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Preface

Markov chains are a class of stochastic processes very commonly used to model
random dynamical systems. Applications of Markov chains can be found in many
fields from statistical physics to financial time-series. Examples of successful appli-
cations abound. Markov chains are routinely used in signal processing and control
theory. Markov chains for storage and queueing models are at the heart of many
operational research problems. Markov chain Monte Carlo methods and all their
derivatives play an essential role in computational statistics and Bayesian inference.

The modern theory of discrete state-space Markov chains actually started in the
1930s with the work well ahead of its time of Doeblin (1938) and Doeblin (1940)
and most of the theory (classification of states, existence of an invariant probabil-
ity, rates of convergence to equilibrium, etc..) was already known by the end of the
1950s. Of course, there have been many specialized developments of discrete state
space Markov chains since then, see for example Levin et al (2009), but these devel-
opments are only taught in very specialized courses. Many books cover the classical
theory of discrete state-space Markov chains, from the most theoretical to the most
practical. With few exceptions, they deal with almost the same concepts and differ
only by the level of mathematical sophistication and the organization of the ideas.

This book deals with the theory of Markov chains on general state spaces. The
foundations of general state space Markov chains were laid in the 1940’s, especially
under the impulse of the Russian school (Yinnik, Yaglom, etc...). A summary of
these early efforts can be found in Doob (1953). During the sixties and the seven-
ties some very significant results were obtained such as the extension of the notion
of irreducibility, recurrence/transience classification, the existence of the invariant
measures and limit theorems. The books by Orey (1971) and Foguel (1969) sum-
marize these results.

Neveu (1972) brought many significant additions to the theory by introducing the
taboo potential with respect to a function instead of a set. This approach is no longer
widely used today in applied probability and will not be developed in this book (see
however Chapter 4). The taboo potential approach was later expanded in the book
by Revuz (1975). The latter book contains much more and essentially summarizes
all what was known in the mid seventies.

xi
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A breakthrough was achieved in the works of Nummelin (1978) and Athreya and
Ney (1978) which introduce the notion of the split chain and embedded renewal pro-
cess. These methods allow to reduce the study to the case of Markov chains which
possess an atom, that is a set in which a regeneration occurs. The theory of such
chains can be developed in complete analogy with discrete state-space. The renewal
approach leads to many important results such as geometric ergodicity of recurrent
Markov chains (Nummelin and Tweedie (1978); Nummelin and Tuominen (1982,
1983)) and limit theorems (central limit theorems, law of iterated logarithms). This
program was completed in the book Nummelin (1984) which contains a consider-
able number of results but is admittedly difficult to read.

This preface would be incomplete if we did not quote Meyn and Tweedie (1993b)
referred to as the bible of Markov chains by P. Glynn in his prologue to the second
edition of this book (Meyn and Tweedie (2009)). Indeed, it must be acknowledged
that this book has had a profound impact on the Markov chain community and on
the authors. Three of us have learned the theory of Markov chains from Meyn and
Tweedie (1993b), which has therefore shaped and biased our understanding of this
topic.

Meyn and Tweedie (1993b) quickly became a classic in applied probability and is
praised both by theoretically inclined researchers and practitioners. This book offers
a self-contained introduction to general state-space Markov chains, based on the
split chain and embedded renewal techniques. The book recognizes the importance
of Foster-Lyapunov drift criteria to assess recurrence or transience of a set and to
obtain bounds for the return time or hitting time to a set. It also provides, for positive
Markov chains, necessary and sufficient conditions for geometric convergence to
stationarity.

The reason we thought it would be useful to write a new book is to survey some
of the developments made during the 25 years elapsed since the publication of Meyn
and Tweedie (1993b). To save space, while remaining self-contained, this also im-
plied presenting the classical theory of general state-space Markov chains in a more
concise way, eliminating some developments that we thought are more peripheral.

Since the publication of Meyn and Tweedie (1993b), the field of Markov chains
has remained very active. New applications have emerged like Markov chain Monte
Carlo (MCMC) which plays now a central role in computational statistics and ap-
plied probability. Theoretical development did not lag behind. Triggered by the ad-
vent of MCMC algorithms, the topic of quantitative bounds of convergence became
a central issue. A lot of progresses have been achieved in this field, using either cou-
pling techniques or operator-theoretic methods. This is one of the main themes of
several chapters of this book and still an active field of research. Meyn and Tweedie
(1993b) only deals with geometric ergodicity and the associated Foster-Lyapunov
drift conditions. Many works were devoted to subgeometric rates of convergence to
stationarity, following the pioneering paper of Tuominen and Tweedie (1994) which
appeared shortly after the first version of Meyn and Tweedie (1993b). These results
were later sharpened in a series of works of Jarner and Roberts (2002) and Douc
et al (2004a), where a new drift condition was introduced. There was also a sub-
stantial activity on sample paths, limit theorems and concentration inequalities. For
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example, Maxwell and Woodroofe (2000) and Rio (2017) obtained conditions for
the central limit theorems for additive functions of Markov chains which are close
to be optimal.

Meyn and Tweedie (1993b) considered exclusively irreducible Markov chains
and total variation convergence. There are of course many practically important sit-
uations in which the irreducibility assumption fails to hold whereas it is still possible
to prove the existence of a unique stationary probability and convergence to station-
arity in distances weaker than the total variation. This quickly became an important
field of research.

Of course, there are significant omissions in this book, which is already much
longer than we initially thought it would be. We do not cover large deviations the-
ory for additive functionals of Markv chains despite the recent advances made in this
field in the works of Balaji and Meyn (2000) and Kontoyiannis and Meyn (2005).
Similarly, significant progress was made in the theory of moderate deviations for ad-
ditive functional of Markov chain in a series of works Chen (1999) , Guillin (2001),
Djellout and Guillin (2001), and Chen and Guillin (2004). These efforts are not re-
ported in this book. We do not address the theory of fluid limit introduced in Dai
(1995) and later refined in Dai and Meyn (1995), Dai and Weiss (1996) and Fort et al
(2006) despite its importance to analyse stability of Markov chains and its success
to analyse storage systems (like networks of queues). There are other significant
omissions and in many chapters we were obliged sometimes to make difficult deci-
sions.

The book is divided into four parts. In Part I, we give the foundations of Markov
chain theory. All the results presented in these chapters are very classic. There are
two highlights in this part: the Kac’s construction of the invariant probability in
Chapter 3 and the ergodic theorems in Chapter 5 (where we also present a short
proof of Birkhoff’s theorem).

In Part II, we present the core theory of irreducible Markov chains, which is a
subset of Meyn and Tweedie (1993b). We use the regeneration approach to derive
most results. Our presentation nevertheless differs from that of Meyn and Tweedie
(1993b). We first focus on the theory of atomic chain Chapter 6. We show that the
atoms are either recurrent or transient, establish solidarity properties fr atoms and
then discuss the existence of an invariant measure. In Chapter 7, we apply these
results to discrete state-space. We would like to stress that this book can be read
without any prior knowledge of discrete state-space Markov chains: all the results
are established as a special case of atomic chains. In Chapter 8, we present the key
elements of discrete time renewal theory. We use the results obtained for discrete
state-space Markov chains to provide a proof of Blackwell and Kendall’s theorems
which are central to discrete-time renewal theory. As a first application, we obtain a
version of the Harris theorem for atomic Markov chains (based on the first-entrance
last-exit decomposition) as well as geometric and polynomial rates of convergence
to stationarity.

For Markov chains on general state-space, the existence of an atom is more an
exception than a rule. The splitting method consists in extending the state space
to construct a Markov chain which contains the original Markov chain (as its first
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marginal) and which has an atom. Such a construction requires to have first defined
small sets and petite sets which are introduced in Chapter 9. We have adopted a
definition of irreducibility which differs from the more common usage. This avoids
the delicate theorem of Jain and Jamison (1967) (which is however proved in the
appendix of this chapter for completeness but is not used) and allows to define ir-
reducibility on arbitrary state-space (whereas the classical assumption requires the
use of a countably generated σ -algebra). In Chapter 10 we discuss the recurrence,
Harris recurrence and transience of general state-space Markov chains. In Chap-
ter 11, we present the splitting construction and show how the results obtained in
the atomic framework can be translated for general state-space Markov chains. The
last chapter of this part, Chapter 12, deals with Markov chains on complete sepa-
rable metric spaces. We introduce the notions of Feller, strong-Feller and T -chains
and show how the notions of small and petite sets can be related in such cases to
compact sets. This is a very short presentation of the theory of Feller chains which
are treated in much greater details in Meyn and Tweedie (1993b) and Borovkov
(1998).

The first two parts of the book can be used as a text for a one-semester course
providing the essence of the theory of Markov chains but avoiding difficult technical
developments. The mathematical prerequisites are a course in probability, stochas-
tic processes and measure theory at no deeper levels than for instance Billingsley
(1986) and Taylor (1997). All the measure theoreric results that we use are recalled
in the appendix with precise references. We also occasionally use some results from
martingale theory (mainly the martingale convergence theorem) which are also re-
called in the appendix. Familiarity with Williams (1991) or the first three chapters
of Neveu (1975) is therefore highly recommended. We also occasionally need some
topology and functional analysis results for which we mainly refer to the books Roy-
den (1988) and Rudin (1987). Again, the results we use are recalled in the appendix.

Part III presents more advanced results for irreducible Markov chains. In Chap-
ter 13 we complement the results that we obtained in Chapter 8 for atomic Markov
chains. In particular, we cover subgeometric rates of convergence. The proofs pre-
sented in this Chapter are partly original. In Chapter 14 we discuss the geometric
regularity of a Markov chain and obtain the equivalence of geometric regularity with
a Foster-Lyapunov drift condition. We use these results to establish geometric rates
of convergence in Chapter 15. We also establish necessary and sufficient conditions
for geometric ergodicity. These results are already reported in Meyn and Tweedie
(2009). In Chapter 16 we discuss subgeometric regularity and obtain the equivalence
of subgeometric regularity with a family of drift conditions. Most of the arguments
are taken from Tuominen and Tweedie (1994). We then discuss the more practical
subgeometric drift conditions proposed in Douc et al (2004a) which is the coun-
terpart of the Foster-Lyapunov conditions for geometric regularity. In Chapter 17
we discuss the subgeometric rate of convergence to stationarity, using the splitting
method.

In the last two chapters of this part, we reestablish the rates of convergence by
two different type of methods which do not use the splitting technique.
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In Chapter 18 we derive explicit geometric rates of convergence by means of
operator-theoretic argument and the fixed point theorem. We introduce the uniform
Doeblin condition and show that it is equivalent to uniform ergodicity, that is con-
vergence to the invariant distribution at the same geometric rate from every point
of the state-space. As a by product, this result provides an alternative proof of the
existence of an invariant measure for an irreducible recurrent kernel which does not
use the splitting construction. We then prove non uniform geometric rates of conver-
gence by the operator method, using the ideas introduced in Hairer and Mattingly
(2011).

In the last chapter of this part, Chapter 19, we discuss coupling methods which
allow to easily obtain quantitative convergence results as well as short and elegant
proofs of several important results. We introduce different notions of coupling start-
ing almost from scratch: exact coupling, distributional coupling and maximal cou-
pling. This part owes much to the excellent treatises on coupling methods Lindvall
(1979) and Thorisson (2000), which of course cover much more than this Chapter.
We then show how exact coupling allows to obtain explicit rates of convergence
in the geometric and subgeometric cases. The use of coupling to obtain geometric
rates was introduced by in the pioneering work of Rosenthal (1995b) (some im-
provements were later brought by Douc et al (2004b)). We also illustrate the use of
exact coupling method to derive subgeometric rate of convergence; we follow here
the works of Douc et al (2007) and Douc et al (2006). Although the content of this
part is more advanced, a part of them can be used in a graduate course of Markov
chains. The presentation of the operator-theoretic approach of Hairer and Mattingly
(2011) which is both useful and simple is of course a must. It also think interesting
to introduce the coupling methods because they are both useful and elegant.

In Part IV, we give a special focus on four topics. The choice we made was a dif-
ficult one because there have been many new developments in Markov chain theory
over the last two decades. There is therefore a great deal of arbitrariness in these
choices and important omissions. In Chapter 20, we assume that the state space is
a complete separable metric space but we no longer assume that the Markov chain
is irreducible. Since it is no longer possible to construct an embedded regenerative
process, the techniques of proof are completely different; the essential difference
is that convergence in total variation distance may no longer hold and it must be
replaced by the Wasserstein distances. We recall the main properties and these dis-
tances and in particular the duality theorem which allows to use coupling meth-
ods. We have essentially followed Hairer et al (2011) in the geometric case and
Butkovsky (2014) and Durmus et al (2016) for the subgeometric case. However, the
methods of proofs and some of the results appear to be original. Chapter 21 cov-
ers Central limit theorems of additive functions of Markov chains. The most direct
approach is to use a martingale decomposition (with a remainder term) of the ad-
ditive functionals by introducing solutions of the Poisson equation. The approach
is straightforward and Poisson solutions exist under minimal technical assumptions
(see Glynn and Meyn (1996)), yet this method does not yield conditions close to
be optimal. A first approach to weaken these technical conditions was introduced
in Kipnis and Varadhan (1985) and further developed by Maxwell and Woodroofe
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(2000): it keeps the martingale decomposition with remainder but replaces Poisson
by resolvent solutions and uses tightness arguments. It yields conditions which are
closer to be sufficient. A second approach, due to Gordin and Lifšic (1978) and later
refined by many authors (see Rio (2017)) uses another martingale decomposition
and yields closely related (but nevertheless different) sets of conditions. We also
discuss different expressions for the asymptotical variance, following Häggström
and Rosenthal (2007). In Chapter 22, we discuss the spectral property of a Markov
kernel P seen as an operator on appropriately defined Banach space of complex
functions and complex measures. We study the convergence to the stationary distri-
bution by using the particular structure of the spectrum of this operator; deep results
can be obtained when the Markov kernel P is reversible (i.e. self-adjoint), as shown
for example in Roberts and Tweedie (2001) and Kontoyiannis and Meyn (2012).
We also introduce the notion of conductance and prove geometric convergence us-
ing conductance thorough Cheeger’s inequalities following Lawler and Sokal (1988)
and Jarner and Yuen (2004). Finally in Chapter 23 we give an introduction to sub-
gaussian concentration inequalities for Markov chains. We first show how McDi-
armid’s inequality can be extended to uniformly ergodic Markov kernels following
Rio (2000a). We then discuss the equivalence between McDiarmid’s type subgaus-
sian concentration inequality and geometric ergodicity, using a result established in
Dedecker and Gouëzel (2015). We finally obtain extensions of these inequalities for
separately Lipshitz functions, following Djellout et al (2004) and Joulin and Ollivier
(2010).

We have chosen to illustrate the main results with simple examples. More sub-
stantial examples are considered in exercises at the end of each chapter; the solu-
tions of a majority of these exercises are provided. The reader is invited to practice
on these exercises (which are mostly fairly direct applications of the course) to test
their understanding of the theory. We have selected examples from different fields
including signal processing and automatic control, time-series analysis and Markov
Chains Monte Carlo simulation algorithms.

We do not cite bibliographical references in the body of the chapters, but we
have added at the end of each chapter bibliographical indications. We give precise
bibliographical indications for the most recent developments. For former results,
we do not necessarily seek to attribute authorship to the original results. Meyn and
Tweedie (1993b) covers in much greater details the genesis of the earlier works.
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Fig. 0.1 Suggestion of playback order with respect to the different chapters of the book. The red
arrows correspond to a possible path for a reader, eager to focus only on the most fundamental
results. The skipped chapters can then be investigated in a second reading. The blue arrows provide
a fast track for a proof of the existence of an invariant measure and geometric rates of convergence
for irreducible chains without the splitting technique. The chapters in the last Part of the book are
almost independent and can be read in any order.





Part I
Foundations





Chapter 1
Markov chains: basic definitions

Heuristically, a discrete-time stochastic process has the Markov property if the past
and future are independent given the present. In this introductory chapter, we give
the formal definition of a Markov chain and of the main objects related to this type
of stochastic processes and establish basic results. In particular, we will introduce in
Section 1.2 the essential notion of a Markov kernel which gives the distribution of
the next state given the current state. In Section 1.3, we will restrict attention to time
homogeneous Markov chains and establish that a fundamental consequence of the
Markov property is that the entire distribution of a Markov chain is characterized
by the distribution of its initial state and a Markov kernel. In Section 1.4, we will
introduce the notion of invariant measures which play a key role in the study of the
long term behaviour of a Markov chain. Finally in Sections 1.5 and 1.6, which can
be skipped on a first reading, we will introduce the notion of reversibility which is
very convenient and satisfied by many Markov chains and some further properties
of kernels seen as operators and certain spaces of functions.

1.1 Markov chains

Let (Ω ,F ,P) be a probability space, (X,X ) be a measurable space and T be a
set. A family of X-valued random variables indexed by T is called an X-valued
stochastic process indexed by T .

Throughout this chapter, we only consider the cases T = N and T = Z.
A filtration of a measurable space (Ω ,F ) is an increasing sequence {Fk, k ∈ T}

of sub-σ -fields of F . A filtered probability space (Ω , F ,{Fk, k ∈ T},P) is a
probability space endowed with a filtration.

A stochastic process {Xk, k ∈ T} is said to be adapted to the filtration {Fk, k ∈
T} if for each k ∈ T , Xk is Fk-measurable. The notation {(Xk,Fk), k ∈ T} will be
used to indicate that the process {Xk, k ∈ T} is adapted to the filtration {Fk, k ∈ T}.
The σ -field Fk can be thought of as the information available at time k. Requiring

3
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the process to be adapted means that the probability of events related to Xk can be
computed using solely the information available at time k.

The natural filtration of a stochastic process {Xk, k ∈ T} defined on a probability
space (Ω ,F ,P) is the filtration {F X

k , k ∈ T} defined by

F X
k = σ(X j , j ≤ k , j ∈ T ) , k ∈ T .

By definition, a stochastic process is adapted to its natural filtration. The main defi-
nition of this chapter can now be stated.

Definition 1.1.1 (Markov Chain) Let (Ω ,F ,{Fk, k ∈ T},P) be a filtered proba-
bility space. An adapted stochastic process {(Xk,Fk), k ∈ T} is a Markov chain if,
for all k ∈ T and A ∈X ,

P(Xk+1 ∈ A |Fk) = P(Xk+1 ∈ A |Xk) P − a.s. (1.1.1)

Condition (1.1.1) is equivalent to the following condition: for all f ∈ F+(X)∪
Fb(X),

E [ f (Xk+1) |Fk] = E [ f (Xk+1)|Xk] P − a.s. (1.1.2)

Let {Gk, k ∈ T} denote another filtration such that for all k ∈ T , Gk ⊂ Fk. If
{(Xk,Fk), k ∈ T} is a Markov chain and {Xk, k ∈ T} is adapted to the filtration
{Gk, k ∈ T}, then {(Xk,Gk), k ∈ T} is also a Markov chain. In particular a Markov
chain is always a Markov chain with respect to its natural filtration.

We now give other characterizations of a Markov chain.

Theorem 1.1.2. Let (Ω ,F ,{Fk, k ∈ T},P) be a filtered probability space and
{(Xk,Fk), k ∈ T} be an adapted stochastic process. The following properties are
equivalent.

(i) {(Xk,Fk), k ∈ T} is a Markov chain.
(ii) For every k ∈ T and bounded σ(X j, j ≥ k)-measurable random variable Y ,

E [Y |Fk] = E [Y |Xk] P − a.s. (1.1.3)

(iii) For every k ∈ T , bounded σ(X j, j ≥ k)-measurable random variable Y and
bounded F X

k -measurable random variable Z,

E [Y Z|Xk] = E [Y |Xk]E [Z|Xk] P − a.s. (1.1.4)

Proof. (i)⇒ (ii) Fix k ∈ T and consider the property (where Fb(X) is the set of
bounded measurable functions),
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(Pn): (1.1.3) holds for all Y = ∏
n
j=0 g j(Xk+ j) where g j ∈ Fb(X) for all j ≥ 0.

(P0) is true. Assume that (Pn) holds and let {g j, j ∈N} be a sequence of functions
in Fb(X). The Markov property (1.1.2) yields

E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk]

= E [E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk+n]|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Fk+n]|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Xk+n]|Fk] .

The last term in the product being a measurable function of Xn+k, the induction
assumption (Pn) yields

E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Xk+n]|Xk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Fk+n]|Xk]

= E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Xk] ,

which proves (Pn+1). Therefore, (Pn) is true for all n ∈ N.
Consider the set

H =
{

Y ∈ σ(X j, j ≥ k) : E [Y |Fk] = E [Y |Xk] P − a.s.
}
.

It is easily seen that H is a vector space. In addition, if {Yn, n ∈N} is an increasing
sequence of nonnegative random variables in H and if Y = limn→∞ Yn is bounded,
then by the monotone convergence theorem for conditional expectations,

E [Y |Fk] = lim
n→∞

E [Yn|Fk] = lim
n→∞

E [Yn|Xk] = E [Y |Xk] P − a.s.

By Theorem B.2.4, the space H contains all σ(X j, j ≥ k) measurable random vari-
ables.

(ii)⇒ (iii) If Y is a bounded σ(X j, j ≥ k)-measurable random variable and Z is
a bounded Fk measurable random variable, an application of (ii) yields

E [Y Z|Fk] = ZE [Y |Fk] = ZE [Y |Xk] P − a.s.

Thus,

E [Y Z|Xk] = E [E [Y Z|Fk]|Xk] = E [ZE [Y |Xk]|Xk]

= E [Z|Xk]E [Y |Xk] P − a.s.

(iii)⇒ (i) If Z is bounded and Fk-measurable, we obtain

E [ f (Xk+1)Z] = E [E [ f (Xk+1)Z|Xk]]

= E [E [ f (Xk+1)|Xk]E [Z|Xk]] = E [E [ f (Xk+1)|Xk]Z] .
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This proves (i).
2

Heuristically, Condition (1.1.4) means that the future of a Markov chain is con-
ditionally independent of its past, given its present state.

An important caveat must be made; the Markov property is not hereditary. If
{(Xk,Fk), k ∈ T} is a Markov chain on X and f is a measurable function from
(X,X ) to (Y,Y ), then, unless f is one-to-one, {( f (Xk),Fk),k ∈ T} need not be a
Markov chain. In particular, if X=X1×X2 is a product space and {(Xk,Fk), k∈ T}
is a Markov chain with Xk = (X1,k,X2,k) then the sequence {(X1,k,Fk),k ∈ T} may
fail to be a Markov chain.

1.2 Kernels

We now introduce transition or Markov kernels which will be the core of the theory.

Definition 1.2.1 Let (X,X ) and (Y,Y ) be two measurable spaces. A kernel N on
X×Y is a mapping N : X×Y → [0,∞] satisfying the following conditions:

(i) for every x ∈ X, the mapping N(x, ·) : A 7→ N(x, A) is a measure on Y ,
(ii) for every A ∈ Y , the mapping N(·,A) : x 7→ N(x,A) is a measurable function

from (X,X ) to ([0,∞] ,B ([0,∞]).

• N is said to be bounded if supx∈X N(x,Y)< ∞.
• N is called a Markov kernel if N(x,Y) = 1, for all x ∈ X.
• N is said to be sub-markovian if N(x,Y)≤ 1, for all x ∈ X.

Example 1.2.2 (Discrete state space kernel). Assume that X and Y are count-
able sets. Each element x ∈ X is then called a state. A kernel N on X×P(Y),
where P(Y) is the set of all subsets of Y, is a (possibly doubly infinite) matrix
N = (N(x,y) : x,y ∈ X×Y) with nonnegative entries. Each row {N(x,y) : y ∈ Y} is
a measure on (Y,P(Y)) defined by

N(x,A) = ∑
y∈A

N(x,y) ,

for A⊂ Y. The matrix N is said to be Markovian if every row {N(x,y) : y ∈ Y} is a
probability on (Y,P(Y)), i.e. ∑y∈Y N(x,y) = 1 for all x ∈ X. The associated kernel
is defined by N(x,{y}) = N(x,y) for all x,y ∈ X. J

Example 1.2.3 (Measure seen as a kernel). A σ -finite measure ν on a space
(Y,Y ) can be seen as a kernel on X×Y by defining N(x,A) = ν(A) for all x ∈ X
and A ∈ Y . It is a Markov kernel if ν is a probability measure. J
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Example 1.2.4 (Kernel density). Let λ be a positive σ -finite measure on (Y,Y )
and n : X×Y→R+ be a nonnegative function, measurable with respect to the prod-
uct σ -field X ⊗Y . Then, the application N defined on X×Y by

N(x,A) =
∫

A
n(x,y)λ (dy) ,

is a kernel. The function n is called the density of the kernel N with respect to the
measure λ . The kernel N is Markovian if and only if

∫
Y n(x,y)λ (dy) = 1 for all

x ∈ X. J

Let N be a kernel on X×X and f ∈ F+(Y). A function N f : X→R+ is defined
by setting, for x ∈ X,

N f (x) = N(x,dy) f (y) .

For all functions f of F(Y) (where F(Y) stands for the set of measurable functions
on (Y,Y )) such that N f+ and N f− are not both infinite, we define N f = N f+−
N f−. We will also use the notation N(x, f ) for N f (x) and, for A ∈X , N(x,1A) or
N1A(x) for N(x,A).

Proposition 1.2.5 Let N be a kernel on X×Y . For all f ∈ F+(Y), N f ∈
F+(X). Moreover, if N is a Markov kernel, then |N f |∞ ≤ | f |∞.

Proof. Assume first that f is a simple nonnegative function, i.e. f = ∑i∈I βi1Bi for
a finite collection of nonnegative numbers βi and sets Bi ∈ Y . Then, for x ∈ X,
N f (x) = ∑i∈I βiN(x,Bi) and by the property (ii) of Definition 1.2.1, the function
N f is measurable. Recall that any function f ∈ F+(X) is a pointwise limit of an
increasing sequence of measurable nonnegative simple functions { fn, n ∈ N}, i.e.
limn→∞ ↑ fn(y) = f (y) for all y ∈ Y. Then, by the monotone convergence theorem,
for all x ∈ X,

N f (x) = lim
n→∞

N fn(x) .

Therefore, N f is the pointwise limit of a sequence of nonnegative measurable
functions, hence is measurable. If moreover N is a Markov kernel on X×Y and
f ∈ Fb(Y), then for all x ∈ X,

N f (x) =
∫

Y
f (y)N(x,dy)≤ | f |∞

∫
Y

N(x,dy) = | f |∞ N(x,Y) = | f |∞ .

This proves the last claim. 2

With a slight abuse of notation, we will use the same symbol N for the kernel
and the associated operator N : F+(Y)→ F+(X), f 7→ N f . This operator is additive
and positively homogeneous: for all f ,g ∈ F+(Y) and α ∈ R+, it holds that N( f +
g) = N f +Ng and N(α f ) = αN f . The monotone convergence theorem shows that
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if { fn, n ∈ N} ⊂ F+(Y) is an increasing sequence of functions, limn→∞ ↑ N fn =
N(limn→∞ ↑ fn). The following result establishes a converse.

Proposition 1.2.6 Let M : F+(Y)→ F+(X) be an additive and positively ho-
mogeneous operator such that limn→∞ M( fn) = M(limn→∞ fn) for every in-
creasing sequence { fn, n ∈ N} of functions in F+(Y). Then

(i) the function N defined on X×Y by N(x,A) = M(1A)(x), x ∈ X, A ∈ Y , is
a kernel

(ii) M( f ) = N f for all f ∈ F+(Y).

Proof. (i) Since M is additive, for each x ∈ X, the function A 7→ N(x,A) is addi-
tive. Indeed, for n ∈ N∗ and pairwise disjoint sets A1, . . . ,An ∈ Y , we obtain

N

(
x,

n⋃
i=1

Ai

)
= M

(
n

∑
i=1

1Ai

)
(x) =

n

∑
i=1

M(1Ai)(x) =
n

∑
i=1

N(x,Ai) .

Let {Ai, i ∈ N} ⊂ Y be a sequence of pairwise disjoints sets. Then, by additivity
and the monotone convergence property of M, we get, for all x ∈ X,

N

(
x,

∞⋃
i=1

Ai

)
= M

(
∞

∑
i=1

1Ai

)
(x) =

∞

∑
i=1

M(1Ai)(x) =
∞

∑
i=1

N(x,Ai) .

This proves that, for all x ∈ X, A 7→ N(x,A) is a measure on (Y,Y ). For all A ∈X ,
x 7→ N(x,A) = M(1A)(x) belongs to F+(X). Then N is a kernel on X×Y .

(ii) If f = ∑i∈I βi1Bi for a finite collection of nonnegative numbers βi and sets
Bi ∈ Y , the additivity and positive homogeneity of M shows that

M( f ) = ∑
i∈I

βiM(1Bi) = ∑
i∈I

βiN1Bi = N f .

Let now f ∈ F+(Y) (where F+(Y) is the set of measurable nonnegative functions)
and let { fn, n ∈N} be an increasing sequence of nonnegative simple functions such
that limn→∞ fn(y) = f (y) for all y ∈ Y. Since M( f ) = limn→∞ M( fn) and, by mono-
tone convergence theorem N f = limn→∞ N fn, we obtain M( f ) = N f .

2

Kernels also act on measures. Let µ ∈ M+(X ), where M+(X ) is the set of
(nonnegative) measures on (X,X ). For A ∈ Y , define

µN(A) =
∫

X
µ(dx) N(x, A) .
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Proposition 1.2.7 Let N be a kernel on X×Y and µ ∈M+(X ). Then µN ∈
M+(Y ). If N is a Markov kernel, then µN(Y) = µ(X).

Proof. Note first that µN(A) ≥ 0 for all A ∈ Y and µN( /0) = 0 since N(x, /0) =
0 for all x ∈ X. Therefore, it suffices to establish the countable additivity of µN.
Let {Ai, i ∈ N} ⊂ Y be a sequence of pairwise disjoint sets. For all x ∈ X N(x, ·)
is a measure on (Y,Y ), thus the countable additivity implies that N(x,

⋃
∞
i=1 Ai) =

∑
∞
i=1 N(x,Ai). Moreover, the function x 7→ N(x,Ai) is nonnegative and measurable

for all i ∈ N, thus the monotone convergence theorem yields

µN

(
∞⋃

i=1

Ai

)
=
∫

µ(dx)N

(
x,

∞⋃
i=1

Ai

)
=

∞

∑
i=1

∫
µ(dx)N(x,Ai) =

∞

∑
i=1

µN(Ai) .

2

1.2.1 Composition of kernels

Proposition 1.2.8 (Composition of kernels) Let (X,X ), (Y,Y ), (Z,Z ) be
three measurable sets and M and N be two kernels on X×Y and Y×Z .
There exists a kernel on X×Z called the composition or the product of M and
N, denoted by MN, such that for all x ∈ X, A ∈Z and f ∈ F+(Z),

MN(x,A) =
∫

Y
M(x,dy)N(y,A) , (1.2.1)

MN f (x) = M[N f ](x) . (1.2.2)

Furthermore, the composition of kernels is associative.

Proof. The kernels M and N define two additive and positively homogeneous op-
erators on F+(X). Let ◦ denote the usual composition of operators. Then M ◦N
is positively homogeneous and for every non decreasing sequence of functions
{ fn, n ∈ N} in F+(Z), by monotone convergence theorem limn→∞ M ◦ N( fn) =
limn→∞ M(N fn) = M ◦N(limn→∞ fn). Therefore, by Proposition 1.2.6, there exists a
kernel denoted MN such that, for all x ∈ X and f ∈ F+(Z),

M ◦N( f )(x) = M(N f )(x) =
∫

MN(x,dz) f (z) .

Hence for all x ∈ X and A ∈Z , we get
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MN(x,A) = M(N1A)(x)
∫

M(x,dz)N1A(z) =
∫

M(x,dz)N(z,A) .

2

Given a Markov kernel N on X×X , we may define the n-th power of this kernel
iteratively. For x ∈ X and A ∈X , we set N0(x, A) = δx(A) and for n≥ 1, we define
inductively Nn by

Nn(x,A) =
∫

X
N(x,dy)Nn−1(y,A) . (1.2.3)

For integers k,n≥ 0 this yields the Chapman-Kolmogorov equation:

Nn+k(x,A) =
∫

X
Nn(x,dy)Nk(y,A) . (1.2.4)

In the case of a discrete state space X, a kernel N can be seen as a matrix with
non negative entries indexed by X. Then the k-th power of the kernel Nk defined
in (1.2.3) is simply the k-th power of the matrix N. The Chapman-Kolmogorov
equation becomes, for all x,y ∈ X,

Nn+k(x,y) = ∑
z∈X

Nn(x,z)Nk(z,y) . (1.2.5)

1.2.2 Tensor products of kernels

Proposition 1.2.9 Let (X,X ), (Y,Y ) and (Z,Z ) be three measurable spaces
and M be a kernel on X×Y and N be a kernel on Y×Z . Then, there exists
a kernel on X× (Y ⊗Z ), called the tensor product of M and N, denoted by
M⊗N, such that, for all f ∈ F+(Y×Z,Y ⊗Z ),

M⊗N f (x) =
∫

Y
M(x,dy)

∫
Z

f (y,z)N(y,dz) . (1.2.6)

• If the kernels M and N are both bounded, then M⊗N is a bounded kernel.
• If M and N are both Markov kernels, then M⊗N is a Markov kernel.
• If (U,U ) is a measurable space and P is a kernel on Z×U , then (M⊗

N)⊗P = M⊗ (N⊗P), i.e. the tensor product of kernels is associative.

Proof. Define the mapping I : F+(Y⊗Z)→ F+(X) by

I f (x) =
∫

Y
M(x,dy)

∫
Z

f (y,z)N(y,dz) .

The mapping I is additive and positively homogeneous. Since I[limn→∞ fn] =
limn→∞ I( fn) for any increasing sequence { fn, n ∈ N}, by the monotone conver-
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gence theorem, Proposition 1.2.6 shows that (1.2.6) defines a kernel on X× (Y ⊗
Z ). The proof of the other properties are left as exercises. 2

For n ≥ 1, the n-th tensorial power P⊗n of a kernel P on X ×Y is the kernel on
(X,X ⊗n) defined by

P⊗n f (x) =
∫

Xn
f (x1, . . . ,xn)P(x,dx1)P(x1,dx2) · · ·P(xn−1,dxn) . (1.2.7)

If ν is a σ -finite measure on (X,X ) and N is a kernel on X×Y , then we can
also define the tensor product of ν and N, noted ν ⊗N, which is a measure on
(X×Y,X ⊗Y ) defined by

ν⊗N(A×B) =
∫

A
ν(dx)N(x,B) . (1.2.8)

1.2.3 Sampled kernel, m-skeleton and resolvent

Definition 1.2.10 (Sampled kernel, m-skeleton, resolvent kernel) Let a be a
probability on N, that is a sequence {a(n), n ∈ N} such that a(n)≥ 0 for all n ∈ N
and ∑

∞
k=0 a(k) = 1. Let P be a Markov kernel on X×X . The sampled kernel Ka is

defined by

Ka =
∞

∑
n=0

a(n)Pn . (1.2.9)

(i) For m ∈ N∗ and a = δm, Kδm = Pm is called the m-skeleton.
(ii) If ε ∈ (0,1) and aε is the geometric distribution, i.e.

aε(n) = (1− ε)ε
n , n ∈ N , (1.2.10)

then Kaε
is called the resolvent kernel.

Let {a(n), n ∈N} and {b(n), n ∈N} be two sequences of real numbers. We denote
by {a∗b(n), n ∈N} the convolution of the sequences a and b defined, for n ∈N by

a∗b(n) =
n

∑
k=0

a(k)b(n− k) .

Lemma 1.2.11 If a and b are probabilities on N, then the sampled kernels Ka and
Kb satisfy the generalized Chapman-Kolmogorov equation

Ka∗b = KaKb . (1.2.11)
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Proof. Applying the definition of the sampled kernel and the Chapman-Kolmogorov
equation (1.2.4) yields (note that all the terms in the sum below are nonnegative)

Ka∗b =
∞

∑
n=0

a∗b(n)Pn =
∞

∑
n=0

n

∑
m=0

a(m)b(n−m)Pn

=
∞

∑
n=0

n

∑
m=0

a(m)b(n−m)PmPn−m =
∞

∑
m=0

a(m)Pm
∞

∑
n=m

b(n−m)Pn−m = KaKb .

2

1.3 Homogeneous Markov chains

1.3.1 Definition

We can now define the main object of this book. Let T = N or T = Z.

Definition 1.3.1 (Homogeneous Markov Chain) Let (X,X ) be a measurable
space and let P be a Markov kernel on X×X . Let (Ω ,F ,{Fk, k ∈ T},P) be a
filtered probability space. An adapted stochastic process {(Xk,Fk), k ∈ T} is called
a homogeneous Markov chain with kernel P if for all A ∈X and k ∈ T ,

P(Xk+1 ∈ A |Fk) = P(Xk,A) P − a.s. (1.3.1)

If T = N the distribution of X0 is called the initial distribution.

Remark 1.3.2. Condition (1.3.1) is equivalent to E [ f (Xk+1)|Fk] = P f (Xk) P −
a.s. for all f ∈ F+(X)∪Fb(X). N

Remark 1.3.3. Let {(Xk,Fk), k ∈ T} be a homogeneous Markov chain. Then,
{(Xk,F

X
k ), k ∈ T} is also a homogeneous Markov chain. Unless specified other-

wise, we will always consider the natural filtration and we will simply write that
{Xk, k ∈ T} is a homogeneous Markov chain. N

From now on, unless otherwise specified, we will consider T = N. The most im-
portant property of a Markov chain is that its finite dimensional distributions are
entirely determined by the initial distribution and its kernel.

Theorem 1.3.4. Let P be a Markov kernel on X×X and ν be a probability mea-
sure on (X,X ). An X-valued stochastic process {Xk, k ∈ N} is a homogeneous
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Markov chain with kernel P and initial distribution ν if and only if the distribution
of (X0, . . . ,Xk) is ν⊗P⊗k for all k ∈ N.

Proof. Fix k ≥ 0. Let Hk be the subspace Fb(X
k+1,X ⊗(k+1)) of measurable func-

tions f such that

E [ f (X0, . . . ,Xk)] = ν⊗P⊗k( f ) . (1.3.2)

Let { fn, n∈N} be an increasing sequence of nonnegative functions in Hk such that
limn→∞ fn = f with f bounded. By the monotone convergence theorem, f belongs
to Hk. By Theorem B.2.4, the proof will be concluded if we moreover check that
Hk contains the functions of the form

f0(x0) · · · fk(xk) , f0, . . . , fk ∈ Fb(X) . (1.3.3)

We prove this by induction. For k = 0, (1.3.2) reduces to E [ f0(X0)] = ν( f0), which
means that ν is the distribution of X0. For k ≥ 1, assume that (1.3.2) holds for k−1
and f of the form (1.3.3). Then,

E

[
k

∏
j=0

f j(X j)

]
= E

[
k−1

∏
j=0

f j(X j)E [ fk(Xk)|Fk−1]

]

= E

[
k−1

∏
j=0

f j(X j)P fk(Xk−1)

]
= ν⊗P⊗(k−1)( f0⊗·· ·⊗ fk−1P fk)

= ν⊗P⊗k( f0⊗·· ·⊗ fk) .

The last equality holds since P( f Pg) = P⊗P( f ⊗g). This concludes the induction
and the direct part of the proof.

Conversely, assume that (1.3.2) holds. This obviously implies that ν is the dis-
tribution of X0. We must prove that, for each k ≥ 1, f ∈ F+(X) and each F X

k−1-
measurable random variable Y :

E [ f (Xk)Y ] = E [P f (Xk−1)Y ] . (1.3.4)

Let Gk be the set of F X
k−1-measurable random variables Y satisfying (1.3.4). Gk is

a vector space and if {Yn, n ∈ N} is an increasing sequence of nonnegative random
variables such that Y = limn→∞ Yn is bounded, then Y ∈ Gk by the monotone conver-
gence Theorem. The property (1.3.2) implies (1.3.4) for Y = ∏

k−1
i=0 fi(Xi) where for

j≥ 0, f j ∈Fb(X). The proof is concluded as previously by applying Theorem B.2.4.
2
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Corollary 1.3.5 Let P be a Markov kernel on X×X and ν be a probability
measure on (X,X ). Let {Xk, k ∈ N} be a homogeneous Markov chain on X
with kernel P and initial distribution ν . Then for all n,k ≥ 0, the distribution
of (Xn, . . . ,Xn+k) is νPn⊗P⊗k and for all n,m,k ≥ 0, all bounded measurable
function f defined on Xk,

E
[

f (Xn+m, . . . ,Xn+m+k) |F X
n
]
= Pm⊗P⊗k f (Xn) .

1.3.2 Homogeneous Markov chain and random iterative sequences

Under weak conditions on the structure of the state space X, every homogeneous
Markov chain {Xk, k∈N}with values in X may be represented as a random iterative
sequence, i.e. Xk+1 = f (Xk,Zk+1) where {Zk, k ∈ N} is a sequence of i.i.d. random
variables with values in a measurable space (Z,Z ), X0 is independent of {Zk, k ∈
N} and f is a measurable function from (X×Z,X ⊗Z ) into (X,X ).

This can be easily proved for a real-valued Markov chain {Xk, k ∈N} with initial
distribution ν and Markov kernel P. Let X be a real-valued random variable and
let F(x) = P(X ≤ x) be the cumulative distribution function of X . Let F−1 be the
quantile function, defined as the generalized inverse of F by

F−1(u) = inf{x ∈ R : F(x)≥ u} . (1.3.5)

The right continuity of F implies that u ≤ F(x) ⇔ F−1(u) ≤ x. Therefore, if Z
is uniformly distributed on [0,1], F−1(Z) has the same distribution as X , since
P(F−1(Z)≤ t) = P(Z ≤ F(t)) = F(t) = P(X ≤ t).

Define F0(t) = ν((−∞, t]) and g = F−1
0 . Consider the function F from R×R to

[0,1] defined by F(x,x′) = P(x,(−∞,x′]). Then, for each x ∈R, F(x, ·) is a cumula-
tive distribution function. Let the associated quantile function f (x, ·) be defined by

f (x,u) = inf
{

x′ ∈ R : F(x,x′)≥ u
}
. (1.3.6)

The function (x,u) 7→ f (x,u) is Borel measurable since (x,x′) 7→ F(x,x′) is itself a
Borel measurable function. If Z is uniformly distributed on [0,1], then, for all x ∈R
and A ∈B(R), we obtain

P( f (x,Z) ∈ A) = P(x,A) .

Let {Zk, k ∈ N} be a sequence of i.i.d. random variables, uniformly distributed on
[0,1]. Define a sequence of random variables {Xk, k ∈ N} by X0 = g(Z0) and for
k ≥ 0,

Xk+1 = f (Xk,Zk+1) .
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Then, {Xk, k∈N} is a Markov chain with Markov kernel P and initial distribution ν .
We state without proof a general result for reference only since it will not be

needed in the sequel.

Theorem 1.3.6. Let (X,X ) be a measurable space and assume that X is countably
generated. Let P be a Markov kernel on X×X and ν be a probability on (X,X ).
Let {Zk, k ∈ N} be a sequence of i.i.d. random variables uniformly distributed on
[0,1]. There exist a measurable application g from ([0,1] ,B([0,1])) to (X,X ) and
a measurable application f from (X× [0,1] ,X ⊗B([0,1])) to (X,X ) such that
the sequence {Xk, k ∈ N} defined by X0 = g(Z0) and Xk+1 = f (Xk,Zk+1) for k ≥ 0,
is a Markov chain with initial distribution ν and Markov kernel P.

From now on, we will almost uniquely deal with homogeneous Markov chain
and we will, for simplicity, omit to mention homogeneous in the statements.

Definition 1.3.7 (Markov Chain of order p) Let p ≥ 1 be an integer. Let (X,X )
be a measurable space. Let (Ω ,F ,{Fk, k ∈ N},P) be a filtered probability space.
An adapted stochastic process {(Xk,Fk), k∈N} is called a Markov chain of order p
if the process {(Xk, . . . ,Xk+p−1),k ∈ N} is a Markov chain with values in Xp.

Let {Xk, k ∈N} be a Markov chain of order p≥ 2 and let Kp be the kernel of the
chain {Xk, k ∈ N} with Xk = (Xk, . . . ,Xk+p−1), that is

P
(

X1 ∈ A1×·· ·×Ap
∣∣X0 = (x0, . . . ,xp−1)

)
= Kp((x0, . . . ,xp−1),A1×·· ·×Ap) .

Since X0 and X1 have p− 1 common components, the kernel Kp has a particular
form. More precisely, defining the kernel K on Xp×X by

Kp(x0, . . . ,xp−1,A) = Kp((x0, . . . ,xp−1),X
p−1×A)

= P
(

Xp ∈ A
∣∣X0 = x0, . . . ,Xp−1 = xp−1

)
,

we obtain that

Kp(x0, . . . ,xp−1),A1×·· ·×Ap) = δx1(A1) · · ·δxp−1(Ap−1)K((x0, . . . ,xp−1),Ap) .

We thus see that an equivalent definition of a homogeneous Markov chain of order p
is the existence of a kernel K on Xp×X such that for all n≥ 0,

E
[

Xn+p ∈ A
∣∣F X

n+p−1
]
= K((Xn, . . . ,Xn+p−1),A) .
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1.4 Invariant measures and stationarity

Definition 1.4.1 (Invariant measure) Let P be a Markov kernel on X×X .

• A non zero measure µ is said to be subinvariant if µ is σ -finite and µP≤ µ .
• A non zero measure µ is said to be invariant if it is σ -finite and µP = µ .
• A non zero signed measure µ is said to be invariant if µP = µ .

A Markov kernel P is said to be positive if it admits an invariant probability measure.

A Markov kernel may admit one or more than one invariant measures, or none if
X is not finite. Consider the kernel P on N such that P(x,x+ 1) = 1. Then P does
not admit an invariant measure. Considered as a kernel on Z, P admits the counting
measure as its unique invariant measure. The kernel P on Z such that P(x,x+2) = 1
admits two invariant measures with disjoint supports: the counting measure on the
even integers and the counting measure on the odd integers.

It must be noted that an invariant measure is σ -finite by definition. Consider
again the kernel P defined by P(x,x+ 1) = 1, now as a kernel on R. The counting
measure on R satisfies µP = µ , but it is not σ -finite. We will provide in Section 3.6
a criterion which ensures that a measure µ which satisfies µ = µP is σ -finite.

If an invariant measure is finite, it may be normalized to an invariant probability
measure. The fundamental role of an invariant probability measure is illustrated
by the following result. Recall that a stochastic process {Xk, k ∈ N} defined on a
probability space (Ω ,F ,P) is said to be stationary if, for any integers k, p≥ 0, the
distribution of the random vector (Xk, . . . ,Xk+p) does not depend on k.

Theorem 1.4.2. Let (Ω ,F ,{Fk, k∈N},P) be a filtered probability space and let P
be a Markov kernel on a measurable space (X,X ). A Markov chain {(Xk,Fk), k ∈
N} defined on (Ω ,F ,{Fk, k ∈ N},P) with kernel P is a stationary process if and
only if its initial distribution is invariant with respect to P.

Proof. Let π denote the initial distribution. If the chain {Xk} is stationary, then
the marginal distribution is constant. In particular, the distribution of X1 is equal
to the distribution of X0, which precisely means that πP = π . Thus π is invariant.
Conversely, if πP = π , then πPh = π for all h≥ 1. Then, for all integers h and n, by
Corollary 1.3.5, the distribution of (Xh, . . . ,Xn+h) is πPh⊗P⊗n = π⊗P⊗n. 2

For a finite signed measure ξ on (X,X ), we denote by ξ+ and ξ− the pos-
itive and negative parts of ξ (see Theorem D.1.3). Recall that ξ+ and ξ− are
two mutually singular measures such that ξ = ξ+ − ξ−. Any set S such that
ξ+(Sc) = ξ−(S) = 0 is called a Jordan set for ξ .
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Lemma 1.4.3 Let P be a Markov kernel and λ be an invariant signed measure.
Then λ+ is also invariant.

Proof. Let S be a Jordan set for λ . For any B ∈X ,

λ
+P(B)≥ λ

+P(B∩S) =
∫

P(x,B∩S)λ+(dx)

≥
∫

P(x,B∩S)λ (dx) = λ (B∩S) = λ
+(B) . (1.4.1)

Since P(x,X) = 1 for all x ∈ X, if follows that λ+P(X) = λ+(X). This and the
inequality (1.4.1) imply that λ+P = λ+. 2

Definition 1.4.4 (Absorbing set) A set B ∈X is called absorbing if P(x,B) = 1
for all x ∈ B.

This definition subsumes that the empty set is absorbing. Of course the interesting
absorbing sets are non-empty.

