + λ)V (x) + b]

This implies that {Pn(x, ·)} is a Cauchy sequence and since (M1(X), ‖·‖TV) is complete, it converges to a limit
π ∈ M1(X). Then, for all x ∈ X and all h ∈ F(X) such that |h| ≤ 1, we also have |Ph| ≤ 1 and therefore

π(Ph) = lim
n→∞

Pn(Ph)(x) = lim
n→∞

Pn+1h(x) = π(h)

showing that π is P -invariant. We now show uniqueness of an invariant probability measure. To see this, note
that π actually does not depend on the choice of x. Indeed, replacing µ by δx and ν by δx′ in (4.11), we get that
limn→∞ ‖Pn(x, ·)− Pn(x′, ·)‖TV = 0. Therefore, for all x ∈ X, limn→∞ Pnh(x) = π(h). Let π′ be an invariant
probability measure for P , then

π′(h) = π′Pn(h) =

∫
π′(dx)Pnh(x)︸ ︷︷ ︸

→π(h)

→n→∞ π(h)

where the last equality comes from Lebesgue's dominated convergence theorem. Since PV ≤ λV + b, we have by
induction for all n ∈ N,

PnV (x) ≤ λnV (x) + b

(
n−1∑
k=0

λk

)
≤ λnV (x) +

b

1− λ

Therefore, for anyM > 0, by Jensen's inequality applied to the convex function u 7→ u∧M , we have Pn(V ∧M)(x) ≤
(PnV (x)) ∧M ≤

(
λnV (x) + b

1−λ

)
∧M . We then integrate wrt π and use π = πPn:

π(V ∧M) = πPn(V ∧M) ≤
∫
π(dx)

(
λnV (x) +

b

1− λ

)
∧M

The Lebesgue dominated convergence theorem then shows by letting n to in�nity, π(V ∧M) ≤ b
1−λ ∧M . Then,

letting M to in�nity, we get π(V ) ≤ b/(1− λ) <∞. To complete the proof, apply (4.11) with ν = π, we get

‖µPn − πPn︸︷︷︸
π

‖TV ≤ %n[µ(V ) + π(V )] ≤ α%n[µ(V )

with α = 1 + π(V ) <∞. ut

Exercise 7.12 shows that under (A1) and (A2) a Law of Large number is valid, starting from
any initial distribution.

Theorem 4.7 is nice but it is expressed only as a bound on the total variation norm, this
implies that we can bound |µPnh − π(h)| where |h| ≤ 1. Under the same assumptions, we can
actually obtain more general bounds for possibly unbounded functions h. The proof is slightly
more complicated so we decide to just state the result.

Theorem 4.8. Assume that (A1) and (A2) hold for some function V ≥ 1. Then, there exist
constants (%, α) ∈ (0, 1)× R+ such that for all µ ∈ M1(X) satisfying µ(V ) <∞, all n ∈ N and all
measurable functions |h| ≤ V ,

|µPnh− π(h)| ≤ α%nµ(V ).
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4.3 The Poisson Equation

4.3.1 De�nition

We start with a general de�nition of a Poisson equation.

De�nition 4.9. For a given measurable function h such that π|h| < ∞, the Poisson equation is
de�ned by

ĥ− Pĥ = h− π(h) (4.12)

A solution to Poisson equation (4.12) is a function ĥ such that P |ĥ|(x) < ∞ for all x ∈ X and

for all x ∈ X, ĥ(x)− Pĥ(x) = h(x)− π(h).

The following result holds under the set of assumptions (A1) and (A2).

Theorem 4.10. Assume (A1) and (A2) hold for some measurable function V ≥ 1. Then, for any
function h such that |h| ≤ V , the function

ĥ =

∞∑
n=0

{Pnh− π(h)} (4.13)

is well-de�ned. Moreover, ĥ is a solution of the Poisson equation associated to h and there exists
a constant γ such that for all x ∈ X,

|ĥ(x)| ≤ γV (x)

Proof. To see the existence of a solution to the Poisson equation under (A1) and (A2), note that by Theorem 4.8,∑∞
n=0 {P

nh(x)− π(h)} converges for any |h| ≤ V and we can thus de�ne

ĥ(x) =

∞∑
n=0

{Pnh(x)− π(h)}

Then,

P ĥ(x) =

∞∑
n=1

{Pnh(x)− π(h)}

which immediately shows (4.12). Moreover, setting ĥ as in (4.13), Theorem 4.8 shows that for all x ∈ X,

|ĥ(x)| ≤
α

1− %
V (x)

ut

4.3.2 Poisson equation and martingales

The interest of Poisson equation is that it allows to link quantities of interest of our Markov chain
with a well-chosen martingale. Then, we apply limiting results on martingales and the impact of
those results to our Markov chain.

We start with a refresher on martingales.
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4.3.2.1 A refresh on martingales

Let (Mn)n∈N be a sequence of random variables on the same probability space (Ω,F ,P) and let
(Fn)n∈N be a �ltration (ie for all n ∈ N, Fn ⊂ Fn+1 ⊂ F). We say that (Mn)n∈N is a (Fn)-
martingale if for all n ∈ N, Mn is integrable and for all n ≥ 1,

E[Mn|Fn−1] = Mn−1

The increment process of the martingale is by de�nition (Mn+1 −Mn)n∈N.
The following CLT result holds for martingales with stationary increments. It is stated without

proof.

Theorem 4.11. If a sequence (Mn)n∈N is a (Fn)-martingale with stationary and square in-
tegrable increments, then

n−1/2Mn
LP⇒ N

(
0,E[(M1 −M0)2]

)

4.3.2.2 Link with martingales

De�ne

Sn(h) =

n−1∑
k=0

{h(Xk)− π(h)}

The solution of the Poisson equation allows us to relate Sn(h) to a martingale by writing:

Sn(h) = Mn(ĥ) + ĥ(X0)− ĥ(Xn) (4.14)

where

Mn(ĥ) =

n∑
k=1

{
ĥ(Xk)− Pĥ(Xk−1)

}
(4.15)

Note that
{
Mn(ĥ)

}
n∈N

is indeed a (Fk)-martingale where Fk = σ(X0, . . . , Xk) since:

E[Mn(ĥ)|Fn−1]−Mn−1(h) = E[ĥ(Xn)− Pĥ(Xn−1)|Fn−1] = Pĥ(Xn−1)− Pĥ(Xn−1) = 0

This link with martingales allows to obtain LLN and Central Limit theorems for our Markov chain
from limiting results on martingales. Since LLN has been already studied in a di�erent approach
in the previous chapter, we only focus here on CLT.

4.3.3 Central Limit theorems

Theorem 4.12. Let P be a Markov kernel with a unique invariant probability measure π. Let

h ∈ L2(π). Assume that there exists a solution ĥ ∈ L2(π) to the Poisson equation ĥ − Pĥ = h.

Then
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n−1/2
n−1∑
k=0

{h(Xk)− π(h)} LPπ⇒ N (0, σ2
π(h)),

where
σ2
π(h) = Eπ[{ĥ(X1)− Pĥ(X0)}2] (4.16)

Proof. Without loss of generality, we assume π(h) = 0. The sequence (Mn(ĥ))n∈N de�ned in (4.15) is such that

Eπ [(Mn(ĥ)−Mn−1(ĥ))2] = Eπ [{ĥ(X1)− P ĥ(X0)}2] ≤ 2Eπ [ĥ2(X1) + (P ĥ(X0))2]

= 2
[
π(ĥ2) + π((P ĥ)2)

] (1)

≤ 2

π(ĥ2) + πP︸︷︷︸
π

(ĥ)2

 = 2π(ĥ2) <∞

where
(1)

≤ follows from Cauchy-Schwarz inequality. Therefore, the sequence (Mn(ĥ))n∈N is a martingale with sta-
tionary and square integrable increments under Pπ . By Theorem 4.11, we have

n−1/2Mn(ĥ)
LPπ⇒ N

(
0,Eπ [{ĥ(X1)− P ĥ(X0)}2]

)
. (4.17)

Since the Markov chain (Xk)k∈N is stationary under Pπ , we get Eπ [|ĥ(X0) + ĥ(Xn)|] ≤ 2π(|ĥ|) which implies that

n−1/2{ĥ(X0) + ĥ(Xn)} Pπ−prob−→ 0.

Combining it with (4.17) and (4.14) and using Slutsky's lemma gives:

n−1/2
n−1∑
k=0

h(Xk)
LPπ⇒ N (0, σ2

π(h))

ut

Theorem 4.13. Assume that (A1) and (A2) hold for some function V . Then, for all measurable
functions h such that |h|2 ≤ V ,

n−1/2
n−1∑
k=0

h(Xk)
LPπ⇒ N (0, σ2

π(h)),

where
σ2
π(h) = Eπ[{ĥ(X1)− Pĥ(X0)}2] (4.18)

and ĥ is de�ned as in (4.13).