Proposition 1.4.5 Let P be a Markov kernel on X×X admitting an invariant
probability measure π . If B ∈X is an absorbing set, then πB = π(B∩ ·) is
an invariant finite measure. Moreover, if the invariant probability measure is
unique, then π(B) ∈ {0,1}.

Proof. Let B be an absorbing set. Using that πB ≤ π , πP = π and B is absorbing,
we get that for all C ∈X ,

πBP(C) = πBP(C∩B)+πBP(C∩Bc)≤ πP(C∩B)+πBP(Bc) = π(C∩B) = πB(C) .

Replacing C by Cc and noting that πBP(X) = πB(X)<∞ show that πB is an invariant
finite measure. To complete the proof, assume that P has a unique invariant proba-
bility measure. If π(B)> 0 then, πB/π(B) is an invariant probability measure and is
therefore equal to π . Since πB(Bc) = 0, we get π(Bc) = 0. Thus, π(B) ∈ {0,1}. 2

Theorem 1.4.6. Let P be a Markov kernel on X×X . Then,

(i) The set of invariant probability measures for P is a convex subset ofM+(X ).
(ii) For any two distinct invariant probability measures π,π ′ for P, the finite mea-

sures (π−π ′)+ and (π−π ′)− are non-trivial, mutually singular and invariant
for P.
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Proof. (i) P is an additive and positively homogeneous operator on M+(X ).
Therefore, if π , π ′ are two invariant probability measures for P, then for every scalar
a ∈ [0,1], using first the linearity and then the invariance,

(aπ +(1−a)π ′)P = aπP+(1−a)π ′P = aπ +(1−a)π ′ .

(ii) We apply Lemma 1.4.3 to the nonzero signed measure λ = π−π ′. The mea-
sures (π−π ′)+ and (π−π ′)− are singular, invariant and non trivial since

(π−π
′)+(X) = (π−π

′)−(X) =
1
2
|π−π

′|(X)> 0 .

2

We will see in the forthcoming chapters that it is sometimes more convenient
to study one iterate Pk of a Markov kernel than P itself. However, if Pk admits an
invariant probability measure, then so does P.

Lemma 1.4.7 Let P be a Markov kernel. For every k ≥ 1, Pk admits an invariant
probability measure if and only if P admits an invariant probability measure.

Proof. If π is invariant for P, then it is obviously invariant for Pk for every k ≥ 1.
Conversely, if π̃ is invariant for Pk, set π = k−1

∑
k−1
i=0 π̃Pi. Then π is an invariant

probability measure for P. Indeed, since π̃ = π̃Pk, we obtain

πP =
1
k

k

∑
i=1

π̃Pi =
1
k

k−1

∑
i=1

π̃Pi + π̃Pk =
1
k

k−1

∑
i=1

πPi + π̃ = π .

2

1.5 Reversibility

Definition 1.5.1 Let P be a Markov kernel on X×X . A σ -finite measure ξ on X is
said to be reversible with respect to P if the measure ξ ⊗P on X ⊗X is symmetric,
i.e. for all (A,B) ∈X ×X

ξ ⊗P(A×B) = ξ ⊗P(B×A) , (1.5.1)

where ξ ⊗P is defined in (1.2.8).

Equivalently, reversibility means that for all bounded measurable functions f de-
fined on (X×X,X ⊗X ),
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X×X

ξ (dx)P(x,dx′) f (x,x′) =
∫∫

X×X
ξ (dx)P(x,dx′) f (x′,x) . (1.5.2)

If X is a countable state space, a (finite or σ -finite) measure ξ is reversible with
respect to P if and only if, for all (x,x′) ∈ X×X,

ξ (x)P(x,x′) = ξ (x′)P(x′,x) , (1.5.3)

a condition often referred to as the detailed balance condition.
If {Xk, k ∈ N} is a Markov chain with kernel P and initial distribution ξ , the

reversibility condition (1.5.1) precisely means that (X0,X1) and (X1,X0) have the
same distribution, i.e. for all f ∈ Fb(X×X,X ⊗X ),

Eξ [ f (X0,X1)] =
∫∫

ξ (dx0)P(x0,dx1) f (x0,x1) (1.5.4)

=
∫∫

ξ (dx0)P(x0,dx1) f (x1,x0) = Eξ [ f (X1,X0)] .

This implies in particular that the distribution of X1 is the same as that of X0 and
this means that ξ is P-invariant: reversibility implies invariance. This property can
be extended to all finite dimensional distributions.

Proposition 1.5.2 Let P be a Markov kernel on X×X and ξ ∈ M1(X ),
where M1(X ) is the set of probability measures on X . If ξ is reversible with
respect to P, then

(i) ξ is P-invariant
(ii) the homogeneous Markov chain {Xk, k ∈ N} with Markov kernel P and

initial distribution ξ is reversible, i.e. for any n ∈ N, (X0, . . . ,Xn) and
(Xn, . . . ,X0) have the same distribution.

Proof. (i) Using (1.5.1) with A = X and B ∈X , we get

ξ P(B) = ξ ⊗P(X×B) = ξ ⊗P(B×X) =
∫

ξ (dx)1B(x)P(x,X) = ξ (B) .

(ii) The proof is by induction. For n = 1, (1.5.4) shows that (X0,X1) and (X1,X0)
have the same distribution. Assume that for some n≥ 1. By the Markov property, X0
and (X1, . . . ,Xn) are conditionally independent given X1 and Xn+1 and (Xn, . . . ,X0)
are conditionally independent given X1. Moreover, by stationarity and reversibil-
ity, (Xn+1,Xn) has the same distribution as (X0,X1) and by the induction assump-
tion, (X1, . . . ,Xn+1) and (Xn, . . . ,X0) have the same distribution. This proves that
(X0, . . . ,Xn+1) and (Xn+1, . . . ,X0) have the same distribution.

2
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1.6 Markov kernels on Lp(π)

Let (X,X ) be a measurable space and π ∈M1(X ). For p ∈ [1,∞) and f a measur-
able function on (X,X ), we set

‖ f‖Lp(π) =

{∫
| f (x)|pπ(dx)

}1/p

and for p = ∞, we set
‖ f‖L∞(π) = esssupπ (| f |) .

For p ∈ [1,∞], we denote by Lp(π) the space of all measurable functions on (X,X )
for which ‖ f‖Lp(π) < ∞.

Remark 1.6.1. The maps ‖·‖Lp(π) are not norms but simply semi-norms since
‖ f‖Lp(π) = 0 implies π( f = 0) = 1 but not f ≡ 0. Define the relation vπ by f vπ g
if and only if π( f 6= g) = 0. Then the quotient spaces Lp(π)/vπ are Banach spaces,
but the elements of these spaces are no longer functions, but equivalence classes of
functions. For the sake of simplicity, as is customary, this distinction will be tacitly
understood and we will identify Lp(π) and its quotient by the relation vπ and treat
it as a Banach space of functions. N

If f ∈ Lp(π) and g ∈ Lq(π), with 1/p + 1/q = 1, then f g ∈ L1(π) since by
Hölder’s inequality,

‖ f g‖L1(π) ≤ ‖ f‖Lp(π) ‖g‖Lq(π) . (1.6.1)

Lemma 1.6.2 Let P be a Markov kernel on X×X which admits an invariant prob-
ability measure π .

(i) Let f ,g ∈ F+(X)∪Fb(X). If f = g π-a.e., then P f = Pg π-a.e.
(ii) Let p ∈ [1,∞) and f ∈ F+(X)∪Fb(X). If f ∈ Lp(π), then P f ∈ Lp(π) and

‖P f‖Lp(π) ≤ ‖ f‖Lp(π) .

Proof. (i) Write N = {x ∈ X : f (x) 6= g(x)}. By assumption, π(N) = 0 and
since

∫
X π(dx)P(x,N) = π(N) = 0, it also holds that P(x,N) = 0 for all x in a sub-

set X0 such that π(X0) = 1. Then, for all x ∈ X0, we have∫
P(x,dy) f (y) =

∫
Nc

P(x,dy) f (y) =
∫

Nc
P(x,dy)g(y) =

∫
P(x,dy)g(y) .

This shows (i).
(ii) Applying Jensen’s inequality and then Fubini’s theorem we obtain

π(|P f |p) =
∫ ∣∣∣∣∫ f (y)P(x,dy)

∣∣∣∣p π(dx)≤
∫ ∫

| f (y)|pP(x,dy)π(dx) = π(| f |p) .
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2

The next proposition then allows to consider P as a bounded linear operator on the
spaces Lp(π) where p ∈ [1,∞].

Proposition 1.6.3 Let P be a Markov kernel on X×X with invariant proba-
bility measure π . For every p ∈ [1,∞], P can be extended to a bounded linear
operator on Lp(π) and

9P9Lp(π) = 1 . (1.6.2)

Proof. For f ∈ L1(π), define

A f = {x ∈ X : P| f |(x)< ∞}=
{

x ∈ X : f ∈ L1(P(x, ·))
}
. (1.6.3)

Since π(P| f |) = π(| f |) < ∞, we have π(A f ) = 1 and we may therefore define P f
on the whole space X by setting

P f (x) =

{∫
X f (y)P(x,dy) , if x ∈ A f ,

0 otherwise.
(1.6.4)

This definition yields

π(|P f |) = π(|P f |1A f )≤ π(P| f |1A f ) = π(P| f |) = π(| f |) .

That is ‖P f‖L1(π) ≤ ‖ f‖L1(π).
Furthermore, if π( f = f̃ ) = 1, then π(P| f |= P| f̃ |) = 1 by Lemma 1.6.2-(i) and

therefore π(A f ∆A f̃ ) = 0. Hence it also holds that π(P f = P f̃ ) = 1. This shows that
P acts on equivalence classes of functions and can be defined on the Banach space
L1(π). It is easily seen that for all f ,g ∈ L1(π) and t ∈ R, P(t f ) = tP f , P( f +g) =
P f +Pg and we have just shown that ‖P f‖L1(π) ≤ ‖ f‖L1(π) < ∞. Therefore, the
relation (1.6.4) defines a bounded operator on the Banach space L1(π).

Let p ∈ [1,∞) and f ∈ Lp( f ). Then f ∈ L1(π) and thus we can define P f . Ap-
plying Lemma 1.6.2 (ii) to | f | proves that 9P9Lp(π) ≤ 1 for p < ∞.

For f ∈ L∞(π), ‖ f‖L∞(π) = limp→∞ ‖ f‖Lp(π), so ‖P f‖L∞(π) ≤ ‖ f‖L∞(π) and thus
it also holds that 9P9L∞(π) ≤ 1.

Finally, P1X = 1X thus (1.6.2) holds. 2

1.7 Exercises

1.1. Let (X,X ) be a measurable space, µ a σ -finite measure and n : X×X→ R+

a non-negative function. For x ∈ X and A ∈X , define N(x,A) =
∫

A n(x,y)µ(dy).
Show that for for every k ∈ N∗ the kernel Nk has a density with respect to µ .
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1.2. Let {Zn, n ∈ N} be an i.i.d. sequence of random variables independent of X0.
Define recursively Xn = φXn−1 +Zn.

1. Show that {Xn, n ∈ N} defines a time-homogenous Markov chain.
2. Write its Markov kernel in the cases where (i) Z1 is a Bernoulli random variable

with probability of success 1/2 and (ii) the law of Z1 has a density q with respect
to the Lebesgue measure.

3. Assume that Z1 is Gaussian with zero mean and variance σ2 and that X0 is
Gaussian with zero-mean and variance σ2

0 . Compute the law of Xk for every
k ∈ N. Show that if |φ |< 1, there exists at least an invariant probability.

1.3. Let (Ω ,F ,P) be a probability space and {Zk, k ∈ N∗} be an i.i.d. sequence of
real-valued random variables defined on (Ω ,F ,P). Let U be a real-valued random
variable independent of {Zk, k ∈ N} and consider the sequence defined recursively
by X0 =U and for k ≥ 1, Xk = Xk−1 +Zk.

1. Show that {Xk, k ∈ N} is an homogeneous Markov chain.

Assume that the law of Z1 has a density with respect to the Lebesgue measure.

2. Show that the kernel of this Markov chain has a density.

Consider now the sequence defined by Y0 =U+ and for k ≥ 1, Yk = (Yk−1 +Zk)
+.

3. Show that {Yk, k ∈ N} is a Markov chain.
4. Write the associated kernel.

1.4. In Section 1.2.3, the sampled kernel was introduced. We will see in this exercise
how this kernel is related to a Markov chain sampled at random time instants. Let
(Ω0,F ,{Fn, n ∈ N},P) be a filtered probability space and {(Xn,Fn), n ∈ N} be
an homogeneous Markov chain with Markov kernel P and initial distribution ν ∈
M1(X ). Let (Ω1,G ,Q) be a probability space and {Zn, n ∈ N∗} be a sequence
of independent and identically distributed (i.i.d) integer-valued random variables
distributed according to a = {a(k), k ∈N} i.e., for every n∈N∗ and k ∈N,Q(Zn =
k) = a(k). Set S0 = 0 and for n≥ 1, define recursively Sn = Sn−1 +Zn.

Put Ω = Ω0×Ω1, H = F ⊗G and for every n ∈ N,

Hn = σ(A×{S j = k},A ∈Fk,k ∈ N, j ≤ n) .

1. Show that {Hn, n ∈ N} is a filtration.

Put P̄= P⊗Q and consider the filtered probability space (Ω ,H ,{Hn, n ∈N}, P̄),
where H =

∨
∞
n=0 Hn. Set for every n ∈ N, Yn = XSn .

2. Show that for every k,n ∈ N, f ∈ F+(X) and A ∈Fk

Ē[1A×{Sn=k} f (Yn+1)] = Ē
[
1A×{Sn=k}Ka f (Yn)

]
where Ka is the sampled kernel defined in Definition 1.2.10.
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3. Show that {(Yn,Hn), n ∈N} is an homogeneous Markov chain with initial dis-
tribution ν and transition kernel Ka.

1.5. Let (X,X ) be a measurable space, µ ∈M+(X ) be a σ -finite measure and
p ∈ F+(X2,X ⊗2) a positive function (p(x,y) > 0 for all (x,y) ∈ X×X) such that
for all x ∈ X,

∫
X p(x,y)µ(dy) = 1.

For all x ∈ X and A ∈X , set P(x,A) =
∫

A p(x,y)µ(dy).

1. Let π be an invariant probability measure. Show that for all f ∈ F+(X), π( f ) =∫
X f (y)q(y)µ(dy) with q(y) =

∫
X p(x,y)π(dx).

2. Deduce that any invariant probability measure is equivalent to µ .
3. Show that P admits at most an invariant probability [Hint: use Theorem 1.4.6-

(ii)].

1.6. Let P be a Markov kernel on X×X . Let π be an invariant probability and
X1 ⊂ X with π(X1) = 1. We will show that there exists B ⊂ X1 such that π(B) = 1
and P(x,B) = 1 for all x ∈ B (i.e. B is absorbing for P).

1. Show that there exists a decreasing sequence {Xi, i ≥ 1} of sets Xi ∈X such
that π(Xi) = 1 for all i = 1,2, . . . and P(x, Xi) = 1, for all x ∈ Xi+1.

2. Define B =
⋂

∞
i=1 Xi ∈X . Show that B is not empty.

3. Show that B is absorbing and conclude.

1.7. Consider a Markov chain whose state space X = (0,1) is the open unit interval.
If the chain is at x, then pick one of the two intervals (0, x) or (x, 1) with equal
probability 1/2 and move to a point y according to the uniform distribution on the
chosen interval. Formally, let {Uk, k ∈ N} be a sequence of i.i.d. random variable
uniformly distributed on (0,1), let {εk, k ∈ N} be a sequence of i.i.d. Bernoulli
random variables with probability of success 1/2, independent of {Uk, k ∈ N} and
let X0 be independent of {(Uk,εk), k ∈ N} with distribution ξ on (0,1). Define the
sequence {Xk, k ∈ N∗} as follows

Xk = εkXk−1Uk +(1− εk){Xk−1 +Uk(1−Xk−1)} . (1.7.1)

1. Show that the kernel of this Markov chain has a density with respect to
Lebesgue measure on the interval (0,1), given by

k(x,y) =
1
2x
1(0,x)(y)+

1
2(1− x)

1(x,1)(y) . (1.7.2)

Assume that this Markov kernel admits an invariant probability which possesses a
density with respect to Lebesgue’s measure which will be denoted by p.

2. Show that p must satisfy the following equation

p(y) =
∫ 1

0
k(x, y)p(x)dx =

1
2

∫ 1

y

p(x)
x

dx+
1
2

∫ y

0

p(x)
1− x

dx . (1.7.3)

3. Assuming that p is positive, show that
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p′(y)
p(y)

=
1
2

(
−1

y
+

1
1− y

)
.

4. Show that the solutions for this differential equation are given by

pC(y) =
C√

y(1− y)
, (1.7.4)

where C∈R is a constant and that C = π−1 yields a probability density function.

1.8. Let P be the Markov kernel defined on [0,1]×B ([0,1]) by

P(x, ·) =

{
δx/2 if x > 0 ,

δ1 if x = 0 .

Prove that P admits no invariant measure.

1.9. Show that if the Markov kernel P is reversible, then Pm is also reversible.

1.10. Prove (1.5.2).

1.11. The following model, called the Ehrenfest or dog-flea model, is a Markov
chain on a finite state space {0, . . . ,N} where N > 1 is a fixed integer. Balls (or
particles) numbered 1 to N are divided among two urns A and B. At each step, an
integer i is drawn at random and the ball numbered i is moved to the other urn.
Denote by Xn the number Xn of balls at time n in urn A.

1. Show that {Xn, n ∈ N} is a Markov chain on {0, . . . ,N} and compute its ker-
nel P.

2. Prove that the binomial distribution B(N,1/2) is reversible with respect to the
kernel P.

3. Show that, for n≥ 1, E
[

Xn |F X
n−1
]
= (1−2/N)Xn−1 +1.

4. Prove that limn→∞Ex[Xn] = N/2.

1.12. Let X be a finite set and π be a probability on X such that π(x)> 0 for all x∈X.
Let M be a Markov transition matrix reversible with respect to π , i.e. π(x)M(x,y) =
π(y)M(y,x) for all x,y∈X. Let D be a diagonal matrix whose diagonal elements are
π(x), x ∈ X.

1. Show that DM = MT D.
2. Show that, for all (x,y) ∈ X×X and k ∈ N, π(x)Mk(x,y) = π(y)Mk(y,x).
3. Show that T = D1/2MD−1/2 can be orthogonally diagonalized, i.e. T = Γ βΓ T

where β is a diagonal matrix (whose diagonal elements are the eigenvalues of
T ) and Γ is orthogonal.

4. Show that M can be diagonalized and has the same eigenvalues as T .
5. Compute the left and right eigenvectors of M as a function of Γ and D. Show

that the right eigenvectors are orthogonal in L2(π) and the left eigenvectors are
orthogonal in L2(π−1) where π−1 is the measure on X such that π−1({x}) =
1/π(x).
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1.13. Let µ ∈M+(X ) and ε ∈ (0,1). Show that µ is invariant for P if and only if
it is invariant for Kaε

.

1.8 Bibliographical notes

The concept of a Markov chain first appeared in a series of papers written between
1906 and 1910; see Markov (1910). The term Markov chain was coined by Bernstein
(1927) 20 years after this invention. Basharin et al (2004) contains a lot of interesting
information on the early days of Markov chains.

The theory of Markov chains over discrete state spaces was the subject of an in-
tense research activity that was triggered by the pioneering work of Doeblin (1938).
Most of the theory of discrete state space Markov chain was developed in the 1950’s
and early 1960’s. There are many nice monographs summarizing the state of the
art in the mid 1960; see for example Chung (1967), Kemeny et al (1976), Taylor
and Karlin (1998). As discrete state-space Markov chains continue to be taught in
most applied mathematics courses, books continue to be published regularly on this
topic. See for example Norris (1998), Brémaud (1999), Privault (2013), Sericola
(2013) and Graham (2014). The research monograph Levin et al (2009) describes
the state of the art of research in discrete state space Markov chain and in particular
the progresses that were made recently to quantify the speed of convergence.

The theory of Markov chains on general state spaces was initiated in the late
1950s. The books by Orey (1971) and Revuz (1984) (first published in 1975) provide
an overview of the early works. The book by Nummelin (1984) lays out the essential
foundations of the modern theory. The influence of the book Meyn and Tweedie
(1993b) (see also Meyn and Tweedie (2009)) on current research in the field of
Markov chains and all their applications cannot be overstated.

The theory of Markov chains was also developed by the Russian School to which
we owe major advances; see for example the research monographs by Kartash-
iov (1996) and Borovkov (1998). In particular, Theorem 1.3.6 is established in
(Borovkov, 1998, Theorem 11.8).





Chapter 2
Examples of Markov chains

In this chapter we present various examples of Markov chains. We will often use
these examples in the sequel to illustrate the results we will develop. Most of our
examples are derived from time series models or Monte Carlo simulation methods.

Many time series models belong to the class of random iterative functions which
are introduced in Section 2.1. We will establish in this section some properties of
these models and in particular will provide conditions upon which these models
have an invariant probability. In Section 2.2, we introduce the so-called observation-
driven models, which have many applications in econometrics in particular.

Finally, Section 2.3 is a short introduction to Markov Chain Monte Carlo algo-
rithms, which play a key role today in computational statistics. This section is only
a very short overview of a vast domain that remains one of the most active fields of
application of Markov chains.

2.1 Random iterative functions

Let (X,d) be a complete separable metric space and (Z,Z ) be a measurable space.
We consider X-valued stochastic processes {Xk, k ∈ N} which are defined by the
recursion

Xk = f (Xk−1,Zk) , k ≥ 1 , (2.1.1)

where f : X×Z→ X is a measurable function, {Zk, k ∈ N} is an i.i.d. sequence of
random elements defined on a probability space (Ω ,F ,P) taking values in (Z,Z ),
independent of the initial state X0. Hereafter, for convenience we will write

fz(x) = f (x,z) ,

for all (x,z) ∈ X×Z. It is assumed that the map (z,x) 7→ fz(x) is measurable with
respect to the product σ -field on Z ⊗X . Let µ be the distribution of Z0. The
process {Xk, k ∈ N} is a Markov chain with Markov kernel P given for x ∈ X and
h ∈ F+(X) by

27
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Ph(x) = E
[
h( fZ0(x))

]
=
∫

Z
h( f (x,z))µ(dz) . (2.1.2)

Note that any Markov chain {Xk, k ∈ N} has a representation (2.1.1) when (X,d)
is a separable metric space equipped with its Borel σ -field. We will give several
classical examples in Section 2.1.1 and prove the existence of a unique invariant
distribution in Section 2.1.2.

2.1.1 Examples

Example 2.1.1 (Random walks). Let {Zn, n ∈ N∗} be a sequence of i.i.d. random
variables with values in X = Rd and distribution µ . Let X0 be a random variable in
Rd independent of {Zn, n ∈ N∗}. A random walk with jump or increment distribu-
tion µ is a process {Xk, k ∈ N} defined by X0 and the recursion

Xk = Xk−1 +Zk , k ≥ 1 .

This model follows the recursion (2.1.1) with f (x,z) = x + z, thus the process
{Xk, k ∈ N} is a Markov chain with kernel given for x ∈ Rd and A ∈ B(Rd) by
P(x,A) = µ(A−x), that is P is entirely determined by the increment distribution µ .

Example 2.1.2 (Autoregressive processes). Let {Zn, n ∈ N∗} be a sequence of
Z = Rq-valued i.i.d. random vectors and X0 is a X = Rd-valued random vector in-
dependent of {Zn, n ∈N}. Let F be a d×d matrix, G be a d×q matrix (q≤ d) and
µ be a d×1-vector. The process {Xk, k ∈ N} defined by the recurrence equation

Xn+1 = µ +FXn +GZn+1 (2.1.3)

is a first-order vector autoregressive process on Rd . This is again an iterative model
with f (x,z) = µ +Fx+Gz and Markov kernel P given for x ∈ Rd and A ∈B(Rd)
by

P(x,A) = P(µ +Fx+GZ1 ∈ A) .

The AR(1) process can be generalized by assuming that the current value is obtained
as an affine combination of the p preceding values of the process and a random
disturbance. For simplicity, we assume in the sequel that d = 1 and µ = 0. Let
{Zk, k ∈ N} be a sequence of i.i.d. real-valued random variables, φ1, . . . ,φp be real
numbers and X0,X−1, . . . ,X−p+1 be random variables, independent of the sequence
{Zk, k ∈ N}. The scalar AR(p) process {Xk, k ∈ N} is defined by the recursion

Xk = φ1Xk−1 +φ2Xk−2 + · · ·+φpXk−p +Zk , k ≥ 0 . (2.1.4)

The sequence {Xk, k ∈ N} is a Markov chain of order p in the sense of Defini-
tion 1.3.7 since the vector process Xk = (Xk,Xk−1, . . . ,Xk−p+1) is a vector autore-
gressive process of order 1, defined by the recursion:
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Xk = ΦXk−1 +BZk , (2.1.5)

with

Φ =


φ1 · · · · · · φp
1 0 0
...

. . .
...

0 1 0

 , B =


1
0
...
0

 .

Thus {Xk, k ∈ N} is an Rp valued Markov chain with kernel P defined by

P(x,A) = P(Φx+BZ0 ∈ A) , (2.1.6)

for x ∈ Rp and A ∈B(Rp).

Example 2.1.3 (ARMA(p,q)). A generalization of the AR(p) model is obtained by
adding a moving average part to the autoregression:

Xk = µ +α1Xk−1 + · · ·+αpXk−p +Zk +β1Zk−1 + · · ·+βqZk−q . (2.1.7)

where {Zk, k ∈ Z} is a sequence of i.i.d. random variables with E [Z0] = 0. This
yields a Markov chain of order r = p∨q. Indeed, setting α j = 0 if j > p and β j = 0
if j > q yields

Xk+1
...

Xk+r

=


0 1 . . .
... 0 1 . . .
...

. . .. . .
0 . . . 0 1
αr . . . α1


 Xk

...
Xk+r−1

+


0
...
0

µ +Zk +β1Zk−1 + · · ·+βrZr

 .

(2.1.8)

Example 2.1.4 (Functional autoregressive processes). In the AR(1) model, the
conditional expectation of the value of the process at time k is an affine func-
tion of the previous value: E

[
Xk |F X

k−1

]
= µ +FXk−1. In addition, provided that

E
[
Z1ZT

1
]
= I in (2.1.4), the conditional variance is almost-surely constant since

E
[
(Xk−E

[
Xk |F X

k−1

]
)(Xk−E

[
Xk |F X

k−1

]
)T
∣∣F X

k−1

]
=GGT P−a.s. We say that

the model is conditionally homoscedastic. Of course, these assumptions can be re-
laxed in several directions. We might first consider models which are still condition-
ally homoscedastic, but for which the conditional expectation of Xk given the past
is a non-linear function of the past observation Xk−1, leading to the conditionally
homoscedastic functional autoregressive, hereafter FAR(1), given by

Xk = f (Xk−1)+GZk , (2.1.9)

where {Zk, k ∈ N∗} is a sequence of integrable zero-mean i.i.d. random vector in-
dependent of X0 and f : Rd → Rd is a measurable function. With this definition
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f (Xk−1) = E
[

Xk |F X
k−1

]
P −a.s.. The kernel of this chain is given, for x ∈Rd and

A ∈B(Rd) by
P(x,A) = P( f (x)+GZ1 ∈ A) .

Equivalently, for x ∈ Rd and h ∈ F+(Rd ,B(Rd)),

Ph(x) = E [h( f (x)+GZ1)] .

Compared to the AR(1) model, this model does not easily lend itself to a direct
analysis, because the expression of the successive iterates of the chain can be very
involved.

The recursion (2.1.9) can be seen as a general discrete time dynamical model
xk = f (xk−1) perturbed by the noise sequence {Zk, k ∈ N}. It is expected that the
stability and other properties of the discrete time dynamical system are related to
the stability of (2.1.9).

It is also of interest to consider cases in which the conditional variance

Var
(

Xk |F X
k−1
)
= E

[
(Xk−E

[
Xk |F X

k−1
]
)(Xk−E

[
Xk |F X

k−1
]
)T ∣∣F X

k−1
]
,

is a function of the past observation Xk−1; such models are said to be conditionally
heteroscedastic. Heteroscedasticity can be modeled by considering the recursion

Xk = f (Xk−1)+g(Xk−1)Zk , (2.1.10)

where for each x ∈ Rd , g(x) is a p× q matrix. Assuming that E
[
Z1ZT

1
]
= I, the

conditional variance is given by Var
(

Xk |F X
k−1

)
= g(Xk−1){g(Xk−1)}T P − a.s.

The kernel of this Markov chain is given, for x ∈ Rd and A ∈B(Rd) by

P(x,A) = P( f (x)+g(x)Z1 ∈ A) ,

or equivalently for x ∈ X and h ∈ F+(Rd ,B(Rd)),

Ph(x) = E [h( f (x)+g(x)Z1)] .

As above, these models can be generalized by assuming that the conditional ex-
pectation E

[
Xk |F X

k−1

]
and the conditional variance Var

(
Xk |F X

k−1

)
are nonlinear

functions of the p previous values of the process, (Xk−1,Xk−2, . . . ,Xk−p). Assuming
again for simplicity that d = 1, we may consider the recursion

Xk = f (Xk−1, . . . ,Xk−p)+σ(Xk, . . . ,Xk−p)Zk , (2.1.11)

where f : Rp→ R and σ : Rp→ R+ are measurable functions.

Example 2.1.5 (ARCH(p)). It is generally acknowledged in the econometrics and
applied financial literature that many financial time series such as log-returns of
share prices, stock indices and exchange rates, exhibit stochastic volatility and
heavy-tailedness. These features cannot be adequately simultaneously modelled by
a linear time series model. Nonlinear models were proposed to capture these char-
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acteristics. In order for a linear time series model to possess heavy-tailed marginal
distributions, it is necessary for the input noise sequence to be heavy-tailed. For non-
linear models, heavy-tailed marginals can be obtained even if the system is injected
with a light-tailed input such as with normal noise. We consider here the Autore-
gressive Conditional Heteroscedastic model of order p, ARCH(p) model, defined
as a solution to the recursion

Xk = σkZk , (2.1.12a)

σ
2
k = α0 +α1X2

k−1 + · · ·+αpX2
k−p , (2.1.12b)

where the coefficients α j ≥ 0, j ∈ {0, . . . , p} are non-negative and {Zk, k ∈ Z} is
a sequence of i.i.d. random variable with zero mean (often assumed to be standard
Gaussian). The ARCH(p) process is a Markov chain of order p. Assume that Z1 has
a density g with respect to Lebesgue’s measure on R. Then, for h∈ F+(Rp,B (Rp))
we get

Ph(x1, . . . ,xp)

= E
[

h(
√

α0 +α1x2
1 + · · ·+αpx2

pZ1)

]

=
∫

h(y)
1√

α0 +α1x2
1 + · · ·+αpx2

p

g

 y√
α0 +α1x2

1 + · · ·+αpx2
p

dy .

The kernel therefore has a density with respect to Lebesgue’s measure given by

p(x1, . . . ,xp;y) =
1√

α0 +α1x2
1 + · · ·+αpx2

p

g

 y√
α0 +α1x2

1 + · · ·+αpx2
p

 .

We will latter see that it is relatively easy to discuss the properties of this model,
which is used widely in financial econometric.

Example 2.1.6 (Self-exciting threshold AR model). Self-exciting threshold AR
(SETAR) models were widely employed as a model for nonlinear time series.
Threshold models are piecewise linear AR models for which the linear relationship
varies according to delayed values of the process (hence the term self-exciting). In
this class of models, different autoregressive processes may operate and the change
between the various AR is governed by threshold values and a time lag. A `-regimes
TAR model has the form

Xk =


φ
(1)
0 +∑

p1
i=1 φ

(1)
i Xk−i +σ (1)Z(1)

k if Xk−d ≤ r1 ,

φ
(2)
0 +∑

p2
i=1 φ

(2)
i Xk−i +σ (2)Z(2)

k if r1 < Xk−d ≤ r2 ,
...

...

φ
(`)
0 +∑

p`
i=1 φ

(`)
i Xk−i +σ (`)Z(`)

k if r`−1 < Xk−d ,

(2.1.13)
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where {Zk, k ∈N} is an i.i.d. sequence of real-valued random variables, the positive
integer d is a specified delay and −∞ < r1 < · · ·< r`−1 < ∞ is a partition of X =R.
These models allow for changes in the AR coefficients over time and these changes
are determined by comparing previous values (back-shifted by a time lag equal to d)
to fixed threshold values. Each different AR model is referred to as a regime. In the
definition above, the values p j of the order of AR models can differ in each regime,
although in many applications, they are assumed to be equal.

The model can be generalized to include the possibility that the regimes depend
on a collection of the past values of the process, or that the regimes depend on an
exogenous variable (in which case the model is not self-exciting).

The popularity of TAR models is due to their being relatively simple to spec-
ify, estimate and interpret as compared to many other nonlinear time series models.
In addition, despite its apparent simplicity, the class of TAR models can reproduce
many nonlinear phenomena such as stable and unstable limit cycles, jump reso-
nance, harmonic distortion, modulation effects, chaos and so on.

Example 2.1.7 (Random coefficient autoregressive models). A process closely
related to the AR(1) process is the random coefficient autoregressive (RCA) process

Xk = AkXk−1 +Bk , (2.1.14)

where {(Ak,Bk), k ∈ N∗} is a sequence of i.i.d. random elements in Rd×d ×Rd ,
independent of X0. The Markov kernel P of this chain is defined by

Ph(x) = E [h(A1x+B1)] , (2.1.15)

for x ∈ X and h ∈ F+(X).
For instance, the volatility sequence {σk, k ∈ N} of the ARCH(1) process of

Example 2.1.5 fits into the framework of (2.1.14) with Ak = α1Z2
k−1 and Bk = α0.

2.1.2 Invariant distribution

The iterative representation Xk = f (Xk−1,Zk) is useful if the function x → fz(x)
has ceertain structural properties. We provide now conditions which ensure that the
chain {Xk, k ∈ N} has a unique invariant distribution.

H 2.1.8 • There exists a measurable function K : Z → R+ such that for all
(x,y,z) ∈ X×X×Z

d( fz(x), fz(y))≤ K(z)d(x,y) , (2.1.16)

E
[
log+ K(Z1)

]
< ∞ , E [logK(Z1)]< 0 . (2.1.17)

• There exists x0 ∈ X such that
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E
[
log+ d(x0, f (x0,Z1))

]
< ∞ . (2.1.18)

It is easily seen that if (2.1.18) holds for some x0 ∈ X, then it holds for all x′0 ∈ X.
Indeed, for all (x0,x′0,z) ∈ X×X×Z, (2.1.16) implies

d(x′0, fz(x′0))≤ (1+K(z))d(x0,x′0)+d(x0, fz(x0)) .

Using the inequality log+(x+ y) ≤ log+(x+ 1)+ log+(y), the previous inequality
yields

log+ d(x′0, fz(x′0))≤ log+(1+K(z))+ log+{1+d(x0,x′0)}+ log+ d(x0, fz(x0) .

Taking expectations, we obtain that (2.1.18) holds for x′0.
For x ∈ X, define the forward chain {Xx

n , n ∈ N} and the backward process
{Y x

n , n ∈ N} starting from Xx = Y x
0 = x by

Xx
k = fZk ◦ · · · ◦ fZ1(x0) , (2.1.19)

Y x
k = fZ1 ◦ · · · ◦ fZk(x0) . (2.1.20)

Since {Zk, k ∈ N} is an i.i.d. sequence, Y x
k has the same distribution as Xx

k for each
k ∈ N.

Theorem 2.1.9. For every x0 ∈ X, the sequence {Y x0
k , k ∈ N} converges almost

surely to a P−a.s. finite random variable Y∞ which does not depend on x0 and whose
distribution is the unique invariant distribution of the kernel P defined in (2.1.2).

Proof. For x0,x ∈ X, the Lipschitz condition (2.1.16) yields

d(Y x0
k ,Y x

k ) = d( fZ1 [ fZ2 ◦ · · · ◦ fZk(x0)], fZ1 [ fZ2 ◦ · · · ◦ fZk(x)])

≤ K(Z1)d( fZ2 ◦ · · · ◦ fZk(x0), fZ2 ◦ · · · ◦ fZk(x)) .

By induction, this yields

d(Y x0
k ,Y x

k )≤ d(x0,x)
k

∏
i=1

K(Zi) . (2.1.21)

Set x = fZk+1(x0). Then Y x0
k+1 = Y x

k and applying (2.1.21) yields

d(Y x0
k ,Y x0

k+1)≤ d(x0, fZk+1(x0))
k

∏
i=1

K(Zi) . (2.1.22)
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Since we have assumed thatE [logK(Z0)]∈ [−∞,0), the strong law of large numbers
yields

limsup
k→∞

k−1
k

∑
i=1

logK(Zi)< 0 P − a.s..

Exponentiating, this yields

limsup
k→∞

{
k

∏
i=1

K(Zi)

}1/k

< 1 P − a.s. (2.1.23)

Applying the assumption (2.1.18), we obtain, for every δ > 0,

∞

∑
k=1
P(k−1 log+ d(x0, fZk(x0))> δ )≤ δ

−1E
[
log+ d(x0, fZ0(x0))

]
< ∞ .

Applying the Borel Cantelli lemma yields limk→∞ k−1 log+ d(x0, fZk(x0)) = 0 P −
a.s. and consequently limsupk→∞ k−1 logd(x0, fZk(x0))≤ 0 P − a.s. or equivalently

limsup
k→∞

{
d(x0, fZk(x0))

}1/k ≤ 1 P − a.s. (2.1.24)

Applying (2.1.23) and (2.1.24) and the Cauchy root test to (2.1.22) proves that the
series ∑

∞
k=1 d(Y x0

k ,Y x0
k+1) is almost surely convergent. Since (X,d) is complete, this

in turn implies that {Y x0
k , k ∈ N} is almost surely convergent to a P − a.s. finite

random variable, which we denote by Y x0
∞ . The bound (2.1.23) also implies that

limk→∞ ∏
k
i=1 K(Zi) = 0 P−a.s.. This and (2.1.21) imply that limk→∞ d(Y x0

k ,Y x
k ) = 0

P − a.s. for all x0,x ∈ X, so that the distribution of Y x
∞, say π , does not depend on x.

Since fZ0 is continuous by (2.1.16), we have

f (Y x
∞,Z0) = lim

k→∞
f (Y x

k ,Z0)
law
= lim

k→∞
Y x

k+1 = Y x
∞ .

This proves that if the distribution of X0 is π , then the distribution of X1 is also π ,
that is π is P-invariant.

We now prove that the distribution of Y∞ is the unique invariant probability mea-
sure. Since Xx

k and Y x
k have the same distribution for all k ∈ N, for every bounded

continuous function g we have

lim
k→∞

E [g(Xx
k )] = lim

k→∞
E [g(Y x

k )] = E [g(Y
x
∞)] = π(g) .

This shows that Pn(x, ·) converges weakly to π for all x ∈ X. If ξ is an invariant
measure, then for every bounded continuous function g, by Lebesgue’s dominated
convergence theorem, we have
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lim
n→∞

ξ Pn(g) =
∫

X
lim
n→∞

Png(x)ξ (dx) =
∫

X
lim
n→∞

π(g)ξ (dx) = π(g) .

This proves that ξ = π . 2

The use of weak convergence in metric spaces to obtain existence and uniqueness
of invariant measures will be formalized and further developed in Chapter 12.

2.2 Observation driven models

Definition 2.2.1 (Observation driven model) Let (X,X ) and (Y,Y ) be measur-
able spaces, Q be a Markov kernel on X×Y and f : X×Y→ X be a measurable
function. Let (Ω , F ,{Fk, k ∈ N},P) be a filtered probability space. An observa-
tion driven stochastic process {(Xk,Yk,Fk), k ∈ N} is an adapted process taking
values in X×Y such that, for all k ∈ N∗ and all A ∈ Y ,

P(Yk ∈ A |Fk−1) = Q(Xk−1,A) , (2.2.1a)
Xk = f (Xk−1,Yk) . (2.2.1b)

Xk−1

Yk−1

Xk

Yk

Fig. 2.1 Dependency graph of {(Xk,Yk), k ∈ N}.

The process {(Xk,Yk), k ∈ N} is a Markov chain with kernel P characterized by

P((x,y),A×B) =
∫

B
1A( f (x,z))Q(x,dz) , (2.2.2)

for all (x,y) ∈ X×Y, A ∈X and B ∈ Y . Note that Yk is independent of Yk−1 con-
ditionally on Xk−1, but {Yk} may not be a Markov chain. The sequence {Xk} is a
Markov chain with kernel P1 defined for x ∈ X and A ∈X by

P1(x,A) =
∫

Y
1A( f (x,z))Q(x,dz) , (2.2.3)
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We can express Xk as a function of the sequence {Y1, . . . ,Yk} and of X0. Writing
fy(x) for f (x,y) and fy2 ◦ fy1(x) for f ( f (x,y1),y2), we have,

Xk = fYk ◦ · · · ◦ fY1(X0) . (2.2.4)

The name observation driven model comes from the fact that in statistical applica-
tions, only the sequence {Yk} is observable. We know by Theorem 1.3.6 that any
Markov chain can be represented in this way, with {Yk} i.i.d. random variables, in-
dependent of X0. However, the latter representation may fail to be useful, contrary
to the more structured representation of 2.2.1.

Example 2.2.2 (GARCH((p,q) model). The limitation of the ARCH model is that
the squared process has the autocorrelation structure of an autoregressive process,
which does not always fit the data. A generalization of the ARCH model is ob-
tained by allowing the conditional variance to depend on the lagged squared returns
(X2

t−1, . . . ,X
2
t−p) and on the lagged conditional variances. This model is called the

Generalized Autoregressive Conditional Heteroscedastic (GARCH) model, defined
by the recursion

Xk = σkZk (2.2.5a)

σ
2
k = α0 +α1X2

k−1 + · · ·+αpX2
k−p +β1σ

2
k−1 + · · ·+βqσ

2
k−q . (2.2.5b)

where the coefficients α0, . . . ,αp,β1, . . . ,βq are nonnegative and {Zk, k ∈ Z} is a
sequence of i.i.d. random variables with E [Z0] = 1.

The GARCH(p,q) process is a Markov chain of order r = p∨q. Indeed, setting
α j = 0 if j > p and β j = 0 if j > q yields

σ2
k+1
...

σ2
k+r

=



0 1 . . .
... 0 1 . . .
...

. . . . . .
0 . . . 0 1

αrZ2
k +βr . . . α1Z2

k+r−1 +β1


 σ2

k
...

σ2
k+r−1

+

 0
...

α0

 . (2.2.6)

These models do not allow for dependence between the volatility and the sign of
the returns, since the volatility depends only on the squared returns. This property
which is often observed in financial time series is the so-called leverage effect. To
accommodate this effect, several modifications of the GARCH model were consid-
ered. We give two such examples.

Example 2.2.3 (EGARCH). The EGARCH(p,q) models the log-volatility as an
ARMA process which is not independent of the innovation of the returns. More
precisely, it is defined by the recursion
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Xk = σkZk , (2.2.7a)

logσ
2
k = α0 +

p

∑
j=1

α jηk− j +
q

∑
j=1

β j logσ
2
k− j , (2.2.7b)

where {(Zn,ηn,),n ∈ N} is a sequence of i.i.d. bivariate random vectors with pos-
sibly dependent components. The original specification of the sequence {ηn} is
ηk = θZk +λ (|Zk|−E [|Z0|])

Example 2.2.4 (TGARCH). The TGARCH models the volatility as a threshold
ARMA process where the coefficient of the autoregressive part depends on the sign
of the innovation. More precisely, it is defined by the recursion

Xk = σkZk , (2.2.8a)

σ
2
k = α0 +αX2

k−1 +φX2
k−11Zk−1>0 +βσ

2
k−1 . (2.2.8b)

Building an integer valued models with rich dynamics is not easy. Observation
driven models provide a convenient possibility.

Example 2.2.5 (Log-Poisson autoregression). Let {Fk, k ∈N} be a filtration and
define an adapted sequence {(Xk,Yk), k ∈ N} by

L (Yk|Fk−1) = Poisson(exp(Xk−1)) (2.2.9a)
Xk = ω +bXk−1 + c log(1+Yk) , k ≥ 1 , (2.2.9b)

where ω , b, c are real-valued parameters. This process is of the form (2.2.1) with f
defined on R×N and Q on R×P(N) by

f (x,z) = ω +bx+ c log(1+ z) ,

Q(x,A) = e−ex
∑
j∈A

e jx

j!
,

for x ∈ R, z ∈ N and A⊂ N.
The log-intensity Xk can be expressed as in (2.2.4) in terms of the lagged re-

sponses by expanding (2.2.9b):

Xk = ω
1−bk

1−b
+bkX0 + c

k−1

∑
i=0

bi log(1+Yk−i−1) .

This model can also be represented as a functional autoregressive model with an
i.i.d. innovation. Let {Nk, k ∈ N∗} be a sequence of independent unit rate homoge-
neous Poisson process on the real line, independent of X0. Then {Xn, n ∈ N} may
be expressed as Xk = F(Xk−1,Nk), where F is the function defined on R×NR by

F(x,N) = ω +bx+ c log{1+N(ex)} . (2.2.10)

The transition kernel P of the Markov chain {Xk, k ∈ N} can be expressed as
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Ph(x) = E [h(ω +b+ c log{1+N(ex)})] , (2.2.11)

for all bounded measurable functions h, where N is a homogeneous Poisson process.
We will inverstigate thoroughly tis model in later chapters. We will see that the rep-
resentation (2.2.10) sometimes does not yield optimal conditions for the existence
and stability of the process and the observation driven model representation (2.2.9)
will be useful.

2.3 Markov chain Monte-Carlo algorithms

Markov chain Monte Carlo is a general method for the simulation of distributions
known up to a multiplicative constant. Let ν be a σ -finite measure on a state space
(X,X ) and let hπ ∈ F+(X) such that 0<

∫
X hπ(x)ν(dx)<∞. Typically X is an open

subset of Rd and ν is the Lebesgue measure or X is countable and ν is the counting
measure. This function is associated to a probability measure π on X defined by

π(A) =
∫

A hπ(x)ν(dx)∫
X hπ(x)ν(dx)

. (2.3.1)

We want to approximate expectations of functions f ∈ F+(X) with respect to π

π( f ) =
∫

X f (x)hπ(x)ν(dx)∫
X hπ(x)ν(dx)

.

If the state space X is high-dimensional and hπ is complex, direct numerical inte-
gration is not an option. The classical Monte Carlo solution to this problem is to
simulate i.i.d. random variables Z0, Z1, . . . , Zn−1 with distribution π and then to
estimate π( f ) by the sample mean

π̂( f ) = n−1
n−1

∑
i=0

f (Zi) . (2.3.2)

This gives an unbiased estimate with standard deviation of order O(n−1/2) provided
that π( f 2) < ∞. Furthermore, by the Central Limit Theorem, the normalized error√

n(π̂( f )−π( f )) has a limiting normal distribution, so that confidence intervals are
easily obtained.

The problem often encountered in applications is that it might be very difficult
to simulate i.i.d. random variables with distribution π . Instead, the Markov chain
Monte Carlo (MCMC) solution is to construct a Markov chain on X which has π as
invariant probability. The hope is that regardless of the initial distribution ξ , the law
of large numbers will hold, i.e. limn→∞ n−1

∑
n−1
k=0 f (Xk) = π( f ) Pξ − a.s. We will

investigate the law of large numbers for Markov chains in Chapter 5 and subsequent
chapters.
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At first sight, it may seem even more difficult to find such a Markov chain than
to estimate π( f ) directly. In the following subsections, we will exhibit several such
constructions.

2.3.1 Metropolis-Hastings algorithms

Let Q be a Markov kernel having a density q with respect to ν i.e. Q(x,A) =∫
A q(x,y)ν(dy) for every x ∈ X and A ∈X .

The Metropolis-Hastings algorithm proceeds in the following way. An initial
starting value X0 is chosen. Given Xk, a candidate move Yk+1 is sampled from
Q(Xk, ·). With probability α(Xk,Yk+1), it is accepted and the chain moves to Xk+1 =
Yk+1. Otherwise the move is rejected and the chain remains at Xk+1 = Xk. The prob-
ability α(Xk,Yk+1) of accepting the move is given by

α(x,y) =

{
min

(
hπ (y)
hπ (x)

q(y,x)
q(x,y) ,1

)
if hπ(x)q(x,y)> 0 ,

1 if hπ(x)q(x,y) = 0 .
(2.3.3)

The acceptance probability α(x,y) only depends on the ratio hπ(y)/hπ(x); therefore,
we only need to know hπ up to a normalizing constant. In Bayesian inference, this
property plays a crucial role.