Proof. Assume that (A1) and (A2) hold for some function V . Then, (A1) also holds with V replaced by V 1/2.
Moreover, since PV ≤ λV + b, we have by Cauchy-Schwarz,

P (V 1/2) ≤ (PV )1/2 ≤ (λV + b)1/2 ≤ λ1/2V 1/2 + b1/2

Finally, (A1) and (A2) hold for the function V 1/2. We can therefore apply Theorem 4.10 with V replaced by V 1/2.
Then, for all h ≤ V 1/2, the function ĥ de�ned by (4.13) is solution to the Poisson equation and there exists a
constant γ > 0 such that ĥ ≤ γV 1/2. This implies that π(ĥ2) ≤ γπ(V ) <∞ by Theorem 4.7. Therefore ĥ ∈ L2(π)

and Theorem 4.12 applies. The proof is completed. ut

Under the assumptions of Theorem 4.13, the CLT holds under Pπ. We can actually extend this
result to all Pν where ν is any probability measure in M1(X).
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4.4 After studying this chapter...

a) I understand the three expressions of the total variation norm.
b) If asked, I can try to prove that a Markov kernel is geometrically ergodic by checking

the minorizing condition and the drift condition.
c) I understand the coupling inequality.
d) I understand the proof of Theorem 4.5, which is hard but also beautiful...
e) I know what is a Poisson equation and I can write a solution of the Poisson equation

as a series.
f) I understand in what sense Poisson equation allows to establish links between Markov

Chains and martingales.

Highlights

4.A Stanislaw Ulam (source: wikipedia).

Stanislaw Marcin Ulam (3 april 1909-13 may 1984) was a Polish-
American scientist in the �elds of mathematics and nuclear physics.
He participated in the Manhattan Project, originated the Teller-Ulam
design of thermonuclear weapons, discovered the concept of the cellu-
lar automaton, invented the Monte Carlo method of computation, and
suggested nuclear pulse propulsion. In pure and applied mathematics,
he proved some theorems and proposed several conjectures.

Born into a wealthy Polish Jewish family, Ulam studied mathematics
at the Lwow Polytechnic Institute, where he earned his PhD in 1933
under the supervision of Kazimierz Kuratowski. In 1935, John von Neu-
mann, whom Ulam had met in Warsaw, invited him to come to the In-
stitute for Advanced Study in Princeton, New Jersey, for a few months.
From 1936 to 1939, he spent summers in Poland and academic years at
Harvard University in Cambridge, Massachusetts, where he worked to

establish important results regarding ergodic theory. On 20 August 1939, he sailed for the United
States for the last time with his 17-year-old brother Adam Ulam. He became an assistant professor
at the University of Wisconsin-Madison in 1940, and a United States citizen in 1941.

In October 1943, he received an invitation from Hans Bethe to join the Manhattan Project
at the secret Los Alamos Laboratory in New Mexico. There, he worked on the hydrodynamic
calculations to predict the behavior of the explosive lenses that were needed by an implosion-type
weapon. He was assigned to Edward Teller's group, where he worked on Teller's "Super" bomb for
Teller and Enrico Fermi. After the war he left to become an associate professor at the University
of Southern California, but returned to Los Alamos in 1946 to work on thermonuclear weapons.
With the aid of a cadre of female "computers", including his wife Françoise Aron Ulam, he found
that Teller's "Super" design was unworkable. In January 1951, Ulam and Teller came up with the
Teller-Ulam design, which is the basis for all thermonuclear weapons.

Ulam considered the problem of nuclear propulsion of rockets, which was pursued by Project
Rover, and proposed, as an alternative to Rover's nuclear thermal rocket, to harness small nuclear
explosions for propulsion, which became Project Orion. With Fermi, John Pasta, and Mary Tsin-
gou, Ulam studied the Fermi-Pasta-Ulam-Tsingou problem, which became the inspiration for the
�eld of non-linear science. He is probably best known for realising that electronic computers made
it practical to apply statistical methods to functions without known solutions, and as computers
have developed, the Monte Carlo method has become a common and standard approach to many
problems.
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In this chapter, we describe diverse variants of MH algorithms. Recall that we are given a

target distribution π. In classical MH, we construct a Markov chain (Xk) that admits π as invariant
probability measure. In most of the variants presented in this chapter, we extend (Xk) by adding a
component, say (Uk) and such that (Xk, Uk) is a Markov chain that admits an invariant probability
measure Π with the property that Π has π as its marginal distribution wrt the �rst component.
Finally (Xk)k∈N alone is a not a Markov chain, on the contrary to (Xk, Uk)k∈N.

We start with a general version of MH algorithms that will be useful in many contexts.

5.1 Generalisation of MH Algorithms

Let π ∈ M1(X) and let Q be a Markov kernel on X × X . In Section 2.1.1, we have presented the
Metropolis-Hastings algorithm when π and Q(x, ·) have both densities wrt a common dominating
measure λ. Here we do not make such an assumption so that the expression of αMH given in
Lemma 2.5 is not available anymore and should be adapted. Instead, we will need the following
assumption. De�ne

µ0(dxdy) = π(dx)Q(x,dy) and µ1(dxdy) = π(dy)Q(y,dx).

(B1) There exists a function (x, y) 7→ r(x, y) such that r(x, y) > 0, µ0-a.s. and for all h ∈ F+(X2),∫
h(x, y)µ1(dxdy) =

∫
h(x, y)r(x, y)µ0(dxdy) (5.1)

43
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This equation shows that the measure µ1 is dominated by µ0 with a µ0-a.s. positive density:

r(x, y) =
dµ1

dµ0
(x, y).

Then, by symmetry, we can easily show that 1/r(x, y) = r(y, x), µ1-a.s. And �nally the two
measures, µ0 and µ1 are equivalent (one is dominated by the other and conversely). In this case,
the generalised version of the Metropolis-Hastings kernel, where αMH given in Lemma 2.5 is

replaced by α(x, y) = r(x, y) ∧ 1 is π-reversible.

Lemma 5.1. Assume (B1). Then, setting α(x, y) = r(x, y) ∧ 1, the MH kernel:

PMH
〈π,Q〉(x,dy) = Q(x, dy)α(x, y) + ᾱ(x)δx(dy) where ᾱ(x) = 1−

∫
X

Q(x, dy)α(x, y)

is π-reversible.

Proof. Similarly to Lemma 2.4, we only need to check the detailed balance condition. Let h ∈ F+(X), then,∫
X2
π(dx)Q(x, dy)α(x, y)h(x, y) =

∫
X2
µ0(dxdy)(r(x, y) ∧ 1)h(x, y)

=

∫
X2
µ0(dxdy)r(x, y)

(
1 ∧

1

r(x, y)

)
h(x, y) =

∫
X2
µ1(dxdy)

1 ∧ 1/r(x, y)︸ ︷︷ ︸
r(y,x)

h(x, y)

=

∫
X2
π(dy)Q(y,dx)α(y, x)h(x, y).

Thus, the detailed balance condition is veri�ed and the proof is completed. ut

5.2 Pseudo marginal Monte Carlo methods

Assume that π and Q are dominated by a common dominating measure λ and write by abuse
of notation, π(dx) = π(x)λ(dx) and Q(x, dy) = q(x, y)λ(dy). When considering a Metropolis-
Hastings algorithm, we need an explicit expression of π(x) for any x ∈ X, up to a multiplicative
constant. It may happen that we are not able to calculate π(x) explicitly (even up to a multiplica-
tive constant). Instead, assume that we are able to have an unbiased estimator of π(x). To obtain
such an unbiased estimator, say that you draw W ∼ R(x,dw) where R is a Markov kernel from X
to R+

? , that is, a Markov kernel on X×B(R+
? ) such that

∫
R+
?
wR(x,dw) = π(x) (the unbiasedness

condition).
The pseudo marginal algorithm works as described in Algorithm 2 below. Finally, this algorithm

is very close to the classical MH except that we replace π(x) by its unbiased estimator.
We now justify Pseudo-marginal Monte Carlo methods by showing that it is actually a ("dis-

guised") generalized MH algorithm (as described in Lemma 5.1) by considering "extended Markov
chain", (X̄k)k∈N = (Xk,Wk)k∈N on an extended space and with an extended target. De�ne the
extended target distribution Π(dx̄) = Π(dxdw) = wR(x, dw)λ(dx) (where we set x̄ = (x,w)).
Note that Π is indeed a probability measure on X̄ = X× R+

? , since
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input : n
output: X0, . . . , Xn

At t = 0, draw X0 according to some arbitrary distribution and draw W0 ∼ R(X0, ·)
for t← 0 to n− 1 do

• Draw X̃t+1 ∼ Q(Xt, ·) and then W̃t+1 ∼ R(X̃t+1, ·)

• Set (Xt+1,Wt+1) =

(X̃t+1, W̃t+1) with prob.
W̃t+1q(X̃t+1,Xt)

Wtq(Xt,X̃t+1)
∧ 1

(Xt,Wt) with prob. 1− W̃t+1q(X̃t+1,Xt)

Wtq(Xt,X̃t+1)
∧ 1

end

Algorithm 2: The Pseudo-Marginal MH Algorithm

∫∫
X×R+

?

Π(dxdw) =

∫
X

(∫
R+
?

wR(x, dw)

)
λ(dx) =

∫
X

π(x)λ(dx) = 1

Moreover, in Algorithm 2, the candidate (X̃t+1,Wt+1) is proposed according to Q̄ where the
proposal kernel Q̄ is de�ned by Q̄(x̄, dx̄′) = Q(x, dx′)R(x′,dw′).

In order to check (B1), we �rst set

µ0(dx̄dx̄′) = µ0(dxdwdx′dw′) = wR(x, dw)λ(dx)Q(x, dx′)R(x′,dw′)

µ1(dx̄dx̄′) = µ1(dxdwdx′dw′) = w′R(x′,dw′)λ(dx′)Q(x′,dx)R(x, dw).

Then, writing Q(x, dy) = q(x, y)λ(dy), we obtain for all h ∈ F+(X̄2),∫
X̄2

h(x̄, x̄′)µ1(dx̄dx̄′) =

∫
X̄2

h(x̄, x̄′)w′q(x′, x)[R(x, dw)R(x′,dw′)λ(dx)λ(dx′)]

=

∫
X̄2

h(x̄, x̄′)
w′q(x′, x)

wq(x, x′)︸ ︷︷ ︸
r(x̄,x̄′)

µ0(dx̄dx̄′).

Since r > 0, we can apply Lemma 5.1 with α(x̄, x̄′) = r(x̄, x̄′) ∧ 1 and we �nally get that
PMH
〈Π,Q̄〉(x̄, dx̄

′) is Π-reversible. Since Algorithm 2 corresponds to applying the Markov kernel

PMH
〈Π,Q̄〉, thic completes the proof. Note that the extended target distribution Π has the marginal

π wrt the �rst component:

Π(A× R+
? ) =

∫
A

∫
R+
?

wR(x,dw)λ(dx) =

∫
A

π(dx) = π(A).

To sum up, (X̄k)k∈N = (Xk,Wk)k∈N produced by Algorithm 2 is a generalized Metropolis-Hastings
algorithm where the target distribution Π admits π as the marginal distribution on the �rst
component. Note that (Xk)k∈N is not a Markov chain anymore (but (X̄k)k∈N is).

5.3 Hamiltonian Monte Carlo

In Hamiltonian Monte Carlo (HMC), we again extend the target density and construct a Markov
chain on an extended space. We assume here that we have a target distribution on Rd, say π, and
we write π(q) ∝ e−U(q) (in this litterature, the "mute" variable x is replaced by q). Nothing very
restrictive so far... We may consider π as the marginal of the extended target

Π(q, p) ∝ exp
{
−U(q)− pT p/2

}
, p, q ∈ Rd (5.2)
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We can see that this extended target density can be written as the product of two densities: π for
the �rst component and the normal density of N (0, Id) for the second component. At this stage,
adding a second component in the target distribution that is completely independent of the �rst
component and with such a classical distribution as N (0, Id) does not seem to bring too much
excitement in the problem but let's be patient... In what follows, we make use of the following
terminology (that comes from physicists:)

� q ∈ Rd is the position and U(q) is the called the potential energy.
� p ∈ Rd is the momentum and K(p) = pT p/2 is called the kinetic energy.
� H(q, p) = U(q) +K(p) is called the Hamiltonian.

Several versions of HMC exist. We consider in this course the Leapfrog HMC which produces a
Markov chain (Xt)t∈N = (qt, pt)t∈N as described in Algorithm 3:

input : n,h,L
output: X0, . . . , Xn

At t = 0, draw X0 according to some arbitrary distribution
for t← 0 to n− 1 do
• Set q0t+1 = qt and draw p0t+1 ∼ N (0, Id)

for k ← 0 to L− 1 do

p
k+1/2
t+1 = pkt+1 − (h/2)∇U(qkt+1)

qk+1
t+1 = qkt+1 − hp

k+1/2
t+1

pk+1
t+1 = p

k+1/2
t+1 − (h/2)∇U(qk+1

t+1 )

end

• With prob.
Π(qLt+1,p

L
t+1)

Π(q0t+1,p
0
t+1)

∧ 1, set (qt+1, pt+1) = (qLt+1, p
L
t+1).

• Otherwise set (qt+1, pt+1) = (q0t+1, p
0
t+1)

end

Algorithm 3: The Leapfrog HMC

A transition of this algorithm can be decomposed into two di�erent (sub-)transitions:

� The �rst transition is

(
qt
pt

)
→
(
q0
t+1

p0
t+1

)
where one component is freezed q0

t+1 = qt, while the

second one has been refreshed with N (0, Id) which turns out to be also the conditional law
Π(dp|q)|q=qt (see (5.2)). A move where one component is �xed whereas the second one is
according to the conditional distribution of the target is actually a Gibbs move and as a Gibbs

move, the transition

(
qt
pt

)
→
(
q0
t+1

p0
t+1

)
is Π-reversible (please, check it carefully).

� The second transition concerns

(
q0
t+1

p0
t+1

)
→
(
qt+1

pt+1

)
. It consists in (a) constructing a candi-

date

(
qLt+1

pLt+1

)
deterministically from

(
q0
t+1

p0
t+1

)
using L steps, and then (b) accept or refuse the

proposed candidate according to some well-chosen probability. It looks like a MH transition
with deterministic moves and we then have to check carefully that it is Π-reversible.

5.3.1 MH with deterministic moves

We start with a very simple question: can we construct a MH algorithm with target Π and where
the proposal candidate is deterministic: Q(x,dy) = δϕ(x)(dy)? Of course due to the Dirac mass,
we are not in a dominated framework but the question is: can we use a generalized MH algorithm
as described in Section 5.1?
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If yes, then we have to see if (B1) is satis�ed. Set

µ0(dxdy) = Π(dx)δϕ(x)(dy) and µ1(dxdy) = Π(dy)δϕ(y)(dx),

and write for any non-negative function h,∫
h(x, y)µ1(dxdy) =

∫
Π(du)h(ϕ(u)︸︷︷︸

v

, u︸︷︷︸
ϕ−1(v)

)

=

∫
Π ◦ ϕ−1(dv)h(v, ϕ−1(v)) =

∫
dΠ ◦ ϕ−1

dΠ
(v)Π(dv)h(v, ϕ−1(v))

Let us focus on the last term Π(dv)h(v, ϕ−1(v)). If we want to let appear the integral of h(x, y) wrt

to µ0(dxdy) = Π(dx)δϕ(x)(dy), we need to assume that ϕ−1(v) = ϕ(v) that is ϕ is an involution
and in such a case: ∫

h(x, y)µ1(dxdy) =

∫
h(x, y)

dΠ ◦ ϕ−1

dΠ
(x)µ0(dxdy)

and the acceptance probability is then

α(x, y) =
dµ1

dµ0
(x, y) ∧ 1 =

dΠ ◦ ϕ−1

dΠ
(x) ∧ 1

Remark 5.2. (i) A �rst point is that if we only use the involution, then after two steps we
land up to the initial state... Not very interesting... Therefore, this deterministic transition
is often combined with another move that is not deterministic. (In the Leapfrog, the �rst
move is not deterministic: while we freeze the position, we refresh the momentum according
to a Normal distribution).

(ii) For any involution, you can get a Metropolis Hastings with a theoretical expression of the
acceptance probability as

dΠ ◦ ϕ−1

dΠ
(x) ∧ 1

but the ideal HMC goes one step further since we can show that this is equal to 1. To get
this, if we work on Rd and if Π has density wrt the Lebesgue measure that we still denote
Π, we get

dΠ ◦ ϕ−1

dΠ
(x) =

Π(ϕ−1(x))

Π(x)

∣∣∣∣∂ϕ−1(x)

∂x

∣∣∣∣
where the second term

∣∣∣∂ϕ−1(x)
∂x

∣∣∣ is the Jacobian determinant of the mapping ϕ−1 = ϕ. To

get 1 in the acceptance probability, we can impose that the two terms are equal to 1. The

�rst term Π(ϕ−1(x))
Π(x) is one if the involution stays on the same level set (ie the moves

according to ϕ does not change the value of Π) and the second term
∣∣∣∂ϕ−1(x)

∂x

∣∣∣ is one if the
involution is volume-preserving . If for example the involution only keeps the volume

then the Radon Nikodym simpli�es to

Π(ϕ−1(x))

Π(x)
=
Π(ϕ(x))

Π(x)
since ϕ ◦ ϕ = I

To sum-up, MH with deterministic moves is possible but the mapping ϕ should be an involu-
tion. If the mapping should stay on the same level set and is volume preserving, the acceptance
probability is even exactly equal to one.
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5.3.2 Hamiltonian dynamics

5.3.2.1 Level sets

How can we �nd deterministic moves that stays on the same level set, ie, such that Π and conse-
quently, H = U +K (the Hamiltonian) is constant.

If we now let (p, q) depend on a real parameter t and we impose to stay on a level set of H, we
get:

dH(qt, pt)

dt
= 0 =

d∑
i=1

∂H(qt, pt)

∂qt,i
dqt,i

dt
+
∂H(qt, pt)

∂pt,i
dpt,i

dt
.