This procedure produces a Markov chain, {Xk, k ∈ N}, with Markov kernel P
given by

P(x,A) =
∫

A
α(x,y)q(x,y)ν(dy)+ ᾱ(x)δx(A) , (2.3.4)

with
ᾱ(x) =

∫
X
{1−α(x,y)}q(x,y)ν(dy) . (2.3.5)

The quantity ᾱ(x) is the probability of remaining at the same point.

Proposition 2.3.1 The distribution π is reversible with respect to the
Metropolis-Hastings kernel P.

Proof. Note first that for every x,y ∈ X, it holds that

hπ(x)α(x,y)q(x,y) = {hπ(x)q(x,y)}∧{hπ(y)q(y,x)}
= hπ(y)α(y,x)q(y,x) . (2.3.6)

Thus for C ∈X ×X ,
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hπ(x)α(x,y)q(x,y)1C(x,y)ν(dx)ν(dy)

=
∫∫

hπ(y)α(y,x)q(y,x)1C(x,y)ν(dx)ν(dy) . (2.3.7)

On the other hand,∫∫
hπ(x)δx(dy)ᾱ(x)1C(x,y)ν(dx)

=
∫

hπ(x)ᾱ(x)1C(x,x)ν(dx) =
∫

hπ(y)ᾱ(y)1C(y,y)ν(dy)

=
∫∫

hπ(y)δy(dx)ᾱ(y)1C(x,y)ν(dy) . (2.3.8)

Hence, summing (2.3.7) and (2.3.8) we obtain∫∫
hπ(x)P(x,dy)ν(dx)1C(x,y) =

∫∫
hπ(y)P(y,dx)1C(x,y)ν(dy) .

This proves that π is reversible with respect to P. 2

From Proposition 1.5.2, we obtain that π is an invariant probability for the
Markov kernel P.

Example 2.3.2 (Random walk Metropolis algorithm). This is a particular case of
the Metropolis-Hasting algorithm, where the proposal transition density is symmet-
ric, i.e. q(x,y) = q(y,x), for every (x,y) ∈ X×X. Furthermore, assume that X = Rd

and let q̄ be a symmetric density with respect to 0, i.e. q̄(−y) = q̄(y) for all y ∈ X.
Consider the transition density q defined by q(x,y) = q̄(y− x). This means that
if the current state is Xk, an increment Zk+1 is drawn from q̄ and the candidate
Yk+1 = Xk +Zk+1 is proposed.

The acceptance probability (2.3.3) for the random walk Metropolis algorithm is
given by

α(x,y) = 1∧ hπ(y)
hπ(x)

. (2.3.9)

If hπ(Yk+1) ≥ hπ(Xk), then the move is accepted with probability one and if
hπ(Yk+1) < hπ(Xk), then the move is accepted with a probability strictly less than
one.

The choice of the incremental distribution is crucial for the efficiency of the algo-
rithm. A classical choice for q̄ is the multivariate normal distribution with zero-mean
and covariance matrix Γ to be suitably chosen.

Example 2.3.3 (Independent Metropolis-Hastings sampler). Another possibility
is to set the transition density to be q(x,y) = q̄(y), where q̄ is a density on X. In this
case, the next candidate is drawn independently of the current state of the chain.
This yields the so-called independent sampler, which is closely related to the accept-
reject algorithm for random variable simulation.

The acceptance probability (2.3.3) is given by
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α(x, y) = 1∧ hπ(y)q̄(x)
hπ(x)q̄(y)

. (2.3.10)

Candidate steps with a low weight q̄(Yk+1)/π(Yk+1) are rarely accepted, whereas
candidates with a high weight are very likely to be accepted. Therefore the chain
will remain at these states for several steps with a high probability, thus increasing
the importance of these states within the constructed sample.

Assume for example that h is the standard Gaussian density and that q is the
density of the Gaussian distribution with zero mean and variance σ2, so that q(x) =
h(y/σ)/σ . Assume that σ2 > 1 so that the values being proposed are sampled from
a distribution with heavier tails than the objective distribution h. Then the acceptance
probability is

α(x,y) =

{
1 |y| ≤ |x| ,
exp(−(y2− x2)(1−σ−2)/2) |y|> |x| .

Thus the algorithm accepts all moves which decrease the norm of the current state
but only some of those which increase it.

If σ2 < 1, the values being proposed are sampled from a lighter tailed distribution
than h and the acceptance probability becomes

α(x,y) =

{
exp(−(x2− y2)(1−σ−2)/2) |y| ≤ |x| ,
1 |y|> |x| .

It is natural to inquire whether heavy-tailed or light-tailed proposal distributions
should be preferred. This question will be partially answered in Example 15.3.3.

Example 2.3.4 (Langevin diffusion). More sophisticated proposals can be con-
sidered. Assuming that x 7→ loghπ(x) is everywhere differentiable. Consider the
Langevin diffusion defined by the stochastic differential equation (SDE)

dXt =
1
2

∇ loghπ(Xt)dt +dWt ,

where ∇ loghπ denotes the gradient of loghπ . Under appropriate conditions, the
Langevin diffusion has a stationary distribution with densityt hπ and is reversible.
Assume that the proposal state Yk+1 in the Metropolis-Hastings algorithm corre-
sponds to the Euler discretization of the Langevin SDE for some step size h:

Yk+1 = Xk +
γ

2
∇ loghπ(Xk)+

√
γZk+1 , Zk+1 ∼ N(0, I) .

Such algorithms are known as Langevin Metropolis-Hastings algorithms. The gra-
dient can be approximated numerically via finite differences and does not require
knowledge of the normalizing constant of the target distribution hπ .



42 2 Examples of Markov chains

2.3.2 Data augmentation

Throughout this section, (X,X ) and (Y,Y ) are Polish spaces equipped with their
Borel σ -fields. Again, we wish to simulate from a probability measure π defined on
(X,X ) using a sequence {Xk, k ∈N} of X-valued random variables. Data augmen-
tation algorithms consist in writing the target distribution π as the marginal of the
distribution π∗ on the product space (X×Y,X ⊗Y ) defined by π∗ = π⊗R where
R is a kernel on X×Y . By Theorem B.3.11, there exists also a kernel S on Y×X
and a probability measure π̃ on (Y,Y ) such that π∗(C) =

∫∫
1C(x,y)π̃(dy)S(y,dx)

for C ∈X ⊗Y . In other words, if (X ,Y ) is a pair of random variables with distri-
bution π∗, then R(x, ·) is the distribution of Y conditionally on X = x and S(y, ·) is
the distribution of X conditionally on Y = y. The bivariate distribution π∗ can then
be expressed as follows

π
∗(dxdy) = π(dx)R(x,dy) = S(y,dx)π̃(dy) . (2.3.11)

A data augmentation algorithm consists in running a Markov Chain {(Xk,Yk), k ∈
N} with invariant probability π∗ and to use n−1

∑
n−1
k=0 f (Xk) as an approximation

of π( f ). A significant difference between this general approach and a Metropolis-
Hastings algorithm associated to the target distribution π is that {Xk, k ∈ N} is no
longer constrained to be a Markov chain. The transition from (Xk,Yk) to (Xk+1,Yk+1)
is decomposed into two successive steps: Yk+1 is first drawn given (Xk,Yk) and then
Xk+1 is drawn given (Xk,Yk+1). Intuitively, Yk+1 can be used as an auxiliary variable,
which directs the moves of Xk toward interesting regions with respect to the target
distribution.

When sampling from R and S is feasible, a classical choice consists in following
the two successive steps: given (Xk,Yk),

(i) sample Yk+1 from R(Xk, ·),
(ii) sample Xk+1 from S(Yk+1, ·).

Xk

Yk

Xk+1

Yk+1

S
R

S

Fig. 2.2 In this example, sampling from R and S is feasible.

It turns out that {Xk, k ∈ N} is a Markov chain with Markov kernel RS and π is
reversible with respect to RS.

Lemma 2.3.5 The distribution π is reversible with respect to the kernel RS.
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Proof. By Definition 1.5.1, we must prove that the measure π ⊗RS on X2 is sym-
metric. For A,B ∈X , applying (2.3.11), we have

π⊗RS(A×B)

=
∫

X×Y
π(dx)R(x,dy)1A(x)S(y,B) =

∫
X×Y

1A(x)S(y,B)π
∗(dxdy)

=
∫

X×Y
1A(x)S(y,B)S(y,dx)π̃(dy) =

∫
Y

S(y,A)S(y,B)π̃(dy) .

This proves that π⊗RS is symmetric. 2

Assume now that sampling from R or S is infeasible. In this case, we consider two
instrumental kernels Q on (X×Y)×Y and T on (X×Y)×X which will be used
to propose successive candidates for Yk+1 and Xk+1. For simplicity, assume that
R(x,dy′) and Q(x,y;dy′) (resp. S(y′,dx′) and T (x,y′;dx′)) are dominated by the same
measure and call r and q (resp. s and t) the associated transition densities. We as-
sume that r and s are known up to a normalizing constant. Define the Markov chain
{(Xk,Yk), k ∈ N} as follows. Given (Xk,Yk) = (x,y),

(DA1) draw a candidate Ỹk+1 according to the distribution Q(x,y; ·) and accept Yk+1 =
Ỹk+1 with probability α(x,y,Ỹk+1) defined by

α(x,y,y′) =
r(x,y′)q(x,y′;y)
r(x,y)q(x,y;y′)

∧1 ;

otherwise, set Yk+1 = Yk; the Markov kernel on X×Y×Y associated to this
transition is denoted by K1;

(DA2) draw then a candidate X̃k+1 according to the distribution T (x,Yk+1; ·) and accept
Xk+1 = X̃k+1 with probability β (x,Yk+1, X̃k+1) defined by

β (x,y,x′) =
s(y,x′)t(x′,y;x)
s(y,x)t(x,y;x′)

∧1 ;

otherwise, set Xk+1 = Xk; the Markov kernel on X×Y×X associated to this
transition is denoted by K2.

For i = 1,2, let K∗i be the kernels associated to K1 and K2 as follows: for x ∈ X,
y ∈ Y, A ∈X and B ∈ Y ,

K∗1 (x,y;A×B) = 1A(x)K1(x,y;B) . (2.3.12)
K∗2 (x,y;A×B) = 1B(y)K2(x,y;A) . (2.3.13)

Then, the kernel of the chain {(Xn,Yn), n ∈ N} is K = K∗1 K∗2 . The process {Xn, n ∈
N} is in general not a Markov chain since the distribution of Xk+1 conditionally on
(Xk,Yk) depends on (Xk,Yk) and on Xk only, except in some special cases. Obvi-
ously, this construction includes the previous one where sampling from R and S was
feasible. Indeed, if Q(x,y; ·) = R(x, ·) and T (x,y; ·) = S(x, ·), then the acceptance
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probabilities α and β defined above simplify to one, the candidates are always ac-
cepted and we are back to the previous algorithm.

Proposition 2.3.6 The extended target distribution π∗ is reversible with re-
spect to the kernels K∗1 and K∗2 and invariant with respect to K.

Proof. The reversibility of π∗ with respect to K∗1 and K∗2 implies its invariance and
consequently its invariance with respect to the product K = K∗1 K∗2 . Let us prove
the reversibility of π∗ with respect to K∗1 . For each x ∈ X, the kernel K1(x, ·; ·) on
Y×Y is the kernel of a Metropolis-Hastings algorithm with target density r(x, ·),
proposal kernel density q(x, ·; ·) and acceptation probability α(x, ·, ·). By Proposi-
tion 2.3.1, this implies that the distribution R(x, ·) is reversible with respect to the
kernel K1(x, ·; ·). Applying the definition (2.3.12) of K∗1 and π∗ = π⊗R yields, for
A,C ∈X and B,D ∈ Y ,

π
∗⊗K∗1 (A×B×C×D) =

∫∫
A×B

π(dxdy)K∗1 (x,y;C×D)

=
∫∫

A×B
π(dx)R(x,dy)1C(x)K1(x,y,D)

=
∫

A∩C
π(dx)[R(x, ·)⊗K1(x, ·; ·)](B×D) .

We have seen that for each x ∈ X, the measure R(x, ·)⊗K1(x, ·; ·) is symmetric, thus
π∗ ⊗K∗ is also symmetric. The reversibility of π∗ with respect to K∗2 is proved
similarly. 2

Example 2.3.7 (The slice sampler). Set X = Rd and X = B(X). Let µ be a σ -
finite measure on (X,X ) and let h be the density with respect to µ of the target
distribution. We assume that for all x ∈ X,

h(x) =C
k

∏
i=0

fi(x) ,

where C is a constant (which is not necessarily known) and fi : Rd → R+ are non-
negative measurable functions. For y = (y1, . . . ,yk) ∈ Rk

+, define

L(y) =
{

x ∈ Rd : fi(x)≥ yi , i = 1, . . . ,k
}
.

The f0-slice-sampler algorithm proceeds as follows:

• given Xn, draw independently a k-tuple Yn+1 = (Yn+1,1, . . . ,Yn+1,k) of indepen-
dent random variables such that Yn+1,i ∼ Unif(0, fi(Xn)), i = 1, . . . ,k.
• sample Xn+1 from the distribution with density proportional to f01L(Yn+1)

.

Set Y = Rk
+ and for (x,y) ∈ X×Y,



2.3 Markov chain Monte-Carlo algorithms 45

h∗(x,y) =C f0(x)1L(y)(x) = h(x)
k

∏
i=1

1[0, fi(x)]
(yi)

fi(x)
.

Let π∗ be the probability measure with density h∗ with respect to Lebesgue’s mea-
sure on X×Y. Then

∫
Y h∗(x,y)dy = h(x) i.e. π is the first marginal of π∗. Let R be

the kernel on X×Y with kernel denisty r defined by

r(x,y) =
h∗(x,y)

h(x)
1{h(x)> 0} .

Then π∗ = π ⊗R. Define the distribution π̃ = πR, its density h̃(y) =
∫

X h∗(u,y)du
and the kernel S on Y×X with density s by

s(y,x) =
h∗(x,y)

h̃(y)
1
{

h̃(y)> 0
}
.

If (X ,Y ) is a vector with distribution π∗, then S(y, ·) is the conditional distribu-
tion of X given Y = y and the Markov kernel of the chain {Xn, n ∈ N} is RS and
Lemma 2.3.5 can be applied to prove that π is reversible, hence invariant, with re-
spect to RS.

2.3.3 Two-stage Gibbs sampler

The Gibbs sampler is a simple method which decomposes a complex multidimen-
sional distribution into a collection of smaller dimensional ones. Let (X,X ) and
(Y,Y ) be complete separable metric spaces endowed with their Borel σ -fields. To
construct the Markov chain {(Xn,Yn), n∈N}with π∗ as an invariant probability, we
proceed exactly as in data-augmentation algorithms. Assume that π∗ may be written
as

π
∗(dxdy) = π(dx)R(x,dy) = π̃(dy)S(y,dx) (2.3.14)

where π and π̃ are probability measures on X and Y respectively and R and S are
kernels on X×Y and Y×X respectively.

The deterministic updating (two-stage) Gibbs (DUGS) sampler

When sampling from R and S is feasible, the DUGS sampler proceeds as follows:
given (Xk,Yk),

(DUGS1) sample Yk+1 from R(Xk, ·),
(DUGS2) sample Xk+1 from S(Yk+1, ·).

For both the Data Augmentation algorithms and the two-stage Gibbs sampler we
consider a distribution π∗ on the product space X×Y. In the former case, the dis-
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tribution of interest is a marginal distribution of π∗ and in the latter case the target
distribution is π∗ itself.

We may associate to each update (DUGS1)-(DUGS2) of the algorithm a transi-
tion kernel on (X×Y)× (X ⊗Y ) defined for (x,y) ∈ X×Y and A×B ∈X ⊗Y
by

R∗(x,y;A×B) = 1A(x)R(x,B) , (2.3.15)
S∗(x,y;A×B) = 1B(y)S(y,A) . (2.3.16)

The transition kernel of the DUGS is then given by

PDUGS = R∗ S∗ . (2.3.17)

Note that for A×B ∈X ⊗Y ,

PDUGS(x,y;A×B) =
∫∫

X×Y
R∗(x,y;dx′dy′)S∗(x′,y′;A×B)

=
∫∫

X×Y
R(x,dy′)1B(y

′)S(y′,A)

=
∫

B
R(x,dy′)S(y′,A) = R⊗S(x,B×A) . (2.3.18)

As a consequence of Proposition 2.3.6, we obtain the invariance of π∗.

Lemma 2.3.8 The distribution π∗ is reversible with respect to the kernels R∗ and
S∗ and invariant with respect to PDUGS.

The Random Scan Gibbs sampler (RSGS)

At each iteration, the RSGS algorithm consists in updating one component chosen
at random. It proceeds as follows: given (Xk,Yk),

(RSGS1) sample a Bernoulli random variable Bk+1 with probability of success 1/2.
(RSGS2) If Bk+1 = 0, then sample Yk+1 from R(Xk, ·) else sample Xk+1 from S(Yk+1, ·).

The transition kernel of the RSGS algorithm can be written

PRSGS =
1
2

R∗+
1
2

S∗ . (2.3.19)

Lemma 2.3.8 implies that PRSGS is reversible with respect to π∗ and therefore π∗ is
invariant for PRSGS.

If sampling from R or S is infeasible, the Gibbs transitions can be replaced by
a Metropolis-Hastings algorithm on each component as in the case of the DUGS
algorithm. The agorithm is then called the Two-Stage Metropolis-within-Gibbs al-
gorithm.
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Example 2.3.9 (Scalar Normal-Inverse Gamma). In a statistical problem one
may be presented with a set of independent observations y = {y1, . . . , yn}, assumed
to be normally distributed, but with unknown mean µ and variance τ−1 (τ is often
referred to as the precision). The Bayesian approach to this problem is to assume
that µ and τ are themselves random variables, with a given prior distribution. For
example, we might assume that

µ ∼ N(θ0, φ
−1
0 ) , τ ∼ Γ(a0, b0) , (2.3.20)

i.e. µ is normally distributed with mean θ0 and variance φ
−1
0 and τ has a Gamma

distribution with parameters a0 and b0.
The parameters θ0, φ0, a0 and b0 are assumed to be known. The posterior density

h of (µ,τ) defined as the conditional density given the observations, is then given,
using the Bayes formula, by

h(u, t) ∝ exp(−φ0(u−θ0)
2/2)exp

(
−t

n

∑
i=1

(yi−u)2/2

)
ta0−1+n/2 exp(−b0t) .

Conditioning on the observations introduces a dependence between µ and τ . Never-
theless, the conditional laws of µ given τ and τ given µ have a simple form. Write
ȳ = n−1

∑
n
i=1 yi and S2 = n−1

∑
n
i=1(yi− ȳ)2,

θn(t) = (φ0θ0 +ntȳ)/(φ0 +nt) , φn(t) = φ0 +nt ,

an = a0 +n/2 , bn(u) = b0 +nS2/2+n(ȳ−u)2/2 .

Then,

L (µ|τ) = N(θn(τ), φ
−1
n (τ)) , L (τ|µ) = Γ(an, bn(µ)) .

The Gibbs sampler provides a simple approach to define a Markov chain whose in-
variant probability has the density h. First we simulate µ0 and τ0 independently with
distribution as in (2.3.20). At the k-th stage, given (µk−1, τk−1), we first simulate
Nk ∼ N(0,1) and Gk ∼ Γ(an,1) and we set

µk = θn(τk−1)+φ
−1/2
n (τk−1)Nk

τ
−1
k = bn(µk)Gk .

In the simple case where θ0 = 0 and φ0 = 0 which corresponds to a flat prior for µ

(an improper distribution with a constant density on R), the above equation can be
rewritten as

µk = ȳ+(nτk−1)
−1/2Nk

τ
−1
k =

(
b0 +nS2/2+n(ȳ−µk)

2/2
)

Gk .
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Thus, {τ−1
k , k ∈ N} and {(µk − ȳ)2, k ∈ N} are Markov chains which follow the

random coefficient autoregressions

τ
−1
k =

N2
k Gk

2
τ
−1
k−1 +

(
b0 +

nS2

2

)
Gk ,

(µk− ȳ)2 =
N2

k Gk−1

2
(µk−1− ȳ)2 +

(
b0 +

nS2

2

)
Gk−1 .

2.3.4 Hit-and-run algorithm

Let K be a bounded subset of Rd with non-empty interior. Let ρ : K→ [0,∞) be a
(not necessarily normalized) density, i.e. a non-negative Lebesgue-integrable func-
tion. We define the probability measure πρ with density ρ by

πρ(A) =
∫

A ρ(x)dx∫
K ρ(x)dx

(2.3.21)

for all measurable sets A⊂K. For example, if ρ(x)≡ 1 then π is simply the uniform
distribution on K. The hit-and-run Markov kernel, presented below, can be used to
sample approximately from πρ . The hit-and-run algorithm consists of two steps.
Starting from x ∈ K, we first choose a random direction θ ∈ Sd−1, the unit sphere in
Rd according to a uniform distribution on Sd−1. We then choose the next state of the
Markov chain with respect to the density ρ restricted to the chord determined by the
current state x and and the direction θ ∈ Sd−1: for any function f ∈ F+(Rd ,B(Rd)),

Hθ f (x) =
1

`ρ(x,θ)

∫
∞

s=−∞

1K(x+ sθ) f (x+ sθ)ρ(x+ sθ)ds , (2.3.22)

where `ρ(x,θ) is the normalizing constant defined as

`ρ(x, θ) =
∫

∞

−∞

1K(x+ sθ)ρ(x+ sθ)ds . (2.3.23)

The Markov kernel H that corresponds to the hit-and-run algorithm is therefore
defined by, for all f ∈ F+(Rd ,B(Rd) and x ∈ Rd ,

H f (x) =
∫

Sd−1

Hθ f (x)σd−1(dθ) , (2.3.24)

where σd−1 is the uniform distribution on Sd−1.

Lemma 2.3.10 For all θ ∈ Sd−1, the Markov kernel Hθ is reversible with respect
to πρ defined in (2.3.21). Furthermore, H is also reversible with respect to πρ .

Proof. Let c =
∫

K ρ(x)dx and A,B ∈B(K). By elementary computations, we have
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A

Hθ (x, B)πρ(dx) =
∫

A

∫
∞

−∞

1B(x+ sθ)ρ(x+ sθ)ds
`ρ(x,θ)

ρ(x)dx
c

=
∫
Rd

∫
∞

−∞

1A(x)1B(x+ sθ)ρ(x+ sθ)ρ(x)
`ρ(x,θ)

dsdx
c

=
∫
Rd

∫
∞

−∞

1A(y− sθ)1B(y)ρ(y)ρ(y− sθ)

`ρ(y− sθ ,θ)

dsdy
c

=
∫

B

∫
∞

−∞

1A(y− sθ)ρ(y− sθ)

`ρ(y− sθ ,θ)
dsπρ(dy)

=
∫

B

∫
∞

−∞

1A(y− sθ)ρ(y− sθ)

`ρ(y,θ)
dsπρ(dy)

=
∫

B

∫
∞

−∞

1A(y+ tθ)ρ(y+ tθ)
`ρ(y,θ)

dtπρ(dy)

=
∫

B
Hθ (x, A)πρ(dx) .

The reversibility of Hθ is proved. The reversibility of Hρ follows from the reversibil-
ity of Hθ : for any A,B ∈B(Rd), we have∫

A
H(x,B)πρ(dx) =

∫
Sd−1

∫
A

Hθ (x,B)πρ(dx)σd−1(dθ)

=
∫

Sd−1

∫
B

Hθ (x,A)πρ(dx)σd−1(dθ)

=
∫

B
H(x,A)πρ(dx) .

2

2.4 Exercises

2.1 (Discrete autoregressive process). Consider the DAR(1) model defined by the
recursion

Xk =VkXk−1 +(1−Vk)Zk , (2.4.1)

where {Vk, k ∈ N} is a sequence of i.i.d. Bernoulli random variables with P(Vk =
1) =α ∈ [0,1), {Zk, k ∈N} are i.i.d. random variables with distribution π on a mea-
surable space (X,X ) and {Vk, k ∈ N} and {Zk, k ∈ N} are mutually independent
and independent of X0, whose distribution is ξ .

1. Show that P f (x) = α f (x)+(1−α)π( f ).
2. Show that π is the unique invariant probability.

Assume that X = N and ∑
∞
k=0 k2π(k)< ∞ and that the distribution of X0 is π .
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3. Show that for any positive integer h, Cov(Xh,X0) = αh Var(X0).

2.2. Consider a scalar AR(1) process {Xk, k ∈ N} defined recursively as follows:

Xk = φXk−1 +Zk , (2.4.2)

where {Zk, k ∈ N} is a sequence of i.i.d. random variables, independent of X0, de-
fined on a probability space (Ω ,F ,P). Assume that E [|Z1|]< ∞ and E [Z1] = 0.

1. Define the kernel P of this chain.
2. Show that for all k ≥ 1, Xk has the same distribution as φ kX0 +Bk where Bk =

∑
k−1
j=0 φ jZ j.

Assume that |φ |< 1.

3. Show that Bk
P-a.s.−→ B∞ = ∑

∞
j=0 φ jZ j.

4. Show that the distribution of B∞ is the unique invariant probability of P.

Assume that |φ |> 1 and the distribution of ∑
∞
j=1 φ− jZ j is continuous.

5. Show that for all x ∈ R, Px(limn→∞ |Xn|= ∞) = 1.

2.3. Consider the bilinear process defined by the recursion

Xk = aXk−1 +bXk−1Zk +Zk , (2.4.3)

where a and b are non zero real numbers and {Zk, k ∈ N} is a sequence of i.i.d.
random variables which are independent of X0. Assume that E [ln(|a+bZ0|)] < 0
and E

[
ln+(|Z0|)

]
< ∞. Show that the bilinear model (2.4.3) has a unique invariant

probability π and ξ Pn w⇒ π for every initial distribution ξ .

2.4 (Exercise 1.7 continued). Consider the Markov chain given by the recursion

Xk = εkXk−1Uk +(1− εk){Xk−1 +Uk(1−Xk−1)} , (2.4.4)

where {εk, k ∈ N} is an i.i.d. sequence of Bernoulli random variables with prob-
ability of success 1/2 and {Uk, k ∈ N} is an i.i.d. sequence of uniform random
variables on [0,1], both sequences being independent of X0. Show that the Markov
chain {Xk, k ∈ N} has a unique invariant stationary distribution.

2.5 (GARCH(1,1) process). Rewrite the GARCH(1,1) process introduced in Ex-
ample 2.2.2, which we can rewrite as

Xk = σkZk , σ
2
k = h(σ2

k−1,Z
2
k−1) ,

with h(x,z) = a0 +(a1z+ b1)x, a0 > 1, a1,b1 ≥ 0 and {Zk, k ∈ Z} a sequence of
i.i.d. random variables with zero mean and unit variance.

1. Prove that {σ2
k } is a Markov chain which satisfies the pathwise (2.1.16) with

K(z) = a1z+b1.
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2. Prove that a sufficient condition for the existence and uniqueness of an invariant
probability is

E
[
log(a1Z2

1 +b1)
]
< 0 . (2.4.5)

3. Prove that a1 +b1 < 1 is a necessary and sufficient condition for E
[
σ2

k

]
< ∞.

4. For p≥ 1, prove that a sufficient condition for the invariant probability of σ2
k to

have a finite moment of order p is E
[
(a1Z2

1 +b1)
p
]
< 1.

2.6 (Random coefficient autoregression). Consider the Markov chain {Xn, n∈N}
on Rd be defined by X0 and the recursion

Xk = AkXk−1 +Bk , (2.4.6)

where {(An,Bn), n∈N} is an i.i.d. sequence independent of X0; An is a d×d matrix
and {Bn, n ∈ N} is a d×1 vector.

1. Prove that the forward and backward processes are given for k ≥ 1 by

Xx0
k =

k−1

∑
j=0

(
k

∏
i=k+1− j

Ai

)
Bk− j +

(
k

∏
i=1

Ai

)
x0 ,

Y x0
k =

k−1

∑
j=0

(
j

∏
i=1

Ai

)
B j+1 +

(
k

∏
i=1

Ai

)
x0 .

where by convention ∏
b
i=a Ai = 1 if a > b.

A subspace L ⊂ Rd is said to be invariant if for all x ∈ L, P(X1 ∈ L |X0 = x) = 1.
Assume that E

[
log+(9A19)

]
<∞, E [|B1|]<∞ and that the only invariant subspace

of Rd is Rd itself.

2. Show that if
lim
n→∞

n−1E [log(9A1 . . .An9)]< 0 .

the random series ∑
∞
j=1

(
∏

j−1
i=1 A j

)
B j converges almost surely to a finite limit

Y∞

3. Show that the distribution of Y∞ is the unique invariant probability for the
Markov chain {Xx0

n , n ∈ N} for all x0 ∈ Rd .

2.5 Bibliographical notes

Random iterative functions produce a wealth of interesting examples of Markov
chains. Diaconis and Freedman (1999) provides a survey with applications and
very elegant convergence results. Exercise 2.4 is taken from Diaconis and Freed-
man (1999). Exercise 13.4 is taken from Diaconis and Hanlon (1992).

Markov Chain Monte Carlo algorithms have received a considerable attention
since their introduction in statistics in the early 1980. Most of the early works on
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this topic are summarized in Gelfand and Smith (1990), Geyer (1992) and Smith
and Roberts (1993). The books Robert and Casella (2004), Gamerman and Lopes
(2006) and Robert and Casella (2010) provide an in-depth introduction of Monte
Carlo methods and their applications in Bayesian statistics. These books contain
several chapters on MCMC methodology which is illustrated with numerous exam-
ples. The handbook Brooks et al (2011) provides an almost exhaustive account on
the developments of MCMC methods up to 2010. It constitutes an indispensable
source of references for MCMC algorithm design and applications in various fields.
The surveys Roberts and Rosenthal (2004), Diaconis (2009) and Diaconis (2013)
present many interesting developments.

There are many more examples of Markov chains which are not covered here. Ex-
amples of applications which are not covered in this book include queueing models
(see Meyn (2008), Sericola (2013), Rubino and Sericola (2014)), stochastic control
and Markov decision processes (see Hu and Yue (2008); Chang et al (2013)), econo-
metrics (see Frühwirth-Schnatter (2006)) and management sciences (see Ching et al
(2013)).



Chapter 3
Stopping times and the strong Markov property

In this chapter, we will introduce what is arguably the single most important result
of Markov chain theory, namely the strong Markov property.

To this purpose, we will first introduce the canonical space and the chain in Sec-
tion 3.1. We will prove that it is always possible to consider that a Markov chain
with state space (X,X ) is defined on the product space XN endowed with the prod-
uct σ -field X ⊗N. This space is convenient to define the shift operator which is a
key tool for the strong Markov property.

When studying the behavior of a Markov chain, it is often useful to decompose
the sample paths into random subsequences depending on the successive visits to
certain sets. The successive visits are examples of stopping times, that is integer
valued random variables whose value depend only on the past of the trajectory up
to this value. Stopping times will be formally introduced and some of their general
properties will be given in Section 3.2.

Having all the necessary tools in hand, we will be able to state and prove the
Markov property and the strong Markov property in Section 3.3. Essentially, these
properties mean that given a stopping time τ , the process {Xτ+k,k ≥ 0} restricted
to {τ < ∞} is a Markov chain with the same kernel as the original chain and inde-
pendent of the history of the chain up to τ . Technically, they allow to compute con-
ditional expectations given the σ -field related to a stopping time. Thus the (strong)
Markov property is easily understood to be of paramount importance in the theory
of Markov chains seen from the sample path (or probabilistic) point of view, as op-
posed to a more operator-theoretic point of view which will be only marginally taken
in this book (see Chapters 18, 20 and 22). As an example of path decomposition us-
ing the successive visits to a given set, we will see in Section 3.4 the first-entrance,
last-exit decomposition which will be used to derive several results in later chapters.

The fundamental notion of accessibility will be introduced in Definition 3.5.1. A
set is said to be accessible if the probability to enter it is positive wherever the chain
starts from. Chains which admit an accessible set will be considered in most parts
of this book. In Section 3.6, which could be skipped on a first reading, very deep
relations between return times to a set and invariant measures will be established.

53
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3.1 The canonical chain

In this section, we show that, given an initial distribution ν ∈M1(X ) and a Markov
kernel P on X×X , we can construct a Markov chain with initial distribution ν

and transition kernel P on a specific filtered probability space, referred to as the
canonical space. The following construction is valid for arbitrary measurable spaces
(X,X ).

Definition 3.1.1 (Coordinate process) Let Ω = XN be the set of X-valued se-
quences ω = (ω0,ω1,ω2, . . .) endowed with the σ -field X ⊗N. The coordinate pro-
cess {Xk, k ∈ N} is defined by

Xk(ω) = ωk , ω ∈Ω . (3.1.1)

A point ω ∈Ω is referred to as a trajectory or a path.

For each n∈N, define Fn =σ(Xm,m≤ n). A set A∈Fn can be expressed as A=
An×XN with An ∈X ⊗(n+1). A function f : Ω → R is Fn measurable if it depends
only on the n+ 1 first coordinates. In particular, the n-th coordinate mapping Xn is
measurable with respect to Fn. The canonical filtration is {Fn : n ∈ N}. Define the
algebra A = ∪∞

n=0Fn. We say that a set A ∈A is a cylinder (or cylindrical set) if it
satisfies

A =
∞

∏
n=0

An , An ∈X ,

where An 6= X for only finitely many n. Finally, we denote by F the σ -field gener-
ated by A . By construction, F = σ(Xm,m ∈ N).

Theorem 3.1.2. Let (X,X ) be a measurable space and P a Markov kernel on
X×X . For every probability measure ν on X , there exists a unique probability
measure Pν on the canonical space (Ω ,F ) = (XN,X ⊗N) such that the canonical
process {Xn, n ∈ N} is a Markov chain with kernel P and initial distribution ν .

Proof. We define a set function µ on A by

µ(A) = ν⊗P⊗n(An) ,

whenever A = An×XN with An ∈X ⊗(n+1) (it is easy to see that, this expression
does not depend on the choice of n and An). Since ν⊗P⊗n is a probability measure
on (Xn+1,X ⊗n) for every n, it is clear that µ is an additive set function on A . We
must now prove that µ is σ -additive. Let {Fn, n ∈ N∗} be a collection of pairwise
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disjoint sets of A such that ∪∞
n=1Fn ∈A . For n≥ 1, define Bn = ∪∞

k=nFk. Note that
Bn ∈A since Bn =

(
∪∞

k=1Fk
)
\
(
∪n−1

k=1Fk
)
. Since

µ (∪∞
k=1Fk) = µ(Bn)+µ (∪n

k=1Fk) = µ(Bn)+
n

∑
k=1

µ(Fk) ,

this amounts to establish that

lim
n→∞

µ(Bn) = 0 . (3.1.2)

Note that Bn+1 ⊂ Bn for all n ∈ N and ∩∞
n=1Bn = /0. Set B0 = X. For each n ∈ N,

there exists k(n) such that Bn ∈Fk(n) and the σ -fields Fn are increasing, thus we
can assume that the sequence Fk(n) is also increasing. Moreover, by repeating if
necessary the terms Bn in the sequence, we can assume that Bn is Fn measurable
for all n ∈ N.

For 0 ≤ k ≤ n, we define kernels Qk,n on Xk+1×Fn as follows. If f is a non
negative Fn-measurable function, then as noted earlier we can identify it with an
X ⊗(n+1)-measurable function f̄ and we set for k ≥ 1,

Qk,n f (x0, . . . ,xk) =
∫

Xn−k
P(xk,dxk+1) . . .P(xn−1,dxn) f̄ (x0, . . . ,xn) .

By convention, Qn,n is the identity kernel. For every n ≥ 0, Bn can be expressed as
Bn =Cn×XN with Cn ∈X ⊗(n+1). For 0≤ k≤ n we define the X ⊗(k+1)-measurable
function f n

k by

f n
k = Qk,n1Bn .

For each fixed k ≥ 0, the sequence
{

f n
k : n ∈ N

}
is nonnegative and nonincreasing

therefore it is convergent. Moreover it is uniformly bounded by 1. Set

f ∞
k = lim

n→∞
f n
k .

By construction, for each k < n we get that f n
k = Qk,k+1 f n

k+1. Thus, by Lebesgue’s
dominated convergence theorem we have

f ∞
k = Qk,k+1 f ∞

k+1 .

We now prove by contradiction that limn µ(Bn) = 0. Otherwise, since µ(Bn) =
νQ0,n(Bn) and f ∞

0 = limn→∞ Q0,n(Bn), the dominated convergence theorem yields

ν( f ∞
0 ) = ν

(
lim
n→∞

Q0,n(Bn)
)
= lim

n→∞
νQ0,n(Bn) = lim

n→∞
µ(Bn)> 0 .

Therefore, there exists x̄0 ∈ X such that f ∞
0 (x̄0)> 0. Then
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0 < f ∞
0 (x̄0) =

∫
X

P(x̄0,dx1) f ∞
1 (x̄0,x1) .

Therefore there exists x̄1 ∈ X such that f ∞
1 (x̄0, x̄1)> 0. This in turn yields

0 < f ∞
1 (x̄0, x̄1) =

∫
X

P(x̄1,dx2) f ∞
2 (x̄0, x̄1,x2) ,

and therefore there exists x̄2 ∈ X such that f ∞
2 (x̄0, x̄1, x̄2)> 0. By induction, we can

build a sequence x = {x̄n, n ∈ N} such that for all k ≥ 1, f ∞
k (x̄0, . . . , x̄k) > 0. This

yields, for all k ≥ 1,

1Bk(x) = f k
k (x̄0, . . . , x̄k)≥ f ∞

k (x̄0, . . . , x̄k)> 0 .

Since an indicator function takes only the values 0 and 1, this implies that 1Bk(x)= 1
for all k ≥ 0, thus x ∈ ∩∞

k=0Bk which contradicts the assumption ∩∞
k=0Bk = /0. This

proves (3.1.2). Therefore µ is σ -additive on A and thus by Theorem B.2.8 it can be
uniquely extended to a probability measure on F . 2

The expectation associated to Pν will be denoted by Eν and for x ∈ X, Px and Ex
will be shorthand for Pδx and Eδx .

Proposition 3.1.3 For all A ∈X ⊗N,

(i) the function x 7→ Px(A) is X -measurable,
(ii) for all ν ∈M1(X ), Pν(A) =

∫
XPx(A)ν(dx).

Proof. Let M be the set of those A ∈X ⊗N satisfying (i) and (ii). The set M is
a monotone class and contains all the sets of the form ∏

n
i=1 Ai, Ai ∈X , n ∈ N, by

(1.3.2). Hence, Theorem B.2.2 shows that M = X ⊗N. 2

Definition 3.1.4 (Canonical Markov Chain) The canonical Markov chain with
kernel P on X×X is the coordinate process {Xn, n ∈ N} on the canonical filtered
space (XN,X ⊗N,{F X

k , k ∈ N}) endowed with the family of probability measures
{Pν ,ν ∈M1(X )} given by Theorem 3.1.2.

In the sequel, unless explicitly stated otherwise, a Markov chain with kernel P
on X×X will refer to the canonical chain on (XN,X ⊗N).

One must be aware that with the canonical Markov chain on the canonical
space XN comes a family of probability measures, indexed by the set of probability
measures on (X,X ). A property might be almost surely true with respect to one
probability measure Pµ and almost surely wrong with respect to another one.
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Definition 3.1.5 A property is true P∗ − a.s. if it is almost surely true with respect
to Pν for all initial distribution ν ∈M1(X ). Moreover, if for some A ∈X ⊗N, the
probability Pν(A) does not depend on ν , then, we simply write P∗(A) instead of
Pν(A).

By Proposition 3.1.3-(ii) a property is true P∗ − a.s. if and only if it is almost
surely true with respect to Px for all x in X.

If a kernel P admits an invariant measure π , then by Theorem 1.4.2 the canonical
chain {Xk, k ∈ N} is stationary under Pπ .

Remark 3.1.6. Assume that the probability measure π is reversible with respect to
P (see Definition 1.5.1). Define for all k ≥ 0, the σ -field Gk = σ(X` , ` ≥ k). It can
be easily checked that for all A ∈X and k ≥ 0,

P(Xk ∈ A |Gk+1) = P(Xk+1,A) ,

showing that P is also the Markov kernel for the reverse time Markov chain. From
an initial distribution π at time 0, we can therefore use Theorem 3.1.2 applied to
the Markov kernel P on both directions to construct a probability Pπ on (XZ,X ⊗Z)
such that the coordinate process {Xk, k ∈ Z} is a stationary Markov chain under Pπ .
N

Nevertheless when π is no longer reversible with respect to P, the extension to a
stationary process indexed by Z is not possible in full generality.

Theorem 3.1.7 (Stationary Markov chain indexed by Z). Let X be a Polish
space endowed with its Borel σ -field. Let P be a Markov kernel on (X,X )
which admits an invariant measure π . Then there exists a unique probability
measure on (XZ,X ⊗Z), still denoted by Pπ , such that the coordinate process
{Xk, k ∈ Z} is a stationary Markov chain under Pπ .

Proof. For k ≤ n ∈ Z, let µk,n be the probability measure on Xn−k defined by

µk,n = π⊗P⊗(n−k) .

Then µk,n is a consistent family of probability measures. Therefore, by Theo-
rem B.3.17, there exists a probability measure Pπ on (XZ,X ⊗Z) such that for all
k ≤ n ∈ Z, the distribution of (Xk, . . . ,Xn) is µk,n. Since µk,n depends only on n− k,
the coordinate process is stationary. 2

We now define the shift operator on the canonical space.
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Definition 3.1.8 (Shift operator) Let (X,X ) be a measurable space. The applica-
tion θ : XN→ XN defined by

θw = (w0,w1,w2, . . .) 7→ θ(w) = (w1,w2, . . .) ,

is called the shift operator.

Proposition 3.1.9 The shift operator θ is measurable with respect to X ⊗N.

Proof. For n ∈ N∗ and H ∈X ⊗n, consider the cylinder H×XN, that is,

H×XN = {ω ∈Ω : (ω0, . . . ,ωn−1) ∈ H} .

Then,

θ
−1(H×XN) = {ω ∈Ω : (ω0, . . . ,ωn) ∈ X×H}= X×H×XN ,

which is another cylinder and since the cylinders generate the σ -field, X ⊗N =
σ(C0), where C0 is the semialgebra of cylinders. Therefore, the shift operator is
measurable. 2

We define inductively θ0 as the identity function, i.e. θ0(w) = w for all w ∈ XN,
and for k ≥ 1,

θk = θk−1 ◦θ .

Let {Xk, k ∈ N} be the coordinate process on XN, as defined in (3.1.1). Then, for
( j,k) ∈ N2, it holds that

Xk ◦θ j = X j+k .

Moreover, for all p,k ∈ N and A0, . . . ,Ap ∈X ,

θ
−1
k {X0 ∈ A0, . . . ,Xp ∈ Ap}= {Xk ∈ A0, . . . ,Xk+p ∈ Ap} ,

thus θk is measurable as a map from (XN,σ(X j, j ≥ k)) to (XN,F∞).

3.2 Stopping times

In this section, we consider a filtered probability space (Ω ,F ,{Fk, k ∈N},P) and
an adapted process {(Xn,Fn), n∈N}. We set F∞ =

∨
k∈NFk, the sub σ -field of F
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generated by {Fn, n ∈ N}. In most applications, the sequence {Fn, n ∈ N} is an
increasing sequence. In many examples, for n ∈ N, Fn = σ(Ym,0≤ m≤ n), where
{Ym, m ∈ N} is a sequence of random variables; in this case the σ -field F∞ is the
σ -field generated by the infinite sequence {Yn, n ∈ N}.

The term stopping time is an expression from gambling. A game of chance which
evolves in time (for example an infinite sequence of coin tosses) can be adequately
represented by a filtered space (Ω ,F ,{Fk, k ∈ N},P), the sub-σ -fields Fn giving
the information on the results of the game available to the player at time n. A stop-
ping rule for the player thus consists of giving a rule for leaving the game at time
n, based at each time on the information at his disposal at that time. The time ρ of
stopping the game by such a rule is a stopping time. Note that stopping times may
take the value +∞, corresponding to the case where the game never stops.

Definition 3.2.1 (Stopping times) (i) A random variable τ from Ω to N̄ = N∪
{∞} is called a stopping time if, for all k ∈ N, {τ = k} ∈Fk.

(ii) The family Fτ of events A ∈F such that, for every k ∈N, A∩{τ = k} ∈Fk, is
called the σ -field of events prior to time τ .

It can be easily checked that Fτ is indeed a σ -field. Since {τ = n} = {τ ≤
n}\{τ ≤ n−1}, one can replace {τ = n} by {τ ≤ n} in the definition of the stopping
time τ and in the definition of the σ -field Fτ . It may sometimes be useful to note
that the constant random variables are also stopping times. In such a case, there
exists n ∈ N such that τ(ω) = n for every ω ∈Ω and Fτ = Fn.

For any stopping time τ , the event {τ = ∞} belongs to F∞, for it is the comple-
ment of the union of the events {τ = n}, n ∈ N, which all belong to F∞. It follows
that B∩{τ = ∞} ∈F∞ for all B ∈Fτ , showing that τ : Ω → N̄ is F∞ measurable.

Definition 3.2.2 (Hitting times and return times) For A ∈ X , the first hitting
time τA and return time σA of the set A by the process {Xn, n ∈ N} are defined
respectively by

τA = inf{n≥ 0 : Xn ∈ A} , (3.2.1)
σA = inf{n≥ 1 : Xn ∈ A} , (3.2.2)

where, by convention, inf /0 = +∞. The successive return times σ
(n)
A , n ≥ 0, are de-

fined inductively by σ
(0)
A = 0 and for all k ≥ 0,

σ
(k+1)
A = inf

{
n > σ

(k)
A : Xn ∈ A

}
. (3.2.3)

It can be readily checked that return and hitting times are stopping times. For
example,
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{τA = n}=
n−1⋂
k=0

{Xk 6∈ A}∩{Xn ∈ A} ∈Fn ,

so that τA is a stopping time.
We want to define the position of the process {Xn} at time τ , i.e. Xτ(ω) =

Xτ(ω)(ω). This quantity is not defined when τ(ω) = ∞. To handle this situation,
we select an arbitrary F∞-measurable random variable X∞ and we set

Xτ = Xk on {τ = k} , k ∈ N̄ .

Note that the random variable Xτ is Fτ -measurable since, for A ∈X and k ∈ N,

{Xτ ∈ A}∩{τ = k}= {Xk ∈ A}∩{τ = k} ∈Fk .

3.3 The strong Markov property

Let τ be an integer valued random variable. Define θτ on {τ < ∞} by

θτ(w) = θτ(w)(w) . (3.3.1)

With this definition, we have Xτ = Xk on {τ = k} and Xk ◦θτ = Xτ+k on {τ < ∞}.

Proposition 3.3.1 Let {Fn, n ∈ N} be the natural filtration of the coordi-
nate process {Xn, n ∈ N}. Let τ and σ be two stopping times with respect
to {Fn, n ∈ N}.

(i) For all integers n,m ∈ N, θ−1
n (Fm) = σ(Xn, . . . , Xn+m).

(ii) the random variable defined by

ρ =

{
σ + τ ◦θσ on {σ < ∞}
∞ otherwise

is a stopping time. Moreover on {σ < ∞}∩{τ < ∞}, Xτ ◦θσ = Xρ .

Proof. (i) For all A ∈X and all integers k,n ∈ N2,

θ
−1
n {Xk ∈ A}= {Xk ◦θn ∈ A}= {Xk+n ∈ A} .

Since the σ -field Fm is generated by the events of the form {Xk ∈ A} where A ∈X
and k ∈ {0, . . . ,m}, the σ -field θ−1

n (Fm) is generated by the events {Xk+n ∈ A}
where A ∈X and k ∈ {0, . . . ,m} and by definition, the latter events generate the
σ -field σ(Xn, . . . , Xn+m).
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(ii) We will first prove that for every positive integer k, k+ τ ◦ θk is a stopping
time. Since τ is a stopping time, {τ = m− k} ∈Fm−k and by (i), it also holds that
θ
−1
k {τ = m− k} ∈Fm. Thus,

{k+ τ ◦θk = m}= {τ ◦θk = m− k}= θ
−1
k {τ = m− k} ∈Fm .

This proves that k + τ ◦ θk is a stopping time. We now consider the general case.
From the definition of ρ , we obtain

{ρ = m}= {σ + τ ◦θσ = m}=
m⋃

k=0

{k+ τ ◦θk = m, σ = k}

=
m⋃

k=0

{k+ τ ◦θk = m}∩{σ = k}.