This gives the idea of using the following dynamics: for all i ∈ [1 : d],

∂H

∂qt,i
(qt, pt) =

∂U(qt)

∂qt,i
= −dpt,i

dt

∂H

∂pt,i
(qt, pt) =

∂K(pt)

∂pt,i
= pt,i =

dqt,i

dt
I (Hamiltonian dynamics) (5.3)

The very last equation leads to the interpretation of pt,i as a speed since it is the derivative of the
position wrt time. Note φt(q, p) = (qt, pt) the (deterministic) position and momentum at time t
when (qs, ps) follows the Hamiltonian dynamics (5.3). So, Hamiltonian dynamics moves along the
same level sets. It can also be shown that it is volume-preserving. But unfortunately, it is not
an involution. That's the bad news. But there is a also a good news: we can add a �ip mapping
on the second component after a move so that the resulting mapping is an involution. We will see
it in the next paragraph.

5.3.2.2 The �ip operator trick and the involution

Denote by s(q, p) = (q,−p) the �ip operator on the second component. The �ip is also volume-
preserving and moves along the level set so that �nally, setting fT = s ◦ φT , we obtain that fT

is volume-preserving and level-set invariant. We now show that fT is an involution. Indeed, write
fT (q, p) = (qT ,−pT ). To see what we obtain by applying again fT , set q̃t = qT−t and p̃t = −pT−t
so that (q̃0, p̃0) = fT (q, p). Then,

dq̃t,i

dt
=

dqT−t,i

dt
= − dqs,i

ds

∣∣∣∣
s=T−t

= −pT−t,i = p̃t,i

dp̃t,i

dt
= −dpT−t,i

dt
=

dps,i

ds

∣∣∣∣
s=T−t

= −∂U(qT−t)

∂qT−t,i
= −∂U(q̃T−t)

∂q̃T−t,i

Finally, the process (q̃t, p̃t) follows the Hamiltonian dynamics so that fT (q̃0, p̃0) = (q̃T ,−p̃T ) and
by de�nition this quantity is equal to (q0, p0). We �nally obtain that fT is an involution.

The ideal HMC can be described as follows (Algorithm 4 ). We see in this ideal algorithm that
the candidate is always accepted and that we don't even need to apply the �ip operator (since it
does not change at all the algorithm).

This is just an ideal algorithm since we don't know how to solve exactly Hamiltonian dynamics.
The leapfrog is based on an approximation of these dynamics.
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input : n,T
output: X0, . . . , Xn

At t = 0, draw X0 according to some arbitrary distribution
for t← 0 to n− 1 do
• Set q0t+1 = qt and draw p0t+1 ∼ N (0, Id)

• Set (qLt+1, p
L
t+1) = φT (q0t+1, p

0
t+1)

• Set (qt+1, pt+1) = (qLt+1, p
L
t+1).

end

Algorithm 4: The ideal HMC.

5.3.3 The leapfrog integrator

5.3.3.1 Discretization and volume-preserving property

Recall that the Hamiltonian dynamics are: for all i ∈ [1 : d],

∂U(qt)

∂qt,i
= −dpt,i

dt
, and pt,i =

dqt,i

dt

A �rst idea of discretization would be: choose a small stepsize h and a number of steps L and
move according to: (for k ∈ [1 : L]),

pk+1 = pk − h∇U(qk)

qk+1 = qk + hpk

Unfortunately, this discretization is associated to a mapping (qk+1, pk+1) = ϕ(qk, pk) that is not
volume-preserving... That is the absolute value of the Jacobian determinant of ϕ is not equal to
one.

Instead, for any di�erentiable function ψ, the Jacobian matrix of a mapping where one compo-
nent is freezed and the other one is updated by an additive term: (x, y) 7→ (x, y + ψ(x)) is given

by

(
1 0
? 1

)
so that the determinant is one and this mapping is volume preserving...

Now, we will focus on the leapfrog discretization. Interested readers in other discretizations may
try to solve Exercise 7.13 which focus on another discretization scheme.

The leapfrog discretization is de�ned by the following scheme: for k ∈ [1 : L])

pk+1/2 = pk − (h/2)∇U(qk)

qk+1 = qk + hpk+1/2

pk+1 = pk+1/2 − (h/2)∇U(qk+1) (5.4)

To see that it is volume-preserving, just note that a Leapfrog update can be decomposed into
three mapping

(qk, pk)
ϕ1−→ (qk, pk+1/2)

ϕ2−→ (qk+1, pk+1/2)
ϕ1−→ (qk+1, pk+1). (5.5)

where
ϕ1(x, y) = (x, y − (h/2)∇U(x)) and ϕ2(x, y) = (x+ hy, y) (5.6)

Each of these mappings keep one component freezed while the other component is updated with
an additive term, so each of these mappings is volume-preserving and so is the Leapfrog update. To
sum-up, the Leapfrog update is an approximation of the Hamiltonian dynamics, it is a deterministic
mapping that is volume-preserving but not level-set invariant, so the acceptance probability will
not be equal to 1, we still hope this is still high since it is an approximation of the Hamiltonian...
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A very last property on the Leapfrog HMC should be checked (in order to say that the second
step in Algorithm 3 is indeed a MH with deterministic moves): the involution property.

5.3.3.2 The �ip operator trick and the involution property

To be speci�c, if we add the �ip mapping s on the second component, then do we obtain an
involution as for the ideal HMC?

Lemma 5.3. For any L ≥ 1, write Φh,L the Leapfrog mapping and de�ne fh,L = s ◦ Φh,L. Then
fh,L is an involution.

Proof. We will show that fh,L ◦ fh,L = Id by induction on L.

(i) We �rst show that fh,1 is an involution.
Using (7.2), (5.5) and (5.6), we can check that

(qk, pk)
ϕ1−→ (qk, pk+1/2)

ϕ2−→ (qk+1, pk+1/2)
ϕ1−→ (qk+1, pk+1)

s−→ (qk+1,−pk+1).

and

(qk+1,−pk+1)
ϕ1−→ (qk+1,−pk+1/2)

ϕ2−→ (qk,−pk+1/2)
ϕ1−→ (qk,−pk)

s−→ (qk, pk).

Therefore: fh,1 = s ◦ Φh,1 = s ◦ ϕ1 ◦ ϕ2 ◦ ϕ1 is an involution, i.e.

s ◦ Φh,1 ◦ s ◦ Φh,1 = Id

Moreover, applying s on both sides of the equation and noting that s is an involution, we get Φh,1 ◦s◦Φh,1 = s
(this will be useful two lines below).

(ii) Assume that for some L ≥ 1, fh,L is an involution, that is fh,L ◦ fh,L = Id. Now, write

fh,L+1 ◦ fh,L+1 = s ◦ Φh,L ◦ Φh,1 ◦ s ◦ Φh,1︸ ︷︷ ︸
s

◦Φh,L = fh,L ◦ fh,L = Id

by the induction assumption.

This completes the proof. ut

5.4 Data augmentation

Throughout this section, (X,X ) and (Y,Y) are Polish spaces equipped with their Borel σ-�elds.
Again, we wish to simulate from a probability measure π de�ned on (X,X ) using a sequence
{Xk, k ∈ N} of X-valued random variables. Data augmentation algorithms consist in writing the
target distribution π as the marginal of the distribution π∗ on the product space (X× Y,X ⊗ Y)
de�ned by π∗ = π ⊗ R where R is a kernel on X× Y. There exists also a kernel S on Y × X and
a probability measure π̃ on (Y,Y) such that π∗(C) =

∫∫
1C(x, y)π̃(dy)S(y,dx) for C ∈ X ⊗ Y.

In other words, if (X,Y ) is a pair of random variables with distribution π∗, then R(x, ·) is the
distribution of Y conditionally on X = x and S(y, ·) is the distribution of X conditionally on
Y = y. The bivariate distribution π∗ can then be expressed as follows

π∗(dxdy) = π(dx)R(x, dy) = S(y,dx)π̃(dy). (5.7)

A data augmentation algorithm consists in running a Markov Chain {(Xk, Yk), k ∈ N} with in-

variant probability π∗ and to use n−1
∑n−1
k=0 f(Xk) as an approximation of π(f). A signi�cant
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di�erence between this general approach and a Metropolis-Hastings algorithm associated to the
target distribution π is that {Xk, k ∈ N} is no longer constrained to be a Markov chain. The
transition from (Xk, Yk) to (Xk+1, Yk+1) is decomposed into two successive steps: Yk+1 is �rst
drawn given (Xk, Yk) and then Xk+1 is drawn given (Xk, Yk+1). Intuitively, Yk+1 can be used as
an auxiliary variable, which directs the moves of Xk toward interesting regions with respect to the
target distribution.

When sampling fromR and S is feasible, a classical choice consists in following the two successive
steps: given (Xk, Yk),

(i) sample Yk+1 from R(Xk, ·),
(ii) sample Xk+1 from S(Yk+1, ·).

Xk

Yk

Xk+1

Yk+1

S
R

S

Fig. 5.1 In this example, sampling from R and S is feasible.

It turns out that {Xk, k ∈ N} is a Markov chain with Markov kernel RS and π is reversible wrt
RS.

Lemma 5.4. The distribution π is reversible with respect to the kernel RS.

Proof. We must prove that the measure π⊗RS on X2 is symmetric. For A,B ∈ X , applying (5.7),
we have

π ⊗RS(A×B)

=

∫
X×Y

π(dx)R(x, dy)1A(x)S(y,B) =

∫
X×Y

1A(x)S(y,B)π∗(dxdy)

=

∫
X×Y

1A(x)S(y,B)S(y,dx)π̃(dy) =

∫
Y

S(y,A)S(y,B)π̃(dy).