Since σ is a stopping time and since k + τ ◦ θk is a stopping time for each k, we
obtain that {ρ = m} ∈Fm. Thus ρ is a stopping time. By construction, if τ(ω) and
σ(ω) are finite, we have

Xτ ◦θσ (ω) = Xτ◦θσ(ω)
(θσ (ω)) = Xσ+τ◦θσ

(ω) .

2

Proposition 3.3.2 The successive return times to a measurable set A are
stopping times with respect to the natural filtration of the canonical process
{Xn, n ∈ N}. In addition, σA = 1+ τA ◦θ1 and for n≥ 0,

σ
(n+1)
A = σ

(n)
A +σA ◦θ

σ
(n)
A

on {σ (n)
A < ∞} .

Proof. The proof is a straightforward application of Proposition 3.3.1 (ii). 2

Theorem 3.3.3 (Markov property). Let P be a Markov kernel on X×X and
ν ∈ M1(X ). For every F -measurable positive or bounded random variable Y ,
initial distribution ν ∈M1(X ) and k ∈ N, it holds that

Eν [Y ◦θk|Fk] = EXk
[Y ] Pν − a.s. (3.3.2)

Proof. We apply a monotone class theorem (see Theorem B.2.4). Let H be the
vector space of bounded random variables Y such that (3.3.2) holds. By the mono-
tone convergence theorem, if {Yn, n ∈ N} is an increasing sequence of nonnegative



62 3 Stopping times and the strong Markov property

random variables in H such that limn→∞ Yn =Y is bounded, then Y satisfies (3.3.2).
It suffices to check that H contain the random variables Y = g(X0, . . . ,X j), where
j ≥ 0 and g is any bounded measurable function on X j+1, i.e. we need to prove that

Eν [ f (X0, . . . ,Xk)g(Xk, . . . ,Xk+ j)] = Eν [ f (X0, . . . ,Xk)EXk [g(X0, . . . ,X j)]] .

This identity follows easily from (1.3.2). 2

Remark 3.3.4 A more general version of the Markov property where {Fn : n ∈ N}
is not necessarily the natural filtration can be obtained from Theorem 1.1.2-(ii).

The Markov property can be significantly extended to random time-shifts.

Theorem 3.3.5 (Strong Markov property). Let P be a Markov kernel on X×X
and ν ∈M1(X ). For every F -measurable positive or bounded random variable Y ,
initial distribution ν ∈M1(X ) and stopping time τ , it holds that

Eν

[
Y ◦θτ1{τ<∞}

∣∣Fτ

]
= EXτ

[Y ]1{τ<∞} Pν − a.s. (3.3.3)

Proof. We will show that, for all A ∈Fτ ,

Eν

[
1A Y ◦θτ 1{τ<∞}

]
= Eν

[
1A EXτ

[Y ]1{τ<∞}
]
. (3.3.4)

Since, for all k∈N, A∩{τ = k} ∈Fk, the Markov property (Theorem 3.3.3) implies

Eν

[
1A∩{τ=k}Y ◦θτ

]
= Eν

[
1A∩{τ=k}Y ◦θk

]
= Eν

[
1A∩{τ=k}EXk [Y ]

]
= Eν

[
1A∩{τ=k}EXτ

[Y ]
]
.

Equation (3.3.4) follows by noting that

Eν [1A Y ◦θτ 1{τ<∞}] =
∞

∑
k=0
Eν [1A∩{τ=k} Y ◦θk]

=
∞

∑
k=0
Eν

[
1A∩{τ=k}EXτ

[Y ]
]
= Eν [1A1{τ<∞}EXτ

[Y ]] .

2

We illustrate the use of the strong Markov property with some important proper-
ties of return times.

Proposition 3.3.6 Let C ∈X .
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(i) If for all x ∈C, Px(σC < ∞) = 1, then for all x ∈C and n ∈ N, Px(σ
(n)
C <

∞) = 1.
(ii) If for all x ∈Cc, Px(σC < ∞) = 1, then, Px(σC < ∞) = 1 for all x ∈ X.

Proof. (i) The proof is by induction on n ≥ 1. First note that by assumption,
Px(σ

(1)
C < ∞) = 1 for all x ∈C. Assume that Px(σ

(n)
C < ∞) = 1 for all x ∈C. By the

strong Markov property, we get for all x ∈C,

Px(σ
(n+1)
C < ∞) = Px(σ

(n)
C < ∞, σC ◦θ

σ
(n)
C

< ∞)

= Ex

[
1
{σ (n)

C <∞}
PX

σ
(n)
C

(σC < ∞)

]
= Px(σ

(n)
C < ∞) = 1 .

(ii) For x ∈ X, we have

Px(σC < ∞) = Px(X1 ∈C)+Px(X1 ∈Cc,σC ◦θ < ∞)

= Px(X1 ∈C)+Px(X1 6∈C) = 1 .

2

For any set C ∈X , denote by XC the subset of X defined as

XC = {A∩C : A ∈X } . (3.3.5)

It is easily seen that XC is a σ -field, often called the trace σ -field on C or the
induced σ -field on C.

Definition 3.3.7 (Induced kernel) For all C ∈X , the induced kernel QC on C×
XC is defined by

QC(x,B) = Px(XσC ∈ B, σC < ∞) , x ∈C , B ∈XC . (3.3.6)

Let {Xn, n ∈ N} be a Markov chain on (X,X ) and C ∈X . Assume that for
all x ∈ C, Px(σC < ∞) = 1. Proposition 3.3.6 shows that Px(σ

(n)
C < ∞) = 1 for all

x ∈C and n ∈ N. We may then consider the process {X̃n, n ∈ N} corresponding to
the values of the Markov chain {Xn, n ∈ N} at the successive times of its returns to
the set C. Theorem 3.3.8 shows that this process is again a Markov chain, called the
induced chain on the set C.
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Theorem 3.3.8. Let P be a Markov kernel on X×X and C ∈ X . Assume that
Px(σC < ∞) = 1 for all x ∈C. Then, for all x ∈C and n ∈ N, Px(σ

(n)
C < ∞) = 1. We

set for all n ∈ N,
X̃n = X

σ
(n)
C
1
{σ (n)

C <∞}
+ x∗1{σ (n)

C =∞}
(3.3.7)

where x∗ is an arbitrary element of C.

(i) For all x ∈C, the process {X̃n, n ∈ N} is under Px a Markov chain on C with
kernel QC (see Definition 3.3.7).

(ii) Let A⊂C and denote by σ̃A the return time to the set A of the chain {X̃n}. Then,
for all x ∈C, Ex[σA]≤ Ex[σ̃A]supy∈CEy[σC].

Proof. By Proposition 3.3.6, we know that for all n∈N and x∈C, Px(σ
(n)
C <∞)= 1.

(i) Let x ∈C. Since Px(σ
(n)
C < ∞) = 1 for all x ∈C and n ∈N, the strong Markov

property applied to the Markov chain {Xn} yields, for any B ∈X ,

Px

(
X̃n+1 ∈ B

∣∣F
σ
(n)
C

)
= Px

(
X

σ
(n+1)
C
∈ B

∣∣∣∣Fσ
(n)
C

)
= Px

(
XσC ◦θ

σ
(n)
C
∈ B

∣∣∣∣Fσ
(n)
C

)
= PX

σ
(n)
C

(XσC ∈ B) = QC(X̃n,B) .

(ii) Since A⊂C, we have σA = σ
(σ̃A)
C . Thus,

σA =
σ̃A−1

∑
n=0
{σ (n+1)

C −σ
(n)
C }=

∞

∑
n=0
{σ (n+1)

C −σ
(n)
C }1{n<σ̃A} =

∞

∑
n=0

σC ◦θ
σ
(n)
C
1{n<σ̃A} .

Let x∈C. Note that {n < σ̃A}=∩n
i=1{Xσ (i) /∈ A} ∈F

σ (n) and applying again Propo-

sition 3.3.6, we have Px(σ
(n)
C < ∞) = 1. We then obtain by the strong Markov prop-

erty,

Ex[σA] =
∞

∑
n=0
Ex[σC ◦θ

σ
(n)
C
1{n < σ̃A}]

=
∞

∑
n=0
Ex[1{n < σ̃A}EX

σ
(n)
C

[σC]]≤ Ex[σ̃A]sup
y∈C
Ey[σC] .

2

3.4 First-entrance, last-exit decomposition

Given A ∈X , we define, for n≥ 1 and B ∈X ,
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n
AP(x,B) = Px(Xn ∈ B , n≤ σA) . (3.4.1)

Thus n
AP(x,B) is the probability that the chain goes from x to B in n steps without

visiting the set A. It is called the n-step taboo probability. Note that 1
AP= P and n

AP=
(PIAc)n−1P where IA is the kernel defined by IA f (x) = 1A(x) f (x) for any f ∈ F+(X)

Let f ∈ F+(X) and A ∈X . For any given n, we may decompose f (Xn) over the
mutually exclusive events {σA ≥ n} and {σA = j}, j ∈ {1, . . . ,n}. This yields the
first entrance decomposition, which may be expressed with the taboo probabilities
as follows, using the Markov property,

Pn f (x) = Ex[ f (Xn)] = Ex[1{n≤ σA} f (Xn)]+
n−1

∑
j=1
Ex[1{σA = j} f (Xn)]

= n
AP f (x)+

n−1

∑
j=1
Ex
[
1{σA = j}EX j [ f (Xn− j)]

]
= n

AP f (x)+
n−1

∑
j=1
Ex[1{σA ≥ j}1A(X j)Pn− j f (X j)]

= n
AP f (x)+

n−1

∑
j=1

j
AP(1A×Pn− j f )(x) . (3.4.2)

The last exit decomposition is defined analogously.

Pn f (x) = Ex[ f (Xn)]

= Ex[1{n≤σA} f (Xn)]+
n−1

∑
j=1
Ex[1{X j ∈ A,X j+1 /∈ A, . . . ,Xn−1 /∈ A} f (Xn)]

= n
AP f (x)+

n−1

∑
j=1
Ex[1A(X j)EX j [1{X1 /∈ A, . . . ,Xn− j−1 /∈ A} f (Xn− j)]]

= n
AP f (x)+

n−1

∑
j=1
Ex[1A(X j)

n− j
AP f (X j)]

= n
AP f (x)+

n−1

∑
j=1

P j(1A×
n− j

AP f )(x) . (3.4.3)

The first-entrance decomposition is clearly a decomposition which could be devel-
oped using the strong Markov property and the stopping time σA ∧ n. The last-exit
decomposition, however, is not an example of the use of the strong Markov prop-
erty: the last-exit time before n is not a stopping time. These decompositions do
however illustrate the principles behind the (strong) Markov property, namely the
decomposition of the probability space over the sub-events on which the random
time takes on the (countable) set of values.

Replacing P j in the right-hand side of (3.4.3) by the expression obtained in
(3.4.2) yields the so-called first entrance last exit decomposition:
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Ex[ f (Xn)] =
n
AP f (x)+ ∑

1≤k≤ j≤n−1

k
AP[1AP j−k(1A

n− j
AP f )](x) . (3.4.4)

The first-entrance last-exit formula is obtained by decomposing the probability
space over the times of the first and last entrances to A prior to n. Taking f = 1B for
B ∈X in the previous relation leads to the following decomposition of Pn(x,B)

Pn(x,B) = n
AP(x,B) +

n−1

∑
j=1

∫
A

[
j

∑
k=1

∫
A

k
AP(x,dy)P j−k(y,dz)

]
n− j

AP(z,B) . (3.4.5)

3.5 Accessible and attractive sets

Definition 3.5.1 (Accessible set) Let P be a Markov kernel on X×X .

(i) A set A ∈X is said to be accessible if Px(σA < ∞)> 0 for all x ∈ X.
(ii) The collection of accessible sets is denoted X +

P .

The following lemma provides several equivalent characterizations of accessible
sets.

Lemma 3.5.2 Let P be a Markov kernel on X×X . Let A ∈ X . The following
conditions are equivalent.

(i) A is accessible.
(ii) For every x ∈ X, there exists an integer n≥ 1 such that Pn(x,A)> 0.
(iii) For every µ ∈M+(X ), there exists an integer n≥ 1 such that µPn(A)> 0.
(iv) For every x ∈ Ac, Px(σA < ∞)> 0.

Moreover, if A is accessible, for all a∈M1
+(N) with a(k)> 0 for k≥ 1, Ka(x,A)> 0

for all x ∈ X. If there exists a ∈M1
+(N) such that Ka(x,A)> 0 for all x ∈ X, then A

is accessible.

Proof. The assertion (iv)⇒ (i) is the only non trivial one. It means that if A can be
reached from Ac, then it can be reached from A. Indeed, starting from A, either the
chain remains in A, or it leaves A and then can reach it again. Formally, applying the
Markov property yields

Px(σA < ∞) = Px(X1 ∈ A)+Px(X1 ∈ Ac,σA ◦θ < ∞)

= Px(X1 ∈ A)+Ex[1Ac(X1)PX1(σA < ∞)] .

For each x ∈ X, either Px(X1 ∈ A) > 0 or Px(X1 ∈ A) = 0. In the latter case, it then
holds that Px(σA < ∞) =Ex[1Ac(X1)PX1(σA < ∞)]> 0 if (iv) holds. Thus (iv)⇒ (i).
2
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Definition 3.5.3 (Domain of attraction of a set, attractive set) Let P be a Markov
chain on X×X . The domain of attraction C+ of a non empty set C ∈X is the set
of states x ∈ X from which the Markov chain returns to C with probability one:

C+ = {x ∈ X : Px(σC < ∞) = 1} . (3.5.1)

(i) If C ⊂C+, then the set C is said to be Harris recurrent.
(ii) If C+ = X, then the set C is said to be attractive.

If the domain of attraction C+ of C contains C, then it may happen that C+  X.
Nevertheless, as shown below, the set C+ is absorbing.

Lemma 3.5.4 Let P be a Markov kernel on X×X . Let C ∈X be a non-empty set
such that C ⊂C+. Then, the set C+ is absorbing.

Proof. Let x ∈C+. Then,

0 = Px(σC = ∞)≥ Px(X1 ∈Cc , σC ◦θ = ∞)

≥ Px(X1 ∈Cc
+ , σC ◦θ = ∞) = Ex[1Cc

+
(X1)PX1(σC = ∞)] .

Since Py(σC = ∞)> 0 for y ∈Cc
+, this yields P(x,Cc

+) = Px(X1 ∈Cc
+) = 0. 2

3.6 Return times and invariant measures

Invariant and sub-invariant measures were introduced in Section 1.4. Remember
that a measure µ is subinvariant (resp. invariant) if µ is σ -finite and satisfies µP≤
µ (resp. µP = µ). The next lemma gives a criterion to establish that a measure
verifying µP≤ µ is σ -finite and hence subinvariant.

Lemma 3.6.1 Let P be a Markov kernel on X×X and let µ ∈M+(X ) be such
that µP≤ µ . Assume that there exists an accessible set A such that µ(A)< ∞. Then
µ is σ -finite.

Proof. Since µPk ≤ µ for all k ∈ N, it also holds that µKaε
≤ µ . For every integer

m≥ 1,

∞ > µ(A)≥ µKaε
(A) =

∫
µ(dx)Kaε

(x,A)

≥ m−1
µ ({x ∈ X : Kaε

(x,A)≥ 1/m}) .

Since A is accessible, the function x 7→ Kaε
(x,A) is positive. Thus

X =
∞⋃

m=1

{x ∈ X : Kaε
(x,A)≥ 1/m} .
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This proves that µ is σ -finite. 2

The next two theorems are the main results of this section. They provide expres-
sions of an invariant measure in terms of the return time to a set C under certain
conditions. These expressions will be used in later chapters to prove the existence
and uniqueness of an invariant measure. For a measure µ ∈M+(X ) and C ∈X ,
we define the measures µ0

C et µ1
C by

µ
0
C(B) =

∫
C

µ(dx)Ex

[
σC−1

∑
k=0

1B(Xk)

]
=

∞

∑
k=0

∫
C

µ(dx)Ex [1{k < σC}1B(Xk)] ,

(3.6.1)

µ
1
C(B) =

∫
C

µ(dx)Ex

[
σC

∑
k=1

1B(Xk)

]
=

∞

∑
k=1

∫
C

µ(dx)Ex [1{k ≤ σC}1B(Xk)] .

(3.6.2)

Lemma 3.6.2 Let C ∈X and µ ∈M+(X ). Then, µ1
C = µ0

CP.

Proof. For B ∈X , the Markov property implies

Ex [1{k < σC}P(Xk,B)] = Ex
[
1{k < σC}EXk [1B(X1)]

]
= Ex [1{k < σC}Ex [1B(X1)◦θk |Fk]]

= Ex [1{k+1≤ σC}1B(Xk+1)]

Using this relation, we get

µ
0
CP(B) =

∞

∑
k=0

∫
C

µ(dx)Ex [1{k < σC}P(Xk,B)]

=
∞

∑
k=0

∫
C

µ(dx)Ex [1{k+1≤ σC}1B(Xk+1)]

=
∞

∑
k=1

∫
C

µ(dx)Ex[1{k ≤ σC}1B(Xk)] = µ
1
C(B) .

2

For C ∈X , recall that XC denotes the induced σ -algebra and QC(x,B) = Px(σC <
∞,XσC ∈ B) is the induced kernel.

Theorem 3.6.3. Let C ∈ X , πC be a probability measure on XC and π0
C be the

measure on X defined, for B ∈X , by

π
0
C(B) =

∫
C

πC(dx) Ex

[
σC−1

∑
k=0

1B(Xk)

]
. (3.6.3)
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Then, the restriction of π0
C to the set C is πC. Moreover, π0

C = π0
CP if and only if

πC = πCQC. If either of these properties holds, then Px(σC < ∞) = 1 πC − a.s.

Proof. Replacing B by B∩C in (3.6.3) shows that π0
C(B∩C) = πC(B∩C) which

proves the first statement.
The identity π1

C = π0
CP (see Lemma 3.6.2) implies

π
0
C(B)+πCQC(B∩C) = π

0
C(B)+

∫
C

πC(dx)Ex[1B(XσC)1{σC < ∞}]

= πC(B∩C)+
∫

C
πC(dx) Ex

[
σC

∑
k=1

1B(Xk)

]
= πC(B∩C)+π

0
CP(B) .

Since πC is a probability measure on XC, if πC = πCQC then π0
C = π0

CP. Conversely,
assume that π0

C = π0
CP. Since π0

C(C) = πC(C) = 1, for all B∈XC, π0
C(B)≤ π0

C(C) =
1 and therefore the relation

π
0
C(B)+πCQC(B) = πC(B)+π

0
CP(B)

implies that πCQC = πC. Finally if πCQC = πC then,

πC(C) = πCQC(C) =
∫

C
πC(dx)QC(x,C) =

∫
C

πC(dx)Px(σC < ∞) .

This implies that Px(σC < ∞) = 1 for πC-almost all x. 2

Lemma 3.6.4 Let µ be a P-subinvariant measure and C ∈X .

(i) µ ≥ µ0
C and µ ≥ µ1

C.
(ii) µ0

C and µ1
C are P-subinvariant if and only if µ(C)> 0.

(iii) If µ |C is QC-invariant, then µ0
C = µ1

C and both are P-invariant.
(iv) If µ is P-invariant and µ = µ0

C, then µ = µ0
D = µ1

D for all measurable set D
which contains C.

Proof. (i) Recall that by definition a P-subinvariant measure is σ -finite. There-
fore if suffices to prove that µ(B)≥ µ0

C(B) and µ(B)≥ µ1
C(B) for any B ∈X satis-

fying µ(B)< ∞. Let B ∈X such that µ(B)< ∞. For every k ≥ 0, define

uB,k(x) = Px(Xk ∈ B,σC > k) .

Since {σC > k+1}= {σC ◦θ > k}∩{X1 6∈C}, the Markov property yields

uB,k+1(x) = Px(Xk+1 ∈ B,σC > k+1) = Ex[1Cc(X1)uB,k(X1)] = P(uB,k1Cc)(x) .

Since µ is subinvariant this yields µ(uB,k+1) ≤ µ(uB,k1Cc), with equality if µ is
invariant. Note that
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0≤ µ(uB,k)≤ µ(uB,0)≤ µ(B)< ∞

so that the difference µ(uB,k)−µ(uB,k+1) is well defined. This implies

µ(uB,0)−µ(uB,n) =
n−1

∑
k=0
{µ(uB,k)−µ(uB,k+1)} ≥

n−1

∑
k=0

µ(uB,k1C) , (3.6.4)

with equality if µ is invariant. This yields

µ(B) = µ(uB,0)≥
n−1

∑
k=0

µ(uB,k1C) .

The series ∑
∞
k=0 µ(uB,k1C) is therefore summable and we have

µ(B)≥
∞

∑
k=0

µ(uB,k1C) =
∞

∑
k=0

∫
C

µ(dx)Px(Xk ∈ B,σC > k)

=
∫

C
µ(dx)Ex

[
σC−1

∑
k=0

1B(Xk)

]
= µ

0
C(B) .

This proves that µ ≥ µ0
C since µ is σ -finite. Since µ1

C = µ0
CP and µ is subinvariant,

this yields

µ
1
C = µ

0
CP≤ µP≤ µ .

(ii) First note that (i) implies that µ1
C and µ0

C are σ -finite. By definition, we have

µ
0
C(X) = µ

1
C(X) =

∫
C

µ(dx)Ex[σC] .

Thus µ0
C and µ1

C are non zero if and only if µ(C)> 0. Note now that, for k ≥ 1,

1{σC > k}= 1Cc(Xk)1{σC > k}= 1Cc(Xk)1{σC > k−1} .

Since µ is subinvariant and µ ≥ µ0
C, this yields, for f ∈ F+(X),

µ
0
C( f ) = µ( f1C)+

∞

∑
k=1

∫
C

µ(dx)Ex [1Cc(Xk) f (Xk)1{σC > k}]

≥ µP( f1C)+
∞

∑
k=1

∫
C

µ(dx)Ex [1Cc(Xk) f (Xk)1{σC > k−1}]

≥ µ
0
CP( f1C)+

∞

∑
k=1

∫
C

µ(dx)Ex [P( f1Cc)(Xk−1)1{σC > k−1}]

= µ
0
CP( f1C)+µ

0
CP( f1Cc) = µ

0
CP( f ) .

This proves that µ0
C is subinvariant. This in turn proves that µ1

C is subinvariant since
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µ
1
CP = (µ0

CP)P≤ µ
0
CP = µ

1
C .

(iii) Since µ0
CP( f1C) = µ |C QC, if µ |C QC = µ |C, all the inequalities above

becomes equalities and this yields µ0
C = µ0

CP i.e. µ0
C is P-invariant. Since µ1

C = µ0
CP,

this implies that µ1
C = µ0

C.
(iv) If µ is invariant, starting from (3.6.4), we have, for all n≥ 1,

µ(B) =
n−1

∑
k=0

µ(uB,k1C)+µ(uB,n) .

We already know that the series is convergent, thus limn→∞ µ(uB,n) also exists and
this proves

µ(B) =
∫

C
µ(dx)Ex

[
σC−1

∑
k=0

1B(Xk)

]
+ lim

n→∞

∫
X

µ(dx)Px(Xn ∈ B,σC > n) . (3.6.5)

The identity (3.6.5) implies that µ = µ0
C if and only if

lim
n→∞

∫
X

µ(dx)Px(Xn ∈ B,σC > n) = 0 .

If D⊃C, then σD ≤ σC and it also holds that

lim
n→∞

∫
X

µ(dx)Px(Xn ∈ B,σD > n) = 0 .

Applying (3.6.5) with D instead of C then proves that µ(B) = µ0
D(B) for all B such

that µ(B)< ∞ and since µ is σ -finite, this proves that µ = µ0
D. Since µ is invariant

and µ1
D = µ0

D, this also proves that µ = µ1
D.

2

Theorem 3.6.5. Let P be a Markov kernel on X×X which admits a subinvariant
measure µ and let C ∈X be such that µ(C)< ∞ and Px(σC < ∞)> 0 for µ-almost
all x ∈ X. Then the following statements are equivalent.

(i) Px(σC < ∞) = 1 for µ-almost all x ∈C;
(ii) the restriction of µ to C is invariant with respect to QC;

(iii) for all f ∈ F+(X),

µ( f ) =
∫

C
µ(dx)Ex

[
σC

∑
k=1

f (Xk)

]
. (3.6.6)

If any of these properties is satisfied, then µ is invariant and for all f ∈ F+(X),
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µ( f ) =
∫

C
µ(dx)Ex

[
σC−1

∑
k=0

f (Xk)

]
. (3.6.7)

Proof. First assume that (3.6.6) holds. Then, taking f = 1C, we get:

µ(C) =
∫

C
µ(dx)Ex

[
σC

∑
k=1

1C(Xk)

]
=
∫

C
µ(dx)Px(σC < ∞) .

Since µ(C) < ∞, this implies that Px(σC < ∞) = 1 for µ-almost all x ∈ C. This
proves that (iii) implies (i).

Assume now that Px(σC < ∞) = 1 for µ-almost all x ∈C. Define the measure µ1
C

by

µ
1
C(A) =

∫
C

µ(dx)Ex

[
σC

∑
k=1

1A(Xk)

]
.

Since Px(σC < ∞) = 1 for µ-almost all x ∈C by assumption, we have

µ
1
C(C) =

∫
C

µ(dx)Ex

[
σC

∑
k=1

1C(Xk)

]
=
∫

C
µ(dx)Px(σC < ∞) = µ(C)< ∞ .

By Lemma 3.6.4-(i), µ ≥ µ1
C and µ(C) = µ1

C(C)<∞, thus the respective restrictions
to C of the measures µ and µ1

C must be equal. That is, for every A ∈X , µ(A∩C) =
µ1

C(A∩C). This yields

µ(A∩C) = µ
1
C(A∩C) =

∫
C

µ(dx)Ex

[
σC

∑
k=1

1A∩C(Xk)

]
=
∫

C
µ(dx)Px(XσC ∈ A) = µ |C QC(A∩C) .

This proves that the restriction of µ to C is invariant for QC. Thus (i) implies (ii).
Assume now that (ii) holds. Then Theorem 3.6.3 yields µ1

C = µ1
CP. The final step

is to prove that µ = µ1
C. For every ε > 0, µ is subinvariant and µ1

C is invariant with
respect to the resolvent kernel Kaε

. Let g be the measurable function defined on X
by g(x) = Kaε

(x,C). Moreover,

µ(g) = µKaε
(C)≤ µ(C) = µ

1
C(C) = µ

1
CKaε

(C) = µ
1
C(g) .

Since it also holds that µ ≥ µ1
C and µ(C) < ∞, this implies µ(g) = µ1

C(g), i.e. the
measures g ·µ and g ·µ1

C coincide. Since g(x)> 0 for µ-almost all x∈X and also for
µ1

C-almost all x ∈ X since µ ≥ µ1
C, this yields µ = µ1

C. This proves (iii). The proof is
completed by applying (3.6.6) combined with Lemma 3.6.4-(iii). 2
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3.7 Exercises

3.1. Let (Ω , F , {Fk, k ∈N}, P) be a filtered probability space and τ and σ be two
stopping times for the filtration {Fk, k ∈N}. Denote by Fτ and Fσ the σ -fields of
the events prior to τ and σ , respectively. Then,

(i) τ ∧σ , τ ∨σ and τ +σ are stopping times,
(ii) if τ ≤ σ , then Fτ ⊂Fσ ,

(iii) Fτ∧σ = Fτ ∩Fσ ,
(iv) {τ < σ} ∈Fτ ∩Fσ , {τ = σ} ∈Fτ ∩Fσ .

3.2. Let C ∈X .

1. Assume that supx∈CEx[σC]< ∞. Show that

sup
x∈C
Ex[σ

(n)
C ]≤ nsup

x∈C
Ex[σC] .

2. Let p≥ 1. Assume that supx∈CEx[{σC}p]< ∞. Show that

sup
x∈C
Ex[{σ (n)

C }
p]≤ K(n, p)sup

x∈C
Ex[{σC}p] .

for a constant K(n, p)< ∞

3.3. For A ∈X , define by IA the multiplication operator by 1A, for all x ∈ X and
f ∈ F+(X), IA f (x) = 1A(x) f (x). Let C ∈X . Show that the induced kernel QC (see
(3.3.7)) can be written as

QC =
∞

∑
n=0

(ICc P)nIC .

3.4. Let A ∈X .

1. For x ∈ X, set f (x) = Px(τA < ∞). Show that for x ∈ Ac, Ph(x) = h(x).
2. For x ∈ X, set f (x) = Px(τA < ∞) Show that Ph(x)≤ h(x) for all x ∈ X.

3.5. Let P be a Markov kernel on X×X . Let σ a stopping time. Show that for any
A ∈X and n ∈ N,

Pn(x,A) = Ex[1{n≤ σ}1A(Xn)]+Ex[1{σ < n}Pn−σ (Xσ ,A)] .

3.6. Let π be a P-invariant probability measure and let C ∈ X be such that Px(σC <
∞) = 1 for π-almost all x ∈ X. Then, for all B ∈X ,

π(B) =
∫

C
π(dx)Ex

[
σC−1

∑
k=0

1B(Xk)

]
=
∫

C
π(dx)Ex

[
σC

∑
k=1

1B(Xk)

]
.

[Hint: Apply Lemma 3.6.4 to π and note that the limit in (3.6.5) is zero by
Lebesgue’s dominated convergence theorem.]
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3.7. Let P be a Markov kernel on X×X admitting an invariant probability measure
π . Let r = {r(n), n ∈ N} be a positive sequence, C ∈X be an accessible set and
f ∈ F+(X) be a function. Define

C+(r, f ) =

{
x ∈ X : Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
< ∞

}
. (3.7.1)

Assume supn∈N r(n)/r(n+1)< ∞ and C ⊂C+(r, f ). Set U = ∑
σC−1
k=0 r(k) f (Xk) and

denote M = supn∈N r(n)/r(n+1)< ∞.

1. Show that
1Cc(X1)U ◦θ ≤M1Cc(X1)U

2. Show that
Px(1Cc(X1)EX1 [U ]< ∞) = 1 . (3.7.2)

3. Show that C+(r, f ) is accessible, absorbing and π (C+(r, f )) = 1.

3.8. Let P be a Markov kernel on X×X admitting an invariant probability measure
π . Let C ∈X be an accessible and absorbing set. Let ε ∈ (0,1) and denote by Kaε

the resolvent kernel given in Definition 1.2.10.

1. Show that
∫

C π(dx)Kaε
(x,C) = 1 and

∫
Cc π(dx)Kaε

(x,C) = 0.
2. Show that π(C) = 1.

3.8 Bibliographical notes

The first-entrance last-exit decomposition are essential tools which have introduced
and exploited in many different ways in Chung (1953, 1967).



Chapter 4
Martingales, harmonic functions and
Poisson-Dirichlet problems

In this chapter, we introduce several notions of potential theory for Markov chains.
Harmonic and superharmonic functions on a set A are defined in Section 4.1 and
Theorem 4.1.3 establishes links between these functions and the return (or hitting)
times to the set A. In Section 4.2, we introduce the potential kernel and prove the
maximum principle Theorem 4.2.2 which will be very important in the study of re-
currence of transience throughout Part II. In Section 4.3, we will state and prove
a very simple but powerful result: the comparison Theorem 4.3.1. It will turn out
to be the essential ingredient to turn drift conditions into bounds on moments of
hitting times, the first example of such a use being given in Proposition 4.3.2. The
Poisson and Dirichlet problems are introduced in 4.4 and solutions to these prob-
lems are given. The problems are boundary problems for the operator I −P and
their solutions are expressed in terms of the hitting time of the boundary. We then
combine these problems into the Poisson-Dirichlet problem and provided in The-
orem 4.4.5 a minimal solution. The Poisson-Dirichlet problem can be viewed as a
potential-theoretic formulation of a drift-type condition.

4.1 Harmonic and superharmonic functions

We have seen that subinvariant and invariant measures, i.e. σ -finite measures λ ∈
M+(X ) satisfying λP ≤ λ or λP = λ , play a key role in the theory of Markov
chains. Also of central importance are functions f ∈ F+(X) that satisfy P f ≤ f or
P f = f outside a set A.

Definition 4.1.1 (Harmonic and superharmonic functions) Let P be a Markov
kernel on X×X and A ∈X .

• A function f ∈ F+(X) is called superharmonic on A if P f (x) ≤ f (x) for all
x ∈ A.

75
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• A function f ∈ F+(X)∪Fb(X) is called harmonic on A if P f (x) = f (x) for all
x ∈ A.

If A = X and the function f satisfies one of the previous conditions, it is simply
called superharmonic or harmonic.

The following result shows that superharmonic and harmonic functions have
deep connections with supermartingales and martingales. Together with classical
limit theorems for martingales, this connection will provide relatively easy proofs
for some non-trivial results.

Theorem 4.1.2. Let P be a Markov kernel on X×X and A ∈X .

(i) A function f ∈ F+(X) is superharmonic on Ac if and only if for all ξ ∈M1(X ),
{ f (Xn∧τA), n ∈ N} is a positive Pξ -supermartingale.

(ii) A function h ∈ F+(X)∪ Fb(X) is harmonic on Ac if and only if for all ξ ∈
M1(X ), {h(Xn∧τA), n ∈ N} is a Pξ -martingale .

Proof. Set Mn = f (Xn∧τA). Since τA is a stopping time, for every n ∈ N,

f (XτA)1{τA ≤ n} is Fn-measurable.

Assume first that f is superharmonic on Ac. Then, for ξ ∈M1(X ) we have, Pξ −
a.s.,

E
ξ
[Mn+1|Fn] = Eξ

[Mn+1(1{τA ≤ n}+1{τA > n})|Fn]

= f (XτA)1{τA ≤ n}+1{τA > n}E
ξ
[ f (Xn+1)|Fn]

= f (XτA)1{τA ≤ n}+1{τA > n}P f (Xn) .

By assumption, f is superharmonic on Ac; moreover, if τA > n, then Xn ∈ Ac . This
implies that P f (Xn)≤ f (Xn) on {τA > n}. Therefore

E
ξ
[Mn+1|Fn]≤ f (XτA)1{τA ≤ n}+1{τA > n} f (Xn) = f (Xn∧τA) = Mn .

Thus {(Mn,Fn), n ∈ N} is a positive Pξ -supermartingale.
Conversely, assume that for every ξ ∈M+(X ) {(Mn,Fn), n ∈ N} is a positive

Pξ -supermartingale. If x ∈ Ac, then τA ≥ 1 Px − a.s. Therefore, for all x ∈ Ac,

f (x)≥ Ex [ f (X1∧τA)|F0] = Ex [ f (X1)|F0] = P f (x) .

The case of a harmonic function is dealt with by replacing inequalities by equalities
in the previous derivations. 2
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Theorem 4.1.3. Let P be Markov kernel on X×X and A ∈X . Then,

(i) the function x 7→ Px(τA < ∞) is harmonic on Ac,
(ii) the function x 7→ Px(σA < ∞) is superharmonic.

Proof. (i) Define f (x) = Px(τA < ∞) and note that

P f (x) = Ex[ f (X1)] = Ex[PX1(τA < ∞)] .

Using the relation σA = 1+ τA ◦θ and applying the Markov property, we get

P f (x) = Ex[Px (τA ◦θ < ∞ |F1)] = Px(τA ◦θ < ∞) = Px(σA < ∞) .

If x ∈ Ac, Px(σA < ∞) = Px(τA < ∞), hence P f (x) = f (x).
(ii) Define g(x) = Px(σA < ∞). Along the same lines, we obtain

Pg(x) = Ex[g(X1)] = Ex[PX1(σA < ∞)] = Px(σA ◦θ < ∞) .

Since {σA ◦θ < ∞} ⊂ {σA < ∞}, the previous relation implies that Pg(x)≤ g(x) for
all x ∈ X.

2

4.2 The potential kernel

Definition 4.2.1 (Number of visits, Potential kernel) Let P be a Markov kernel on
X×X .

(i) The number of visits NA to a set A ∈X is defined by

NA =
∞

∑
k=0

1A(Xk) . (4.2.1)

(ii) For x∈X and A∈X , the expected number U(x,A) of visits to A starting from x
is defined by

U(x,A) = Ex[NA] =
∞

∑
k=0

Pk(x,A) . (4.2.2)

The kernel U is called the potential kernel associated to P.
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For each x∈X, the function U(x, ·) defines a measure on X which is not necessarily
σ -finite and can even be identically infinite.

It is easily seen that the potential kernel can be expressed in terms of the succes-
sive return times.

U(x,A) = 1A(x)+
∞

∑
n=1
Px(σ

(n)
A < ∞) . (4.2.3)

It is therefore natural to try to bound the expected number of visits to a set A when
the chain starts from an arbitrary point in the space by the probability of hitting the
set and the expected number of visits to the set when the chain starts within the
set. This is done rigorously in the next result, referred to as the maximum principle,
whose name comes from harmonic analysis.

Theorem 4.2.2 (Maximum principle). Let P be a Markov kernel on X×X . For
all x ∈ X and A ∈X ,

U(x,A)≤ Px(τA < ∞)sup
y∈A

U(y,A) .

Proof. By the strong Markov property, we get

U(x,A) = Ex

[
∞

∑
n=0

1A(Xn)

]
= Ex

[
∞

∑
n=τA

1A(Xn)1{τA < ∞}
]

=
∞

∑
n=0
Ex [1A(Xn ◦θτA)1{τA < ∞}]

=
∞

∑
n=0
Ex

[
1{τA < ∞}EXτA

[1A(Xn)]
]
≤ Px(τA < ∞)sup

y∈A
U(y,A) .

2

We state here another elementary property of the potential kernel as a lemma for
further reference.

Lemma 4.2.3 For every sampling distribution a on N, UKa = KaU ≤U.

Proof. By definition, for all x ∈ X and A ∈X ,

UPk(x,A) = PkU(x,A) =
∞

∑
n=0

Pk+n(x,A)≤U(x,A) .

For every distribution a on N, this yields

KaU(x,A) =
∞

∑
k=0

a(k)PkU(x,A)≤
∞

∑
k=0

a(k)U(x,A) =U(x,A) .
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2

Proposition 4.2.4 For every A∈X , the function x 7→Px(NA =∞) is harmonic.

Proof. Define h(x) = Px(NA = ∞). Then Ph(x) =Ex[h(X1)] =Ex[PX1(NA = ∞)] and
applying the Markov property, we obtain

Ph(x) = Ex[Px (NA ◦θ = ∞ |F1)] = Px(NA ◦θ = ∞) = Px(NA = ∞) = h(x) .

2

The following result is a first approach to the classification of the sets of a Markov
chain. Let A ∈ X . Assume first that supx∈APx(σA < ∞) = δ < 1. We will then
show that the probability of returning infinitely often to A is equal to zero and that
the expected number of visits to A is finite. We will later call such set uniformly
transient. If, on the contrary, we assume that for all x ∈ A, Px(σA < ∞), i.e. if with
probability 1 a chain started from x ∈ A returns to A, then we will show that the
chain started from any x ∈ A returns to A infinitely often with probability 1 and of
course the expectation of the number of visits to A is infinite. Such sets will later be
called recurrent.

Proposition 4.2.5 Let P be a Markov kernel on X×X . Let A ∈X .

(i) Assume that there exists δ ∈ [0,1) such that supx∈APx(σA < ∞)≤ δ . Then,
for all p∈N∗, supx∈APx(σ

(p)
A <∞)≤ δ p and supx∈XPx(σ

(p)
A <∞)≤ δ p−1.

Moreover,
sup
x∈X

U(x,A)≤ (1−δ )−1 . (4.2.4)

(ii) Assume that Px(σA < ∞) = 1 for all x ∈ A. Then, for all p ∈ N∗,
infx∈APx(σ

(p)
A < ∞) = 1. Moreover, infx∈APx(NA = ∞) = 1 for all x ∈ A.

Proof. (i) For p ∈ N, σ
(p+1)
A = σ

(p)
A +σA ◦ θ

σ
(p)
A

on {σ (p)
A < ∞}. Applying the

strong Markov property yields

Px(σ
(p+1)
A < ∞) = Px

(
σ
(p)
A < ∞, σA ◦θ

σ
(p)
A

< ∞

)
= Ex

[
1

{
σ
(p)
A < ∞

}
PX

σ
(p)
A

(σA < ∞)

]
≤ δPx(σ

(p)
A < ∞) .

By induction, we obtain Px(σ
(p)
A < ∞) ≤ δ p for every p ∈ N∗ and x ∈ A. Thus, for

x ∈ A,
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U(x,A) = Ex[NA]≤ 1+
∞

∑
p=1
Px(σ

(p)
A < ∞)≤ (1−δ )−1 .

Since by Theorem 4.2.2 for all x ∈ X, U(x,A)≤ supy∈A U(y,A), (4.2.4) follows.

(ii) By Proposition 3.3.6, Px(σ
(n)
A < ∞) = 1 for every n ∈ N and x ∈ A. Then,

Px(NA = ∞) = Px

(
∞⋂

n=1

{σ (n)
A < ∞}

)
= 1 .

2

Given A,B ∈X it is of interest to give a condition ensuring that the number of
visits to B will be infinite whenever the number of visits to A is infinite. The next
result shows that this is true if A leads uniformly to B, i.e. the probability of returning
to B from any x ∈ A is bounded away from zero. The proof of this results uses the
supermartingale convergence theorem.

Theorem 4.2.6. Let P be a Markov kernel on X×X . Let A,B ∈X be such that
infx∈APx(σB < ∞)> 0. For all ξ ∈M1(X ), {NA = ∞} ⊂ {NB = ∞} Pξ − a.s.

Proof. Let ξ ∈M1(X ) and set δ = infx∈APx(σB < ∞). Since δ > 0 by assumption,
we have {NA = ∞} ⊂ {PXn(σB < ∞)≥ δ i.o. }. We will show that

lim
n→∞

PXn(σB < ∞) = 1{NB = ∞} Pξ − a.s. (4.2.5)

Therefore, on the event {PXn(σB <∞)≥ δ i.o. }, we get limn→∞PXn(σB <∞) = 1,
showing that

{NA = ∞} ⊂ {PXn(σB < ∞)≥ δ i.o. } ⊂ {NB = ∞} Pξ − a.s. .

Let us now prove (4.2.5). By Theorem 4.1.3-(ii) the function x 7→ Px(σB < ∞) is
superharmonic and hence {PXn(σB < ∞) : n ∈ N} is a bounded nonnegative super-
martingale. By the supermartingale convergence theorem (Proposition E.1.3), the
sequence {PXn(σB < ∞),n ∈ N} converges Pξ − a.s. and in L1(Pξ ). Thus, for any
integer p∈N∗ and F ∈Fp we have by Lebesgue’s dominated convergence theorem
(considering only n≥ p)

Eξ [1F lim
n→∞

PXn(σB < ∞)] = lim
n→∞

Eξ [1FPXn(σB < ∞)]

= lim
n→∞

Eξ

[
1FPξ (σB ◦θn < ∞ |Fn)

]
= lim

n→∞
Pξ (F ∩{σB ◦θn < ∞}) .

Since
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{σB ◦θn < ∞}=
⋃
k>n

{Xk ∈ B} ↓n {Xn ∈ B i.o.}= {NB = ∞} ,

Lebesgue’s dominated convergence theorem implies

Eξ

[
1F lim

n→∞
PXn(σB < ∞)

]
= Pξ (F ∩{NB = ∞}) .

Since the above identity holds for every integer p and F ∈Fp, this proves (4.2.5).
2

4.3 The comparison theorem

The general result below will be referred to as the comparison theorem. It is ex-
pressed in terms of a general stopping time τ , without specifying the nature of this
stopping time, even though when it comes to apply this theorem, the stopping time
is usually the hitting or the return times to a set C. It might be seen as a generalisa-
tion of the optional stopping theorem for positive supermartingale. By convention,
we set ∑

−1
k=0 = 0.

Theorem 4.3.1 (Comparison Theorem). Let {Vn, n ∈ N}, {Yn, n ∈ N} and
{Zn, n ∈ N} be three {Fn, n ∈ N}-adapted nonnegative processes such that for
all n ∈ N,

E [Vn+1 |Fn]+Zn ≤Vn +Yn P − a.s. (4.3.1)

Then, for every {Fn, n ∈ N}-stopping time τ ,

E [Vτ1{τ < ∞}]+E

[
τ−1

∑
k=0

Zk

]
≤ E [V0]+E

[
τ−1

∑
k=0

Yk

]
. (4.3.2)

Proof. Let us prove by induction that for all n≥ 0,

E [Vn]+E

[
n−1

∑
k=0

Zk

]
≤ E [V0]+E

[
n−1

∑
k=0

Yk

]
. (4.3.3)

The property is true for n = 0 (due to the above mentioned convention). Assume
that it is true for one n ≥ 0. Then, applying (4.3.1) and the induction assumption,
we obtain
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E [Vn+1]+E

[
n

∑
k=0

Zk

]
= E [E [Vn+1 |Fn]+Zn]+E

[
n−1

∑
k=0

Zk

]

≤ E [Vn +Yn]+E

[
n−1

∑
k=0

Zk

]
= E [Vn]+E

[
n−1

∑
k=0

Zk

]
+E [Yn]

≤ E [V0]+E

[
n

∑
k=0

Yk

]
.

This proves (4.3.3). Note now that τ being an {Fn}-stopping time, {τ > n} ∈Fn,
thus, for n≥ 0,

E
[
V(n+1)∧τ

∣∣Fn
]
+Zn1{τ > n}
= {E [Vn+1 |Fn]+Zn}1{τ > n}+Vτ1{τ ≤ n}
≤ (Vn +Yn)1{τ > n}+Vτ1{τ ≤ n}=Vn∧τ +Yn1{τ > n} .

This means that the sequences {Vn∧τ}, {Zn1{τ > n}} and {Yn1{τ > n}} satisfy
assumption (4.3.1). Applying (4.3.3) to these sequences yields

E [Vn∧τ1{τ < ∞}]+E

[
n∧τ−1

∑
k=0

Zk

]
≤ E [Vn∧τ ]+E

[
n∧τ−1

∑
k=0

Zk

]

≤ E [V0]+E

[
n∧τ−1

∑
k=0

Yk

]
≤ E [V0]+E

[
τ−1

∑
k=0

Yk

]
.

Letting n→ ∞ in the left hand side and applying Fatou’s lemma yields (4.3.2). 2

The comparison theorem is an essential tool to control the moments of the hitting
or return times to a set. We will illustrate this through two examples. We first give a
condition under which the expectation of the return time to a set is finite. This is the
first instance of the use of a drift condition.

Proposition 4.3.2 Assume that there exist measurable functions V : X→ [0,∞]
and f : X→ [0,∞] and a set C ∈X such that PV (x)+ f (x) ≤ V (x), x ∈ Cc.
Then, for all x ∈ X,

Ex[V (XσC)1{σC<∞}]+Ex

[
σC−1

∑
k=0

f (Xk)

]
≤ {PV (x)+ f (x)}1C(x)+V (x)1Cc(x) . (4.3.4)

If supx∈C{PV (x)+ f (x)}< ∞, then
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sup
x∈C
Ex

[
σC−1

∑
k=0

f (Xk)

]
< ∞ ,

and

Ex

[
σC−1

∑
k=0

f (Xk)

]
< ∞

for all x such that V (x)< ∞. Furthermore, if π is an invariant probability mea-
sure and π({V = ∞}) = 0, then π( f )≤ supx∈C{PV (x)+ f (x)}.

Proof. Write d = supx∈C{PV (x)+ f (x)} (this quantity might be infinite). For k≥ 0,
set Zk = f (Xk) and

V0 =V (X0)1Cc(X0) , Vk =V (Xk) , k ≥ 1
Y0 = {PV (X0)+ f (X0)}1C(X0) , Yk = d1C(Xk) , k ≥ 1

with the convention ∞×0 = 0. Then (4.6.8) yields, for k ≥ 0 and x ∈ X,

Ex [Vk+1 |Fk]+Zk ≤Vk +Yk Px − a.s.

Hence (4.3.1) holds and (4.3.4) follows from the application of Theorem 4.3.1 with
the stopping time σC. Assume now that d < ∞. Then, by (4.3.4), for x ∈C, we get

Ex

[
σC−1

∑
k=0

f (Xk)

]
≤ d ,

and if x /∈C, Ex

[
∑

σC−1
k=0 f (Xk)

]
≤ V (x). Let π be an invariant probability measure.

Then, for all m≥ 0, using Jensen’s inequality and PV (x)+ f (x)≤V (x)+d we get

π( f ∧m) = n−1
n−1

∑
k=0

πPk( f ∧m)≤ π

((
n−1

n−1

∑
k=0

Pk f

)
∧m

)
≤ π

[(
n−1V +d

)
∧m
]
.

By letting n→ ∞ and then m→ ∞, we get π( f )≤ d. 2

We will now give a condition under which the moment of the return time to a set
admits a finite exponential moment.

Proposition 4.3.3 Let P be a Markov kernel on X×X and C ∈X .
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(i) If b = supx∈CEx[β
σC ] < ∞ for some β > 1, then V (x) = Ex[β

τC ] satisfies
the geometric drift condition PV ≤ β−1V +b1C.

(ii) If there exist a function V : X→ [1,∞], λ ∈ [0,1) and b < ∞ such that
PV ≤ λV +b1C then, for all x ∈ X,

Ex[λ
−σC ]≤V (x)+bλ

−1 . (4.3.5)

Proof. (i) Using the Markov property and the identity σC = 1+ τC ◦θ , we get

PV (x) = Ex [EX1 [β
τC ]] = Ex

[
β

τC◦θ
]
= β

−1Ex[β
σC ] .

Hence PV (x) = β−1V (x) for x 6∈C and supx∈C PV (x) = β−1 supx∈CEx[β
σC ]< ∞.

(ii) Set Vn =V (Xn) for n≥ 0. Since PV +(1−λ )V ≤V +b1C, we get for n≥ 0,

E
[
Vn+1 |F X

n
]
= PV (Xn)+(1−λ )V (Xn)≤V (Xn)+b1C(Xn) .

By applying Theorem 4.3.1, we therefore obtain

(1−λ )Ex

[
σC−1

∑
k=0

V (Xk)

]
≤V (x)+b1C(x) .

Since V ≥ 1, this implies that if V (x) < ∞, Px(σC < ∞) = 1. Setting now Vn =
λ−nV (Xn) for n≥ 0, we get

E
[
Vn+1 |F X

n
]
= λ

−(n+1)PV (Xn)≤ λ
−nV (Xn)+bλ

−(n+1)
1C(Xn) .

Applying again Theorem 4.3.1, we get

Ex[λ
−σCV (XσC)1{σC<∞}]≤V (x)+bλ

−1
1C(x) .

If V (x) < ∞, Px(σC < ∞) = 1 and (4.3.5) is thus satisfied. Eq.(4.3.5) of course re-
mains true if V (x) = ∞.

2

Surprisingly enough, the condition under which the moment of return time to a set
C admits a finite exponential moment is equivalent to the existence of a geometric
drift condition of the form PV ≤ λV + b1C, λ ∈ [0,1) and b < ∞. We will deepen
these relationships in Chapter 14 and Chapter 16.

4.4 The Dirichlet and Poisson problems
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Definition 4.4.1 (Dirichlet Problem) Let P be a Markov kernel on X×X , A∈X
and g ∈ F+(X). A nonnegative function u ∈ F+(X) is a solution to the Dirichlet
problem if

u(x) =

{
g(x) , x ∈ A ,

Pu(x) , x ∈ Ac .
(4.4.1)

In words, we are looking for a function which is harmonic outside A and which is
equal to some positive function on A. Perhaps surprisingly, we will see below that it
is fairly easy to find solutions to this problem. For A∈X , we define a submarkovian
kernel PA for x ∈ X and B ∈X by

PA(x,B) = Ex[1{τA<∞}1B(XτA)] = Px(τA < ∞,XτA ∈ B) , (4.4.2)

which is the probability that the chain starting from x eventually hits the set A∩B.
For f ∈ F+(X), we have

PA f (x) = Ex[1{τA<∞} f (XτA)] . (4.4.3)

The introduction of this kernel is motivated by the following result which gives a
solution to the Dirichlet problem.

Proposition 4.4.2 For any A ∈X and g ∈ F+(X), the function PAg is a solu-
tion to the Dirichlet problem (4.4.1)

Proof. If x ∈ A, then by definition, PAg(x) = g(x). For x ∈ X, the identity σA =
1+ τA ◦θ1 and the Markov property yield

PPAg(x) = Ex[PAg(X1)] = Ex[{1{τA<∞}g(XτA)}◦θ1]

= Ex[1{τA◦θ1<∞}g(X1+τA◦θ1)] = Ex[1{σA<∞}g(XσA)] .

For x 6∈ A, then σA = τA Px − a.s. and we obtain

PPAg(x) = Ex[1{τA<∞}g(XτA)] = PAg(x) .

2

Definition 4.4.3 (Poisson problem) Let P be a Markov kernel on X×X , A ∈X
and f : Ac→ R+ be a measurable function. A nonnegative function u ∈ F+(X) is a
solution to the Poisson problem if
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u(x) =

{
0 , x ∈ A ,

Pu(x)+ f (x) , x ∈ Ac .
(4.4.4)

In words, we are looking for a positive function, which vanishes on the set A
and which is such that u(x) = Pu(x)+ f (x) on Ac. If u(x) and Pu(x) are both finite,
this is equivalent to ∆u(x) = (I−P)u(x) = f (x). If we interpret ∆ = I−P as the
Laplacian, this the classical Poisson problem in potential theory. It is again possible
to find an explicit solution to the Poisson problem. For A∈X and h∈ F+(X) define

GAh(x) = 1Ac(x)Ex

[
τA−1

∑
k=0

h(Xk)

]
= Ex

[
τA−1

∑
k=0

h(Xk)

]
, (4.4.5)

where we have used the convention ∑
−1
k=0 ·= 0. Note that GAh is nonnegative but we

do not assume that it is finite.

Proposition 4.4.4 Let P be a Markov kernel on X×X , A ∈X and f : Ac→
R+ be a measurable function. The function GA f is a solution to the Poisson
problem (4.4.4).

Proof. Set u(x) = GA f (x) = Ex[S] where S = 1Ac(X0)∑
τA−1
k=0 f (Xk). By convention

u(x) = 0 for x ∈ A. Applying the Markov property and the relation σA = 1+τA ◦θ1,
we obtain

Pu(x) = Ex[u(X1)] = Ex[EX1 [S]] = Ex[Ex[S◦θ1 |F1]] (4.4.6)

= Ex[S◦θ1] = Ex

[
1Ac(X1)

τA◦θ1

∑
k=1

f (Xk)

]
= Ex

[
σA−1

∑
k=1

f (Xk)

]
,

where the last equality follows from 1A(X1)∑
σA−1
k=1 f (Xk) = 0. For x /∈ A, σA =

τA Px − a.s. and thus

f (x)+Pu(x) = f (x)+Ex

[
σA−1

∑
k=1

f (Xk)

]
= Ex

[
1Ac(X0)

τA−1

∑
k=0

f (Xk)

]
= u(x) .

2

Combining Propositions 4.4.2 and 4.4.4 yields the solution to the Poisson-Dirichlet
problem.
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Theorem 4.4.5. Let P be a Markov kernel on X×X and A ∈ X . Given f ∈
F+(A,XA) and g ∈ F+(Ac,XAc), the function PAg + GA f is a solution to the
Poisson-Dirichlet problem

u(x) =

{
g(x) , x ∈ A,
Pu(x)+ f (x) , x ∈ Ac .

(4.4.7)

Furthermore if v ∈ F+(X) satisfies

v(x)≥

{
g(x) , x ∈ A,
Pv(x)+ f (x) , x ∈ Ac,

(4.4.8)

then v≥ PAg+GA f .

Remark 4.4.6. A function v which satisfies (4.4.8) is called a subsolution to the
Poisson-Dirichlet problem (4.4.7). N

Proof. (4.4.7) follows by combining Proposition 4.4.2 with Proposition 4.4.4. As-
sume now that (4.4.8) holds. Eq. (4.4.8) implies

Pv+ f1Ac +g1A ≤ v+1APv .

Applying Theorem 4.3.1 with Vn = v, Zn = f1Ac + g1A, g = 1APv and τ = τA, we
obtain for all x ∈ Ac,

PAg(x)+GA f (x) = Ex
[
1{τA<∞}g(XτA)

]
+Ex

[
τA−1

∑
k=0

f (Xk)

]
≤ Ex

[
1{τA<∞}v(XτA)

]
+Ex

[
τA−1

∑
k=0
{ f (Xk)1Ac(Xk)+1A(Xk)g(Xk)}

]

≤ v(x)+Ex

[
τA−1

∑
k=0

1A(Xk)Pv(Xk)

]
= v(x).

On the other hand, v(x)≥ g(x) = PAg(x)+GA f (x) for x ∈ A by construction. 2

We now state several useful consequences of Theorem 4.4.5.

Corollary 4.4.7 The function x 7→ Px(τA < ∞) is the smallest positive solution
to the system
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v(x)≥

{
1 if x ∈ A ,

Pv(x) if x /∈ A .

Proof. Apply Theorem 4.4.5 with g = 1A and f = 0. 2

Corollary 4.4.8 The function x 7→Ex[τA] is the smallest positive solution to the
system

v(x)≥

{
0 if x ∈ A ,

Pv(x)+1 if x /∈ A .

Proof. We apply Theorem 4.4.5 with g = 0 and f = 1Ac . In that case, the solution
is given by

1Ac(x)Ex

[
τA−1

∑
k=0

1Ac(Xk)

]
= 1Ac(x)Ex[τA] = Ex[τA] .

2

Corollary 4.4.9 Let f ∈ F+(X). Then U f is a solution to the equation u =
Pu+ f . If w ∈ F+(X) satisfies the inequation

w≥ Pw+ f , (4.4.9)

then U f ≤ w, i.e. U f is the smallest solution to (4.4.9).

Proof. Apply Theorem 4.4.5 with A = /0. 2

4.5 Time inhomogeneous Poisson-Dirichlet problems

We now introduce the time inhomogeneous Poisson-Dirichlet problem. Let P be a
Markov kernel on X×X . For a function h defined on the product-space N×X, we
write hn(x) = h(n,x) for n ∈ N and x ∈ X. Consider the Markov kernel P̃ on the
product space N×X defined for h ∈ F+(N×X,P(N)⊗X ) by
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P̃h(n,x) =
∫

h(n+1,y)P(x,dy) = Phn+1(x) . (4.5.1)

Let {(In,Xn), n ∈ N} be the coordinate process on the canonical space (N×X)N.
For a probability measure ξ on P(N)⊗X , let P̃ξ be the probability measure which
makes the coordinate process a Markov chain with kernel P̃ and initial distribution
ξ . Denote by Ẽξ the associated expectation operator. Then, for every n,m ∈ N and
x ∈ X and h ∈ F+(N×X,P(N)⊗X ), we have

P̃nh(m,x) = Ẽm,x[h(In,Xn)] = Pnhn+m(x) = Ex[hn+m(Xn)] .

We can now rewrite Theorem 4.4.5 in the time-inhomogeneous framework.

Theorem 4.5.1. Let P be a Markov kernels on X×X and A ∈ X . Given f̃ ∈
F+(N×Ac,P(N)⊗XAc) and g̃∈F+(N×A,P(N)⊗XA), the function ũ : (m,x)∈
N×X defined by

ũ(m,x) = Ex
[
1{τA<∞}g̃(m+ τA,XτA)

]
+Ex

[
τA−1

∑
k=0

f̃ (m+ k,Xk)

]
(4.5.2)

is a solution to the inhomogeneous Poisson-Dirichlet problem

u(m,x) =

{
g̃(m,x) , x ∈ A ,

Pum+1(x)+ f̃ (m,x) , x 6∈ A .
(4.5.3)

Furthermore, if ṽ ∈ F+(N×X,P(N)⊗X ) is a subsolution to the inhomogeneous
Poisson-Dirichlet problem

ṽ(m,x)≥

{
g̃(m,x) , x ∈ A ,

Pṽm+1(x)+ f̃ (m,x) , x 6∈ A .
(4.5.4)

then ṽ(m,x)≥ ũ(m,x) for every (m,x) ∈ N×X.

Proof. Apply Theorem 4.4.5 to the Markov kernel P̃ defined in (4.5.1). 2

4.6 Exercises

4.1 (Riesz decomposition). Let P be a Markov kernel on X×X . We will show
that a finite superharmonic function f ∈ F+(X) can be decomposed uniquely as

f = h+Ug
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where h is an harmonic function and g is a positive measurable function. Further-
more h = limn→∞ Pn f and g = f −P f .

1. Show that the sequence {Pn f : n ∈ N} converges.

Denote h(x) = limn→∞ Pn f (x)

2. Show that for every x ∈ X, Ph(x) = h(x).

Set g = f −P f .

3. Show that g is nonnegative and that, for all x ∈ X, Ug(x) = f (x)−h(x).

We now show that this decomposition is unique. Assume that f = h̄+Uḡ where h̄
is an harmonic function and ḡ ∈ F+(X).

4. Show that for all n≥ 1 and x ∈ X,

n−1

∑
k=0

Pkg(x) = f (x)−Pn f (x) .

5. Show that Ug =Uḡ.
6. Conclude.

4.2. This exercise use the results of Exercise 4.1. For A ∈X define the functions

fA(x) = Px(τA < ∞) , gA(x) = 1A(x)Px(σA = ∞) and hA(x) = Px(NA = ∞)

for x ∈ X.

1. Show that the function hA is harmonic.
2. Show that fA(x) = h(x) +Ug(x) with h(x) = limn→∞ Pn fA(x) and g(x) =

fA(x)−P fA(x).
3. Show that for every n ∈ N, Pn fA(x) = Px (∪k≥n{Xk ∈ A}) and that h = hA.
4. Show that

fA(x)−P fA(x) = Px

(⋃
k≥0

{Xk ∈ A}

)
−Px

(⋃
k≥1

{Xk ∈ A}

)
= 1A(x)Px(σA = ∞) = gA(x)

5. Conclude that fA = hA +UgA.

4.3 (Dynkin formula). Let {(Zn,Fn), n ∈ N} be a bounded adapted process and τ

an integrable stopping time. We will show the following identity, due to Dynkin:

E [Zτ ]−E [Z0] = E

[
τ−1

∑
k=0
E [Zk+1−Zk |Fk]

]
.

We set U0 = 0 and for n≥ 1,
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Un = Zn−Z0−
n−1

∑
k=0
{E [Zk+1 |Fk]−Zk} .

1. Show that {(Un,Fn), n ∈ N} is a martingale.
2. Show that for all n ∈ N,

E [Zn∧τ ]−E [Z0] = E

[
n∧τ−1

∑
k=0
{E [Zk+1 |Fk]−Zk}

]
.

3. Conclude.

Let f ∈ Fb(X) and P be a Markov kernel.

4. Show that for all x ∈ X and all stopping time τ such that Ex[τ]< ∞,

Ex[ f (Xτ)]− f (x) = Ex

[
τ−1

∑
k=0

(P− I) f (Xk)

]
.

4.4. This exercise use the results of Exercise 4.3. Let {(Zn,Fn), n ∈ N} be an
adapted nonnegative process and τ a stopping time such that P(τ < ∞) = 1.

1. Show that

E [Zτ ]+E

[
τ−1

∑
k=0

Zk

]
= E [Z0]+E

[
τ−1

∑
k=0
E [Zk+1 |Fk]

]
.

[Hint: Apply Exercise 4.3 to the finite stopping time τ ∧ n and the bounded
process {ZM

n , n ∈ N} where ZM
n = Zn∧M]

2. Let f ∈ F+(X). Show that, for all x ∈ X and all stopping times τ such that
Px(τ < ∞) = 1,

Ex[ f (Xτ)]+Ex

[
τ−1

∑
k=0

f (Xk)

]
= f (x)+Ex

[
τ−1

∑
k=0

P f (Xk)

]
.

4.5 (Random walk on Z). Consider the simple random walk on Z, not necessary
symmetric, that is a Markov chain on Z with kernel P defined by P(x,x+ 1) = p
and P(x,x−1) = q for all x ∈Z, where p∈ [0,1] and p+q = 1. Let a < b∈Z and τ

be the hitting time of A = {a+1, . . . ,b−1}c where a+1 < b−1 (we have dropped
the dependence on the set A from the notations). The purpose of this exercise is to
compute the moments of τ .

1. Show that for all x ∈ Ac, Px(τ ≤ b−a)≥ γ = pb−a.
2. Show that for all x ∈ Ac and n ∈ N, Px(τ > n)≤ (1− γ)(n−(b−a))/(b−a) and that
Ex[τ

s]< ∞ for any s > 0.

Let g be a nonnegative function of Ac. Consider the system of equations
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u(x) = g(x)+Pu(x) , a < x < b ,

u(a) = α , u(b) = β .
(4.6.1)

3. Show that u1(x) = Ex[τ] is the minimal solution to (4.6.1) with g(x) = 1Ac(x),
α = 0 and β = 0.

4. Show that u2 is the finite solution to the system (4.6.1) with g(x) = 1+2Pu1(x)
for x ∈ Ac and α = β = 0.

5. Show that u3 is the finite solution to the system (4.6.1) with g(x) = 1 +
3Pu1(x)+3Pu2(x) for x ∈ Ac, α = β = 0.

We will finally show that the system of equations (4.6.1) has a unique finite solution
on {a, . . . ,b}.

6. Show that, for x ∈ Ac, the equation u(x)−Pu(x) = g(x) is equivalent to

u(x+1)−u(x) = ρ{u(x)−u(x−1)}− p−1g(x) . (4.6.2)

where ρ = (1− p)/p.
7. Set ∆u(x+ 1) = u(x+ 1)− u(x). Show that (4.6.2) is equivalent, for x = a+

1, . . . ,b, to the system of equations

∆u(x) = ρ
x−a−1

∆u(a+1)− p−1
x−a−1

∑
y=0

ρ
yg(x− y−1) , (4.6.3)

and a solution u of (4.6.2) is uniquely determined by u(a) and u(a+1).
8. Determine the unique solution φ of (4.6.3) in the case where φ(a + 1) = 1,

φ(a) = 0 and g(x) = 0 for every x ∈ {−a+1, . . . ,b}.
9. Determine the unique solution ψ of (4.6.2) such that ψ(a) = ψ(a+1) = 0 for

an arbitrary function g.
10. Determine the unique solution to (4.6.1) for any function g and any initial con-

ditions.

4.6 (Birth-and-death chain). A level-dependent quasi birth-and-death process is a
Markov chain on the finite on Z with kernel P defined by

P(x,x+1) = px , P(x,x−1) = qx , P(x,x) = rx ,

with px+qx+rx = 1 for all x∈Z. Denote for x∈N by h(x) the extinction probability
starting from x, i.e. h(x) = Px(τ0 < ∞).

1. Show that h is the smallest solution to h(0) = 1 and Ph(x) = h(x) for x ∈ N∗.
2. Show that h is nonincreasing and that for every x ∈ N∗,

h(x) = pxh(x+1)+qxh(x−1) .

Define u(x) = h(x−1)−h(x).

3. Show that for all x ∈ N, u(x+1) = γ(x)u(1) with γ(0) = 1 and
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γ(x) =
qxqx−1 . . .q1

px px−1 . . . p1
.

4. Deduce that, for all x ∈ N∗, h(x) = 1−u(1){γ(0)+ · · ·+ γ(x−1)}.

Assume first that ∑
∞
x=0 γ(x) = ∞.

5. Show that h(x) = 1 for all x ∈ N.

Assume now that ∑
∞
x=0 γ(x)< ∞.

6. Show that h(x) = ∑
∞
y=x γ(y)/∑

∞
y=0 γ(y).

In the latter case, for x ∈ N∗, we have h(x) < 1, so the population survives with
positive probability.

4.7. This is a follow up of Exercise 4.6. Let P be a Markov kernel on N with transi-
tion probability given by P(0,1) = 1 and for x≥ 1,

P(x,x+1)+P(x,x−1) = 1, P(x,x+1) =
(

x+1
x

)2

P(x,x−1) .

Show that P0(σ0 = ∞) = 6/π2.

4.8 (The gambler’s ruin). Let {Zk, k ∈ N∗} be a sequence of i.i.d. random vari-
ables taking values in {−1,1} with probability P(Zk = 1) = P(Zk = −1) = 1/2.
Denote by Xn the current wealth of the gambler, i.e.

Xn = X0 +Z1 +Z2 + · · ·+Zn .

where X0 is the gambler’s initial wealth. Assume that the gambler stops the game
when its wealth reaches either the upper barrier a or the lower barrier −b, a and b
being positive integers. The gambler’s wealth is a Markov chain on the state space
X = {−b, . . . ,a}. Let τ be the hitting time of the set {−b,a}, i.e. τ = inf{k≥ 0,Xk ∈
{−b,a}}. We want to compute the probability that the game ends in finite time.
Define the function u on X by u(x) = Px(τ < ∞).

1. Show that u is harmonic on X\{−b,a} and that for x ∈ X\{−b,a},

u(x) = Pu(x) =
1
2

u(x−1)+
1
2

u(x+1) . (4.6.4)

2. Deduce that

u(x) = u(−b)+(x+b){u(−b+1)−u(−b)} (4.6.5)

for all x ∈ X\{−b,a}.
3. Show that Px(τ < ∞) = 1 for all x ∈ X, i.e. the game ends in finite time almost

surely finite for any initial wealth x ∈ {−b, . . . ,a}.

We now compute the probability u(x) = Px(τa < τ−b) of winning. We can also write
u(x) = Ex[1a(Xτ)].
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4. Show that u is the smallest nonnegative solution to the equations{
u(x) = Pu(x) , x ∈ X\{−b,a} ,
u(−b) = 0 , u(a) = 1 .

5. Show that the probability of winning when the initial wealth is x is equal to
u(x) = (x+b)/(a+b).

We will now compute the expected time of a game.

6. Show that u(x) = Ex[τ] is the smallest solution to the Poisson problem (4.4.4)
and that for x ∈ {−b+1, . . . ,a−1},

u(x) = 1
2 u(x−1)+ 1

2 u(x+1)+1 , (4.6.6)

with boundary conditions: u(−b) = 0 and u(a) = 0.
7. Show that u(x) is given by

u(x) = (a− x)(x+b) , x =−b, . . . ,a . (4.6.7)

4.9. Let P be a Markov kernel on a discrete state space X.

1. Show that, for all x ∈ X, Px(σ
(n)
x < ∞) = {Px(σx < ∞)}n.

2. Show that, for all x ∈ X, Px(Nx = ∞) = limn→∞{Px(σx < ∞)}n.
3. Show that Ex[Nx] = ∑

∞
n=0{Px(σx < ∞)}n.

4. Show that the following conditions are equivalent

Px(σx < ∞) = 1⇐⇒ Px(Nx = ∞) = 1⇐⇒U(x,x) = ∞ .

4.10. Let P be a Markov kernel on X×X . Assume that there exist a sequence of
measurable functions Vn : X→ [0,∞], n≥ 0, a measurable function h : X→ [0,∞], a
nonnegative sequence r and a set C ∈X such that

PVn+1(x)+ r(n)h(x)≤Vn(x) , x ∈Cc , n ∈ N . (4.6.8)

Show that, for every x ∈ X,

Ex
[
VσC(XσC)1{σC<∞}

]
+Ex

[
σC−1

∑
k=0

r(k)h(Xk)

]
≤ {PV1(x)+ r(0)h(x)}1C(x)+V0(x)1Cc(x) . (4.6.9)

4.11. Let P be a Markov kernel on X×X . Let r be a nonnegative sequence, g,h :
X→ [0,∞] be measurable functions and C ∈X . Define for n≥ 0,

Wn(x) = Ex
[
r(n+ τC)g(XτC)1{τC<∞}

]
+Ex

[
τC−1

∑
k=0

r(n+ k)h(Xk)

]
. (4.6.10)
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1. Show that for all x ∈ X,

PWn+1(x)+ r(n)h(x)

= Ex[r(n+σC)g(XσC)1{σC<∞}]+Ex

[
σC−1

∑
k=0

r(n+ k)h(Xk)

]
. (4.6.11)

2. Let {Vn, n∈N} be a sequence of non negative functions such that, for all n≥ 0,

PVn+1(x)+ r(n)h(x)≤Vn(x) , x /∈C , (4.6.12a)
r(n)g(x)≤Vn(x) , x ∈C . (4.6.12b)

Show that Vn ≥Wn for all n≥ 0 and if supC{PV1 + r(0)h}< ∞, then

sup
C
{PW1 + r(0)h}< ∞. (4.6.13)

4.12. Let f : X→ [1,∞], g : X→ [0,∞] be measurable functions, δ > 1 be a constant
and C ∈X .

1. Find the minimal solution W f ,g,δ
C of

PV (x)+ f (x)≤ δ
−1V (x) , x 6∈C (4.6.14)

and V (x)≥ g(x) for x ∈C.
2. Prove that if supx∈CEx

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞, then

sup
x∈C
{PW f ,g,δ

C (x)+ f (x)}< ∞ .

4.7 Bibliographical notes

Potential theory of Markov chains is developed in (Revuz, 1984, Chapter 2). This
chapter presents only a few elements of a theory that gave rise to a great deal of
work following the early works of Kemeny and Snell (1961b,a, 1963), Orey (1964),
Chung (1967),, Neveu (1964, 1972). Privault (2008) is a very didactic introduction
to the links between Markov’s chain potential theory and classical potential the-
ory. Some additional results (such as the Riesz decomposition theorem, which is a
central result in the potential theory) are established in the exercises.

The important result Theorem 4.2.6 which will find many applications is due to
Orey (1971) (an earlier version appeared in Orey (1959)).

The Comparison theorem (Theorem 4.3.1) is an easy consequence of a (discrete-
time) version of the Dynkin’s formula (see Exercise 4.3). Since this is the only place
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where the Dynkin’s formula play a role, we have nevertheless decided to provide a
”direct” proof. The use of drift criteria for general state-space chains and the use of
Theorem 4.3.1 seems to appear for the first time in Kalashnikov (1968, 1971, 1977).
We have closely followed here (Meyn and Tweedie, 2009, Chapter 11).



Chapter 5
Ergodic theory for Markov chains

This chapter is concerned with the asymptotic behaviour of sample averages of sta-
tionary ergodic Markov chains. For this purpose, it is convenient to link the Markov
chain to a certain dynamical system. The Law of Large Numbers for Markov chains
is then obtained as a consequence of the classical Birkhoff theorem. It turns out
that under appropriate assumptions, this approach still holds true for functions that
actually depend on the whole trajectory, such as n−1

∑
n−1
k=0 f ({Xk+`, ` ∈ N}) or

n−1
∑

n−1
k=0 f ({Xk−`, ` ∈ N}). A key result of this chapter is Theorem 5.2.6 which

shows that the existence of a unique invariant probability measure implies the ergod-
icity of the associated dynamical system, which in turn allows to apply the Birkhoff
ergodic theorem. Still, the price to pay for using the dynamical system theory is the
stationarity assumption. Typically in this chapter, the Law of Large Numbers will
be proved Pπ −a.s. (where π is the unique invariant probability measure for P) and
will be extended to other initial distributions. Sufficient conditions are given in this
chapter but a more thorough treatment for other initial distributions requires notions
that will be introduced in later chapters.

5.1 Dynamical systems

We first briefly introduce some basic definitions and properties of dynamical sys-
tems that will be useful when applying them to Markov chains.

5.1.1 Definitions

Definition 5.1.1 (Dynamical system) Let (Ω ,B,P) be a probability space.

97
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• A measurable map T from (Ω ,B) to (Ω ,B) is a measure-preserving transfor-
mation if for all A ∈B,

P(T−1(A)) = P(A) .

The probability P is then said to be invariant under the transformation T and
(Ω ,B,P,T) is said to be a dynamical system.

• The application T is said to be an invertible measure-preserving transformation
if it is measure-preserving, invertible and its inverse T−1 is measurable.

If the transformation T is measure preserving and invertible, then T−1 is also
measure-preserving since, for all A ∈B,

P((T−1)−1(A)) = P(T(A)) = P(T−1{T(A)}) = P(A) .

Note also that if T is measure-preserving, then for all integer n ∈ N and A ∈B,

P(T−n(A)) = P(A) .

Let (X,X ) be a measurable space. Denote by (XN,X ⊗N) the associated canon-
ical space and by {Xn, n ∈ N} the coordinate process. The shift operator θ (see
Definition 3.1.8) is defined, for ω = (ωk)k∈N ∈ XN, by

θ(ω0,ω1, . . .) = (ω1,ω2, . . .) .

Note that Xk ◦θ = Xk+1 for all k ≥ 0. By Proposition 3.1.9, θ is a measurable map
from (XN,X ⊗N) to (XN,X ⊗N), but it is not invertible. Recall that {Xn, n ∈ N}
is stationary if the distribution of (Xk, . . . ,Xk+n) is independent of k for all n ∈ N.
The next Lemma shows the connection between the stationarity of the coordinate
process and the invariance of P under the shift operator θ .

Lemma 5.1.2 A probability measure P on (XN,X ⊗N) is invariant under the shift
operator θ if and only if the coordinate process is stationary under P.

Proof. It suffices to note (Theorem B.2.6) that P is measure preserving if and only
if for all n≥ 1 and all f ∈ Fb(X

n,X ⊗n), E [ f (X0, . . . ,Xn−1)] = E [ f (X1, . . . ,Xn)]. 2

Example 5.1.3 (One-sided Markov shift). Let P be a kernel on (X,X ) which ad-
mits an invariant probability π on (X,X ). By Theorem 3.1.2, there exists a unique
probability measure Pπ on the canonical space such that the coordinate process is a
Markov chain with kernel P and initial distribution π . Then, by Theorem 1.4.2, the
canonical chain is a stationary process. Lemma 5.1.2 then shows that Pπ is invariant
under θ , i.e. Pπ ◦θ−1 = Pπ .
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5.1.2 Invariant events

Definition 5.1.4 (Invariant random variable, invariant event) Let T be a mea-
surable map from (Ω ,B) to (Ω ,B).

• A R̄-valued random variable Y on (Ω ,B) is invariant for T if Y ◦T = Y .
• An event A is invariant for T if A = T−1(A) or equivalently if its indicator func-

tion 1A is invariant for T.

Proposition 5.1.5 Let T be a measurable map from (Ω ,B) to (Ω ,B).

(i) The collection I of invariant sets for is a sub-σ -field of B.
(ii) Let Y be a R̄-valued random variable. Y is invariant if and only if Y is

I -measurable.

Proof. The proof of (i) is elementary and omitted. Consider now (ii). If Y ◦T = Y ,
then for all B ∈B(R̄),

T−1(Y−1(B)) = (Y ◦T)−1(B) = Y−1(B) .

Thus Y−1(B) ∈I and Y is I -measurable.
Conversely, if Y is I -measurable, define Ak,n = { k

n ≤ Y < k+1
n } ∈ I , n ≥ 1,

k ∈ Z. Then, with the convention ∞×0 = 0, Y is the pointwise limit of the sequence
{Yn, n ∈ N∗} defined by

Yn = ∑
k∈Z

k
n
1Ak,n

+∞1{Y=+∞}−∞1{Y=−∞} .

Since Y is I -measurable, the sets Ak,n, {Y = −∞} and {Y = +∞} belong to I
hence the functions Yn are invariant for all n and

Y ◦T = ( lim
n→∞

Yn)◦T = lim
n→∞

(Yn ◦T ) = lim
n→∞

Yn = Y .

2

The most important examples of invariant random variables which we will be con-
sidered in the sequel are defined as limits.

Lemma 5.1.6 Let (XN,X ⊗N) be the canonical space, {Xn, n ∈ N} the coordi-
nate process and θ the shift operator. Then I ⊂ ∩k≥0σ(X`, ` ≥ k). Moreover, for
any f ∈F

(
R̄,B(R̄)

)
, limsupn→∞ f (Xn), liminfn→∞ f (Xn), limsupn→∞ n−1( f (X0)+

· · ·+ f (Xn−1)) and liminfn→∞ n−1( f (X0) + · · ·+ f (Xn−1)) are invariant random
variables.
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Proof. Set Gk = σ(X`, ` ≥ k) and G∞ = ∩k≥0Gk. Let A be an invariant set. Then,
A ∈ G0 =X ⊗N. Since we have the implication: if A ∈ Gk, then A = θ−1(A) ∈ Gk+1,
we obtain by induction that A ∈ Gk for all k and thus A ∈ ∩k≥0Gk.

The remaining statements of the lemma are straightforward. 2

Let now (Ω ,B,P,T) be a dynamical system, that is, T is measure preserving for
P. A R̄-valued random variable Y defined on Ω is said to be P − a.s. invariant (for
T) if Y ◦T = Y , P − a.s. Similarly, an event A ∈B is P − a.s. invariant (for T) if its
indicator function 1A is P − a.s. invariant.

Lemma 5.1.7 If Y is P − a.s. invariant, then there exists an invariant random vari-
able Z, such that Y = Z P − a.s. In particular, if A ∈B is P − a.s. invariant, there
exists B ∈I such that 1A = 1B P − a.s.

Proof. The random variable Z = limsupn→∞ Y ◦Tn is invariant. Since Y is P − a.s.
invariant, Y = Y ◦T P − a.s., hence Y = Y ◦Tn P − a.s. for all n ≥ 1. This yields
Y = Z P − a.s. If Y = 1A, then there exists an invariant random variable Z such that
1A = Z P − a.s.. The set B = {Z = 1} is therefore invariant and 1A = 1B P − a.s..
2

It is easy to check that the family of P − a.s. invariant sets for T is a σ -algebra IP.
Lemma 5.1.7 shows that IP is the P-completion of the invariant σ -algebra I (the
σ -algebra generated by I and the family of sets which are P-negligible).

Denote by Tn the transformation T iterated n-times and by convention, we let T0

be the identity function. The behavior of time averages is given by the following
fundamental result.

Theorem 5.1.8 (Birkhoff’s ergodic theorem). Let (Ω ,B,P,T) be a dynamical
system and Y be a random variable such that E [|Y |]< ∞. Then,

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y |I ] P − a.s. (5.1.1)

Moreover, the convergence also holds in L1(P).

The proof is based on the following lemma.

Lemma 5.1.9 Let Z be a random variable such that E [|Z|] < ∞. If E [Z |I ] >
0 P − a.s., then,

liminf
n→∞

n−1
n−1

∑
k=0

Z ◦Tk ≥ 0 P − a.s.

Proof. For all n ∈ N∗, write Sn = ∑
n−1
k=0 Z ◦Tk. Note that for all n ≥ 1, E [|Sn|] ≤

nE [|Z|] < ∞. Denote Ln = inf{Sk : 1≤ k ≤ n} and A = {infn∈N∗ Ln =−∞}. Since
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|Z|< ∞ P − a.s., {infn≥1 Sn =−∞}= {infn≥1 Sn ◦T =−∞} P − a.s., the set A is
P − a.s. invariant. Since Ln−1 ≥ Ln,

Ln = Z + inf{Sk−Z : 1≤ k ≤ n}
= Z + inf(0,Ln−1 ◦T)≥ Z + inf(0,Ln ◦T) . (5.1.2)

Since E [|Sk|]<∞ for all k∈N, for all n≥ 1, E [|Ln|]≤∑
n−1
k=0E [|Sk|]<∞. and (5.1.2)

implies that Z ≤ Ln +(Ln ◦T)− = Ln +L−n ◦T P − a.s. Then, using 1A = 1A ◦T
P − a.s., we get

E [1AZ]≤ E [1ALn]+E
[
1AL−n ◦T

]
= E [1ALn]+E

[
1A ◦T L−n ◦T

]
≤ E [1ALn]+E

[
1AL−n

]
= E

[
1AL+

n
]
. (5.1.3)

Since L+
n ≤ Z+ with E [Z+] < ∞ and limn→∞1AL+

n = 0 P − a.s., Lebesgue’s
dominated convergence theorem shows that E [limn→∞1AL+

n ] = 0. Therefore, since
0≤ E [1AE [Z |I ]] = E [1AZ], we finally get using (5.1.3)

E [1AE [Z |I ]] = E [1AZ]≤ E
[

lim
n→∞

1AL+
n

]
= 0 .

By assumption, E [Z |I ]> 0 P−a.s., the previous inequality shows P(A) = 0. We
conclude that liminfn→∞ n−1Sn ≥ 0 P − a.s.

2

Proof (of Theorem 5.1.8). Let ε > 0 and set Z = Y − E [Y |I ] + ε . Note that
E [|Z|] ≤ 2E [|Y |] + ε showing that E [Z |I ] is well-defined and, by construction,
E [Z |I ]> 0. Using that E [Y |I ] being I -measurable, it is invariant according to
Proposition 5.1.5 and Lemma 5.1.9 implies that

liminf
n→∞

n−1
n−1

∑
k=0

Y ◦Tk ≥ E [Y |I ]− ε P − a.s.

Replacing Y by −Y , we finally obtain

−ε + limsup
n→∞

n−1
n−1

∑
k=0

Y ◦Tk ≤ E [Y |I ]≤ liminf
n→∞

n−1
n−1

∑
k=0

Y ◦Tk +ε P − a.s.

This shows (5.1.1) since ε > 0 is arbitrary.
We now turn to the L1(P) convergence. Denote by Mn(Y ) = n−1

∑
n−1
k=0 Y ◦Tk. If Y

bounded, then Lebesgue’s dominated convergence theorem shows that the conver-
gence in (5.1.1) also holds in L1(P). For a bounded random variable Ȳ , consider the
decomposition

|Mn(Y )−E [Y |I ]| ≤ |Mn(Y )−Mn(Ȳ )|+ |Mn(Ȳ )−E [Ȳ |I ]|+E [ |Ȳ −Y | |I ] .

Let us denote by ‖U‖1 = E [|U |]. Note that ‖E [ |Ȳ −Y | |I ]‖1 ≤ ‖Ȳ −Y‖1 and
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‖|Mn(Y )−Mn(Ȳ )‖1 ≤ n−1
n−1

∑
k=0

∥∥∥(Y − Ȳ )◦Tk
∥∥∥

1
= ‖Y − Ȳ‖1 ,

where we have used that the transformation T is measure preserving and thus∥∥(Y − Ȳ )◦Tk
∥∥

1 = ‖Y − Ȳ‖1 for all k ∈ N. Therefore,

limsup
n→∞

‖Mn(Y )−E [Y |I ]‖1 ≤ 2‖Ȳ −Y‖1 .

The proof is complete since bounded random variables are dense in L1(P). 2

The most interesting case of application of Theorem 5.1.8 is when the σ -field
I is trivial, in which case the conditional expectation E [Y |I ] can be replaced by
E [Y ] in (5.1.1).

Definition 5.1.10 (Ergodic dynamical system) A dynamical system (Ω ,B,P,T)
is ergodic if the invariant σ -field I is trivial for P, i.e. for all A∈I , P(A)∈ {0,1}.

Corollary 5.1.11 Let (Ω ,B,P,T) be an ergodic dynamical system and Y be a R̄-
valued random variable such that E [|Y |]< ∞. Then,

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y ] P − a.s. (5.1.4)

5.1.2.1 Dynamical systems associated to one-sided and two-sided sequences

In the context of Markov chains on a measurable space (X,X ), the dynamical sys-
tems will be associated to either one-sided sequences (XN,X ⊗N), or two-sided
sequences (XZ,X ⊗Z). Denote by θ̄ : XZ → XZ the shift operator on XZ: for any
two-sided sequence ω = (ωn)n∈Z ∈ XZ,

[θ̄(ω)]n = ωn+1 , for all n ∈ Z . (5.1.5)

Moreover, set θ̄1 = θ̄ and for all n> 1, θ̄n = θ̄n−1 ◦ θ̄ . Let P̄ be a probability measure
on (XZ,X ⊗Z) and denote by Ē the associated expectation operator. Let Π be the
measurable map from (XZ,X ⊗Z) to (XN,X ⊗N) defined by

Π(ω) = (ωn)n∈N , for all ω = (ωn)n∈Z ∈ XZ . (5.1.6)

We denote by P = P̄ ◦Π−1 the probability induced on (XN,X ⊗N) by the prob-
ability P̄ and the map Π . Let θ be the shift operator on (XN,X ⊗N) defined in
Definition 3.1.8 and note that θ ◦Π = Π ◦ θ̄ .

Lemma 5.1.12 If (XZ,X ⊗Z, P̄, θ̄) is a dynamical system, then (XN,X ⊗N,P,θ) is
also a dynamical system.
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Proof. By assumption, P̄ ◦ θ̄−1 = P̄. Combining with θ ◦Π = Π ◦ θ̄ , this implies
for all A ∈X ⊗N,

P◦θ
−1(A) = (P̄◦Π

−1)◦θ
−1(A) = P̄◦ (θ ◦Π)−1(A) = P̄◦ (Π ◦ θ̄)−1(A)

= (P̄◦ θ̄
−1)◦Π

−1(A) = P̄◦Π
−1(A) = P(A) .

2

Proposition 5.1.13 Assume that (XZ,X ⊗Z, P̄, θ̄) is a dynamical system. If the dy-
namical system (XN,X ⊗N,P,θ) is ergodic, then (XZ,X ⊗Z, P̄, θ̄) is ergodic.

Proof. Let A be an invariant set for the dynamical system (XZ,X ⊗Z, P̄, θ̄), that is
1A = 1A ◦ θ̄ . We will show that P̄(A) = 0 or 1.

Note first that X ⊗Z = σ(F+
−k , k ∈ N) where F+

` = σ(Xi , ` ≤ i < ∞) and
{Xi, i∈Z} are the coordinate process on XZ. This allows to apply the approximation
Lemma B.2.5 showing that for all ε > 0, there exists kε ∈N∗ and a F+

−kε
-measurable

random variable Zε such that Ē[|Zε |] < ∞ and Ē[|1A−Zε |] ≤ ε . Set Yε = Zε ◦ θ̄kε
.

By construction, Yε is F+
0 -measurable. Using that A is an invariant set, we obtain

Ē[|1A−Yε |] = Ē[|1A ◦ θ̄k−Zε ◦ θ̄k|] = Ē[|1A−Zε |]≤ ε .

Since ε is arbitrary, there exists a F+
0 -measurable random variable Y satisfying

Ē[|Y |] < ∞ and 1A = Y , P̄ − a.s. Since 1 = P̄(1A = Y ) ≤ P̄(Y ∈ {0,1}) ≤ 1 there
exists B ∈F+

0 such that

1B = Y = 1A , P̄ − a.s. (5.1.7)

Eq. (5.1.7) and the invariance of A then shows that

P̄(1B ◦ θ̄ = 1A ◦ θ̄ = 1A = 1B) = 1 .

Now, note that F+
0 = σ(Π), the σ -algebra generated by Π , where the canonical

projection Π : XZ→ Ω is defined in (5.1.6). Then, since B ∈F+
0 , there exists C ∈

F+ such that B = Π−1(C) and thus,

1 = P̄(1B = 1B ◦ θ̄)

= P̄(1C ◦Π = 1C ◦Π ◦ θ̄)

(i)
= P̄(1C ◦Π = 1C ◦θ ◦Π) = P̄◦Π

−1(1C = 1C ◦θ)
(ii)
= P(1C = 1C ◦θ) ,

where
(i)
= follows from Π ◦ θ̄ = θ ◦Π and

(ii)
= from P= P̄◦Π−1. The dynamical sys-

tem (XN,X ⊗N,P,θ) being ergodic, it implies that P(C) = 0 or 1 which concludes
the proof since
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P(C) = P̄◦Π
−1(C) = P̄(B) = P̄(A) .

2

Proposition 5.1.13 allows to study only the ergodicity of dynamical systems on
one-sided sequences (instead of two-sided sequences) and then to use Birkhoff’s
ergodic theorem either to functions depending on the future n−1

∑
n−1
k=0 f ({Xk+`, ` ∈

N}) or even on the whole past n−1
∑

n−1
k=0 f ({Xk−`, ` ∈ N}). From now on, we only

consider the ergodicity of dynamical systems associated to one-sided sequences.

5.2 Markov chains ergodicity

We specialize the results of the previous section in the context of Markov chains.
Here and subsequently, we consider a Markov kernel P on a measurable space
(X,X ) and the coordinate process {Xk, k ∈ N} on the canonical space (Ω ,F ) =
(XN,X ⊗N), endowed with the family of probability measures Pξ , ξ ∈ M1(X )
under which the coordinate process is a Markov chain with kernel P and initial dis-
tribution ξ .

As a consequence of Birkhoff’s ergodic theorem and of Corollary 5.1.11, we
obtain the ergodic theorem for Markov chains.

Theorem 5.2.1. Let P be a Markov kernel on X×X . Assume that P admits
an invariant probability measure π and that the associated dynamical system
(XN,X ⊗N,Pπ ,θ) is ergodic. Then, for all random variables Y ∈ L1(Pπ),

lim
n→∞

n−1
n−1

∑
k=0

Y ◦θk = Eπ [Y ] Pπ − a.s.

Moreover, the convergence also holds in L1(Pπ).

The condition Y ∈ L1(Pπ) may be relaxed to Eπ [Y+] < ∞ as shown by Exer-
cise 5.6. We now relate harmonic functions (defined in Chapter 4) with invariant
random variables for the shift transformation θ .

Proposition 5.2.2 Let P be a Markov kernel on X×X .

(i) Let Y be a bounded invariant random variable for the shift transfor-
mation θ . Then the function hY : x 7→ hY (x) = Ex[Y ] is a bounded harmonic
function.

(ii) Let h be a bounded harmonic function and define Y = limsupn→∞ h(Xn).
Then Y is an invariant random variable for θ and for any ξ ∈M1(X ), the
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sequence {h(Xn), n ∈ N} converges to Y Pξ − a.s. and in L1(Pξ ). Moreover,
h(x) = Ex[Y ] for all x ∈ X.

(iii) Let π be an invariant probability measure and Y ∈L1(Pπ) be an invari-
ant random variable for θ . Then, Ex[|Y |]< ∞ π−a.e., the function x 7→ Ex[Y ]
is π-integrable and Y = EX0 [Y ] Pπ − a.s.

Proof. (i) Assume that Y : XN→ R is a bounded invariant random variable, i.e.
Y ◦θ = Y . By the Markov property, for any x ∈ X,

PhY (x) = Ex[hY (X1)] = Ex[EX1 [Y ]] = Ex[Y ◦θ1] = Ex[Y ] = hY (x) ,

showing that hY is harmonic.
(ii) Let h be a bounded harmonic function: Ph(x) = h(x) for all x ∈ X. Then,

{(h(Xn),Fn), n ∈ N} is a bounded Pξ -martingale, for any initial distribution ξ ∈
M1(X ). By Doob’s martingale convergence theorem, the sequence {h(Xn),n ∈ N}
converges Pξ − a.s. and in L1(Pξ ) to a limit. Hence, we get

Y = lim
n→∞

h(Xn) Pξ − a.s. and Eξ [Y ] = lim
n→∞

Eξ [h(Xn)]. (5.2.1)

The function h being harmonic, we have h(x) = Pnh(x) = Ex[h(Xn)] for all x ∈ X
and n ∈ N. Applying (5.2.1) with ξ = δx

Ex[Y ] = lim
n→∞

Ex[h(Xn)] = h(x) .

(iii) Since Y ∈ L1(Pπ), Eπ [|Y |] =
∫

X π(dx)Ex[|Y |] showing that Ex[|Y |] < ∞ π-
a.e. and that the function x 7→ Ex[Y ] is integrable with respect to π . By the Markov
property and the invariance of Y , we get

EXk [Y ] = Eπ [Y ◦θk|Fk] = Eπ [Y |Fk] Pπ − a.s.

Therefore, {(EXk [Y ],Fk),k ∈ N} is a uniformly integrable Pπ -martingale. By The-
orem E.3.7,

lim
k→∞

EXk [Y ] = lim
k→∞

Eπ [Y |Fk] = Eπ [Y |F ] = Y Pπ − a.s. (5.2.2)

and in L1(Pπ). Moreover, applying successively that the translation operator θ is
measure preserving for Pπ and Y = Y ◦θk , we obtain for any k ∈ N,

Eπ [|Y −EX0 [Y ]|] = Eπ [|Y −EX0 [Y ]| ◦θk]

= Eπ [|Y ◦θk−EXk [Y ]|] = Eπ [|Y −EXk [Y ]|] .

Taking the limit as k goes to infinity, (5.2.2) yields
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Eπ [|Y −EX0 [Y ]|] = lim
k→∞

Eπ [|Y −EXk [Y ]|] = 0 .

2

Remark 5.2.3. Proposition 5.2.2 shows that the map Y 7→ hY , where hY (x) = Ex[Y ],
x∈X defines a one-to-one correspondence between the bounded harmonic functions
and the bounded invariant random variables. If Y is a bounded invariant random
variable, then hY : x 7→ hY (x) = Ex[Y ] is a bounded harmonic function. If h is a
bounded harmonic function, then h(x) = Ex[Y ] where Y = limsupn→∞ h(Xn) is an
invariant random variable (hence h = hY ). N

Corollary 5.2.4 Let P be a Markov kernel on X×X . The following statements
are equivalent.

(i) The bounded harmonic functions are constant.
(ii) The invariant σ -field I is trivial up to an equivalence, i.e. for all A ∈I ,

we get for all ξ ∈M1(X ), Pξ (A) = 0 or Pξ (A) = 1.