This proves that π ⊗RS is symmetric. ut

Assume now that sampling from R or S is infeasible. In this case, we consider two instrumental
kernels Q on (X×Y)×Y and T on (X×Y)×X which will be used to propose successive candidates
for Yk+1 and Xk+1. For simplicity, assume that R(x, dy′) and Q(x, y; dy′) (resp. S(y′,dx′) and
T (x, y′; dx′)) are dominated by the same measure and call r and q (resp. s and t) the associated
transition densities. We assume that r and s are known up to a normalizing constant. De�ne the
Markov chain {(Xk, Yk), k ∈ N} as follows. Given (Xk, Yk) = (x, y),

(DA1) draw a candidate Ỹk+1 according to the distribution Q(x, y; ·) and accept Yk+1 = Ỹk+1 with
probability α(x, y, Ỹk+1) de�ned by

α(x, y, y′) =
r(x, y′)q(x, y′; y)

r(x, y)q(x, y; y′)
∧ 1;

otherwise, set Yk+1 = Yk; the Markov kernel on X × Y × Y associated to this transition is
denoted by K1;
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(DA2) draw then a candidate X̃k+1 according to the distribution T (x, Yk+1; ·) and accept Xk+1 =
X̃k+1 with probability β(x, Yk+1, X̃k+1) de�ned by

β(x, y, x′) =
s(y, x′)t(x′, y;x)

s(y, x)t(x, y;x′)
∧ 1;

otherwise, set Xk+1 = Xk; the Markov kernel on X × Y × X associated to this transition is
denoted by K2.

For i = 1, 2, let K∗i be the kernels associated to K1 and K2 as follows: for x ∈ X, y ∈ Y, A ∈ X
and B ∈ Y,

K∗1 (x, y;A×B) = 1A(x)K1(x, y;B). (5.8)

K∗2 (x, y;A×B) = 1B(y)K2(x, y;A). (5.9)

Then, the kernel of the chain {(Xn, Yn), n ∈ N} is K = K∗1K
∗
2 . The process {Xn, n ∈ N} is

in general not a Markov chain since the distribution of Xk+1 conditionally on (Xk, Yk) depends
on (Xk, Yk) and on Xk only, except in some special cases. Obviously, this construction includes
the previous one where sampling from R and S was feasible. Indeed, if Q(x, y; ·) = R(x, ·) and
T (x, y; ·) = S(x, ·), then the acceptance probabilities α and β de�ned above simplify to one, the
candidates are always accepted and we are back to the previous algorithm.

Proposition 5.5. The extended target distribution π∗ is reversible wrt the kernels K∗1 and
K∗2 and invariant with respect to K.

Proof. The reversibility of π∗ with respect to K∗1 and K∗2 implies its invariance and consequently
its invariance with respect to the product K = K∗1K

∗
2 . Let us prove the reversibility of π∗ with

respect to K∗1 . For each x ∈ X, the kernel K1(x, ·; ·) on Y×Y is the kernel of a Metropolis-Hastings
algorithm with target density r(x, ·), proposal kernel density q(x, ·; ·) and acceptation probability
α(x, ·, ·). It implies that the distribution R(x, ·) is reversible with respect to the kernel K1(x, ·; ·).
Applying the de�nition (5.8) of K∗1 and π∗ = π ⊗R yields, for A,C ∈ X and B,D ∈ Y,

π∗ ⊗K∗1 (A×B × C ×D) =

∫∫
A×B

π(dxdy)K∗1 (x, y;C ×D)

=

∫∫
A×B

π(dx)R(x, dy)1C(x)K1(x, y,D)

=

∫
A∩C

π(dx)[R(x, ·)⊗K1(x, ·; ·)](B ×D).

We have seen that for each x ∈ X, the measure R(x, ·)⊗K1(x, ·; ·) is symmetric, thus π∗ ⊗K∗ is
also symmetric. The reversibility of π∗ with respect to K∗2 is proved similarly. ut

Example 5.6 (The slice sampler). Set X = Rd and X = B(X). Let µ be a σ-�nite measure on
(X,X ) and let h be the density with respect to µ of the target distribution. We assume that for
all x ∈ X,

h(x) = C

k∏
i=0

fi(x),

where C is a constant (which is not necessarily known) and fi : Rd → R+ are nonnegative

measurable functions. For y = (y1, . . . , yk) ∈ R+k, de�ne
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L(y) =
{
x ∈ Rd : fi(x) ≥ yi , i = 1, . . . , k

}
.

The f0-slice-sampler algorithm proceeds as follows:

� given Xn, draw independently a k-tuple Yn+1 = (Yn+1,1, . . . , Yn+1,k) of independent random
variables such that Yn+1,i ∼ Unif(0, fi(Xn)), i = 1, . . . , k.

� sample Xn+1 from the distribution with density proportional to f01L(Yn+1).

Set Y = (R+)k and for (x, y) ∈ X× Y,

h∗(x, y) = Cf0(x)1L(y)(x) = h(x)

k∏
i=1

1[0,fi(x)](yi)

fi(x)
.

Let π∗ be the probability measure with density h∗ with respect to Lebesgue's measure on X× Y.
Then

∫
Y
h∗(x, y)dy = h(x) i.e. π is the �rst marginal of π∗. Let R be the kernel on X × Y with

kernel denisty r de�ned by

r(x, y) =
h∗(x, y)

h(x)
1h(x)>0.

Then π∗ = π⊗R. De�ne the distribution π̃ = πR, its density h̃(y) =
∫
X
h∗(u, y)du and the kernel

S on Y ×X with density s by

s(y, x) =
h∗(x, y)

h̃(y)
1h̃(y)>0.

If (X,Y ) is a vector with distribution π∗, then S(y, ·) is the conditional distribution of X given
Y = y and the Markov kernel of the chain {Xn, n ∈ N} is RS and Lemma 5.4 can be applied to
prove that π is reversible, hence invariant, with respect to RS.

5.4.1 Two-stage Gibbs sampler

The Gibbs sampler is a simple method which decomposes a complex multidimensional distribution
into a collection of smaller dimensional ones. Let (X,X ) and (Y,Y) be complete separable metric
spaces endowed with their Borel σ-�elds. To construct the Markov chain {(Xn, Yn), n ∈ N} with
π∗ as an invariant probability, we proceed exactly as in data-augmentation algorithms. Assume
that π∗ may be written as

π∗(dxdy) = π(dx)R(x,dy) = π̃(dy)S(y,dx) (5.10)

where π and π̃ are probability measures on X and Y respectively and R and S are kernels on X×Y
and Y ×X respectively.

The deterministic updating (two-stage) Gibbs (DUGS) sampler

When sampling from R and S is feasible, the DUGS sampler proceeds as follows: given (Xk, Yk),

(DUGS1) sample Yk+1 from R(Xk, ·),
(DUGS2) sample Xk+1 from S(Yk+1, ·).

For both the Data Augmentation algorithms and the two-stage Gibbs sampler we consider a
distribution π∗ on the product space X × Y. In the former case, the distribution of interest is a
marginal distribution of π∗ and in the latter case the target distribution is π∗ itself.
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We may associate to each update (DUGS1)-(DUGS2) of the algorithm a transition kernel on
(X× Y)× (X ⊗ Y) de�ned for (x, y) ∈ X× Y and A×B ∈ X ⊗ Y by

R∗(x, y;A×B) = 1A(x)R(x,B), (5.11)

S∗(x, y;A×B) = 1B(y)S(y,A). (5.12)

The transition kernel of the DUGS is then given by

PDUGS = R∗ S∗. (5.13)

Note that for A×B ∈ X ⊗ Y,

PDUGS(x, y;A×B) =

∫∫
X×Y

R∗(x, y; dx′dy′)S∗(x′, y′;A×B)

=

∫∫
X×Y

R(x,dy′)1B(y′)S(y′, A)

=

∫
B

R(x, dy′)S(y′, A) = R⊗ S(x,B ×A). (5.14)

As a consequence of Proposition 5.5, we obtain the invariance of π∗.

Lemma 5.7. The distribution π∗ is reversible with respect to the kernels R∗ and S∗ and invariant
with respect to PDUGS.

The Random Scan Gibbs sampler (RSGS)

At each iteration, the RSGS algorithm consists in updating one component chosen at random. It
proceeds as follows: given (Xk, Yk),

(RSGS1) sample a Bernoulli random variable Bk+1 with probability of success 1/2.
(RSGS2) If Bk+1 = 0, then sample Yk+1 from R(Xk, ·) else sample Xk+1 from S(Yk+1, ·).

The transition kernel of the RSGS algorithm can be written

PRSGS =
1

2
R∗ +

1

2
S∗. (5.15)

Lemma 5.7 implies that PRSGS is reversible wrt π∗ and therefore π∗ is invariant for PRSGS.
If sampling from R or S is infeasible, the Gibbs transitions can be replaced by a Metropolis-

Hastings algorithm on each component as in the case of the DUGS algorithm. The agorithm is
then called the Two-Stage Metropolis-within-Gibbs algorithm.