Proof. (i)⇒ (ii): Let A be an invariant set. Then hA : x 7→ hA(x) = Px(A) is a har-
monic function by Proposition 5.2.2 which is constant under (i), i.e. hA(x) = c for
all x ∈ X. By the Markov property, we get that, for all ξ ∈ M1(X ), hA(Xn) =
EXn [1A] =Eξ [1A ◦θn |Fn] Pξ −a.s. Since A∈I , it holds that Eξ [1A ◦θn |Fn] =

Eξ [1A |Fn] Pξ − a.s. and Theorem E.3.7 shows that Eξ [1A |Fn]
Pξ -a.s.
−→ 1A

Pξ − a.s. which implies that c ∈ {0,1}.
(ii)⇒ (i): Let h be a bounded harmonic function and ξ ∈M1(X ). The random

variable Y = limsupn→∞ h(Xn) is invariant and under (ii), there exists a constant
c < ∞ (possibly depending on ξ ) such that limsupn→∞ h(Xn) = c Pξ − a.s. By
Proposition 5.2.2 Ex[Y ] = c = h(x) for all x ∈ X. Therefore, h is constant which
shows (i). 2

If we wish to obtain the Law of Large Numbers for a particular Markov chain by
applying Theorem 5.2.1, we have to check the ergodicity assumption. It is therefore
convenient to have sufficient conditions ensuring ergodicity.

We now give a sufficient condition for (XN,X ⊗N,Pπ ,θ) to be ergodic expressed
in terms of absorbing sets.

Lemma 5.2.5 Let P be a Markov kernel on X×X admitting an invariant proba-
bility measure π . If for all absorbing sets B∈X , π(B)∈ {0,1}, then the dynamical
system (XN,X ⊗N,Pπ ,θ) is ergodic.

Proof. Let A∈I and define h(x) =Ex[1A] and B = {x ∈ X : h(x) = 1}. By Propo-
sition 5.2.2-(i), h is a nonnegative harmonic function bounded by 1. For any x ∈ B
we have Ex[h(X1)] =Ph(x) = h(x) = 1, which implies Px(h(X1) = 1) = 1. Therefore
for any x ∈ B, we get Px(X1 ∈ B) = Px(h(X1) = 1) = 1. Therefore B is absorbing
and hence, under the stated assumption, we have π(B) ∈ {0,1}.
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By Proposition 5.2.2 (iii), we know that Pπ(EX0 [1A] = 1A) = 1 which implies
that Pπ(h(X0) ∈ {0,1}) = 1. This yields

Pπ(A) = Eπ [EX0 [1A]] =
∫

X
π(dx)h(x)

=
∫

X
π(dx)1{h(x) = 1}=

∫
X

π(dx)1B(x) = π(B) .

Thus Pπ(A) ∈ {0,1} and I is trivial for Pπ . 2

It turns out that the sufficient condition in Lemma 5.2.5 is also a necessary condition.
Before showing the necessary part, we first draw an easy and useful consequence of
Lemma 5.2.5.

Theorem 5.2.6. Let P be a Markov kernel on X×X admitting a unique invariant
probability measure π . The dynamical system (XN,X ⊗N,Pπ ,θ) is ergodic.

Proof. By Proposition 1.4.5, since P has unique invariant probability π , for every
absorbing set B, π(B) ∈ {0,1}. We conclude by Lemma 5.2.5. 2

The uniqueness of the invariant probability measure is a sufficient but not a nec-
essary condition for ergodicity as illustrated in Exercise 5.8. Comparing with
Lemma 5.2.5, the following Lemma goes one step further. When the dynamical sys-
tem is not ergodic, the state space X contains not only one but at least two disjoints
absorbing sets which are not trivial with respect to π .

Lemma 5.2.7 Let P be a Markov kernel on X×X admitting an invariant probabil-
ity measure π . If the dynamical system (XN,X ⊗N,Pπ ,θ) is not ergodic, then, there
exist two disjoint absorbing sets B and B′ in X such that π(B) = 1−π(B′) ∈ (0,1)
and πB(·) = π(B∩ ·)/π(B) and πB′(·) = π(B′ ∩ ·)/π(B′) are invariant probability
measures.

Proof. Since the dynamical system (XN,X ⊗N,Pπ ,θ) is not ergodic, there exists
A ∈ I such that Pπ(A) = α ∈ (0,1). As I is a σ -field, we also have Ac ∈ I .
Define B = {x ∈ X : Ex[1A] = 1} and B′ = {x ∈ X : Ex[1Ac ] = 1}. As noted in the
proof of Lemma 5.2.5 (see also Exercise 5.4), the sets B and B′ are absorbing and

π(B) = Pπ(A) = 1−Pπ(Ac) = 1−π(B′) ∈ (0,1) .

By Proposition 1.4.5, πB and πB′ are invariant probability measures. 2

Without ergodicity assumption, the generalized version of Birkhoff’s ergodic the-
orem in Theorem 5.1.8 shows that the normalized partial sums still converges but
the limit is a random variable which is not necessarily almost surely constant (see
also an illustration in Exercise 5.8). In the context of Markov chains this limit turns
out to be a function of X0. More precisely we have the following theorem.
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Proposition 5.2.8 Let P be a Markov kernel on X×X admitting an invariant
probability measure π and let Y ∈ L1(Pπ). Let Z be a version of the conditional
expectation Eπ [Y |I ], i.e. Z = Eπ [Y |I ] Pπ − a.s. Then, there exists a set
S ∈X , such that π(S) = 1 and for each x ∈ S,

lim
n→∞

n−1
n−1

∑
k=0

Y ◦θk = Ex [Z] Px − a.s. (5.2.3)

Proof. Define φ(x) =Ex[Z]. It follows from Proposition 5.2.2 (iii) that Eπ [Y |I ] =
φ(X0), Pπ − a.s. Hence, Theorem 5.1.8 yields

lim
n→∞

1
n

n−1

∑
k=0

Y ◦θk = Eπ [Y |I ] = φ(X0) Pπ − a.s.

Set A =
{

limn→∞
1
n ∑

n−1
k=0 Y ◦θk = φ(X0)

}
. The previous relation implies Pπ(A) = 1,

i.e.
∫

π(dx)Px(A) = 1. Since Px(A)≤ 1 for all x ∈ X, this implies that Px(A) = 1 for
π-almost all x ∈ X. Setting S = {x ∈ X : Px(A) = 1} concludes the proof. 2

In Proposition 5.2.8, the limit Ex[Z] in (5.2.3) is expressed in terms of Z, a version of
the conditional expectation Eπ [Y |I ]. If we choose another version of Eπ [Y |I ],
say Z′, under Pπ , then obviously, Z = Z′ Pπ − a.s. but we do not necessarily have
Ex[Z′] = Ex[Z] Px − a.s. since without additional assumption, Px is not necessarily
dominated by Pπ . The situation is different when the dynamical system is ergodic
since the limit is then Pπ − a.s. constant.

Theorem 5.2.9 (Birkhoff’s Theorem for Markov chains). Let P be a Markov
kernel on X×X and assume that P admits an invariant probability measure π such
that (XN,X ⊗N,Pπ ,θ) is ergodic. Let Y ∈ L1(Pπ). Then, for π-almost all x ∈ X,

lim
n→∞

1
n

n−1

∑
k=0

Y ◦θk = Eπ [Y ] Px − a.s.

Proof. Since π is ergodic, the invariant σ -field I is trivial for Pπ . This implies
Eπ [Y |I ] = Eπ [Y ] Pπ − a.s. 2

Theorem 5.2.10. Let P a Markov kernel on X×X . If π1 and π2 are distinct invari-
ant probability measures such that (XN,X ⊗N,Pπ1 ,θ) and (XN,X ⊗N,Pπ2 ,θ) are
ergodic, then π1 and π2 are mutually singular.
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Proof. Note first that, if (XN,X ⊗N,Pπ ,θ) is ergodic and f ∈ Fb(X), then applying
Theorem 5.2.9 to the random variable Y = f (X0) and the dominated convergence
theorem, we obtain that there exists a set S ∈X , such that π(S) = 1 and for all
x ∈ S,

lim
n→∞

1
n

n−1

∑
k=0

Pk f (x) = lim
n→∞

1
n

n−1

∑
k=0
Ex[ f (Xk)] = π( f ) .

Now assume that π1 and π2 are different invariant probability measures such
that (XN,X ⊗N,Pπ1 ,θ) and (XN,X ⊗N,Pπ2 ,θ) are ergodic. Let C ∈X such that
π1(C) 6= π2(C) and set, for i = 1,2,

Si =

{
x ∈ X : lim

n→∞

1
n

n−1

∑
k=0

Pk
1C(x) = πi(C)

}
,

We have S1 ∩ S2 = /0, π1(S1) = 1 and π2(S2) = 1, which means that π1 and π2 are
mutually singular. 2

We have now all the tools for getting a necessary and sufficient condition for the
dynamical system to be ergodic.

Theorem 5.2.11. Let P be a Markov kernel on X×X admitting an invariant prob-
ability measure π . The dynamical system (XN,X ⊗N,Pπ ,θ) is ergodic if and only if
for all absorbing sets B ∈X , π(B) ∈ {0,1}.

Proof. The sufficient condition follows from Lemma 5.2.5. We now consider an
ergodic dynamical system (XN,X ⊗N,Pπ ,θ) and we let B be an absorbing set. As-
sume first that π(B) > 0. Then, by Proposition 1.4.5, π̄B(·) = π(B∩ ·)/π(B) is an
invariant probability measure. Moreover, note that for all A ∈X ⊗N,

Pπ̄B(A) =
∫

π(dx)Px(A)
1B(x)
π(B)

≤ Pπ(A)
π(B)

.

Combining with the ergodicity of the dynamical system (XN,X ⊗N,Pπ ,θ) we de-
duce that any invariant set A ∈ I satisfies either 0 = Pπ(A) = Pπ̄B(A) or 0 =
Pπ(Ac) = Pπ̄B(A

c). The dynamical system (XN,X ⊗N,Pπ̄B ,θ) is therefore ergodic
and by Theorem 5.2.10, π̄B = π since they are not mutually singular. This implies
that π(Bc) = π̄B(Bc) = 0. Finally, π(B) ∈ {0,1}, which concludes the proof. 2

Proposition 5.2.12 Let P be a Markov kernel on X×X admitting a unique
invariant probability measure π and let h ∈ L1(π) be a harmonic function.
Then, h(x) = π(h) for π-almost every x ∈ X.
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Proof. Since h ∈ L1(π) is a harmonic function, Theorem 4.1.2 shows that the pro-
cess {h(Xn), n ∈ N} is a Pπ -martingale. Moreover, supnEπ [|h(Xn)|] = π(|h|) < ∞.
Theorem E.3.1 then shows that this martingale is Pπ − a.s. convergent. If h is not
π − a.s. constant, then there exists a < b such that π({h ≤ a}) > 0 and π({h ≥
b})> 0. Theorem 5.2.9 applied to Y = 1{h(X0)≤ a} and Y = 1{h(X0))≥ b} im-
plies that the sequence {Xn, n ∈ N} visits Pπ − a.s. infinitely often the sets {h < a}
and {h > b}. This contradicts the Pπ − a.s. convergence of {h(Xn), n ∈ N}. 2

Corollary 5.2.13 Let P be a Markov kernel on X×X admitting a unique
invariant probability measure π . Let A ∈ X such that π(A) > 0, we have
Px(NA = ∞) = 1, for π-almost every x ∈ X.

Proof. Proposition 4.2.4 shows that the function h(x) = Px(NA = ∞) is harmonic.
The result follows from Proposition 5.2.12 by noting that if π(A)> 0, then Pπ(NA =
∞) = 1 since n−1

∑
n−1
k=0 1A(Xk) = π(A)> 0 Pπ − a.s.. 2

In Proposition 5.2.8 and Theorem 5.2.9, the law of large numbers is obtained under
Px for all x belonging to a set S such that π(S) = 1 and which may depend on the
random variable Y under consideration. This is unsatisfactory since it does not tell if
the LLN holds for a given x ∈ X or more generally for a given initial distribution ξ .
We now give a criterion to obtain the LLN when the chain does not start from sta-
tionarity. Recall that the total variation distance between two probability measures
µ,ν ∈M1(X ) is defined by

‖µ−ν‖TV = sup
h∈Fb(X),|h|∞≤1

|µ(h)−ν(h)| .

More details and basic properties on the total variation distance are given in Ap-
pendix D.2.

Proposition 5.2.14 Let P be a Markov kernel on X×X admitting an invariant
probability measure π . If the dynamical system (XN,X ⊗N,Pπ ,θ) is ergodic
and if ξ ∈M1(X ) is such that limn→∞

∥∥n−1
∑

n
k=1 ξ Pk−π

∥∥
TV = 0 then for all

Y ∈ L1(Pπ),

lim
n→∞

1
n

n−1

∑
k=0

Y ◦θk = Eπ [Y ] Pξ − a.s.

Proof. Set A = {limn→∞
1
n ∑

n−1
k=0 Y ◦ θk = Eπ [Y ]}. Since (XN,X ⊗N,Pπ ,θ) is er-

godic, we already know that Pπ(A) = 1. We show that Pξ (A) = 1. Define the func-
tion h by h(x) = Ex[1A]. Since A ∈I , Proposition 5.2.2 implies that h is harmonic.
Then, for all n ∈ N, n−1

∑
n
k=1 ξ Pkh = ξ (h). Moreover, noting that h ≤ 1, we have

by assumption, limn→∞ n−1
∑

n
k=1 ξ Pk(h) = π(h). Thus, ξ (h) = π(h) and
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Pξ (A) =
∫

X
ξ (dx)Ex[1A] = ξ (h) = π(h) = Pπ(A) = 1 .

2

The condition limn ‖ξ Pn−π‖TV = 0 is not mandatory for having a Law of Large
Numbers under Pξ . In some situations, one can get the same result without any
straightforward information in the decrease of ‖ξ Pn−π‖TV toward 0. This is the
case for example for Metropolis-Hastings kernels as illustrated in Exercise 5.9. An-
other illustration can be found in Exercise 5.14 where the Law of Large Numbers
is extended to different initial distributions in the case where (X,d) is a complete
separable metric space.

5.3 Exercises

5.1. Let (Ω ,B,P,T) be a dynamical system. Show that I 6= ∩k≥0σ(Xl , l > k).

5.2. Let (Ω ,B,P) be a probability space and θ : Ω →Ω be a measurable transfor-
mation. Let B0 a family of sets, stable under finite intersection and generating B.
If for all B ∈B0, P[θ−1(B)] = P(B), then T is measure-preserving.

5.3. Let (Ω ,B,P,T) be a dynamical system. Let Y be a R̄-valued random variable
such that E [Y+]< ∞. Show that for all k ≥ 0,

E
[

Y ◦Tk
∣∣∣I ]= E [Y |I ] P − a.s.

5.4. Let P be a Markov kernel on X×X and let (Ω ,B) be the canonical space.
For A ∈I , define B = {x ∈ X : Px(A) = 1}.

1. Show that B is absorbing.
2. Let π be an invariant probability. Show that π(A) = Pπ(B).

5.5. The following exercise provides the converse of Theorem 5.2.1. Let P be a
Markov kernel on X×X . Let π be a probability measure, π ∈M1(X ). Assume
that for all f ∈ Fb(X), we get

lim
n→∞

n−1
n−1

∑
k=0

f (Xk) = π( f ) Pπ − a.s.

1. Show that π is invariant.
2. Let A ∈I and set B = {x ∈ X : Px(A) = 1}. Show that

1A = PX0(A) = 1B(X0) Pπ − a.s.

and that for all k ∈ N, 1A = 1B(X0) = · · ·= 1B(Xk) Pπ − a.s..
3. Show that the dynamical system (XN,X ⊗N,Pπ ,θ) is ergodic.
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5.6. In this exercise, we prove various extensions of Birkhoff’s ergodic theorem.
Let (Ω ,B,P,T) be a dynamical system. In the first two questions, we assume that
the dynamical system is ergodic.

1. Let Y be nonnegative random variable such that E [Y ] = ∞. Show that

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = ∞ P − a.s.

[Hint: use Corollary 5.1.11 with YM = Y ∧M and let M tends to infinity.]
2. Let Y be a random variable such that E [Y+]< ∞. Show that

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y ] P − a.s.

3. In what follows, we do not assume any ergodicity of the dynamical system
(Ω ,B,P,T). Let Y be a nonnegative random variable. Set

A = { lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y |I ]}

Let M > 0. Using Theorem 5.1.8 with Y1{E [Y |I ]≤M}, show that on
{E [Y |I ]≤M}

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y |I ] P − a.s.

Deduce that P(Ac∩{E [Y |I ]< ∞}) = 0. Moreover, show that for all M > 0,

liminf
n→∞

n−1
n−1

∑
k=0

Y ◦Tk ≥ E [Y ∧M |I ] P − a.s.

Deduce that P(Ac∩{E [Y |I ] = ∞}) = 0.
4. Let Y be a random variable such that E [Y+]< ∞, show that

lim
n→∞

n−1
n−1

∑
k=0

Y ◦Tk = E [Y |I ] P − a.s.

[Hint: write Y = Y+−Y− and use the previous question with Y−]

5.7. Let P be the kernel on X×X defined by for all (x,A) ∈ X×X , P(x,A) =
δx(A). Find all the probability measures π ∈M1(X ) such that (XN,X ⊗N,Pπ ,θ) is
ergodic.

5.8. Let µ0 (resp. µ1) be a probability measure on R+ (resp. R− \ {0}). Let P be
a Markov kernel on R×B (R) defined by P(x, ·) = µ0 if x ≥ 0 and P(x, ·) = µ1
otherwise. Set for all α ∈ (0,1), µα = (1−α)µ0 +αµ1.
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1. Show that for all α ∈ (0,1), µα is an invariant probability measure but the
dynamical system (XN,X ⊗N,Pµα

,θ) is not ergodic.
2. Show that for α ∈ {0,1}, (XN,X ⊗N,Pµα

,θ) is ergodic.
3. Let f ∈ L1(µ0)∩L1(µ1). Find a function φ such that for all x ∈ R,

lim
n→∞

n−1
n−1

∑
k=0

f (Xk) = φ(X0) Pµα
− a.s.

For all α ∈ (0,1), find a version of Eµα
[ f |I ].

5.9. In this exercise, we will find a sufficient condition for a Metropolis-Hastings
kernel to satisfy the law of large numbers starting from any initial distribution. We
make use of the notation of Section 2.3.1. Let π be target distribution on a mea-
surable space (X,X ) and assume that π has a positive density h with respect to a
measure µ ∈M+(X ). Let Q be a proposal kernel on X×X and assume that Q
has a positive kernel density y 7→ q(x,y) with respect to µ . The Metropolis-Hasting
kernel P is then defined by (2.3.4).

1. Show that
P(x,A)≥

∫
A

α(x,y)q(x,y)µ(dy) .

Deduce that π is the unique invariant probability of P.
2. Let A ∈I and assume that Pπ(A) = 0. Set φ(x) = Px(A). For all x ∈ X, show

that

φ(x) = Pφ(x) =
∫

α(x,y)q(x,y)
h(y)

π(dy)φ(y)+ ᾱ(x)φ(x) .

and deduce that Px(A) = 0.
3. Let ξ ∈M1(X ). Deduce from the previous question that for all random vari-

ables Y ∈ L1(Pπ),

lim
n→∞

n−1
n−1

∑
k=0

Y ◦θk = Eπ [Y ] Pξ − a.s.

5.10. Let P a Markov kernel on X×X admitting an invariant probability measure
π1 such that (XN,X ⊗N,Pπ1 ,θ) is ergodic. Let µ be another invariant probability
measure.

1. Show that π1∧µ is an invariant finite measure.
2. If π1∧µ(X) 6= 0, show, using Theorem 5.2.10, that π1∧µ/π1∧µ(X) = π1.
3. Show that there exists an invariant probability measure π2 satisfying: π1 and π2

are mutually singular and there exists α ∈ [0,1] such that µ = απ1+(1−α)π2.

5.11. Let {Xn, n ∈ Z} be a canonical stationary Markov chain on (XZ,X ⊗Z). We
set

F 0
−∞ = σ(Xk,k ≤ 0)

P
, F ∞

0 = σ(Xk,k ≥ 0)
P
.

We consider an invariant bounded random variable Y .
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(i) Show that Y is F ∞
0 and F 0

−∞ measurable.
(ii) Deduce from the previous question that Y = E [Y |X0] P − a.s.
(iii) Show that the previous identity holds true for all P-integrable or positive

invariant random variable Y .

The following exercises deal with subbadditive sequences. A sequence of ran-
dom variables {Yn, n ∈ N?} is said to be subadditive for the dynamical system
(Ω ,B,P,T) if for all (n, p) ∈ N?, Yn+p ≤ Yn +Yp ◦ Tn. The sequence is said to
be additive if for all (n, p) ∈ N?, Yn+p = Yn +Yp ◦Tn.

5.12 (Fekete Lemma). Consider {an, n∈N?}, a sequence in [−∞,∞) such that, for
all (m,n) ∈ N?×N?, an+m ≤ an +am. Then,

lim
n→∞

an

n
= inf

m∈N?

am

m
;

in other words, the sequence {n−1an,n ∈ N?} either converges to its lower bounds
or diverges to −∞.

5.13. Let (Ω ,B,P,T) be a dynamical system and {Yn, n ∈ N?} be a subadditive
sequence of functions such that E

[
Y+

1

]
< ∞. Show that for any n ∈ N?, E [Y+

n ] ≤
nE
[
Y+

1

]
< ∞ and

lim
n→∞

n−1E [Yn] = inf
n∈N?

n−1E [Yn] , (5.3.1)

lim
n→∞

n−1E [Yn |I ] = inf
n∈N?

n−1E [Yn |I ] , P − a.s. (5.3.2)

where I is the invariant σ -field [Hint: use Exercise 5.3].

5.14. Let P be a Markov kernel on a complete separable metric space (X,d) which
admits a unique invariant probability measure π . We assume that there exists a
probability space (Ω ,F ,P) and a stochastic process {(Xn,X ′n), n ∈ N} such that
{Xn, n ∈ N} and {X ′n, n ∈ N} are Markov chains with kernel P and initial distribu-

tion ξ ∈M1(X ) and π , respectively. Assume that d(Xn,X ′n)
P-a.s.−→ 0.

We recall the Parthasaraty’s theorem (see (Parthasarathy, 1967, Theorem 6.6)):
Then there exists a countable set H of bounded continuous functions such that for
all {µ,µn,n≥ 1} ⊂M1(X), the following assertions are equivalent:

(i) µn converges weakly to µ .
(ii) For all h ∈ H, limn→∞ µn(h) = µ(h).

For this set H, define the event

A =

{
ω ∈Ω : ∀h ∈ H , lim

n→∞
n−1

n−1

∑
k=0

h(X ′k(ω)) = π(h)

}
.

1. Show that P(A) = 1.
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2. Deduce that there exists a set Ω̃ such that P(Ω̃) = 1 and for all bounded con-
tinuous functions h on X and all ω̃ ∈ Ω̃ ,

lim
n→∞

1
n

n−1

∑
k=0

h(Xk(ω̃)) = π(h) .

Let V be a nonnegative and uniformly continuous such that π(V )< ∞.

3. Show that

lim
n→∞

1
n

n−1

∑
k=0

V (Xk) = π(V ) , P − a.s.

4. Show that there exists Ω̄ such that for all ω ∈ Ω̄ and all continuous functions f
such that supx∈X | f (x)|/V (x)< ∞,

lim
n→∞

1
n

n−1

∑
k=0

f (Xk(ω)) = π( f ) , P − a.s.

5.4 Bibliographical notes

Ergodic theory is a very important area of probability theory which has given rise to
a great deal of work. The interested reader will find an introduction to this field in
the books Walters (1982) and Billingsley (1978). The application of ergodic theory
to Markov chains is a very classic subject. a A detailed study of the ergodic theory
of Markov chains can be found in (Revuz, 1984, Chapter 4) and (Hernández-Lerma
and Lasserre, 2003, Chapter 2); These books contain many references to works on
this subject that began in the early 1960s.

The proof of the Birkhoff Theorem (Theorem 5.1.8) is borrowed from unpub-
lished notes by B. Delyon and extended to possibly non-ergodic dynamical systems.
This approach is closely related to the very short proof of the Law of Large Num-
bers for i.i.d. random variables written by Jacques Neveu in his unpublished lecture
notes at Ecole Polytechnique. Several other proofs of the ergodic theorem are also
given in Billingsley (1978).

Theorem 5.2.6 is essentially borrowed from (Hernández-Lerma and Lasserre,
2003, Proposition 2.4.3) even if the statements of the two results are slightly differ-
ent.
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Chapter 6
Atomic chains

In this chapter, we enter the core of the theory of Markov Chains. We will encounter
for the first time the fundamental notions of state classification, dichotomy between
transience and recurrence, period, existence, uniqueness (up to scale) and charac-
terization of invariant measures as well as the classical limit theorems: the law and
large numbers and the central limit theorem. These notions will be introduced and
the results will be obtained by means of the simplifying assumption that the state
space contains an accessible atom. An atom is a set of states out of which the chain
exits under a distribution common to all its individual states. A singleton is thus
an atom, but if the state space is not discrete, it will in most cases be useless by
failing to be accessible. Let us recall that a set is accessible if the chains eventually
enter this set wherever it starts from with positive probability. If the state space is
discrete, then accessible singletons usually exist and the theory elaborated in the
present chapter for chains with an accessible atom can be applied directly: this will
be done in the next Chapter 7. However, most Markov chains on general state space
do not possess an accessible atom and therefore this chapter might seem of limited
interest. Fortunately, we will see in Chapter 11 that it is possible to create an arti-
ficial atom by enlarging the state space of an irreducible Markov chain. The notion
of irreducibility will also be first met in this chapter and then fully developed in
Chapter 9. Therefore, this chapter is essential for the theory of irreducible Markov
chains and it only has Chapter 3 as a prerequisite.

6.1 Atoms

Definition 6.1.1 (Atom) Let P be a Markov kernel on X×X . A subset α ∈X is
called an atom if there exists ν ∈M1(X ) such that P(x, ·) = ν for all x ∈ α .

119
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A singleton is an atom. If X is not discrete, singletons are in general not very inter-
esting atoms because they are typically not accessible and only when an accessible
atom exists can meaningful results be obtained. Recall that a set A is said to be ac-
cessible if Px(σA < ∞) > 0 for all x ∈ X. In this chapter, we will see examples of
Markov chains on general state-spaces which admit an accessible atom and even an
accessible singleton as shown in our first example.

Example 6.1.2 (Reflected random walk). Consider the random walk on R+ re-
flected at 0 defined by Xk = (Xk−1 +Zk)

+ where {Zk, k ∈ N} is a real-valued i.i.d.
sequence. The singleton {0} is an atom. Let ν be the distribution of Z1 and assume
that there exists a > 0 such that ν((−∞,−a))> 0. Then, for any n ∈ N and x≤ na

Pn(x,{0})≥ P(Z1 ≤−a, . . . ,Zn ≤−a)≥ ν((−∞,−a))n > 0 .

Since n is arbitrary, the atom {0} is accessible. J

We now introduce an important notation which is specific to atomic chains. If a
function h defined on X is constant on α then we write h(α) instead of h(x) for all
x ∈ α . This convention will be mainly used in the following examples.

• For a measurable nonnegative function f : X→ R+ and k ≥ 1, we will write
Pk f (α) instead of Pk f (x) for x ∈ α . If f = 1A, we write Pk(α,A).
• If A ∈X N is such that the function x→ Px(A) is constant on α then we will

write Pα(A) instead of Px(A) for x ∈ α .
• For every positive X N-measurable random variable Y such that Ex[Y ] is con-

stant on α , we will write Eα [Y ] instead of Ex[Y ] for x ∈ α .
• The potential U(x,α) is constant on α so we write U(α,α).

Here is an example of this situation. Let g ∈ F+(X) and let Y be a σ(Xs,s ≥ 1)-
positive. Assume that g is constant on the set α , then for all x,x′ ∈ α ,

Ex[g(X0)Y ] = Ex′ [g(X0)Y ] .

Thus the function x→ Ex[g(X0)Y ] is constant on α and therefore it will be written
Eα [g(X0)Y ]. An interesting consequence of this elementary remark is that equality
holds in the maximum principle Theorem 4.2.2.

Lemma 6.1.3 (Atomic maximum principle) Let P be a Markov kernel on X×X
which admits an atom α . Then, for all x ∈ X,

U(x,α) = Px(τα < ∞)U(α,α) .

Proof. Applying the strong Markov property, we get
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U(x,α) = Ex

[
∞

∑
n=0

1α(Xn)

]
= Ex

[
∞

∑
n=τα

1α(Xn)

]

=
∞

∑
n=0
Ex [1α(Xn ◦θτα

)1{τα < ∞}] =
∞

∑
n=0
Ex
[
1{τα < ∞}EXτα

[1α(Xn)]
]

=
∞

∑
n=0
Px(τα < ∞)Pn(α,α) = Px(τα < ∞)U(α,α) .

2

An important property of an accessible atom is that it can be used to characterize
accessible sets.

Lemma 6.1.4 Let P be a Markov kernel on X×X which admits an accessible
atom α .

(i) A set A ∈X is accessible if and only if Pα(σA < ∞)> 0.
(ii) Let A ∈X . If A is not accessible then Ac is accessible.

Proof. By definition, if A is accessible, then Px(σA < ∞)> 0 for every x ∈ α . Since
the function x 7→ Px(σA < ∞) is constant on α , this means that Px(σA < ∞) > 0.
Conversely, if Pα(σA < ∞) > 0, then there exists n ≥ 1 such that Pn(α,A) > 0.
Since α is accessible, for every x ∈ X, there exists k ≥ 1 such that Pk(x,α) > 0.
Then,

Pn+k(x,A)≥
∫

α

Pk(x,dy)Pn(y,A) = Pk(x,α)Pn(α,A)> 0 .

Finally, if A is not accessible, then P(α,A) = 0 and thus P(α,Ac) = 1. 2

6.2 Recurrence and transience

Definition 6.2.1 (Atomic Recurrence and transience) Let P be a Markov kernel
on X×X and α be an atom. The atom α is said to be recurrent if U(α,α) = ∞

and transient if U(α,α)< ∞.

By definition, every atom is either recurrent or transient. Assume that a chain started
from α returns to α with probability 1. It is then a simple application of the strong
Markov property to show that the chain returns to α infinitely often with probabil-
ity 1 i.e. the atom is recurrent. If, on the contrary, there is a positive probability that
the chain started in α never returns to α , then it is not obvious that the atom is tran-
sient. This is indeed the case and the dichotomy between recurrence and transience
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is also a dichotomy between almost surely returning to the atom or never returning
to it with a positive probability. This fact is formally stated and proved in the next
theorem.

Theorem 6.2.2. Let P be a Markov kernel on X×X and let α ∈X be an atom.

(i) The atom α is recurrent if one of the following equivalent properties is satisfied:

(a) Pα(σα < ∞) = 1;
(b) Pα(Nα = ∞) = 1;
(c) U(α,α) = Eα [Nα ] = ∞.

Moreover, for all x ∈ X, Px(σα < ∞) = Px(Nα = ∞).
(ii) The atom α is transient if one of the following equivalent properties is satisfied:

(a) Pα(σα < ∞)< 1;
(b) Pα(Nα < ∞) = 1;
(c) U(α,α) = Eα [Nα ]< ∞.

In that case, U(α,α) = {1−Pα(σα < ∞)}−1 and under Pα , the number of
visits Nα to α has a geometric distribution with mean 1/Pα(σα < ∞).

Proof. By definition of the successive return times and the strong Markov property,
we get, for n≥ 1,

Pα(σ
(n)
α < ∞) = Pα(σ

(n−1)
α < ∞, σα ◦θ

σ
(n−1)
α

< ∞)

= Eα

[
1
{σ (n−1)

α <∞}
PX

σ
(n−1)
α

(σα < ∞)

]
= Pα(σ

(n−1)
α < ∞)Pα(σα < ∞) .

By induction, this yields, for n≥ 1,

Pα(σ
(n)
α < ∞) = {Pα(σα < ∞)}n . (6.2.1)

This yields, with the convention σ
(0)
α = 0,

Pα(Nα = ∞) = lim
n→∞

Pα(Nα ≥ n)

= lim
n→∞

Pα(σ
(n)
α < ∞) = lim

n→∞
{Pα(σα < ∞)}n , (6.2.2)

and

U(α,α) = Eα [Nα ] =
∞

∑
n=0
Pα(σ

(n)
α < ∞) =

∞

∑
n=0
{Pα(σα < ∞)}n . (6.2.3)
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For x ∈ X, the strong Markov property implies that

Px(Nα =+∞) = Px(Nα ◦θσα
=+∞,σα <+∞)

= Px(σα <+∞)Pα(Nα =+∞) . (6.2.4)

(i) The identity (6.2.2) yields that Pα(σα < ∞) = 1 if and only if Pα(Nα = ∞) =
1 and the identity (6.2.3) yields that Pα(σα < ∞) = 1 if and only if U(α,α) = ∞.
The last assertion follows from (6.2.4).

(ii) Similarly, (6.2.2) yields that Pα(σα < ∞)< 1 if and only if Pα(Nα < ∞) = 1
and (6.2.3) yields that Pα(σα < ∞) < 1 if and only if U(α,α) < ∞. Moreover,
(6.2.1) yields

Pα(Nα > n) = Pα(σ
(n)
α < ∞) = Pα(σα < ∞)n .

This proves that the distribution of Nα is geometric with mean Pα(σα < ∞) and
U(α,α) = 1/Pα(σα = ∞).

2

A recurrent atom is one to which the chain returns infinitely often. A transient atom
is one which will eventually be left forever.

Lemma 6.2.3 Let P be a Markov kernel on X×X . Let α be an accessible recurrent
atom. Then the set α∞ defined by α∞ = {x ∈ X : Px(Nα = ∞) = 1} is absorbing.

Proof. By Proposition 4.2.4, the function h(x) = Px(Nα = ∞) is harmonic. For x ∈
α∞, we get

1 = h(x) = Ph(x) = Ex[1α∞
(X1)PX1(Nα = ∞)]+Ex[1αc

∞
(X1)PX1(Nα = ∞)]

= P(x,α∞)+Ex[1αc
∞
(X1)PX1(Nα = ∞)].

The previous relation may be rewritten as

Ex[1αc
∞
(X1){1−PX1(Nα = ∞)}] = 0 .

For x ∈ αc
∞, Px(Nα = ∞)< 1, thus the previous relation implies P(x,αc

∞) = 0. 2

Proposition 6.2.4 Let P be a Markov kernel on X×X and α be an atom.

(i) If α is accessible recurrent, any atom β satisfying Pα(σβ < ∞) > 0 is
accessible recurrent and

Pα(Nβ = ∞) = Pβ (Nα = ∞) = 1 . (6.2.5)

(ii) If α is recurrent and if there exists an accessible atom β , then α is acces-
sible.
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Proof. (i) The atom β is accessible by Lemma 6.1.4. Applying Theorem 4.2.6
with A = α and B = β , we obtain, for all x ∈ α , 1 = Px(Nα = ∞)≤ Px(Nβ = ∞) =
Pα(Nβ = ∞). On the other hand, applying again the strong Markov property, we
obtain, for all x ∈ α ,

1 = Px(Nβ = ∞) = Px(τβ < ∞,Nβ ◦θτβ
= ∞)

= Px(τβ < ∞)Pβ (Nβ = ∞)≤ Pβ (Nβ = ∞) .

This proves that β is recurrent. Interchanging the roles of α and β proves (6.2.5).
(ii) Let α be a recurrent atom and β be an accessible atom. Then,

Pα(σβ < ∞) = Pα(σβ < ∞,Nα =+∞) = Pα(σβ < ∞,Nα ◦σβ =+∞)

= Pα(σβ < ∞)Pβ (Nα =+∞) .

Since Pα(σβ < ∞)> 0, this implies that Pβ (Nα =+∞) = 1 and α is accessible.
2

As an immediate consequence of Proposition 6.2.4, we obtain that accessible
atoms are either all recurrent or all transient. We can extend the definition of recur-
rence to all sets.

Definition 6.2.5 (Recurrent set, Recurrent kernel) Let P be a Markov kernel on
X×X .

• A set A ∈X is said to be recurrent if U(x,A) = ∞ for all x ∈ A.
• The kernel P is said to be recurrent if every accessible set is recurrent.

Definition 6.2.6 (Uniformly Transient set, Transient set) Let P be a Markov ker-
nel on X×X .

• A set A ∈X is called uniformly transient if supx∈A U(x,A)< ∞.
• A set A∈X is called transient if A =

⋃
∞
n=1 An, where An is uniformly transient.

• A Markov kernel P is said to be transient if X is transient.

Theorem 6.2.7. Let P be a Markov kernel on (X,X ) which admits an accessible
atom α .

(i) P is recurrent if and only if α is recurrent.
(ii) P is transient if and only if α is transient.
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Proof. (i) If P is recurrent then an accessible atom α is recurrent by defini-
tion. Conversely, let α be a recurrent accessible atom. Then, α∞ is absorbing by
Lemma 6.2.3 and α ⊂ α∞. Let A be an accessible set and set B = A∩α∞. Since α∞

is absorbing and A is accessible, Pα(σB < ∞) > 0 and Pα(NB = ∞) = 1 by Theo-
rem 4.2.6. Therefore, for all x ∈ A,

U(x,A)≥ Ex[NB]≥ Ex[1{σα < ∞}NB ◦θσα
] = Px(σα < ∞)Eα [NB] = ∞ .

This proves that A is recurrent.
(ii) Assume first the atom α is transient. We will show that there exists a count-

able covering of X by uniformly transient sets, i.e. a family {Xn, n∈N∗} ⊂X such
that supx∈X U(x,Xm)< ∞ for all m≥ 1 and X =

⋃
∞
m=1 Xm.

For m∈N∗, define Xm =
{

x ∈ X : ∑
m
i=0 Pi(x,α)≥ m−1

}
. Since U(x,α)≥UPi(x,α)

for all i≥ 0 and x ∈ X and since α is transient, the atomic version of the maximum
principle Lemma 6.1.3 yields for all x ∈ X,

∞ > (m+1)U(α,α)≥ (m+1)U(x,α)≥
m

∑
i=0

UPi(x,α)

≥
m

∑
i=0

∫
Xm

U(x,dy)Pi(y,α) =
∫

Xm

U(x,dy)
m

∑
i=0

Pi(y,α)≥ m−1U(x,Xm) ,

therefore Xm is uniformly transient. Moreover Xm ⊆Xm+1 and since α is accessible,

∞⋃
m=1

Xm = {x ∈ X : U(x,α)> 0}= X .

Conversely, if P is transient, X=∪m≥1Xm with Xm uniformly transient for all m≥ 1.
Since P(α,X) = 1, there exists r such that P(α,Xr) > 0. By Lemma 6.1.4, Xr is
accessible and transient and therefore α cannot be recurrent in view of Proposi-
tion 6.2.4, so it is transient.

2

In some cases, an invariant probability measure for P can be exhibited. The fol-
lowing proposition provides a simple criterion for recurrence.

Proposition 6.2.8 Let P be a Markov kernel on X×X . Assume that P admits
an atom α and an invariant probability measure π .

(i) If π(α)> 0 then α is recurrent.
(ii) If α is accessible, then π(α)> 0 and α (and hence P) are recurrent.

Proof. (i) Since π is invariant, we have
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πU(α) =
∞

∑
n=0

πPn(α) =
∞

∑
n=0

π(α) . (6.2.6)

Therefore, if π(α)> 0 the atomic version of the maximum principle (Lemma 6.1.3)
yields

∞ = πU(α) =
∫

X
π(dy)U(y,α)≤U(α,α)

∫
X

π(dy) =U(α,α) .

(ii) Since α is an accessible atom, Kaε
(x,α) > 0 for all x ∈ X and ε ∈ (0,1).

Therefore, we get that

π(α) = πKaε
(α) =

∫
X

π(dx)Kaε
(x,α)> 0 .

Therefore α is recurrent by (i) and P is recurrent by Theorem 6.2.7.
2

6.3 Period of an atom

Consider the Markov kernel P on {0,1} defined as follows:

P =

(
0 1
1 0

)
The Markov chain associated to this kernel behaves as follows: if it is in state 0, then
it jumps to 1 and vice-versa. Therefore, starting for instance from 0, the chain will
be back in the state 0 at all even integers. The unique invariant probability for this
kernel is the uniform distribution π = (1/2,1/2). However, the periodic behavior
precludes the convergence of the chain to its stationary distribution, an important
and desirable feature. We will further discuss this in Chapter 7 and later chapters.
We only focus here on the definition of periodicity.

Definition 6.3.1 (Period) Let P be a Markov kernel on X×X and let α be an
atom. Define by Eα the subset

Eα = {n > 0 : Pn(α,α)> 0} . (6.3.1)

The period d(α) of the atom α is the greatest common divisor (g.c.d.) of Eα , with
the convention g.c.d.( /0) = ∞. An atom is said to be aperiodic if its period is 1.

It is easily seen that the set Eα is stable by addition, i.e. if n1, . . . ,ns ∈ Eα and
b1, . . . ,bs are nonnegative integers such that ∑

s
i=1 bi > 0, then ∑

s
i=1 bini > 0. To go
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further, we need an elementary result which is a straightforward consequence of the
Bezout theorem.

Lemma 6.3.2 Let E be a subset of N∗, which is stable by addition and let d =
g.c.d.(E). There exists n0 ∈ N∗ such that dn ∈ E for all n≥ n0.

Proof. There exist n1, . . . ,ns ∈ E such that d = g.c.d.(n1, . . . ,ns) and, by the Bezout
theorem, there exist a1, . . . ,as ∈Z such that ∑

s
i=1 aini = d. Setting p = ∑

s
i=1 a−i ni we

get
s

∑
i=1

a+i ni =
s

∑
i=1

(ai +a−i )ni = p+d .

Since E is stable by addition, p and p+ d belong to E. Since p ∈ E, there exists
k ∈N such that p = kd. For n≥ k2, we may write n = mk+ r with r ∈ {0, . . . ,k−1}
and m≥ k. Then, using again that E is stable by addition, we get

dn = d(mk+ r) = mkd + rd = (m− r)p+ r(p+d) ∈ E .

2

Proposition 6.3.3 Let P be a Markov kernel on X×X admitting an accessible
atom α . There exists an integer n0 ∈ N∗ such that nd(α) ∈ Eα for all n≥ n0.

Proof. If n,m∈ Eα , then Pn+m(α,α)≥ Pn(α,α)Pm(α,α)> 0. The set Eα is there-
fore stable by addition. Applying Lemma 6.3.2 concludes the proof. 2

The analysis of atomic chains would be difficult if different atoms might have dif-
ferent periods. Fortunately, this may not happen.

Proposition 6.3.4 Let α and β be two accessible atoms. Then d(α) = d(β ).

Proof. Assume that α and β are two accessible atoms. Then there exist positive
integers ` and m such that P`(α,β ) > 0 and Pm(β ,α) > 0. Then P`+m(α,α) ≥
P`(α,β )Pm(β ,α) > 0. This implies that d(α) divides `+m. Moreover, for every
n ∈ Eβ ,

P`+n+m(α,α)≥ P`(α,β )Pn(β ,β )Pm(β ,α)> 0 .

This implies that d(α) also divides `+ n+m and therefore d(α) divides n. Since
n∈Eβ is arbitrary, this implies that d(α) divides d(β ). Similarly, d(β ) divides d(α)
and thus d(α) = d(β ). 2
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Definition 6.3.5 (Period of an atomic Markov chain) Let P be a Markov kernel
on X×X which admits an accessible atom α . The common period of all accessible
atoms is called the period of P. If one and hence all accessible atoms are aperiodic
then P is called an aperiodic Markov kernel.

We conclude with a characterization of aperiodicity.

Proposition 6.3.6 Let P be a Markov kernel on X×X which admits an ac-
cessible atom α . The kernel P is aperiodic if and only if for all accessible atom
α there exists N ∈ N such that Pn(α,α)> 0 for all n≥ N.

Moreover, if P is aperiodic then for all accessible atoms β ,γ , there exists
N ∈ N such that Pn(β ,γ)> 0 for all n≥ N.

Proof. Assume that P is aperiodic. Let α be an accessible atom. Since Eα is stable
by addition and d(α) = 1, Lemma 6.3.2 implies that there exists an integer n0 such
that Pn(α,α)> 0 for all n≥ n0.

Let β ,γ be accessible atoms. Then there exist m and p such that Pm(β ,α) > 0
and Pp(α,β )> 0. Thus, for all n≥ n0,

Pm+n+p(β ,γ)≥ Pm(β ,α)Pn(α,α)Pp(α,γ)> 0 .

The statement follows with N = n0 + p. The converse is obvious. 2

6.4 Subinvariant and invariant measures

In this section, we use the results of Section 3.6 and in particular Theorem 3.6.5
to prove the existence of invariant measures with respect to a Markov kernel which
admits an accessible and recurrent atom α .

Definition 6.4.1 Let P be a Markov kernel on X×X . An atom α ∈X is said to
be

(i) positive if Eα [σα ]< ∞;
(ii) null recurrent if it is recurrent and Eα [σα ] = ∞.

By definition, a positive atom is recurrent. We define the measure λα on X by
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λα(A) = Eα

[
σα

∑
k=1

1A(Xk)

]
, A ∈X . (6.4.1)

Theorem 6.4.2. Let P be a Markov kernel on X×X and let α be an accessible
atom.

(i) If α is recurrent, then λα is invariant.
(ii) If λα is invariant, then α is recurrent.

(iii) If α is recurrent, then every subinvariant measure λ is invariant, proportional
to λα , satisfies λ (α)< ∞ and for all B ∈X ,

λ (B) = λ (α)λα(B) = λ (α)
∫

α

λα(dx)Ex

[
σα−1

∑
k=0

1B(Xk)

]
.

(iv) Assume that α is recurrent. Then α is positive if and only if P admits a unique
invariant probability measure π . If α is positive, then the unique invariant prob-
ability measure can be expressed as π = (Eα [σα ])

−1λα .

Proof. (i) Since λα(α) = Pα(σα < ∞) = 1 and α is accessible, Lemma 3.6.1
ensures that λα is σ -finite. Let the trace σ -field of X on α be denoted by Xα

(see (3.3.5)). Let ν be the measure defined on α by να(B) = Pα(Xσα
∈ B,σα < ∞),

B ∈Xα . Finally, let Qα be the induced kernel on the atom α (see definition 3.3.7):

Qα(x,B) = Px(Xσα
∈ B,σα < ∞) = να(B) , x ∈ α,B ∈Xα ,

If Pα(σα < ∞) = 1, then να(α) = 1 and obviously να is Qα invariant. Moreover,
by Theorem 3.6.3 applied with C = α , the measure ν0

α defined for B ∈X by

ν
0
α(B) =

∫
α

να(dx)Ex

[
σα−1

∑
k=0

1B(Xk)

]
,

is invariant. By Lemma 3.6.2, we have for all B ∈X ,

ν
0
α(B) = ν

0
α P(B) =

∫
α

να(dx)Ex

[
σα

∑
k=1

1B(Xk)

]
= λα(B) .

This proves that λα is invariant.
(ii) Assume that λα is invariant. We apply again Theorem 3.6.5. Note first that

λα(α)≤ 1 and Pα(σα < ∞)> 0 since α is accessible. Since λα is invariant, Theo-
rem 3.6.5 implies that Pα(σα < ∞) = 1 which shows that α is recurrent.

(iii) Assume now that α is recurrent and let λ be a subinvariant measure. Since
Pα(σα < ∞) = 1, Theorem 3.6.5 shows that
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µ(B) =
∫

α

µ(dx)Ex

[
σα

∑
k=1

1B(Xk)

]
,

is invariant. Since the function x 7→ Ex
[
∑

σα

k=11B(Xk)
]

is invariant on α , we obtain
that µ(B) = µ(α)λα(B) for all B ∈X . This proves that all the subinvariant mea-
sures are invariant and proportional to λα .

(iv) If α is positive then λα(X) = Eα [σα ]< ∞ and λα/λα(X) is thus the unique
invariant probability measure. Conversely, if α is recurrent and P admits an invariant
probability measure π , then by (i), π is proportional to λα . Since π(X) = 1 < ∞, this
implies

Eα [σα ] = λα(X)< ∞ ,

showing that α is positive.
2

Let α be an accessible positive atom and let π be the unique invariant probability
measure. We now turn our attention to modulated moments of the return times to the
atom. For a sequence {r(k), k ∈ N} we define the integrated sequence {r∗(k), k ∈
N} by r∗(0) = 0 and

r∗(k) =
k

∑
j=1

r( j) , k ≥ 1 . (6.4.2)

Lemma 6.4.3 Let P be a Markov kernel on X×X admitting an accessible and
positive atom α and let π be its unique invariant probability measure. Let {r(n), n∈
N} be a nonnegative sequence and let f ∈ F+(X). Then,

Eπ

[
σα

∑
k=1

r(k) f (Xk)

]
= π(α)Eα

[
σα

∑
k=1

r∗(k) f (Xk)

]
.