5.5 After studying this chapter...

a) I can explain Pseudo marginal algorithm and I can justify why it is correct on a
blackboard.

b) I understand understand the notions of deterministic moves and the requirements
linked with MH with deterministic moves (involution, volume-preserving and invari-
ant level sets), so I understand all about Hamiltonian MC.

c) I know and understand the Gibbs moves.
d) I am able to implement these variants of MH, pseudo marginal algorithms, Leapfrog

HMC...
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Highlights

5.A William Rowan Hamilton (source: wikipedia).

Sir William Rowan Hamilton MRIA (3 August 1805 - 2 September
1865) was an Irish mathematician, Andrews Professor of Astronomy at
Trinity College Dublin, and Royal Astronomer of Ireland. He worked in
both pure mathematics and mathematics for physics. He made impor-
tant contributions to optics, classical mechanics and algebra. Although
Hamilton was not a physicist, he regarded himself as a pure mathe-
matician, his work was of major importance to physics, particularly
his reformulation of Newtonian mechanics, now called Hamiltonian me-
chanics. This work has proven central to the modern study of classical
�eld theories such as electromagnetism, and to the development of quan-
tum mechanics. In pure mathematics, he is best known as the inventor
of quaternions.

William Rowan Hamilton's scienti�c career included the study of geometrical optics, classical
mechanics, adaptation of dynamic methods in optical systems, applying quaternion and vector
methods to problems in mechanics and in geometry, development of theories of conjugate algebraic
couple functions (in which complex numbers are constructed as ordered pairs of real numbers),
solvability of polynomial equations and general quintic polynomial solvable by radicals, the analysis
on Fluctuating Functions (and the ideas from Fourier analysis), linear operators on quaternions
and proving a result for linear operators on the space of quaternions (which is a special case of the
general theorem which today is known as the Cayley-Hamilton theorem). Hamilton also invented
"icosian calculus", which he used to investigate closed edge paths on a dodecahedron that visit
each vertex exactly once.





Chapter 6
Target distributions and alternative

methods

So far, in MCMC methods, a target distribution π is given and we have shown some generic ways
of constructing a process (Xk)k∈N that targets π in some sense to be de�ned: sometimes (Xk)k∈N
is itself a Markov chain with invariant probatility measure π, sometimes, (Xk)k∈N is the �rst
component process of an extended Markov chain that targets an extended distribution where the
marginal distribution on the �rst component is π.

6.1 Target distributions

We �rst introduce two contexts where target distributions are at stake. One is linked with Bayesian
inference. In such a case, the target distribution is the posterior distribution of the parameter
given all the data. Another one is linked with partially observed models. In such a case, the target
distribution might be the distribution of the unobserved variables given the data.

6.1.1 Bayesian inference

In Bayesian inference, prior belief is combined with data to obtain posterior distributions on which
statistical inference is based. Except for some simple cases, Bayesian inference can be computa-
tionally intensive and may rely on computational techniques.

The basic idea in Bayesian analysis is that a parameter vector, say θ ∈ Θ, is unknown to a
researcher, so a prior distribution, π0(θ)λ(dθ), is put on the parameter vector. The researcher also
proposes a model or likelihood, p(y1:n | θ), that describes how the data Y = y1:n depend on the
parameter vector. Inference about θ is then based on the posterior distribution, which is obtained
via Bayes's theorem,

π(θ) = p(θ
∣∣ Y = y1:n) =

π0(θ) p(y1:n | θ)∫
π0(θ) p(y1:n | θ)λ(dθ)

. (6.1)

In some simple cases, the prior and the likelihood are conjugate distributions that may be combined
easily. For example, in n �xed repeated (iid) Bernoulli experiments with probability of success θ,
a Beta-Binomial conjugate pair is taken. In this case the prior is Beta(a, b): π0(θ) ∝ θa(1 − θ)b;
the values a, b > −1 are called hyperparameters. The likelihood in this example is Binomial(n, θ):

57
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p(y | θ) ∝ θy(1 − θ)n−y, from which we easily deduce that the posterior is also Beta, π(θ
∣∣ Y ) ∝

θy+a(1−θ)n+b−y, and from which inference may easily be achieved. In more complex experiments,
the posterior distribution is often di�cult to obtain by direct calculation, so MCMC techniques
are employed (note that in (6.1), the numerator is usually known and explicit while, due to the
integral, the denominator is a multiplicative unknown constant). The main idea is that we may
not be able to explicitly display the posterior, but we may be able to simulate from the posterior.

6.1.2 Models with Latent variables

In some situations, observations are partial and unfortunately, do not contain some variables of
interest. In such a case, given a modelization of the process generating the data, one might be
interested into reconstructing the distribution of the missing variables given the data. This will
be our target distribution. Let us be more speci�c with the example of Hidden Markov Models
(HMM).

Such a model is de�ned by a bivariate Markov chain (Zk)k∈N = (Xk, Yk)k∈N on X × Y where
(X,X ) and (Y,Y) are two measurable spaces, and where the transition is given by:

Xk|Z0:k−1
∼ Q(Xk−1, ·)

Yk|Xk,Z0:k−1
∼ G(Xk, ·)

Here, Q denotes a Markov kernel on X×X while G is a Markov kernel on X× Y.

Xk−1 Xk

YkYk−1

Q

G

Fig. 6.1 A hidden Markov model

In such a model, only the Y 's component is observed and inference must be driven on the
basis of (Y1:n) only. In a fully dominated model, we assume that Q(x, dx′) = q(x, x′)λ(dx′) and
G(x, dy) = g(x, y)ν(dy) where λ and ν are σ-�nite dominating measures on (X,X ), and (Y,Y)
respectively. In such a case, assuming that X0 = x0 is given, one might be interested in the law of
the missing variables X1:n given the observations Y1:n, so that the target density will be:

π(x1:n) =

∏n
i=1 q(xi−1, xi)g(xi, yi)∫

·· ·
∫
Xn

∏n
i=1 q(xi−1, xi)g(xi, yi)λ(dxi)

Once again the denominator is, due to the integral, an unknown multiplicative factor, whereas the
numerator is explicit and we are therefore in a context where MCMC methods can be applied.
Nevertheless, in this example, the number of hidden variables is n, which can be very large and
the target distribution is thus associated to a very high dimensional space, Xn, so that we have to
be very careful when applying these methods.



6.2 Other approximation methods 59

6.2 Other approximation methods

In computational statistics, when it comes to approaching a target law in a very large space, clas-
sical techniques using Markov chains admitting "exactly" this target law for invariant distribution
may su�er from a slow exploration of the state space. In a high dimensional framework, the can-
didate is often proposed in an uninformative region and it is likely that it is refused, leading the
Markov chain to remain stuck at the same place a certain amount of time.

Some other approximation techniques do not even try to construct random variables with
distribution close to π. We will brie�y introduce two approximation techniques: sequential Monte
Carlo methods and Variational Inference.

6.2.1 Sequential Monte Carlo methods

We brie�y explain basic ideas of Sequential Monte Carlo methods, without proving anything. The
rough idea of sequential Monte Carlo methods for targetting π is to �nd intermediate target dis-
tributions π1 → π2 →, . . . ,→ πT = π and to construct, sequentially, Monte Carlo approximations
of πi.

This is actually based on importance sampling and we �rst recall it here. If π and g are densities
wrt to the same dominating measure, and assuming that g(x) = 0 implies π(x) = 0, then we can

approximate π(h) with N−1
∑N
k=1

π(Xk)
g(Xk)h(Xk) where (Xk)k∈[1:N ]

i.i.d∼ g. Since π is typically known

only up to a multiplicative factor, the quantity n−1
∑N
k=1

π(Xk)
g(Xk)h(Xk) is not explicit due to this

multiplicative factor and we typically choose instead:

π(h) =
π(h)

π(1)
≈
n−1

∑N
k=1

π(Xk)
g(Xk)h(Xk)

N−1
∑n
`=1

π(X`)
g(X`)

=

N∑
k=1

(
ωk∑N
`=1 ω

`

)
h(Xk) =

N∑
k=1

ω̄kh(Xk)

where ωk = π(Xk)/g(Xk) and ω̄k = ωk/(
∑k
`=1 ω

`). Now the rhs can be calculated even if π is
known only up to a multiplicative factor since ω̄k is a ratio where π is involved (both in the
numerator and the denominator).

Thus, π(h) is approximated using a population of "particles" {(Xk, ω
k)}k∈[1:N ] (we mean by

particle a "support" point Xk and an associated weight ωk). Note that a weight is usually unnor-

malized but when considering the approximation, we use the normalized weights: ωk/(
∑k
`=1 ω

`).
Of course, if all the Xk were iid from π directly, all the associated weights would be equal. So

here, by allowing di�erent weights, we are more �exible. Still if the weights are too di�erent, this
is not satisfactory because only a few particles contain all the information. In that case, we prefer
to resample inside the population. Let us be more speci�c.

6.2.1.1 Resampling step

Assume that {(Xk, ω
k)}k∈[1:N ] targets π0(h). De�ne ω̄k = ωk/(

∑k
`=1 ω

`).
An example of resampling step is

For k ∈ [1 : n], choose independently X̃k =


X1 wp ω̄1

. . .