Proof. Define the function h on X by h(x) = Ex

[
∑

σα

j=1 r( j) f (X j)
]
. Applying Theo-

rem 6.4.2 and noting that h is constant on α , we obtain

Eπ

[
σα

∑
k=1

r(k) f (Xk)

]
= π(α)Eα

[
σα−1

∑
k=0

r(k)h(Xk)

]

= π(α)Eα

[
σα−1

∑
k=0

EXk

[
σα

∑
j=1

r( j) f (X j)

]]

= π(α)
∞

∑
k=0

∞

∑
j=1
Eα

[
1{k<σα}1{ j≤σα◦θk}r( j) f (Xk+ j)

]
Since {k < σα}∩{ j ≤ σα ◦θk}= {k+ j ≤ σα},
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Eπ

[
σα

∑
k=1

r(k) f (Xk)

]
=

∞

∑
k=0

∞

∑
j=1
Eα

[
1{k+ j≤σα}r( j) f (Xk+ j)

]
=

∞

∑
n=1

n

∑
j=1
Eα

[
1{n≤σα}r( j) f (Xn)

]
= Eα

[
σα

∑
n=1

r∗(n) f (Xn)

]
.

2

In the case of a geometric sequence, this identity yields a necessary and sufficient
condition for the finiteness of the geometric moment.

Corollary 6.4.4 Let P be a Markov kernel on X×X admitting an accessible
and positive atom α . Let f ∈M+(X ) and r > 0. Then,

Eπ

[
σα

∑
k=1

rk f (Xk)

]
< ∞⇔ Eα

[
σα

∑
k=1

rk f (Xk)

]
< ∞ .

Proof. If r(k) = rk, then r∗(k) = r(rk−1)/(r−1). 2

This last result is in sharp contrast with the polynomial moments of the return times.
Indeed, for any r > 0, Eπ [σ

r
α ] < ∞ if and only if Eα [σ

r+1
α ] < ∞. For geometric

moments, there is no such discrepancy. To illustrate this, we relate the first two
moments of the return time to the state x under the stationary distribution Pπ to
higher moments under Pα . For instance, we have, for every α ∈ X,

Eπ [σα ] = π(α)Eα

[
σα(σα +1)

2

]
,

Eπ [σ
2
α ] = π(α)Eα

[
σα(σα +1)(2σα +1)

6

]
.

Recall that the attraction set α+ of α has been defined in Section 3.6 as α+ =
{x ∈ X : Px(σα < ∞) = 1}.

Lemma 6.4.5 Let P be a Markov kernel admitting an accessible and recurrent
atom α . Then α+ is absorbing. If moreover α is positive and π denotes the unique
invariant probability measure, then π(α+) = 1.

Proof. Since α is recurrent, α ⊂ α+ and the set α+ is absorbing by Lemma 3.5.4.
This implies that Pα (

⋂
∞
k=1{Xk ∈ α+}) = 1 and

λα(α+) = Eα

[
σα

∑
k=1

1α+
(Xk)

]
= Eα [σα ] .

Thus, if α is positive, Theorem 6.4.2 yields π(α+) = λα(α+)/Eα [σα ] = 1. 2
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We end up this section with a developed example of a particular Markov chain,
which is not itself atomic but which be closely associated to an atomic Markov
chain.

Example 6.4.6 (Stochastic Unit Root). Let {Zk, k ∈ N} and {Uk, k ∈ N} be two
independent sequences of i.i.d. random variables defined on a probability space
(Ω ,F ,P), the distribution of U1 being uniform on [0,1]. Let r : R→ [0,1] be a
cadlag nondecreasing function and let the sequence {Xk, k ∈ N} be defined recur-
seively by X0 and for k ≥ 1,

Xk =

{
Xk−1 +Zk if Uk ≤ r(Xk−1) ,

Zk otherwise .
(6.4.3)

We assume that νZ , the distribution of Zk, has a continuous positive density fZ with
respect to the Lebesgue measure. Clearly, {Xn, n ∈ N} defines a Markov Chain
on (R,B(R)). Its Markov kernel P can be expressed as follows: for all (x,A) ∈
R×B(R),

P(x,A) = r(x)E [1A(x+Z0)]+(1− r(x))E [1A(Z0)] . (6.4.4)

Without any further assumption, {Xn, n ∈ N} is not an atomic Markov chain but it
actually can be embedded into an atomic Markov chain. Define F0 = σ(X0) and for
k ≥ 1, Fk = σ(X0,U`,Z`, 1 ≤ ` ≤ k). Then {Xk, k ∈ N} is adapted to the filtration
F = {Fk, k ∈ N}. Define for k ≥ 1,

Vk = 1{Uk ≤ r(Xk−1)} . (6.4.5)

Then (6.4.3) reads
Xk = Xk−1Vk +Zk . (6.4.6)

Setting Wk = (Xk,Vk+1), the sequence {Wk, k ∈ N} is then a Markov chain with

Xk−1

Vk

Xk

Vk+1

Fig. 6.1 Dependency graph of {(Xk,Vk+1), k ∈ N}.

kernel P̄ defined for w = (x,v) ∈ R×{0,1} and A ∈B (R) by

P̄(w,A×{1}) = E [1A(xv+Z0)r(xv+Z0)]

P̄(w,A×{0}) = E [1A(xv+Z0)(1− r(xv+Z0))] .
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The Markov kernel P̄ admits the set α = R×{0} as an atom. Let P̄µ be the proba-
bility induced on ((X×{0,1})N,(X ⊗P({0,1}))⊗N) by the Markov kernel P̄ and
the initial distribution µ . We denote by Eµ the associated expectation operator. By
definition of P̄, for all w = (x,v) ∈ R×{0,1},

P̄(w,α) = 1−E [r(xv+Z0)] .

Therefore, if Leb({r < 1}) > 0 and Z0 has a positive density with respect to
Lebesgue measure, then 1−E [r(xv+Z0)]> 0. This in turn implies that P̄(w,α)> 0
and α is accessible and aperiodic.

We now investigate the existence of an invariant probability measure for P. For
k ∈ N∗, define Sk = Z1 + · · ·+Zk and

pk = E

[
k

∏
i=1

r(Sk)

]
.

Then P̄α(σα > k) = pk and

Ēα [ f (X1, . . . ,Xk)1{σα ≥ k}] = E [r(S1) . . .r(Sk−1) f (S1, . . . ,Sk)]

Lemma 6.4.7 If ∑
∞
k=1 pk < ∞ then P admits an invariant probability measure π de-

fined for A ∈B(X) by

π(A) =
∑

∞
k=1E [r(Z1) . . .r(Z1 + · · ·+Zk−1)1A(Z1 + · · ·+Zk)]

∑
∞
k=1 pk

.

Proof. The condition ∑k pk <∞ implies that Leb({r < 1}> 0), hence α is accessible
for P̄. Moreover, since P̄(x,0)(σα > k) = pk, the same condition also implies that α

is positive. Thus Theorem 6.4.2 implies that P̄ admits a unique invariant probability
measure π̄ defined for A ∈B(X) and i ∈ {0,1} by

π̄(A×{i}) =
Ēα [∑

σα

k=11A×{i}(Wk)]

Ēα [σα ]

The measure π defined by π(A) = π(A×{0,1} is invariant for P. Indeed, π is by
definition the distribution of Xk for all k under P̄π . This means that π is a stationry
distribution of the chain {Xk} thus it is invariant. Moreover,

π(A) =
∑

∞
k=1 P̄α [k ≤ σα , Xk ∈ A]

∑
∞
k=1 P̄α [k ≤ σα ]

=
∑

∞
k=1E [r(Z1) . . .r(Z1 + · · ·+Zk−1)1A(Z1 + · · ·+Zk)]

∑
∞
k=1 pk

.

2
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6.5 Independence of the excursions

Let σ
(i)
α be the successive returns to the atom α and recall the convention σ

(0)
α = 0

and σ
(1)
α = σα .

Proposition 6.5.1 Let P be a Markov kernel which admits a recurrent atom α .
Let Z0, . . . ,Zk be Fσα

measurable random variables such that for i = 1 · · · ,k,
the function x 7→ Ex[Zi] is constant on α . Then, for every initial distribution
λ ∈M1(X ) such that Pλ (σα < ∞) = 1,

Eλ

[
k

∏
i=0

Zi ◦θ
σ
(i)
α

]
= Eλ [Z0]

k

∏
i=1
Eα [Zi] . (6.5.1)

Proof. For k = 1, the assumption that the function x→ Ex[Z1] is constant on α and
the strong Markov property yield

Eλ [Z0Z1 ◦θσα
] = Eλ [Z0EXσα

[Z1]] = Eλ [Z0Eα [Z1]] = Eλ [Z0]Eα [Z1] .

Assume now that (6.5.1) holds for one k ≥ 1. Then, the induction assumption, the
identity θ

σ
(k)
α

= θ
σ
(k−1)
α

◦θσα
on {θ

σ
(k)
α

< ∞} and the strong Markov property yield

Eλ

[
k

∏
i=0

Zi ◦θ
σ
(i)
α

]
= Eλ

[
Z0

(
k

∏
i=1

Zi ◦θ
σ
(i−1)
α

)
◦θσα

]

= Eλ

[
Z0EXσα

[
k

∏
i=1

Zi ◦θ
σ
(i−1)
α

]]
= Eλ [Z0]

k

∏
i=1
Eα [Zi] .

2

As an application, for f ∈ F(X), define E1(α, f ) = ∑
σα

k=1 f (Xk) and for n ∈ N

En+1(α, f ) = E1(α, f )◦θ
σ
(n)
α

=
σ
(n+1)
α

∑
k=σ

(n)
α +1

f (Xk) . (6.5.2)

Corollary 6.5.2 Let P be a Markov kernel admitting a recurrent atom α . Then,
under Pα , the sequence {En(α, f ), n∈N∗} is i.i.d.. For every µ ∈M1(X ) such
that Pµ(σα < ∞) = 1, the random variables En(α, f ), n ≥ 1 are independent
and En(α, f ), n≥ 2 are i.i.d..
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6.6 Ratio limit theorems

Let P be a Markov kernel admitting a recurrent atom α . In this section, we consider
the convergence of functionals of the Markov chains such as

1
n

n

∑
k=1

f (Xk) ,
∑

n
k=1 f (Xk)

∑
n
k=1 g(Xk)

.

To obtain the limits of these quantities, when they exist, an essential ingredient is
Proposition 6.5.1 i.e. the independence of the excursions between successive visits
to a recurrent atom.

Lemma 6.6.1 Let P be a Markov kernel which admits a recurrent atom α and let
f be a finite λα -integrable function. Then, for every initial distribution µ such that
Pµ(σα < ∞) = 1,

lim
n→∞

∑
n
k=1 f (Xk)

∑
n
k=11α(Xk)

= λα( f ) Pµ − a.s. (6.6.1)

Proof. We first show that for every f ∈ L1(λα),

lim
n→∞

∑
n
k=1 f (Xk)

∑
n
k=11α(Xk)

= λα( f ) Pα − a.s. (6.6.2)

Let f ∈L1(λα) be a nonnegative function and let {Ek(α, f ), k∈N∗} be as in (6.5.2).
The random variable E1(α, f ) is Fσα

-measurable and by definition of λα , we have

Eα [E1(α, f )] = Eα

[
σα

∑
k=1

f (Xk)

]
= λα( f ) .

By Corollary 6.5.2, the random variables {Ek(α, f ),k ∈ N∗}, are i.i.d. under Pα .
Thus, the strong law of large numbers yields

1
n

σ
(n)
α

∑
k=1

f (Xk) =
E1(α, f )+ · · ·+En(α, f )

n
Pα-a.s.−→ λα( f ) .

The same convergence holds if we replace n by any integer-valued random sequence
{νn, n∈N} such that limn→∞ νn =∞ Pα −a.s. For n∈N, define νn =∑

n
k=11α(Xk),

the number of visits to the atom α before time n. Since α is a recurrent atom, it holds
that νn→ ∞ Pα − a.s. Moreover,

∑
σ
(νn)
α

k=1 f (Xk)

νn
≤ ∑

n
k=1 f (Xk)

∑
n
k=11α(Xk)

≤
(

νn +1
νn

)
∑

σ
(νn+1)
α

k=1 f (Xk)

νn +1
.
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Since the leftmost and rightmost terms have the same limit, we obtain (6.6.2). Writ-
ing f = f+− f−, we obtain the same conclusion for f ∈ L1(λα).

Let now µ be an initial distribution such that Pµ(σα < ∞) = 1. Since α is recur-
rent, it also holds that Pµ(Nα = ∞) = 1. This implies that limn νn = ∞ Pµ − a.s.
Write then, for n≥ σα ,

∑
n
k=1 f (Xk)

∑
n
k=11α(Xk)

=
∑

σα

k=1 f (Xk)

νn
+

∑
n
k=σα+1 f (Xk)

1+∑
n
k=σα+11α(Xk)

.

Since Pµ(σα < ∞) = 1 and Pµ(limn νn = ∞) = 1, we have

limsup
n→∞

∑
σα

k=1 f (Xk)

νn
= 0 Pµ − a.s. (6.6.3)

Since Pµ(σα < ∞) = 1, the strong Markov property and (6.6.2) yield

Pµ

(
lim
`→∞

∑
σα+`
k=σα+1 f (Xk)

∑
σα+`
k=σα+11α(Xk)

= λα( f )

)
= Pα

(
lim
`→∞

∑
`
k=1 f (Xk)

∑
`
k=11α(Xk)

= λα( f )
)
= 1 ,

showing that

lim
n→∞

∑
n
k=σα+1 f (Xk)

∑
n
k=σα+11α(Xk)

1{n≥ σα}= lim
`→∞

∑
σα+`
k=σα+1 f (Xk)

∑
σα+`
k=σα+11α(Xk)

= λα( f ) Pµ − a.s.

This relation and (6.6.3) prove (6.6.1). 2

Theorem 6.6.2. Let P be a Markov kernel on X×X . Let α be an accessible and
recurrent atom. Let λ be a non trivial invariant measure for P. Then, for every initial
distribution µ such that Pµ(σα < ∞) = 1 and all finite λ -integrable functions f ,g
such that λ (g) 6= 0,

lim
n→∞

∑
n
k=1 f (Xk)

∑
n
k=1 g(Xk)

=
λ ( f )
λ (g)

Pµ − a.s.

Proof. By Theorem 6.4.2, λ = λ (α)λα with 0 < λ (α) < ∞. This implies that
L1(λα) = L1(λ ) and

λα( f )
λα(g)

=
λ ( f )
λ (g)

.

Thus we can apply Lemma 6.6.1 to the functions f and g and take a ratio since we
have assumed that λα(g) 6= 0. 2
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For a positive atom, we obtain the usual law of large numbers and for a null
recurrent atom, dividing by n instead of the number of visits to the atom in (6.6.1)
yields a degenerate limit.

Corollary 6.6.3 Let P be a Markov kernel with an accessible and recurrent
atom α and let µ be a probability measure such that Pµ(σα < ∞) = 1.

(i) If α is positive and π is the unique invariant probability measure, then for
every finite π-integrable function f ,

1
n

n

∑
k=1

f (Xk)
Pµ-a.s.
−→ π( f ) .

(ii) If α is null recurrent and λ is a non-trivial invariant measure, then for
every finite λ -integrable function f ,

1
n

n

∑
k=1

f (Xk)
Pµ-a.s.
−→ 0 . (6.6.4)

Proof. If P is positive recurrent, the conclusion follows from Theorem 6.4.2 and
Theorem 6.6.2 upon setting g ≡ 1. Assume now that α is null recurrent. Then
λ (X) = λ (α)λα(X) = λ (α)Eα [σα ] = ∞. Let f be a nonnegative function such that
λ ( f ) < ∞. Since λ is a σ -finite measure, for every ε > 0, we may choose a set
F in such a way that 0 < λ (F) < ∞ and λ ( f )/λ (F) ≤ ε . Then, setting g = 1F in
Theorem 6.6.2 we obtain

limsup
n→∞

1
n

n

∑
k=1

f (Xk)≤ limsup
n→∞

∑
n
k=1 f (Xk)

∑
n
k=11F(Xk)

=
λ ( f )
λ (F)

≤ ε Pµ − a.s.

Since ε is arbitrary, this proves (6.6.4). 2

6.7 The central limit theorem

Let P be a Markov kernel with invariant probability measure π and let f ∈ F(X)
be such that π(| f |) < ∞. . We say that the sequence { f (Xk), k ∈ N} satisfies
a central limit theorem (CLT) if there exists a constant σ2( f ) ≥ 0 such that
n−1/2

∑
n
k=1{ f (Xk)−π( f )} converges in distribution to a Gaussian distribution with

zero mean and variance σ2( f ) under Pµ for any initial distribution µ ∈M1(X ).
Note that we allow the special case σ2( f ) = 0 which corresponds to weak conver-
gence to 0. For an i.i.d. sequence, a CLT holds as soon as π(| f |2) < ∞. This is no
longer true in general for a Markov chain and additional assumptions are needed.
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Theorem 6.7.1. Let P be a Markov kernel on X×X . Let α be an attractive atom.
Denote by π the unique invariant probability measure of P. Let f ∈ F(X) be a
function satisfying

π(| f |)< ∞ , Eα

( σα

∑
k=1
{ f (Xk)−π( f )}

)2
< ∞ . (6.7.1)

Then for every initial distribution µ ∈M1(X ) ,

n−1/2
n

∑
k=1
{ f (Xk)−π( f )}

Pµ

=⇒ N(0,σ2( f )) , (6.7.2)

with

σ
2( f ) =

1
Eα [σα ]

Eα

( σα

∑
k=1
{ f (Xk)−π( f )}

)2
 . (6.7.3)

Proof. Without loss of generality, we assume that π( f ) = 0. We decompose the sum
∑

n
k=1 f (Xk) into excursions between successive visits to the state α . Let E j(α, f ),

j ≥ 1 be defined as in (6.5.2). and let νn = ∑
n
k=11α(Xk) be the number of visits to

the atom α before n.
Applying Corollary 6.6.3 with f = 1α , we obtain

νn

n
Pµ-a.s.
−→ π(α) =

1
Eα [σα ]

. (6.7.4)

Thus νn→ ∞ Pµ − a.s. and we can consider only the event νn ≥ 2. Then,

n

∑
k=1

f (Xk) = E1(α, f )+
νn

∑
k=2

E j(α, f )+
n

∑
i=σ

(νn)
C +1

f (Xi) .

Since α is attractive and positive, by Corollary 6.5.2 the random variables E j(α, f ),
j ≥ 1 are independent under Pµ for every initial distribution µ and E j(α, f ), j ≥ 2
are i.i.d. under Pµ . Theorem E.4.5, (6.7.1) and (6.7.4) imply that n−1/2

∑
νn
j=2 E j(α, f )

converges weakly under Pµ to N(0,σ2( f )). The theorem will be proved if we show
that
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lim
n→∞

n−1/2

∣∣∣∣∣n−1

∑
k=0

f (Xk)−
νn

∑
j=2

E j(α, f )

∣∣∣∣∣
≤ limsup

n→∞

n−1/2|E1(α, f )|+ limsup
n→∞

n−1/2
n

∑
k=σ

(νn)
α +1

f (Xk) = 0 , (6.7.5)

where the limits must hold in Pµ probability for every initial distribution µ .
Since the atom α is attractive and recurrent, Pµ(σα < ∞) = 1. Therefore the
sum E1(α, | f |) has a Pµ − a.s. finite number of terms and limn→∞ n−1/2E1(α, f ) =
0 Pµ − a.s.. To conclude, it remains to prove that, as n→ ∞

n−1/2
∑

n
i=σ

(νn)
α +1 f (Xi)

Pµ −prob
−→ 0 . (6.7.6)

To prove this convergence, we will use the following lemma.

Lemma 6.7.2 Let P be a Markov kernel on X×X , α be an attractive atom satis-
fying Eα [σα ] < ∞ and µ ∈M1(X ). Let νn = ∑

n
k=11α(Xk) be the number of visits

to the atom α before n. Then, for all ε > 0, there exists an integer k > 0 such that

sup
n∈N
Pµ(n−σ

(νn)
α > k)≤ ε .

Proof. Using the Markov property, we have for all n≥ 1 and k ∈ N,

Pµ(n−σ
(vn)
α = k)≤ Pµ(Xn−k ∈ α,σα ◦θn−k > k)

= Pµ(Xn−k ∈ α)Pα(σα > k)≤ Pα(σα > k) .

Since Eα [σα ]< ∞, this bound yields, for all n ∈ N,

Pµ(n−σ
(vn)
α > k)≤

∞

∑
j=k+1

Pα(σα > j)→k→∞ 0 .

2

We can now conclude the proof of Theorem 6.7.1. Let ε > 0. By Lemma 6.7.2,
we may choose k ∈ N such that Pµ(n−σ

(vn)
α > k)< ε/2 for all n ∈ N. Then

An = Pµ

(
n−1/2

∣∣∣∑n
k=σ

(νn)
α +1 f (Xk)

∣∣∣> η

)
≤ Pµ(n−σ

(νn)
α > k)+Pµ

(
n−1/2

∣∣∣∑n
j=σ

(νn)
α +1 f (X j)

∣∣∣> η ,n−σ
(νn)
α ≤ k

)
≤ ε/2+

k

∑
s=1
Pµ

(
n−1/2

∑
σ
(νn)
α +k

j=σ
(νn)
α

| f (X j)|> η ,n−σ
(νn)
α = s

)

≤ ε/2+
k

∑
s=1
Pµ

(
n−1/2

n−s+k

∑
j=n−s

| f (X j)|> η ,Xn−s ∈ α,σα ◦θn−s > s

)
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Therefore, by the Markov property, we get An ≤ ε/2+∑
∞
s=1 an(s), with

an(s) = Pα

(
n−1/2

k

∑
k=1
| f (Xk)|> η ,σα > s

)
1{s≤n} .

Note that for all s ∈ N, limn→∞ an(s) = 0 and an(s) ≤ Pα(σα > s). Furthermore,
since ∑

∞
s=1Pα(σα > s)<∞, Lebesgue’s dominated convergence theorem shows that

limn→∞ ∑
∞
s=1 an(s) = 0 and therefore, since ε is arbitrary, that

lim
n→∞

Pµ

(
n−1/2

∣∣∣∑n
k=σ

(νn)
α +1 f (Xk)

∣∣∣> η

)
= 0 .

This establishes (6.7.6) and concludes the proof of Theorem 6.7.1. 2

Remark 6.7.3. Let f be a measurable function such that π( f 2)< ∞ and π( f ) = 0.
Since {Xk, k ∈ N} is a stationary sequence under Pπ , we obtain

Eπ

( 1√
n

n

∑
k=1

f (Xk)

)2
=

1
n

n−1

∑
k=0
Eπ [ f 2(Xk)]+

2
n

n−1

∑
k=0

k−1

∑
`=0
Eπ [ f (Xk) f (X`)]

= Eπ [ f 2(X0)]+2
n−1

∑
k=1

(
1− k

n

)
Eπ [ f (X0) f (Xk)] .

If the series ∑
∞
k=1 |Eπ [ f (X0) f (Xk)]| is convergent, then

lim
n→∞

Eπ

( 1√
n

n

∑
k=1

f (Xk)

)2
= Eπ [ f 2(X0)]+2

∞

∑
k=1
Eπ [ f (X0) f (Xk)] . (6.7.7)

N

6.8 Exercises

6.1. A Galton-Watson process is a stochastic process {Xn, n ∈ N} which evolves
according to the recursion X0 = 1 and

Xn+1 =
Xn

∑
j=1

ξ
(n+1)
j , (6.8.1)

where {ξ (n+1)
j : n, j ∈ N} is a set of i.i.d. nonnegative integer-valued random vari-

ables with distribution ν . The random variable Xn can be thought of as the number of
descendants in the n-th generation and {ξ (n+1)

j , j = 1, . . . ,Xn} represents the number
of (male) children of the j-th descendant of the n-th generation.
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The conditional distribution of Xn+1 given the past depends only on the cur-
rent size of the population Xn and the number of offsprings of each individual
{ξ (n+1)

j }Xn
j=1 which are conditionally independent given the past.

1. Show that the process {Xn, n ∈N} is an homogeneous Markov chain and deter-
miner its transition matrix.

We assume that the offspring distribution has a finite mean µ = ∑
∞
k=1 kν(k) < ∞

and that ν(0) > 0. Denote by Ex[Xk] the average number of individuals at the k-th
generation.

2. Show that the state {0} is accessible. Show that all the states except 0 are tran-
sient.

3. Show that for all x ∈ N and k ∈ N, Ex[Xk] = xµk.
4. Show that if µ < 1, Px(τ0 < ∞) = 1 and that the Markov kernel is recurrent.

6.2. We pursue here the study of the Galton-Watson process. We assume that the
offspring distribution ν satisfies: ν(0)> 0 and ν(0)+ν(1)< 1 (it places some pos-
itive probability on some integer k ≥ 2). We assume in this exercise that the initial
size of the population is X0 = 1. Denote by Φk(u) = E

[
uXk
]

(|u| ≤ 1) the generating

function of the random variable Xk and by ϕ(u) = E
[
uξ

(1)
1

]
the generating function

of the offspring distribution.

1. Show that Φ0(u) = u and for k ≥ 0,

Φk+1(u) = ϕ(Φk(u)) = Φk(ϕ(u)) .

2. Show that if the mean offspring number µ = ∑
∞
k=1 kν(k)< ∞, then the expected

size of the n-th generation is E [Xn] = µn.
3. Show that if the variance σ2 = ∑

∞
k=0(k−µ)2ν(k)< ∞, then the variance of Xk

is finite and give a formula for it.
4. Show that ϕ : [0,1]→ R+ is strictly increasing, strictly convex with strictly

increasing first derivative and ϕ(1) = 1.
5. Show that Φn(0) = P(Zn = 0) and that limn→∞ Φn(0) exists and is equal to the

extinction probability ρ = P(σ0 < ∞).
6. Show that the extinction probability ρ is the smallest nonnegative root of the

fixed point equation φ(r) = r.

A Galton-Watson process with mean offspring number µ is said to be supercritical
if µ > 1, critical if µ = 1 or subcritical if µ < 1.

7. In the supercritical case, show that the fixed point equation has a unique root
ρ < 1 less than one [Hint: use Exercise 6.3]

8. In the critical and subcritical cases, show that the only root is ρ = 1.

This implies that the extinction is certain if and only if the Galton-Watson process
is critical or subcritical. If on the other hand it is supercritical, then the probability
of extinction is ρ < 1 (nevertheless the Markov kernel remains still recurrent !).
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6.3. Let {bk, k ∈ N} be a probability on N such that b0 > 0 and b0 + b1 < 1. For
s ∈ [0,1], set φ(s) = ∑

∞
k=0 bksk, the generating function of {bk, k ∈ N}. Show that

1. If ∑
∞
k=1 kbk ≤ 1, then s = 1 is the unique solution to φ(s) = s in [0,1]

2. If ∑
∞
k=1 kbk > 1, then there exists a single s0 ∈ (0,1) such that φ(s0) = s0.

6.4 (Simple random walk on Z). The Bernoulli random walk on Z is defined by

P(x,x+1) = p , P(x,x−1) = q , p≥ 0 , q≥ 0, p+q = 1 .

1. Show that Pn(0,x) = p(n+x)/2q(n−x)/2
( n
(n+x)/2

)
when the sum n+ x is even and

|x| ≤ n and Pn(0,x) = 0 otherwise.
2. Deduce that for all n ∈ N, P2n(0,0) =

(2n
n

)
pnqn.

3. Show that the expected number of visits to {0} is U(0,0) = ∑
∞
k=0
(2k

k

)
pkqk.

4. Show that

P2k(0,0) =
(

2k
k

)
pkqk ∼k→∞ (4pq)k(πk)−1/2 .

Assume first that p 6= 1/2

5. Show that the state {0} is transient.

Assume now that p = 1/2.

6. Show that the state {0} is recurrent.
7. Show that the counting measure on Z is an invariant measure and that the state
{0} is null recurrent.

6.5 (Simple symmetric random walk on Z2 and Z3). A random walk on Zd is
called simple and symmetric if its increment distribution gives equal weight 1/(2d)
to the points z ∈ Zd satisfying |z| = 1. The transition kernel of the d-dimensional
simple random walk is given by P(x,y) = 1/(2d) if |y− x| = 1 and P(x,y) = 0 oth-
erwise.

Consider a symmetric random walk of X = Z2, i.e. P(x,y) = 1/4 if |x− y| = 1
and P(x,y) = 0 otherwise, where |·| stands here for the Euclidean norm. This means
that the chain may jump from a point x = (x1,x2) to one of its 4 neighbors, x± e1
and x± e2 where e1 = (1,0) and e2 = (0,1).

Let X+
n and X−n be the orthogonal projections of Xn on the diagonal lines y = x

and y =−x, respectively.

1. Show that {X+
n , n ∈ N} and {X−n , n ∈ N} are independent simple symmetric

random walks on 2−1/2Z and Xn = (0,0) if and only if X+
n = X−n = 0.

2. Show that P(2n)((0,0),(0,0)) =
((2n

n

)( 1
2

)2n
)2
∼n→∞ 1/(πn) [Hint: use Stir-

ling’s formula].
3. Show that the state {0,0} is recurrent. Is it positive or null recurrent ?

Consider now the case d = 3. The transition probabilities are given by P(x,y) = 1/6
when |x− y| = 1 and P(x,y) = 0 otherwise. Thus the chain jumps from one state to
one of its nearest neighbours with equal probability.
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4. Show that ∑
∞
m=0 P6m(0,0)< ∞. [Hint: show that P2n(0,0) = O(n−3/2)]

5. Show that U(0,0)< ∞ and therefore that the state {0} is transient.

6.6. Let S be a subset of Z. Assume that g.c.d.(S) = 1, S+ = S∩Z∗+ 6= /0, S− =
S∩Z∗− 6= /0. Show that

I = {x ∈ Z : x = x1 + · · ·+ xn, for some n ∈ N∗, x1, . . . ,xn ∈ S}= Z .

6.7 (Random walks on Z). Let {Zn, n ∈ N} be an i.i.d. sequence on Z with distri-
bution ν and consider the random walk Xn = Xn−1 + Zn. The kernel P is defined
by

P(x,y) = ν(y− x) = P(0,y− x) .

We assume that ν 6= δ0 and ∑z∈Z |z|ν(z) < ∞ and set m = ∑z∈Z zν(z). We set S =
{z ∈ Z, ν(z)> 0} and assume that 1 = g.c.d.(S).

1. Show that if m 6= 0, the Markov kernel P is transient.

In the sequel we assume that m = 0.

2. Show that for all x,y ∈ Z, Px(σy < ∞)> 0 [hint: use Exercise 6.6].
3. Let ε > 0. Show that

1 = lim
n→∞

1
n

n

∑
k=1
P0(|Xk| ≤ εk)≤ liminf

n→∞

1
n

U(0, [−bεnc,bεnc])

4. Show that

liminf
n→∞

1
n

U(0, [−bεnc,bεnc])≤ 2εU(0,0) .

5. Show that the Markov kernel P is recurrent.

6.8. This is a follow-up of Exercise 4.7. Let P be a Markov kernel on N with transi-
tion probability given by P(0,1) = 1 and for x≥ 1,

P(x,x+1)+P(x,x−1) = 1, P(x,x+1) =
(

x+1
x

)2

P(x,x−1) .

1. Show that the states x ∈ N are accessible.
2. Show that the Markov kernel P is transient.
3. Show that for all x ∈ X, Px(liminfn→∞ Xn = ∞) = 1.

6.9. Let P be a Markov kernel on N with transition probability given by P(0,1) = 1
and for x≥ 1,

P(x,x+1)+P(x,x−1) = 1, P(x,x+1) =
(

x+1
x

)α

P(x,x−1) .

where α ∈ (0,∞).
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1. Show that the states x ∈ N are accessible.
2. Determine the values of α for which the Markov kernel P is recurrent or tran-

sient.

6.10. Let {Xk, k ∈ N} be a Stochastic Unit Root process as defined in Exam-
ple 6.4.6, that satisfies (6.4.3) with r = 1R+ and assume that X0 = 0. We use the
notation of Example 6.4.6. Show that {Yk = X+

k , k ∈N} is a reflected Markov chain
as in Example 6.1.2, that is, it satisfies Yk = (Yk−1 +Zk)

+.

6.9 Bibliographical notes

All the results presented in this chapter are very classic. They were mostly developed
for discrete-value Markov chains but translation of these results for atomic chains is
immediate.

The recurrence-transience dichotomy Theorem 6.2.7 for discrete state space
Markov chain appears in Feller (1971) (see also Chung (1967), Çinlar (1975)).

The Stochastic Unit Root model given in Example 6.4.6 was proposed by
Granger and Swanson (1997) and further studied in Gourieroux and Robert (2006)

The essential idea of studying the excusions of the chain between two successive
visits to an atom is already present in Doeblin (1938) and is implicit in some earlier
works of Kolmogorov [For French-speaking readers, we recommend reading Char-
masson et al (2005) on the short and tragic story of Wolfgang Doeblin, the son of the
german writer Alfred Doeblin, a mathematical genius who revolutionized Markov’s
chain theory just before being killed in the early days of the Second World War.]
This decomposition has many consequences in Markov chain theory. The first is the
law of large numbers for empirical averages, which becomes an elementary conse-
quence of the theory of stopped random walks. It is almost equally easy to get ratio
limit theorem , Theorem 6.6.2: these results were established in Chung (1953, 1954)
for discrete state space Markov chain [see Port (1965) and (Orey, 1971, Chapter 3)
give a good overview of ratio limit theorems which play also an important role in
ergodic theory.]

The proof of the Central Limit Theorem (Theorem 6.7.1) is based on Anscombe’s
Theorem Anscombe (1952, 1953), stated and proven in Theorem E.4.5 (this is a
special case of Anscombes’s theorem, which in this form with a direct proof is due
to Rényi (1957)). The proof of Theorem 6.7.1 is borrowed from Chung (1967) [see
also (Meyn and Tweedie, 2009, Chapter 17)]. A beautiful discussion of Anscombe’s
theorem with many references is given in Gut (2012). The same approach can be
extended to obtain functional version of the CLT or the Law of Iterated Logarithm.



Chapter 7
Markov chains on a discrete state space

In this chapter we will discuss the case where the state space X is discrete which
means either finite or countably infinite. In this case, it will always be assumed
that X = P(X), the set of all subsets of X. Since every single state is an atom, we
will first apply the results of Chapter 6 and then highlight the specificities of Markov
chains on a countable state spaces. In particular, in Section 7.5 we will obtain simple
drift criteria for transience and recurrence and in Section 7.6 we will make use for
the first time of coupling arguments to prove the convergence of the iterates of the
kernel to the invariant probability measure.

7.1 Irreducibility, recurrence and transience

Let P = {P(x,y) : (x,y) ∈ X} be a Markov kernel on a denumerable state space.
Theorem 6.2.2 applied to the present framework yields that for every state a ∈ X,

U(a,a) = ∞⇔ Pa(σa < ∞) = 1⇔ Pa(Na = ∞) = 1 ,

U(a,a)< ∞⇔ Pa(σa < ∞)< 1⇔ Pa(Na = ∞)< 1 .

We now introduce the following definition which anticipates those of Chapter 9 for
general state space Markov chains.

Definition 7.1.1 (Irreducibility, strong irreducibility) Let X be a discrete state-
space and P a Markov kernel on X.

(i) P is irreducible if it admits an accessible state.
(ii) P is strongly irreducible if all the states are accessible.

It should be stressed that Definition 7.1.1 is not the usual notion of irreducibility
for Markov kernel on a discrete state space. In most books, a Markov kernel on a

145
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discrete state space is said to be irreducible if all the states are accessible: in this
book, this property is referred to as strong irreducibility (this notion is specific to
Markov kernels on discrete state-space and does not have a natural extension to
general state-space).

Definition 7.1.1 is in line with the definition of irreducibility for general state
spaces which will be introduced in Chapter 9 and therefore we do not comply with
the usual terminology in order to avoid having two conflicting definitions of irre-
ducibility.

We now turn to transience and recurrence which were introduced in Defini-
tion 6.2.1. The following result is simply a repetition of Theorem 6.2.7.

Theorem 7.1.2. Let P be an irreducible kernel on a discrete state space X. Then P
is either transient or recurrent but not both.

(i) P is recurrent if and only if it admits an accessible recurrent state. If P is recur-
rent, then for all accessible states x,y ∈ X,

Px(Ny = ∞) = Py(Nx = ∞) = 1. (7.1.1)

(ii) P is transient if and only if it admits an accessible transient state. If P is tran-
sient, then U(x,y)< ∞ for all x,y ∈ X.

Remark 7.1.3. The condition Theorem 7.1.2-(i) can be slightly improved: assuming
that the recurrent state is accessible is not required: indeed, Proposition 6.2.4 implies
that if the Markov kernel P is irreducible (i.e. admits an accessible atom), then any
recurrent state is also accessible. Moreover, if P is strongly irreducible, then (7.1.1)
is satisfied for all x,y ∈ X. N

Theorem 7.1.4. Assume that P has an invariant probability measure π .

(i) Every x ∈ X such that π(x)> 0 is recurrent.
(ii) If P is irreducible, then P is recurrent.

Proof. Follows from Proposition 6.2.8 and Theorem 7.1.2. 2

7.2 Invariant measures, positive and null recurrence

Let P be a recurrent irreducible Markov kernel on a discrete state space X. Let
a ∈ X be an accessible and recurrent state. By Theorem 6.4.2, P admits an invariant
measure and all invariant measures are proportional to the measure λa defined by
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λa(x) = Ea

[
σa

∑
k=1

1{Xk = x}
]
, x ∈ X . (7.2.1)

Note that λa(a) = 1 and λa(X) = Ea[σa] which is not necessarily finite. We now
restate Theorem 6.4.2 in the present context.

Theorem 7.2.1. If P is a recurrent irreducible Markov kernel on a discrete state
space X, then there exists a non-trivial invariant measure λ , unique up to multi-
plication by a positive constant. For every accessible state a ∈ X, the measure λa

defined in (7.2.1) is the unique invariant measure λ such that λ (a) = 1.

(i) If Ea[σa] < ∞ for one accessible state a then the same property holds for all
accessible states and there exists a unique invariant probability π given for all
x ∈ X by

π(x) =
Ea

[
∑

σa−1
k=0 1{Xk = x}

]
Ea[σa]

=
Ea

[
∑

σa
k=1 1{Xk = x}

]
Ea[σa]

. (7.2.2)

(ii) If Ea[σa] = ∞ for one accessible state a then the same property holds for all
accessible states and all the invariant measures are infinite.

We formalize in the next definition the dichotomy stated in Theorem 7.2.1.

Definition 7.2.2 (Positive and null recurrent Markov kernels) Let P be a irre-
ducible Markov kernel on a discrete state space X. The Markov kernel is positive
if it admits an invariant probability. The Markov kernel P is null recurrent if it is
recurrent and all its invariant measures are infinite.

When P is positive, the previous result provides an explicit relation between the
unique invariant probability and the mean of the first return time to a given accessi-
ble set a. Indeed, applying (7.2.2) with x = a yields

π(a) =
λa(a)

λa(X)
=

λa(a)

Ea[σa]
=

1
Ea[σa]

. (7.2.3)

Corollary 7.2.3 (Finite state space) If the state space X is finite, then any ir-
reducible Markov kernel is positive.

Proof. By definition, for every x ∈ X,
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∑
y∈X

U(x,y) = Ex

[
∑
y∈X

Ny

]
= ∞ .

Therefore, if X is finite, there must exist a state y ∈ X satisfying U(x,y) = ∞. By
the Maximum Principle (see Lemma 6.1.3), U(y,y)≥U(x,y) = ∞ and the state y is
recurrent. Therefore P admits a non trivial invariant measure which is necessarily
finite since X is finite. 2

7.3 Communication

We now introduce the notion of communication between states, which yields a clas-
sification of states into classes of recurrent and transient states. The notion of com-
munication has no equivalent in the theory of general state-space Markov chains.

Definition 7.3.1 (Communication) A state x leads to the state y, which we write
x→ y, if Px(τy < ∞)> 0. Two states x and y communicate, which we write x↔ y, if
x→ y and y→ x.

Equivalently, x→ y if U(x,y) > 0 or if there exists n ≥ 0 such that Pn(x,y) =
Px(Xn = y)> 0. The most important property of the communication relation is that
it is an equivalence relation.

Proposition 7.3.2 The relation of communication between states is an equiva-
lence relation.

Proof. By definition, x↔ x for all x and x↔ y if and only if y↔ x. If x→ y and
y→ z, then there exists integers n and m such that Pn(x,y) > 0 and Pm(y,z) > 0.
Then, the Chapman-Kolmogorov equation (1.2.5) implies

Pn+m(x,z)≥ Pn(x,y)Pm(y,z)> 0 .

This proves that x→ z. 2

Therefore, the state space X may be partitioned into equivalence classes for the
communication relation. The equivalence class of the state x is denoted by C(x) i.e.
C(x) = {y ∈ X : x↔ y}. Note that by definition a state communicate with itself.

If the kernel P is not irreducible, there may exist transient and recurrent states.
A transient state may communicate only with itself. Moreover, we already know by
Proposition 6.2.4 that a recurrent state may only lead to another recurrent state. As
a consequence, an equivalence class for the communication relation contains only
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recurrent states or only transient states. A class which only contains recurrent states
will be called a recurrent class.

Theorem 7.3.3. Let P be a Markov kernel on a discrete state space X. Then there
exists a partition X = (∪i∈IRi)∪T of X such that

• if x ∈ T then x is transient;
• for every i ∈ I, Ri is absorbing and the trace of P on Ri is strongly irreducible

and recurrent.

Assume that P is irreducible.

(i) If P is transient, then X = T.
(ii) P is recurrent, then X = T∪R, R 6= /0 and the trace of P on R is strongly

irreducible and recurrent. Moreover, there exists a unique (up to a multiplicative
constant) P-invariant measure λ and R = {x ∈ X : λ (x)> 0}.

Proof. Since communication is an equivalence relation and an equivalence class
contains either transient states or recurrent states, we can define T as the set of all
transient states and the sets Ri are the recurrent classes.

If C is a recurrent class and y ∈ C then U(y,y) = ∞. Applying the maximum
principle for atomic chains Lemma 6.1.3, we obtain U(x,y) = Px(τy < ∞)U(y,y) =
∞ for all x ∈C.

Let us finally prove that a recurrent class C is absorbing. Let x ∈C and y ∈ X be
such that x→ y. By Proposition 6.2.4, y is recurrent and y→ x. Thus y ∈C and this
proves that P(x,C) = 1.

Assume now that P is irreducible. By Theorem 7.1.2, P is either transient or re-
current. If P is transient, then all the states are transient and X = T. If P is recurrent,
then there exists a recurrent accessible state a and X = T∪R where R is the equiv-
alence class of a. Denote by λa the unique invariant measure such that λa(a) = 1
given by (7.2.1). Every x ∈ R is recurrent and Theorem 7.2.1 implies that λa(x)> 0.
Conversely, let x be a state such that λa(x)> 0. Then, by definition of λa, we have

0 < λa(x) = Ea

[
σa

∑
k=1

1{Xk = x}
]
.

This implies that Pa(σx < ∞)> 0 and thus x is accessible and recurrent by Proposi-
tion 6.2.4. This proves that R = {x ∈ X : λ (x)> 0} is the set of accessible recurrent
states. 2

Example 7.3.4. Let X = N and let P be the kernel on X defined by P(0,0) = 1 and
for n≥ 1,

P(n,n+1) = pn , P(n,0) = 1− pn ,
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where {pn, n ∈ N∗} is a sequence of positive real numbers such that 0 < pn < 1.
Then P is irreducible since the state 0 is accessible and all states are transient except
the absorbing state 0. The state space can be decomposed as X=R∪T with R= {0}
and T = N∗. Every invariant measure for P is a multiple of the Dirac mass at 0.
Moreover, for all k ≥ n≥ 1,

Pn(σ0 > k) = pn · · · pk .

This yields, for all n≥ 1,

Pn(σ0 = ∞) =
∞

∏
k=n

pk .

If ∑
∞
k=1 log(1/pk)< ∞, then Pn(σ0 = ∞)> 0 for every n≥ 1. Therefore, with posi-

tive probability, the Markov chain started at n does not hit the state 0. J

7.4 Period

Since every singleton is an atom, Definition 6.3.1 is still applicable: the period d(x)
of the state x is the g.c.d. of the set Ex = {n > 0 : Pn(x,x)> 0}. If P is irreducible,
then every accessible state x has a finite period since by definition there exists at
least one n > 0 for which Pn(x,x)> 0. By Proposition 6.3.3, if x is accessible, then
the set Ex is stable by addition and there exists an integer n0 such that nd(x) ∈ Ex
for all n ≥ n0. Moreover, by Proposition 6.3.4, all accessible states have the same
period and the period of an irreducible kernel is the common period of all accessible
states; the kernel is said to be aperiodic if its period is 1. For a discrete state space,
the only additional result is the following cyclical decomposition of the state space.

Theorem 7.4.1. Assume that P is an irreducible Markov kernel on a discrete state
space X with period d. Let X+

P be the set of all the accessible states for P. Then there
exist disjoint sets D0, . . . ,Dd−1, such that X+

P =
⋃d−1

i=0 Di and P(x,Di+1)= 1 for every
x ∈ Di and i = 0,1, . . . ,d− 1, with the convention Dd = D0. This decomposition is
unique up to permutation.

Proof. If d = 1 there is nothing to prove. Fix a ∈ X+
P . For i = 0, . . . ,d−1, let Di be

the set defined by

Di =

{
x ∈ X+

P :
∞

∑
n=1

Pnd−i(x,a)> 0

}
.
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Since a is accessible, ∪d−1
i=0 Di = X+

P . For i, i′ ∈ {0, . . . ,d− 1}, if y ∈ Di ∩Di′ then
there exists m,n ∈ N∗ such that Pmd−i(y,a) > 0 and Pnd−i′(y,a) > 0. Since y is
accessible, there also exists `∈N such that P`(a,y)> 0. This yields Pmd−i+`(a,a)>

0 and Pnd−i′+`(a,a)> 0. Therefore d divides i− i′ and thus i= i′. This shows that the
sets Di, i = 0, . . . ,d−1, are pairwise disjoint. Let x,y ∈ X+

P be such that P(y,x)> 0.
If x ∈ Di, there exists k ∈ N∗ such that Pkd−i(x,a)> 0 and thus

Pkd−i+1(y,a)≥ P(y,x)Pkd−i(x,a)> 0

Thus, y ∈ Di−1 if i≥ 1 and y ∈ Dd−1 if i = 0.
Let now F0, . . . ,Fd−1 be a partition of X+

P such that P(x,Fi+1) = 1 for all x ∈ Fi
and i = 0, . . . ,d − 1, with the convention Fd = F0. Up to a permutation, we can
assume that a ∈ F0. It suffices to prove that D0 = F0. Let x ∈ F0 and n ∈ N such that
Pn(x,a)> 0. Since x and a are both elements of F0, n must be a multiple of d. Thus
F0 ⊂ D0. Conversely, if x ∈ D0 then there exists k ≥ 1 such that Pkd(x,a) > 0 and
thus x ∈ F0. This proves that D0 = F0 and that the decomposition is unique. 2

7.5 Drift conditions for recurrence and transience

In this section, we make use for the first time of the so-called drift conditions to
prove the recurrence or the transience of a Markov kernel. A drift condition is a
relation between a non negative measurable function f and P f .

Theorem 7.5.1. Assume that there exist an accessible set F and a function W : X→
R∗+ satisfying

(i) PW (x)≤W (x) for all x ∈ Fc;
(ii) there exists an accessible state x0 ∈ Fc such that W (x0)< infx∈F W (x).

Then P is transient.

Proof. Since infx∈F W (x) > W (x0) > 0, we can assume without loss of generality
that infx∈F W (x)= 1>W (x0)> 0. Then the assumptions become PW (x)≤W (x) for
x ∈ Fc, W (x0)< 1 for some x0 ∈ Fc and W (x)≥ 1 for all x ∈ F . By Corollary 4.4.7,
these properties imply that Px(τF < ∞)≤W (x) for all x ∈ X. Thus,

Px0(σF < ∞) = Px0(τF < ∞)≤W (x0)< 1 .

Since x0 is accessible, then Px(σx0 < ∞)> 0 for all x ∈ F . The previous arguments
and the strong Markov property yield, for x ∈ F ,

Px(σF = ∞)≥ Px(σF = ∞,σx0 < ∞) = Px0(σF = ∞)Px(σx0 < ∞)> 0 .
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Hence Px(σF < ∞) < 1 for all x ∈ F and thus all the states in F are transient. By
assumption, F contains at least one accessible state, thus P is transient. 2

We now provide a drift condition for recurrence.