XN wp ω̄N

Then {(X̃k, 1)}k∈[1:N ] still targets π0(h). The target distribution is not changed but now, all the
weights are equal. Informative particles (ie with high weights) are likely to be replicated after
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resampling while noninformative are likely to disappear (because they were not chosen). Support
points are changed but still within the initial pool of support points.

6.2.1.2 Exploration step

Assume that {(Xk, ω
k)}k∈[1:N ] targets π0(h) and that

π1(y) =

∫
X

π0(dx)q(x, y), (6.2)

where q is a kernel density. An example of exploration step is

For k ∈ [1 : n], draw independently X̃k ∼ r(Xk, ·)

where r is a kernel density (that can be easily simulated). Then,
{

(X̃k, ω
k × q(Xk,X̃k)

r(Xk,X̃k)

}
k∈[1:N ]

targets π1(h). Here, support points are moved and weights are updated by a multiplicative factor
(except when r = q, in which case, support points are moved but the associated weights do not

need to be updated since q(Xk,X̃k)

r(Xk,X̃k)
= 1).

6.2.1.3 Reweighting step

Assume that {(Xk, ω
k)}k∈[1:N ] targets π0(h) and that

π1(x) =
π0(x)g(x)∫

X
π0(du)g(u)

(6.3)

where g is a nonnegative function. Then,
{

(Xk, ω
kg(Xk)

}
k∈[1:N ]

targets π1(h). Here, support

points are unchanged but weights are updated.
Finally, when choosing the intermediate target distributions π1 → π2 →, . . . ,→ πT = π, we

must check that each step πi → πi+1 corresponds either to (6.2) or (6.3) so that we can let evolve
a population of particles through exploration, and reweighting steps. Resampling can always be
performed when weights are too di�erent and this is often measured when the E�ective Sample

Size (which is a real number between 1 and N), ÊSS = 1∑N
k=1(ω̄k)2

, falls below a certain arbitrary

threshold.

6.2.2 Variational inference

Variational Inference is a technique derived from theMachine Learning community whose principle
is to approach the target density through various optimization techniques. The principle consists
in giving up aiming exactly at the target law, but instead, we have at hand a su�ciently rich
family of laws (that can be easily simulated) and the idea is then to select a member of this
family close to the target in the sense of a certain divergence through optimization procedures.
Variational inference has been successfully used in many applications and seems to be faster and
more e�cient to explore large spaces compared to classical Monte Carlo Markov chain methods.
The proximity is often measured in terms of Kullback divergence or even more recently in terms
of f -divergence. Although these techniques are extremely powerful and popular in practice, some
statistical properties of these methods are still largely unknown.
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6.2.2.1 α-divergence and the ELBO

Letting fα be the convex function on (0,+∞) de�ned by f0(u) = − log(u), f1(u) = u log(u) and
fα(u) = 1

α(α−1) [uα − 1] for all α ∈ R \ {0, 1}, the α-divergence for all α ∈ R is de�ned by

Dα(P‖Q) =

∫
X

fα

(
q(x)

p(x)

)
p(x)λ(dx), (6.4)

where P(dx) = p(x)λ(dx) and Q(dx) = q(x)λ(dx). Of course, it is non-negative and null if P = Q
but there is no triangular inequality and therefore, it is not a distance.

In Variational Inference (also called VI), we want to approximate π by selecting the best can-
didate among a family of densities

{x 7→ pθ(x) : θ ∈ Θ}

with respect to the α-divergence. In other words, we want to solve

argminθ∈ΘDα(π‖pθ) = argminθ∈Θ

∫
X

fα

(
pθ(x)

π(x)

)
π(x)λ(dx)

Recalling that π is known only up to multiplicative constant, we must check if the minimization of∫
X
fα

(
pθ(x)
π(x)

)
π(x)λ(dx) can be equivalent to the minimization of another functional which will be

more explicit. Write π(x) = π̃(x)/C where π̃(x) is explicit and C =
∫
X
π̃(x)λ(dx) is an "unexplicit"

constant. Take for example: α = 1. Then,

D1(π‖pθ) =

∫
X

log

(
pθ(x)

π(x)

)
pθ(x)λ(dx) = −

∫
X

log

(
π̃(x)

pθ(x)

)
pθ(x)λ(dx)︸ ︷︷ ︸

ELBO

+ logC

In this litterature,
∫
X

log
(
π̃(x)
pθ(x)

)
pθ(x)λ(dx) is called the ELBO (Evidence Lower Bound) and

maximizing the ELBO wrt θ is equivalent to minimizing D1(π‖pθ) wrt θ. Note that since
D1(π‖pθ) = −ELBO + logC, we have

ELBO ≤ logC = log

∫
X

π̃(x)λ(dx)

(Hence, the terminology "Evidence Lower Bound"). In the case where α 6= 1, some equivalent of
the ELBO can also be found. In VI, we are face to an optimisation problem (which is in general
a non-convex problem) and we have to resort to all the tools linked with optimisation problems:
various stochastic gradient descents and their variants...

6.3 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is an alternative approach when computation of the
posterior is challenging, either because the size of the data or the complexity of realistic models
makes the calculation computationally intractable. ABC speci�cally provides a solution when the
likelihood y 7→ p(y|θ) cannot be evaluated. A generic description of the original ABC algorithm
requires (i) the introduction of statistics S(y) ∈ Rm where m is usually sensibly smaller than the
dimension of y and (ii) a distance d on Rm ×Rm. Note that if no statistics can be widely de�ned
S can be the identity function. Then, the most direct ABC alforithm is described in Algorithm 5.
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Data: Observation Y , threshold ε, N
Result: Samples approximately distributed according to p(·|Y ).
for i = 1→ N do

draw θi with prior distribution π;
draw Yi with distribution p(·|θi);

end
Return all θi such that d(S(Yi), S(Y )) < ε;

Algorithm 5: ABC algorithm.

When S is the identity function, the random variables sampled by this algorithm have distri-
bution πε(·|Y ) where

πε(θ|Y ) ∝
∫
p(y|θ)π(θ)1Aε,Y (y)dy,

with Aε,Y = {y; d(y, Y ) < ε}. The intuitive idea behind this algorithm is that if ε→ 0, πε(θ|Y )→
π(θ|Y ) and if ε → ∞, πε(θ|Y ) → π(θ). This initial version of the ABC approach raises many
practical issues among which an appropriate calibration of ε, the choice of statistics S, and the
widespread ine�ciency of sampling candidates according to the prior distribution π. In practice,
the threshold ε is usually determined as a quantile of the observed distance (d(S(Yi), S(Y )))16i6N

which allows to introduce Algorithm 6.

Data: Observation Y , N , integer MN

Result: Samples approximately distributed according to p(·|Y ).
for i = 1→ N do

draw θi with prior distribution π;
draw Yi with distribution p(·|θi);

end
Return all θi such that S(Yi) is in the set of MN nearest neighbors of S(Y ) with respect to
distance d;

Algorithm 6: ABC algorithm with calibrated threshold.

These two algorithms generate independent samples but do not build upon the accepted samples
to propose new candidates in a more e�cient way than using the prior distribution. This can be
performed by considering ABC within a MCMC algorithm. See the exercises for a proof that
Algorithm 7 targets the correct posterior distribution.

Data: Observation Y , N , threshold ε, output (θ0, Y0) from a "standard" ABC.
Result: Samples approximately distributed according to p(·|Y ).
for i = 1 to N do

Sample θ̃ ∼ q(·|θi);
Sample Ỹ ∼ p(·|θ̃) and compute S(Ỹ );

Compute α = 1 ∧ π(θ̃)q(θi|θ̃)
π(θi)q(θ̃|θi)

1d(S(Ỹ ),S(Y ))<ε;

Sample U ∼ U(0, 1);
if U < α then

Set θi+1 = θ̃ and Yi+1 = Ỹ ;
else

θi+1 = θi and Yi+1 = Yi;
end

end
Algorithm 7: ABC within MCMC
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6.4 After studying this chapter...

a) I understand what are the typical target distributions and that they can be of high
dimensions.

b) I have notions other approximations methods.
c) I understand the basic ways of letting evolve a population of particles (exploration,

reweighting, resampling) and the associated moves of the target distribution.
d) I understand the basics of variational inference.
e) I am ready (and eager) to work in practise on various MH algorithms or approxima-

tion methods.

Highlights

6.A Thomas Bayes (source: wikipedia).

Thomas Bayes (1701-1761) was an English statistician, philosopher
and Presbyterian minister who is known for formulating a speci�c
case of the theorem that bears his name: Bayes' theorem. Bayes never
published what would become his most famous accomplishment; his
notes were edited and published after his death by Richard Price.

Thomas Bayes was the son of London Presbyterian minister
Joshua Bayes, and was possibly born in Hertfordshire. He came from
a prominent nonconformist family from She�eld. In 1719, he enrolled
at the University of Edinburgh to study logic and theology. On his
return around 1722, he assisted his father at the latter's chapel in
London before moving to Tunbridge Wells, Kent, around 1734. There
he was minister of the Mount Sion Chapel, until 1752.

He is known to have published two works in his lifetime, one
theological and one mathematical:

� Divine Benevolence, or an Attempt to Prove That the Principal
End of the Divine Providence and Government is the Happiness of His Creatures (1731)

� An Introduction to the Doctrine of Fluxions, and a Defence of the Mathematicians Against
the Objections of the Author of The Analyst (published anonymously in 1736), in which he
defended the logical foundation of Isaac Newton's calculus ("�uxions") against the criticism
of George Berkeley, author of The Analyst

It is speculated that Bayes was elected as a Fellow of the Royal Society in 1742 on the strength
of the Introduction to the Doctrine of Fluxions, as he is not known to have published any other
mathematical works during his lifetime.

In his later years he took a deep interest in probability. Professor Stephen Stigler, historian
of statistical science, thinks that Bayes became interested in the subject while reviewing a work
written in 1755 by Thomas Simpson, but George Alfred Barnard thinks he learned mathematics
and probability from a book by Abraham de Moivre. Others speculate he was motivated to rebut
David Hume's argument against believing in miracles on the evidence of testimony in An Enquiry
Concerning Human Understanding. His work and �ndings on probability theory were passed in
manuscript form to his friend Richard Price after his death.

Monument to members of the Bayes and Cotton families, including Thomas Bayes and his father
Joshua, in Bunhill Fields burial ground By 1755 he was ill and by 1761 had died in Tunbridge Wells.
He was buried in Bunhill Fields burial ground in Moorgate, London, where many nonconformists
lie.





Chapter 7
Illustrations, exercises, extensions

7.1 Illustrations

A �collaboratory� Jupyter Notebook that illustrates the results of some exercises or some
algorithms seen in the course is at the disposal of the reader by following this link.

7.1.1 Illustrations of HMC

Figure 7.1.1 displays several trajectories of the leapfrog integrator when the target density is a
Guassian distribution or a mixture of Gaussian distributions. Trajectories are initialized randomly
and then the leapfrog integrator is run with step size h = 0.01.

Figure 7.1.1 displays several trajectories of a HMC sampler with leapfrog integrators with
various lengths when the target density a mixture of Gaussian distributions. This �gure highlights
the fact that the proposed moves provided by the leapfrog integrator allow to explore widely the
space and to jump from a mode to another.

65

https://colab.research.google.com/drive/1Ey5TNx-_74gPH0FG-rhXSuGGok0T10wS
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7.2 Exercises

Exercise 7.1. Let
Xt = σtZt, σ2

t = α0 + α1X
2
t−1, t ≥ 1

where the coe�cients α0, α1 are positive and {Zt : t ∈ N} is an iid sequence of random variables
such that E[Z0] = 0, E[Z2

0 ] = 1, and {Zt : t ∈ N} is independent of X0

1. Assuming that Z0 has the density q wrt the Lebesgue measure, show that {Xt : t ∈ N} is a
Markov chain with transition density

p(x, x′) =
1√

α0 + α1x2
q

(
x′√

α0 + α1x2

)
.

Exercise 7.2. Let µ ∈ M1(X) and assume that for some function h ∈ F(X), and some constant C,

lim
n→∞

n−1
n−1∑
k=0

h(Xk) = C, Pµ − a.s.

Then show that for µ-almost all x ∈ X,

lim
n→∞

n−1
n−1∑
k=0

h(Xk) = C, Px − a.s.
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Exercise 7.3. In this exercise, we will show the strong Markov property: for any ν ∈ M1(X), any
non-negative or bounded function h on XN, any n ∈ N and any stopping time σ,

Eν
[
h ◦ Sσ1{σ<∞}|Fσ

]
= EXσ [h] , Pν − a.s.

where Fσ = {A ∈ F : A ∩ {σ = k} ∈ Fk,∀k ≥ 1} and Fk = σ(X0:k).
For any �ltration (Fk) on F , recall that σ is a (Fk)-stopping time if for all n ∈ N, {σ ≤ n} ∈ Fn.

1. De�ne Fσ = {A ∈ F : A ∩ {σ = k} ∈ Fk,∀k ≥ 1}. Show that Fσ is a σ-�eld.
2. Using the decomposition, 1{σ<∞} =

∑∞
k=0 1{σ=k}, show the strong Markov property.

Exercise 7.4. Consider a Gaussian AR(1) process, Xt = µ+φXt−1 + σZt, where {Zt : t ∈ N} is
an iid sequence of standard Gaussian random variables, independent of X0. Assume that |φ| < 1
and that X0 is Gaussian with mean µ0 and variance γ2

0 .

1. Show that if X1 has the same distribution as X0 then{
µ+ φµ0 = µ0

φ2γ2
0 + σ2 = γ2

0

2. Deduce an invariant distribution for (Xt)t∈N.

Details of the numerics are given in the Jupyter Notebook.

Exercise 7.5. Consider a Markov chain whose state space X = (0, 1) is the open unit interval. If
the chain is at x, it picks one of the two intervals (0, x) or (x, 1) with equal probability 1/2, and
then moves to a point y which is uniformly distributed in the chosen interval.

1. Show that this Markov chain has a transition density wrt the Lebesgue measure on the interval
(0, 1), which is given by

k(x, y) =
1

2

1

x
1(0,x)(y) +

1

2

1

1− x
1(x,1)(y)

2. Show that this Markov chain can be equivalently represented as an iterated random sequence.

Xt = εt [Xt−1Ut] + (1− εt) [Xt−1 + Ut(1−Xt−1)]

where {Un : n ∈ N} and {εn : n ∈ N} are iid random variables whose distribution should be
given.

3. Assuming that the stationary distribution has a density p wrt the Lebesgue measure show that

p(y) =
1

2

∫ 1

y

p(x)

x
dx+

1

2

∫ y

0

p(x)

1− x
dx
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4. Deduce that ∫ z

0

p(y)dy = 2C arcsin(
√
z)

for some constant C.
5. Conclude that C = 1/π.

Details of the numerics are given in the Jupyter Notebook.

Exercise 7.6. Let π(dxdy) = π(x, y)λX(dx)λY (dy) be probability measure on (X × Y,X ⊗ Y)

where λX (resp. λY ) is σ-�nite measure on (X,X ) (resp. (Y,Y)). De�ne π(y|x) = π(x,y)
π(x) whenever

π(x) 6= 0.
De�ne: P ((x, y),dx′dy′) = δx(dx′)π(y′|x)λY (dy′). Show that P is a π-reversible Markov kernel

on (X× Y)× (X ⊗ Y).

Exercise 7.7. In a MH algorithm, we want to �nd an acceptance probability α(x, y) = f
(
π(y)q(y,x)
π(x)q(x,y)

)
1. Show that the detailed balance condition is satis�ed if and only if for all u ≥ 0, f(u) = uf(1/u).
2. Show that it is su�cient to check that for all u ∈ (0, 1), f(u) = uf(1/u).
3. Find all the functions f sucht that the detailed balance condition is satis�ed with α(x, y) =

f
(
π(y)q(y,x)
π(x)q(x,y)

)
.

Exercise 7.8. Let P be a Markov kernel with invariant probability measure π. Let A ∈ X such
that π(A) = 1. Show that there exists B ⊂ A such that P (x,B) = 1 for all x ∈ B (i.e. such set B
is said to be absorbing in the sense that starting from any point in B, the Markov chain stays in
B forever with probability one).

Exercise 7.9. Let (Xt) be the AR(p) process de�ned by: Xt =
∑p
i=1 aiXt−i + σεt for all t ≥ i,

where εi
i.i.d∼ N (0, 1) and σ > 0.

De�ne Yt =

 Xt

. . .
Xt−p+1

 and show that (Yt) is a Markov chain. Give the expression of the

associated Markov kernel. Show that it admits at most one invariant probability measure.

Exercise 7.10. Let P be a Markov kernel on X×X , admitting an invariant probability measure
π. We assume that there exist two measurable positive functions V and f and a constant K such
that

PV + f ≤ V +K

Show that π(f) <∞.

Exercise 7.11. In this exercise, we prove Theorem 3.4. Set Sn =
∑n−1
k=0 h◦T k, Ln = inf {Sk : k ∈ [1 : n]}

and A = {infn∈N∗ Ln = −∞}. We �rst assume that E[h] > 0.

1. Show that Ln ≥ h+ inf(0, Ln ◦ T ).
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2. Deduce that
E[1Ah] ≤ E[1A(Ln)+]

3. Deduce P(A) = 0.
4. Prove The Birkho� theorem (Theorem 3.4).

Exercise 7.12. Assume that (A1) and (A2) hold for some measurable function V ≥ 1. We
want to prove that: for all initial distributions ν ∈ M1(X) and all f ∈ F(X) such that
π(|f |) =

∫
X
π(dx)|f(x)| <∞,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s (7.1)

1. Prove the result by combining Corollary 4.7 and Theorem 4.5 with some results in Chapter 3
(give the exact references of the results that you pick from Chapter 3)

Exercise 7.13. Consider the following discretization of the Hamiltonian dynamics.

pk+1 = pk − (h)∇U(qk)

qk+1 = qk + hpk+1 (7.2)

1. Is it volume-preserving?
2. Can we to the �ip operator trick to obtain an involution?
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