Theorem 7.5.2. Let P be an irreducible Markov kernel on X×X . Assume that
there exist a finite subset F ⊂ X and a finite nonnegative function V such that

(i) the level sets {V ≤ r} are finite for all r ∈ N,
(ii) PV (x)≤V (x) for all x ∈ Fc.

Then P is recurrent.

Proof. By assumption, the function V is superharmonic outside F . Thus Theo-
rem 4.1.2-(i) shows that the sequence {V (Xn∧τF ), n ∈ N} is a nonnegative Px-
supermartingale for all x ∈ X. Using the supermartingale convergence theorem
Proposition E.1.3, the sequence {V (Xn∧τF ), n ∈ N} converges Px − a.s. to a finite
random variable and

Ex

[
lim
n→∞

V (Xn∧τF )
]
≤V (x)< ∞ .

Therefore, for all x ∈ X,

Ex

[
1{τF=∞} lim

n→∞
V (Xn)

]
≤ Ex

[
lim
n→∞

V (Xn∧τF )
]
≤V (x)< ∞ . (7.5.1)

The proof proceeds by contradiction. Assume that the Markov kernel P is transient.
For r ∈ N, set G = {V ≤ r}. Since P is transient, Ex[Ny] < ∞ for all x,y ∈ X by
Theorem 7.1.2. Hence, we have

U(x,G) = Ex[NG] = ∑
y∈G
Ex[Ny]< ∞ .

Therefore Px(NG < ∞) = 1 and Px (liminfn→∞ V (Xn)≥ r) = 1 for all x ∈ X. Since r
is arbitrary, this yields

Px

(
lim
n→∞

V (Xn) = ∞

)
= 1 . (7.5.2)

The bound (7.5.1) implies that Px
(
1{τF=∞} liminfn→∞ V (Xn)< ∞

)
= 1. This is

compatible with (7.5.2) only if Px(τF = ∞) = 0. This in turn implies that for all
x ∈ X,

Px(σF < ∞) = Px(τF ◦θ < ∞) = Ex[PX1(τF < ∞)] = 1 .

Applying Proposition 3.3.6, we obtain that Px(σ
(n)
F < ∞) = 1 for all x∈ F and n∈N

so that Px(NF = ∞) = 1 for all x ∈ F and consequently

Ex[NF ] = ∑
y∈F

U(x,y) = ∞ .
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Since F is finite, U(x,y) = ∞ for at least one (x,y) ∈ F×F . By Theorem 7.1.2, this
contradicts the transience of P. 2

We pursue with a drift criterion for positive recurrence.

Theorem 7.5.3. Let P be an irreducible Markov kernel and F be an accessible finite
subset of X. Then P is positive if and only if there exists a function V : X→ [0,∞)
satisfying

(i) supx∈F PV (x)< ∞,
(ii) PV (x)≤V (x)−1 for all x ∈ Fc.

Proof. Let V : X→ [0,∞) be a function satisfying (i) and (ii). By Corollary 4.4.8,
V (x)≥ Ex[τF ] for all x ∈ X. Therefore, for all x ∈ F ,

Ex[σF ] = 1+Ex[τF ◦θ ] = 1+Ex[EX1(τF)]≤ 1+Ex[V (X1)]≤ 1+PV (x)< ∞ .

By Theorem 3.3.8, this implies that Px(σ
(n)
F < ∞) = 1 for all n ∈ N and x ∈ X and

the sequence {X̃n, n ∈ N} defined for n ∈ N by X̃n = X
σ
(n)
F

is a Markov chain on F

with kernel QF . The set F being finite, there exists a state a ∈ F which is recurrent
for QF and a fortiori for P. By Proposition 6.2.4-(i), a is accessible and therefore P
is recurrent.

We now show that the Markov kernel QF is irreducible. Since F is accessible,
there exists an accessible state a ∈ F . Let x ∈ F , x 6= a. The state a being accessible,
there exist n ≥ 1 and x1, . . . ,xn−1 ∈ X such that Px(X1 = x1, . . . ,Xn−1 = xn−1,Xn =
a) > 0. Let 1 ≤ j1 < j2 < · · · < jm < n be the time indices jk such that x jk ∈ F ,
k ∈ {1, . . . ,m}. Then

Qm+1
F (x,a)≥ Px(X̃1 = x j1 , . . . , X̃m = x jm , X̃m+1 = a)

≥ Px(X1 = x1, . . . ,Xn−1 = xn−1,Xn = a)> 0 .

Thus, a is accessible for QF which is therefore irreducible. Since F is finite, QF
is positive by Corollary 7.2.3. Thus, for every accessible state b in F , we have
Eb[σ̃b] < ∞ where σ̃b = inf

{
n≥ 1 : X̃n = b

}
. Applying Theorem 3.3.8-(ii) with

A = {b} we obtain
Eb[σb]≤ Eb[σ̃b] sup

y∈F
Ey[σF ]< ∞ .

This implies that the kernel P is positive by Theorem 7.2.1.
Conversely, assume that P is positive. Fix a ∈ X and set Va(x) = Ex[τa]. We first

show that Va(x) is finite for all x ∈ X. Let x 6= a. The strong Markov property com-
bined with {τx < σa} ∈Fτx implies
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∞ > Ea[σa]≥ Ea[(τx + τa ◦θτx)1{τx<σa}]

≥ Ea[τa ◦θτx1{τx<σa}] = Ex[τa]Pa(τx < σa) .

It suffices to prove that Va(x) is finite provided that Pa(τx < σa) > 0. Since a is
recurrent and x 6= a, we have Pa(∪∞

k=0{σ
(k)
a < τx < σ

(k+1)
a }) = 1. Thus, there exists

k ≥ 0 such that

0 < Pa(σ
(k)
a < τx < σ

(k+1)
a ) = Pa(σ

(k)
a < τx,τx ◦θ

σ
(k)
a

< σa ◦θ
σ
(k)
a
) .

Since X
σ
(k)
a

= a, conditioning on F
σ
(k)
a

and applying the strong Markov property
yields

Pa(σ
(k)
a < τa)Pa(τx < σa)> 0 .

This proves that Pa(τx < σa) > 0. Therefore, Va takes value in [0,∞). By Corol-
lary 4.4.8, Va is a solution to Va(a) = 0 and PVa(x) = Va(x)− 1 for x 6= a and thus
Va satisfies (i) and (ii). 2

7.6 Convergence to the invariant probability

Let P be a Markov kernel which admits a unique invariant probability π . We inves-
tigate in this Section the convergence of the iterates {ξ Pn,n ∈ N} started from a
given initial distribution ξ . There are many different ways to assess the convergence
of ξ Pn to π . We will consider here convergence in the total variation distance. The
main properties of the total variation distance are presented in Appendix D for gen-
eral state space. We briefly recall here the definition and main and properties in the
discrete setting.

Definition 7.6.1 Let ξ and ξ ′ be two probabilities on a finite or countable set X.
The total variation distance between ξ and ξ ′ is defined by

dTV(ξ ,ξ
′) =

1
2 ∑

x∈X

|ξ (x)−ξ
′(x)| . (7.6.1)

The total variation distance is bounded by 1: for all probability measures ξ , ξ ′,
dTV(ξ ,ξ

′) ≤ 1 and dTV(ξ ,ξ
′) = 1 if and only if ξ and ξ ′ are supported by dis-

joint subsets of X. The total variation distance can be characterized as the operator
norm of the bounded signed measure ξ − ξ ′ acting on the space of functions on X
equipped with the oscillation semi-norm, i.e.

dTV(ξ ,ξ
′) = sup

{
ξ ( f )−ξ

′( f ) : osc ( f )≤ 1
}
, (7.6.2)
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where

osc ( f ) = sup
x,y∈X
| f (x)− f (y)| . (7.6.3)

To prove the convergence, we will use a coupling method. We will use the coupling
method on many occasions in the book: the discrete case is particularly simple and
provides a good introduction to this technique. Define the Markov kernel P̄ on X2

by
P̄((x,x′),(y,y′)) = P(x,y)P(x′,y′) , x,y,x′,y′ ∈ X . (7.6.4)

For any initial distribution ξ̄ on X×X, let P̄
ξ̄

be the probability measure on the
canonical space (X×X)N such that the canonical process {(Xn,X ′n), n ∈ N} is a
Markov chain with kernel P̄. By definition of the kernel P̄, for x,x′ ∈ X, the two
components are under P̄x,x′ independent Markov chains with kernel P started from
x and x′, respectively.

Lemma 7.6.2 If P is irreducible and aperiodic, then P̄ is irreducible and aperiodic.
If P is strongly irreducible, then P̄ is strongly irreducible. If P is transient, then P̄ is
transient.

Proof. Let x,y be accessible states for P. By Proposition 6.3.3, since P is aperiodic,
there exists an integer n0 such that Pn(x,x) > 0 and Pn(y,y) > 0 for all n ≥ n0.
Moreover, since x and y are accessible, for all x′,y′ ∈ X, there exist m and p such
that Pm(x′,x)> 0 and Pp(y′,y)> 0. Thus, for n≥ n1 = n0 +m∨ p,

Pn(x′,x)≥ Pm(x′,x)Pn−m(x,x)> 0 ,

Pn(y′,y)≥ Pp(y′,y)Pn−p(y,y)> 0 .

This yields P̄n((x′,y′),(x,y)) = Pn(x′,x)Pn(y′,y)> 0 for all n≥ n1. This proves that
P̄ is irreducible since (x,y) is accessible and aperiodic by Proposition 6.3.6. Exactly
the same argument shows that P̄ is strongly irreducible if P is strongly irreducible.

Assume that P is transient. For all (x,y) ∈ X2, U(x,y) < ∞ which implies that
limn→∞ Pn(x,y) = 0 and

∞

∑
n=0
{Pn(x,y)}2 =

∞

∑
n=0

P̄n((x,y),(x,y))< ∞ ,

which proves that P̄ is transient. 2

From now on, we fix one state a∈X and we denote by T the hitting time of (a,a)
by {(Xn,X ′n), n ∈ N}, i.e.

T = inf
{

n≥ 0 : (Xn,X ′n) = (a,a)
}
. (7.6.5)

The usefulness of the coupling method derives from the following result.
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Proposition 7.6.3 (Coupling inequality) Let ξ and ξ ′ be two probability
measures on X. Then,

dTV(ξ Pn,ξ ′Pn)≤ P̄ξ⊗ξ ′(T > n) . (7.6.6)

Proof. For f ∈ Fb(X), write

ξ Pn( f )−ξ
′Pn( f ) = Ēξ⊗ξ ′ [ f (Xn)− f (X ′n)]

= Ēξ⊗ξ ′ [{ f (Xn)− f (X ′n)}1{T>n}]+
n−1

∑
k=0
Ēξ⊗ξ ′ [{ f (Xn)− f (X ′n)}1{T=k}] .

For k ≤ n−1, the Markov property and the fact that the chains {Xn} and {X ′n} have
the same distribution if they start from the same initial value yield

Ēξ⊗ξ ′ [{ f (Xn)− f (X ′n)}1{T=k}] = Ēξ⊗ξ ′
[
1{T=k}Ē(a,a)[ f (Xn−k)− f (X ′n−k)]

]
= 0 .

Altogether, we obtain

|ξ Pn( f )−ξ
′Pn( f )| ≤ osc ( f ) P̄ξ⊗ξ ′(T > n) .

Applying the characterization (7.6.2) yields (7.6.6). 2

The coupling inequality provides an easy way to establish convergence to the
stationary probability. Recall that for a given set R ∈X , the set R+ is defined in
(3.5.1).

Theorem 7.6.4. Let P be a Markov kernel on a discrete state-space X. Assume that
P is irreducible, aperiodic and positive. Denote by π its unique invariant probability
and R = {x ∈ X : π(x)> 0}. Then, for any probability measure ξ on X such that
ξ (Rc

+) = 0,
lim
n→∞

dTV(ξ Pn,π) = 0 . (7.6.7)

If P is strongly irreducible, then R+ = X and (7.6.7) holds for any probability mea-
sure ξ .

Proof. Assume first that the Markov kernel P is strongly irreducible and aperiodic.
Hence, by Lemma 7.6.2, P̄ is strongly irreducible. Since (π ⊗ π)P̄ = πP⊗ πP =
π ⊗ π , the probability measure π ⊗ π is invariant for P̄. Since P̄ is strongly irre-
ducible and π ⊗π is an invariant probability measure, Theorem 7.1.4 implies that
P̄ is positive. Denote by T the hitting time of the set (a,a). Since P is strongly irre-
ducible and recurrent, Theorem 7.1.2 shows that for all x,x′ ∈ X, P̄x,x′(T < ∞) = 1.
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Hence, P̄ξ⊗ξ ′(T < ∞) = 1 and the limit (7.6.7) follows from (7.6.6) applied with
ξ ′ = π .

We now consider the general case. By Theorem 7.3.3, R is absorbing, the trace
of P to R is strongly irreducible and π is the unique invariant distribution of
P|R. Let a ∈ R be a recurrent state. It follows from the first part of the proof
that for any a ∈ R, limn→∞ ‖δaPn−π‖TV = 0. It is also easily seen that R+ =
{x ∈ X : Px(σa < ∞) = 1}. Let ξ be a probability measure such that ξ (Rc

+) = 0.
Since Px(σa < ∞) = 1 for all x ∈ R, we get Pξ (σa < ∞) = 1. For any ε > 0 we
may choose n0 large enough so that Pξ (σa ≥ n0)< ε and ‖δaPn−π‖TV ≤ ε for all
n≥ n0. For any function f such that | f |∞ ≤ 1 we get

Eξ [ f (Xn)]−π( f ) =
n

∑
k=1
Pξ (σa = p){Ea[ f (Xn−p)]−π( f )}

+Eξ [{ f (Xn)−π( f )}1{σa>n}] . (7.6.8)

Since Pξ (σa < ∞) = 1 and

|Eξ [{ f (Xn)−π( f )}1{σa>n}]| ≤ 2| f |∞Pξ (σa > n) ,

On the other hand, for all n≥ 2n0, we obtain∣∣∣∣∣ n

∑
k=1
Pξ (σa = p){Ea[ f (Xn−p)]−π( f )}

∣∣∣∣∣≤ ε +2| f |∞Pξ (σa ≥ n0) .

Since ε is arbitrary, this concludes the proof. 2

It is also interesting to study the forgetting of the initial distribution ξ ∈M1(X )
when P is null recurrent. In that case, aperiodicity is not needed since the iterates of
the kernel converge to zero.

Theorem 7.6.5. Let P be an irreducible null recurrent Markov kernel on a discrete
state space X. Then for all ξ ∈M1(X ) and y ∈ X,

lim
n→∞

ξ Pn(y) = 0 . (7.6.9)

Proof. By Theorem 7.3.3, X = T∪R: all the states in T are transient and the trace of
P on R is strongly irreducible and recurrent. If y ∈ T, then U(x,y)< ∞ for all x ∈ X
showing that limn→∞ Pn(x,y) = 0. Therefore, by Lebesgue’s dominated convergence
theorem, (7.6.9) holds for any y ∈ T and any ξ ∈M1(X ).

Assume now that P is strongly irreducible and recurrent. Assume first that P is
aperiodic. Then, by Lemma 7.6.2, P̄ is irreducible and aperiodic. By Theorem 7.1.2,
P̄ is thus either transient or recurrent.
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(i) If P̄ is transient, then, for all x,y ∈ X,

∞ > Ū((x,x),(y,y)) =
∞

∑
n=0

P̄n((x,x),(y,y)) =
∞

∑
n=0

[Pn(x,y)]2 .

Therefore limn→∞ Pn(x,y) = 0 and (7.6.9) holds by Lebesgue’s dominated conver-
gence theorem.

(ii) Assume now that P̄ is recurrent. By Lemma 7.6.2, P̄ is strongly irreducible.
Let a ∈ X and T be the hitting time of (a,a). Since P̄ is strongly irreducible
and recurrent, Theorem 7.1.2 shows that P̄x,x′(T < ∞) = 1 for all x,x′ ∈ X. Thus
P̄ξ⊗ξ ′(T < ∞) = 1 for all probability measures ξ , ξ ′ and by Proposition 7.6.3 this
yields limn→∞ dTV(ξ Pn,ξ ′Pn) = 0. This in turn implies, for all y ∈ X,

lim
n→∞
|ξ Pn(y)−ξ

′Pn(y)|= 0 . (7.6.10)

We must now prove that (7.6.10) implies (7.6.9). Let µ be an invariant measure for
P (such measures are unique up to a scaling factor). For every finite set A, define the
probability measure µA on the set A by

µA(x) =

{
µ(x)
µ(A) if x ∈ A ,

0 otherwise .

Fix y ∈ X. Then, for n ∈ N∗, we get

µAPn(y)≤ µPn(y)
µ(A)

=
µ(y)
µ(A)

.

Since µ(X) = ∞, the right-hand side can be made less than some arbitrarily small ε

by choosing a sufficiently large A. Applying (7.6.10) with a probability measure ξ

and µA yields

limsup
n→∞

ξ Pn(y)≤ ε + lim
n→∞
|ξ Pn(y)−µAPn(y)|= ε .

This proves (7.6.9).

Assume now that the kernel P has a period d ≥ 2. Let D0, . . . ,Dd−1 be a partition
of X as in Theorem 7.4.1. Then the restriction of Pd to each class Di is strongly
irreducible, aperiodic and null recurrent. Thus, the first part of the proof shows that
if x,y∈Di, then limn→∞ Pnd(x,y)= 0. If x∈Dk and y∈D j for some j 6= k, then there
exists m< d such that Pm(x,D j) = 1 and Pkd+r(x,y) = 0 for r 6=m. This implies that
Pn(x,y) = 0 if n 6= kd+m and thus, by Lebesgue’s dominated convergence theorem,

lim
n→∞

Pn(x,y) = lim
k→∞

Pkd+m(x,y) = ∑
z∈D j

Pm(x,z) lim
k→∞

Pkd(z,y) = 0 .

This proves that (7.6.9) holds for ξ = δx for all x ∈ X, hence for every initial distri-
bution by applying again Lebesgue’s dominated convergence theorem. 2
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7.7 Exercises

7.1. Let P be an irreducible Markov kernel on a discrete state space X. The set X+
P

of accessible states is absorbing and non accessible states are transient.

7.2. Show that Theorem 7.1.4 does not hold if we only assume that π is an invariant
measure (instead of an invariant probability measure).

7.3. Identify the communication classes of the following transition matrix
1/2 0 0 0 1/2
0 1/2 0 1/2 0
0 0 1 0 0
0 1/4 1/4 1/4 1/4

1/2 0 0 0 1/2


Find the recurrent classes.

7.4 (Wright-Fisher model). The Wright-Fisher model is an ideal genetics model
used to investigate the fluctuation of gene frequency in a population of constant size
under the influence of mutation and selection. The model describes a simple haploid
random reproduction disregarding selective forces and mutation pressure. The size
of the population is set to N individuals of two types 1 and 2. Let Xn be the number
of individuals of type 1 at time n. Then {Xn, n ∈ N} is a Markov chain with state
space X = {0,1, . . . , N} and transition matrix

P( j,k) =
(

N
k

)(
j

N

)k(
1− j

N

)N−k

,

with the usual convention 00 = 1. In words, given that the number of type 1 individ-
uals at the current generation is j, the number of type 1 individuals at the next gen-
eration follows a binomial distribution with success probability j/N. Looking back-
wards, this can be interpreted as having each of the individual in the next generation
’pick their parents at random’ from the current population. A basic phenomenon of
Wright-Fisher model without mutation is fixation, that is the elimination of all but
one type of individuals after an almost-surely finite random time. This phenomenon
is shown in this exercise.

1. Show that the Markov kernel P is not irreducible and the states 0 and N are
absorbing.

2. Show that for all x ∈ {1, . . . ,N−1}, Ex(σx < ∞)< 1 and Ex[Nx]< ∞.
3. Show that {Xn, n ∈ N} is a martingale which converges to X∞ Px − a.s. and in

L1(Px) for all x ∈ {0, . . . ,N}.
4. Show that Px(X∞ = N) = x/N and Px(X∞ = 0) = 1− x/N for x ∈ {1, . . . ,N}.

7.5. Let P be the Markov kernel on N defined by P(x,x+1) = p > 0, P(x,x−1) =
q > 0, P(x,x) = r ≥ 0, for x≥ 1, P(0,0) = 1− p, P(0,1) = p.
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1. Show that the state {0} is accessible.
2. Show that all the states communicate.
3. Show that f (x) = Px(τ0 < ∞) is the smallest nonnegative function on N satisfy-

ing f (0) = 1 and for x≥ 1

f (x) = q f (x−1)+ r f (x)+ p f (x+1) , x≥ 1 . (7.7.1)

4. Show that the solutions for (7.7.1) are given by f (x) = c1 + c2(q/p)x if p 6= q
and f (x) = c1 + c2x if p = q for constants c1 and c2 to be determined.

5. Assume that p < q. Show that the Markov kernel P is recurrent.
6. Assume that p > q. Show that Px(τ0 < ∞)< 1 for all x≥ 1 and that the Markov

kernel P is transient.
7. Assume that p = q. Show that the Markov kernel P is recurrent.

7.6 (Simple symmetric random walk on Zd). Consider the symmetric simple ran-
dom walk on Zd with kernel P(x,y) = 1/2d if |x− y| = 1 and P(x,y) = 0 otherwise.
Set V (x) = |x|2α , where α ∈ (−∞,1].

1. Show that all the states communicate.
2. Show that there exists a constant C(α,d) such that for all |x| ≥ 2,

PV (x)−V (x) = 2α{2α−2+d + r(x)}|x|2α−2 ,

with |r(x)| ≤C(α,d) |x|−1.
3. Assume that d = 1. Using the drift condition above, show that P is recurrent.
4. Assume that d ≥ 3. Using the drift condition above, show that P is transient.

It remains to consider d = 2, which is more subtle. Consider the W (x)= {log(|x|2)}α

with 0 < α < 1.

5. Compute PW (x)−W (x).
6. Show that the symmetric simple random walk is transient.

7.7 (INAR process). An INAR (INteger AutoRegressive) process is a Galton Wal-
ton process with immigration defined by the recursion

X0 = 1 , Xn+1 =
Xn

∑
j=1

ξ
(n+1)
j +Yn+1 ,

where {ξ (n)
j , j,n ∈ N∗} are i.i.d. Bernoulli random variables and {Yn, n ∈ N∗} is a

sequence of i.i.d. integer-valued random variables independent of {ξ (n)
j } and X0. We

denote by ν the distribution of Y1. We assume that ν(0)> 0 and m = ∑
∞
k=0 kν(k)<

∞. We denote by α = P(ξ (1)
1 = 1) ∈ (0,1).

1. Show that the state {0} is accessible and that P is irreducible.
2. Show that for all k ≥ 1,
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Ex[Xk] = α
kx+m

k−1

∑
j=0

α
j .

where m = E [Y1].
3. Assume that Var(Y1) = σ2. Show that for all k ≥ 1,

Varx(Xk) = (1−α)
k

∑
j=1

α
2 j−1Ex[Xk− j]+σ

2
k

∑
j=1

α
2( j−1)

4. Show that P is positive.
5. For |s| ≤ 1 and x ∈N, denote by φn,x(s) = Ex[sXn ] the moment generating func-

tion of Xn. Show that for all n≥ 1,

φn,x(s) = φn−1,x(s)ψ(s) .

where ψ is the moment generating function of Y1.
6. Show that for all n≥ 1,

φn,x(s) = (1−α
n +α

ns)x
n−1

∏
k=0

ψ(1−α
k +α

ks).

7. Show that for all x ∈ N, limn→∞ φn,x(s) = φ(s) (which does not depend on x)
and that

φ(s) = ψ(s)φ(1−α +αs) .

7.8 (Discrete time queueing system). Clients arrive for service and enter a queue.
During each time interval a single customer is served, provided that at least one
customer is present in the queue. If no customer awaits service then during this
period no service is performed. During a service period new clients may arrive. We
assume that the number of arrivals during the n-th service period is a sequence of
i.i.d. integer-valued random variable {Zn, n ∈N}, independent of the initial state X0
and whose distribution is given by

P(Zn = k) = ak ≥ 0 , k ∈ N ,
∞

∑
k=0

ak = 1 .

The state of the queue at the start of each period is defined to be the number of
clients waiting for service, which is given by

Xn+1 = (Xn−1)++Zn+1 .

1. Show that {Xn, n ∈ N} is a Markov chain. Determine its kernel.
2. Describe the behavior of the chain when a0 = 1 and a0 +a1 = 1.

In the sequel, it is assumed that the arrival distribution is nondegenerate, in the sense
that 0 < a0 < 1 and a0 +a1 < 1.

3. Show that all the states communicate.
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Denote by m the mean number of clients entering into service m=∑
∞
k=0 kak. Assume

first that m > 1.

4. Fix b > 0 and set W (x) = bx, x ∈ N. Show that PW (x) = ϕ(b)bx−1 where ϕ is
the moment generating function of the distribution {ak, k ∈ N}.

5. Show that there exists a unique b0 ∈ (0,1), such that φ(b0) = b0.
6. Show that P is transient.

Assume now that m = ∑
∞
k=0 kak ≤ 1.

7. Set V (x) = x. Show that for every x > 0

PV (x)≤V (x)− (1−m) . (7.7.2)

8. Show that P is positive.

7.9. Let P be the transition matrix on X = {0,1}

P =

(
1− α α

β 1− β

)
with 0 < α ≤ 1 and 0 < β ≤ 1. Assume that min(α, β )< 1.

1. Show that

Pn =
1

α +β

(
β α

β α

)
+

(1−α−β )n

α +β

(
α −α

−β β

)
and determine limn→∞ Pn

2. Compute the stationary distribution π of P.
3. Compute Covπ(Xn,Xn+p).
4. Set Sn = X1 + . . .+Xn. Compute Eπ [Sn] and Varπ(Sn). Give a bound for

Pπ

(
|n−1Sn−α/(α +β )| ≥ δ

)
7.10. Let {p(x) : x ∈ N} be a probability on X = N. Assume that p(x) > 0 for ev-
ery x > 0. Denote G(x) = ∑y>x p(y) . We consider the Markov kernel P given by
P(0, y) = p(y) for all y≥ 0 and for all x≥ 1,

P(x, y) =

{
1/x if y < x
0 otherwise

1. Show that the Markov kernel P is strongly irreducible and recurrent.
2. Let µ be an invariant measure. Show that ∑y>0 µ(y)y−1 <+∞.

3. Set φ(x) = ∑
∞
y=x+1 y−1µ(y). Express ϕ and then µ , as functions of G and µ(0).

Assume p(0) = 0 and p(x) = 1/x−1/(x+1) for x≥ 1.

4. Is this chain positive ?
5. Determine the limit limn→∞ n−1

∑
n−1
k=0 1{0}(Xk) ?
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7.11. Let P be an irreducible Markov kernel on a discrete state space X. Assume
that there exist a bounded function V : X→ R+ and r ≥ 0 such that

(i) the level sets {V ≤ r} and {V > r} are accessible;
(ii) the level set {V ≤ r} is finite;

(iii) PV (x)≥V (x) for all x ∈ {V > r}.

Show that P is transient.

7.12. Let P be an irreducible Markov kernel. Assume that there exists a non empty
finite subset F ⊂X, a constant b<∞ and functions V : X→ [0,∞) and f : X→ [1,∞)
such that

PV (x)≤V (x)− f (x)+b1F(x) . (7.7.3)

Show that P is positive and its unique invariant probability measure π satisfies
π( f )< ∞.

7.13. Let us consider d > 1 balls numbered from 1 to d and two urns A and B. At
the n-round of the game, a number i is sampled uniformly in {1, . . . ,d} and one
of the urns is chosen with probability 1/2, independently from the past. The ball
numbered i is placed in the selected urn. Denote Xn the number of balls in urn A
after n successive rounds of the game.

1. Determine the Markov kernel P associate to this process. Show that this Markov
kernel is strongly irreducible and positive. Is it aperiodic?

2. Show that there exist two real constants a and b such that, for every x ∈ X =
{1, . . . ,d}, ∑y∈X yP(x,y) = ax+b. Compute Ex[Xn] and limn→∞Ex[Xn].

3. Assume that X0 has a binomial distribution with parameters d and parameter of
success 1/2. What is the law of X1 ?

4. Determine the invariant probability of this chain? Compute Ed [σ{d}] and for
any x,y ∈ X, limn→∞ Pn(x, y).

7.14. Let P be a Markov kernel on a countable set X. Assume that, for every x ∈ X,
P(x,x)< 1. Define τ = inf{n≥ 1 : Xn 6= X0}.

1. Compute for all x ∈ X and n ∈ N Px(τ = n). Show that Px(τ < ∞) = 1.
2. Determine for x,y ∈ X, Px(Xτ = y).

Define recursively the stopping times τ0 = 0 and for n≥ 0, τn+1 = τn + τ ◦θτn .

3. Show that for every x ∈ X and n ∈ N, Px(τn < ∞) = 1.
4. Show that Yn = Xτn is a Markov chain. Determine the associated Markov kernel

Q.
5. Assume that P is strongly irreducible and positive with invariant probability π .

Show that Q is strongly irreducible and positive with invariant measure µ̃(y) =
{1−P(y, y)}µ(y) , y ∈ X.
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7.8 Bibliographical notes

All of the results we present in this chapter can be found in the classic books on
Markov chain theory with discrete state space which include Chung (1967), Kemeny
et al (1976), Seneta (1981) and Taylor and Karlin (1998). The original editions of
these books are all from the 1960s but the references we have given correspond to
their last edition. As the study of Markov chains with discrete state spaces is un-
avoidable in all applied probability formations, many books on this subject continue
to be published. The books by Norris (1998), Brémaud (1999), Privault (2013), Seri-
cola (2013), Graham (2014) present a modern account on the theory together with
many examples from a variety of fields.

Drift conditions for recurrence / transience were introduced by Foster (1952b)
and Foster (1953). This criterion was later studied by Holmes (1967), Pakes (1969),
and Tweedie (1975) (these early works are reviewed in Sennot et al (1983)). Mertens
et al (1978) have shown that the drift conditions introduced in Theorem 7.5.1 and
Theorem 7.5.2 are also sufficient.

The convergence of positive and aperiodic Markov kernels in total variation to
their stationary distribution (Theorem 7.6.4) was first established in Kolmogorov
(1931) (and has later been refined by Feller (1971) and Chung (1967) using analytic
proofs). The coupling proof approach presented here was introduced by Doeblin
(1938) .



Chapter 8
Convergence of atomic Markov chains

The main object of this chapter is to prove the convergence of the iterates of a
positive recurrent atomic Markov kernel to its invariant probability measure. This
will be done by two different methods: application of renewal theory and coupling
techniques.

In Section 8.1 we will provide a concise introduction to the theory of discrete
time renewal processes. Renewal theory can be applied to the study of a stochastic
process which exhibits a certain recurrent pattern and starts anew with a fixed dis-
tribution after each occurrence of this pattern. This gives rise to a renewal process
which models the recurrence property of this pattern. For a discrete time Markov
chain, the typical pattern is the visit to a state and the times between each visit
are i.i.d. by the strong Markov property. The main results of renewal theory which
we will present are Blackwell and Kendall’s theorems. Blackwell’s Theorem 8.1.7
states that the probability that an event occurs at time n converges to the inverse
mean waiting time. Kendall’s Theorem 8.1.9 provides a geometric rate of conver-
gence to Blackwell’s theorem under a geometric moment condition for the waiting
time distribution.

We will apply these results in Section 8.2 to prove the convergence in total vari-
ation of the iterates of a positive and aperiodic Markov kernel to its invariant distri-
bution and establish conditions upon which the rate of convergence is geometric.

8.1 Discrete time renewal theory

Definition 8.1.1 (Renewal process) Let {Yn, n ∈ N∗} be a sequence of i.i.d. posi-
tive integer-valued random variables with distribution b= {b(n), n∈N∗} and Y0 be
a nonnegative integer-valued random variable with distribution a = {a(n), n ∈ N},
independent of the sequence {Yn, n ∈ N∗}.

165
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• The process {Sn, n ∈ N} defined by

Sn =
n

∑
i=0

Yi (8.1.1)

is called a renewal process. The random times Sn, n≥ 0, are called the renewals
or the epochs of the renewal process. The common distribution b of the random
variables Yn, n≥ 1 is called the waiting time distribution.

• The first renewal time Y0 is called the delay of the process and its distribution a
is called the delay distribution. The renewal process is called pure or zero-
delayed if Y0 ≡ 0 (i.e. if a is concentrated at 0) and delayed otherwise.

• The renewal process and its waiting time distribution b are said to be aperiodic
if g.c.d.{n > 0 : b(n)> 0}= 1.

The sequence {Sn, n ∈ N} is a random walk with positive jumps and it is thus a
Markov chain on N with initial distribution a (the delay distribution) and transition
kernel P given

P(i, j) =

{
b( j− i) if j > i ,
0 otherwise.

(8.1.2)

As usual, we consider the canonical realization of the renewal process, which means
that the canonical space (NN,P(N)⊗N) is endowed with the probability measure Pa
which makes the coordinate process a renewal process with waiting time distribution
b and delay distribution a; Pi is shorthand for Pδi and Ei denote the corresponding
expectations. Other Markov chains associated to the renewal process will be defined
later so we stress here this notation.

It is often convenient to indicate the epochs by a random sequence {Vn, n ∈ N}
such that Vn = 1 if n is a renewal time and Vn = 0 otherwise i.e.

Vn =
∞

∑
m=0

1{Sm = n} .

The delayed renewal sequence {va(k), k ∈ N} associated to the delay distribution a
is defined by

va(k) = Pa(Vk = 1) =
∞

∑
m=0

Pa(Sm = k) , k ≥ 0 . (8.1.3)

For i ∈ N, we write vi for vδi and for i = 0, we write u for v0. The sequence u is
called the pure renewal sequence:

u(k) = P0(Vk = 1) , k ≥ 0 . (8.1.4)
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Since Y1,Y2, . . . ,Ym are i.i.d. positive random variables with common distribution b,
the distribution of Y1 + · · ·+Ym is b∗m, the m-fold convolution of b, defined recur-
sively by

b∗0 = δ0 , b∗1 = b , b∗m = b∗(m−1) ∗b , m≥ 1 , (8.1.5)

where δ0 is identified to the sequence {δ0(n), n ∈N}. For the zero-delayed renewal
process, b∗m(k) is the probability that the (m+ 1)-th epoch occurs at time k, i.e.
P0(Sm = k) = b∗m(k). Note that b∗m(n) = 0 if m > n. This yields

u(k) = P0(Vk = 1) =
∞

∑
n=0
P0(Sn = k) =

∞

∑
n=0

b∗n(k) . (8.1.6)

Since P0(S0 = 0) = 1, we have V0 = 1 P0 −a.s., i.e. u(0) = 1. The delayed renewal
sequence va can be expressed in terms of the pure renewal sequence and the delay
distribution. Indeed,

va(n) = Pa(Vn = 1) = Pa(Y0 = n)+
n−1

∑
k=1
Pa(Y0 = k)

n−1

∑
m=1

P0(Y1 + · · ·+Ym = n− k)

= a(n)+
n−1

∑
k=1

a(k)u(n− k) =
n

∑
k=0

a(k)u(n− k) = a∗u(n) . (8.1.7)

Theorem 8.1.2. For every distribution a on N, the delayed renewal sequence va is
the unique positive solution to

va = a+b∗ va . (8.1.8)

In particular, the pure renewal sequence u is the unique positive solution to

u = δ0 +b∗u . (8.1.9)

Proof. We first prove (8.1.9). Since u(0) = 1, applying (8.1.6), we obtain

u(n) =
∞

∑
k=0

b∗k(n) = δ0(n)+
∞

∑
k=1

b∗b∗(k−1)(n)

= δ0(n)+b∗
∞

∑
k=1

b∗(k−1)(n) = δ0(n)+b∗u(n) .

Let ν be a positive sequence that satisfies (8.1.8). Iterating we obtain, for all n≥ 0,

ν = a∗
n

∑
j=0

b∗ j +ν ∗b∗(n+1) .

Since ν ∗b∗(n+1)(k) = 0 for k ≤ n, this yields, for every k ∈ N and n≥ k,
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ν(k) = a∗
n

∑
j=0

b∗ j(k) = a∗
∞

∑
j=0

b∗ j(k) = a∗u(k) = va(k) .

2

For z ∈ C, let U and B be the generating functions of the zero-delayed renewal
sequence {u(n), n ∈ N} and of the waiting time distribution {b(n), n ∈ N∗}, re-
spectively, that is

U(z) =
∞

∑
n=0

u(n)zn , B(z) =
∞

∑
n=1

b(n)zn .

These series are absolutely convergent on the open unit-disk {z ∈ C : |z|< 1}. The
renewal equation (8.1.9) implies that these generating functions satisfy

U(z) = 1+B(z)U(z) ,

or equivalently, since on {z ∈ C : |z|< 1} |B(z)|< 1,

U(z) =
1

1−B(z)
. (8.1.10)

Set Va(z) = ∑
∞
k=0 va(k)zk and A(z) = ∑

∞
k=0 a(k)zk, the generating functions of the

delayed renewal sequence and of the delay, respectively. These generating functions
are absolutely convergent on {z ∈ C : |z|< 1}. Then (8.1.7) and the expression for
the generating function of the zero-delayed renewal U yield

Va(z) = A(z)U(z) =
A(z)

1−B(z)
.

If the mean waiting time (or mean recurrence time) is finite, then the delay dis-
tribution a may be chosen in such a way that the delayed renewal sequence va is
constant.

Proposition 8.1.3 Assume that the mean waiting time is finite, i.e. m =

∑
∞
j=1 jb( j) < ∞. The unique delay distribution as yielding a constant delayed

renewal sequence, called the stationary delay distribution, is given by

as(k) = m−1
∞

∑
j=k+1

b( j) , k ≥ 0 . (8.1.11)

In that case, for all n≥ 0, vas(n) = m−1 and is called the renewal intensity.

Proof. Suppose that va(k) = c for all k ∈ N where c is some positive constant that
will be chosen later. Then, Va(z) = c(1− z)−1, |z|< 1 and
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A(z) = c{1−B(z)}(1− z)−1 . (8.1.12)

A direct direct identification of the coefficients in (8.1.12) yields, for any k ≥ 0,

a(k) = c

(
1−

k

∑
j=1

b( j)

)
= c

∞

∑
j=k+1

b( j) = cP0(Y1 ≥ k+1) .

Since 1 = ∑
∞
k=0 a(k), the constant c must satisfy 1 = c∑

∞
k=1P0(Y1 ≥ k) = cE0[Y1]

and thus c = 1/m. It is easy to conclude. 2

To a renewal process is naturally associated the counts of the number of renewals
that occurred in a given subset of N. Formally, for A⊂ N,

NA =
∞

∑
k=0

1A(Sk) .

Corollary 8.1.4 If the mean waiting time m is finite and if the delay distri-
bution is the stationary delay distribution as then, for all A ⊂ N, Eas [NA] =
m−1card(A).

Proof. This is a straightforward consequence of Proposition 8.1.3 since, for every
delay distribution,

Ea[NA] = ∑
n∈A
Ea

[
∞

∑
k=0

1{Sk=n}

]
= ∑

n∈A
va(n) .

If a = as, then the delayed renewal sequence is constant and equal to m−1 and the
result follows. 2

8.1.1 Forward recurrence time chain

Let {ρk, k ∈ N} be the sequence of stopping times with respect to the filtration
{F S

n = σ(Sk,k ≤ n), n ∈ N} defined by

ρk = inf{n≥ 0 : Sn > k} , (8.1.13)

the time of the first renewal epoch after time k. The forward recurrence time chain
(also called the residual lifetime) is the sequence {Ak, k ∈ N}, defined by

Ak = Sρk − k , k ∈ N , (8.1.14)
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the number of time-steps before the next renewal epoch after k. By definition, the
residual lifetime is never 0. In particular, for k = 0, we have

A0 =

{
S0 = Y0 if Y0 > 0 ,

S1 = Y1 if Y0 = 0 .

Thus the distribution of A0, denoted by µa is given by

µa(k) = Pa(A0 = k) = a(k)+b(k)a(0) , k ≥ 1 . (8.1.15)

Observe also that Ak > 1 implies Sρk > k+1, hence ρk+1 = ρk and Ak+1 = Ak−1.
If Ak = 1, then a renewal occurs at time k+1.

A0

A1

A2

A3

A4

S0 S1 S2

Fig. 8.1 An example of residual lifetime process.

Proposition 8.1.5 Under Pa, the forward recurrence time chain {Ak, k ∈N} is
a Markov chain on N∗ with initial distribution µa defined in (8.1.15) and kernel
Q defined by

Q(1, j) = b( j) , j ≥ 1 , (8.1.16a)
Q( j, j−1) = 1 , j ≥ 2 . (8.1.16b)

The Markov kernel Q is irreducible on X = {0, . . . ,sup{n ∈ N : b(n) 6= 0}}
and recurrent. If the mean waiting time m is finite, then Q is positive recurrent
with invariant distribution µs given by

µs(k) = m−1
∞

∑
j=k

b( j) , k ≥ 1 . (8.1.17)
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Proof. For ` ≥ 0, set F A
` = σ(A j, j ≤ `). Let C ∈F A

k . Since ρ j ≤ ρk for j ≤ k, if
C ∈F A

k , then C∩{ρk = `} ∈F S
` . This yields,

Pa(C,Ak = 1,Ak+1 = j) =
k+1

∑
`=0
Pa(C,Ak = 1,ρk = `,Y`+1 = j)

=
k+1

∑
`=0
Pa(C,Ak = 1,ρk = `)Pa(Y`+1 = j)

= Pa(C,Ak = 1)b( j) .

This proves (8.1.16a). The equality (8.1.16b) follows from the observation already
made that if Ak > 1 then Ak+1 = Ak−1.

Set k0 = sup{n ∈ N : b(n)> 0} ∈ N̄. For all k ∈ {1, . . . ,k0}, Qk(k,1) = 1 and if
` ≥ k is such that b(`) > 0, then Q`(1,k) ≥ b(`) > 0. Thus Q is irreducible. Since
P1(τ1 = k) = b(k), we have P1(τ1 < ∞) = 1 showing that Q is recurrent. To check
that µs is invariant for Q, note that, for j ≥ 1,

µsQ( j) =
∞

∑
i=1

µs(i)Q(i, j) = µs(1)b( j)+µs( j+1)

= m−1

(
b( j)+

∞

∑
`= j+1

b(`)

)
= µs( j) .

2

We now provide a useful uniform bound on the distribution of the forward recur-
rence time chain of the pure renewal process.

Lemma 8.1.6 For all n ∈ N and k ≥ 1, P0(An = k)≤ P0(Y1 ≥ k).

Proof. For n≥ 0 and k ≥ 1, we have

P0(An = k) =
∞

∑
j=0
P0(S j ≤ n < S j+1,An = k)

=
∞

∑
j=0

n

∑
i=0
P0(S j = i,Yj+1 = n+ k− i)

=
n

∑
i=0

(
∞

∑
j=0
P0(S j = i)

)
P0(Y1 = k+ i)

=
n

∑
i=0

u(i)P0(Y1 = k+ i)≤ P0(Y1 ≥ k) .

2
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8.1.2 Blackwell’s and Kendall’s theorems

In this section, we assume that the delay distribution is periodic. Blackwell’s The-
orem (Theorem 8.1.7) shows that, for any delay distribution a, the delayed renewal
sequence {va(n),n ∈ N} converges to the renewal intensity 1/m, where m ∈ [1,∞]
is the (possibly infinite) mean of the delay distribution.

Theorem 8.1.7. Assume that b is aperiodic. Then, for any delay distribution a,

lim
n→∞

va(n) = 1/m , (8.1.18)

with m = ∑
∞
k=1 kb(k) ∈ (0,∞].

Proof. Let Q be the kernel of the forward-recurrence time chain, defined in (8.1.16).
The Markov kernel Q is irreducible on F = {1, . . . ,sup{ j ∈ N∗ : b( j) 6= 0}}. For
k ≥ 1 such that b(k)> 0, we have

Qk(1,1)≥ Q(1,k)Qk−1(k,1) = Q(1,k) = b(k)> 0 .

Since the distribution b is aperiodic, this proves that the state 1 is aperiodic. Since the
kernel Q is moreover irreducible, this implies that Q aperiodic by Proposition 6.3.4.
By definition, An−1 = 1 if and only if there is a renewal at time n, thus, for n≥ 1,

va(n) = Pa(An−1 = 1) . (8.1.19)

If m < ∞, we have seen in Proposition 8.1.5 that the probability measure µs defined
in (8.1.17) is invariant for Q. Thus, applying Theorem 7.6.4, we obtain

lim
n→∞

va(n) = lim
n→∞

Pa(An−1 = 1) = µs(1) =
1
m

.

If m = ∞, the chain is null recurrent and Theorem 7.6.5 yields

lim
n→∞

va(n) = lim
n→∞

Pa(An−1 = 1) = 0 .

This proves (8.1.18) when m = ∞. 2

Before investigating rates of convergence, we state an interesting consequence of
Theorem 8.1.7.

Lemma 8.1.8 Assume that the waiting time distribution b is aperiodic and that the
mean waiting time m is finite. Let N be a subset of N. Assume that card(N) = ∞.
Then for any delay distribution a, Pa(∑

∞
k=01N(Sk) = ∞) = 1.

Proof. Let τn be the hitting time of the state n by the renewal process {Sk, k ∈ N}.
Note that
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P0(τn < ∞) = P0

(
∞⋃
`=0

{S` = n}

)
= u(n) ,

where u is the pure renewal sequence. Let η ∈ (0,1/m). By Theorem 8.1.7, there
exists `≥ 1 such that for all n≥ `, P0(τn < ∞) = u(n)≥ η . Since card(N) = ∞, for
each i ∈ N, we can choose j ∈ N such that j ≥ i+ `. Then,

0 < η ≤ P0(τ j−i < ∞) = Pi(τ j < ∞)≤ Pi(σN < ∞) .

For every delay distribution a, Pa(∑
∞
j=01N(S j)=∞)= 1. Since infi∈NPi(σN <∞)≥

η , by applying Theorem 4.2.6 to the Markov chain {Sn, n ∈ N}. we finally obtain
that Pa(∑

∞
j=01N(S j) = ∞) = 1. 2

If the waiting distribution has geometric moments, Kendall’s Theorem shows that
the convergence in Theorem 8.1.7 holds at a geometric rate.

Theorem 8.1.9. Assume that the waiting distribution b is aperiodic. Then, the fol-
lowing properties are equivalent:

(i) there exists β > 1 such that the series ∑
∞
n=1 b(n)zn is absolutely summable for

all |z|< β ;
(ii) there exists β̃ > 1 and λ > 0 such that the series ∑

∞
n=0{u(n)−λ}zn is absolutely

summable for all |z|< β̃ .

In both cases, the mean waiting time is finite and equal to λ−1.

Proof. We first prove that both assumptions imply that the mean waiting time m =

∑
∞
k=1 kb(k) is finite. This is a straightforward consequence of (i) and it is also implied

by (ii) since in that case limn→∞ u(n) = λ and this limit is also equal to m−1 by
Blackwell’theorem. Thus λ > 0 implies m < ∞.

Set now w(0) = 1, w(n) = u(n)−u(n−1) for n≥ 1 and for |z|< 1,

F(z) =
∞

∑
n=0

(u(n)−m−1)zn , W (z) =
∞

∑
n=0

w(n)zn .

Then, for all |z|< 1, we get

W (z) = (1− z)F(z)+1/m . (8.1.20)

Recall that if B(z) and U(z) denote the generating functions of the waiting distri-
bution b and the renewal sequence u, respectively and that U(z) = (1−B(z))−1 for
|z|< 1 by (8.1.10). Thus, for |z|< 1,

W (z) = (1− z)U(z) = (1− z)(1−B(z))−1 . (8.1.21)
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Assume first (i) holds. Note that |B(z)|< 1 for |z|< 1. The aperiodicity of b implies
that B(z) 6= 1 for all |z| ≤ 1, z 6= 1. The proof is by contradiction. Assume that there
exists θ ∈ (0,2π) such that B(eiθ ) = 1, then

∞

∑
k=1

b(k)cos(kθ) = 1 .

If θ 6∈ {2π/k : k ∈ N∗}, then |cos(kθ)|< 1 for all k ∈N and ∑
∞
k=1 b(k)cos(kθ)< 1

which is a contradiction. Therefore, there exists an integer k0 > 1 such that θ =
2π/k0. Since b is aperiodic, there exists k such that b(k) 6= 0 and cos(2πk/k0)< 1.
This implies that ∑

∞
k=1 b(k)cos(2πk/k0)< 1 which is again a contradiction.

Thus 1 is the only root of B(z) = 1 and moreover it is a single root since
B′(1) = ∑

∞
n=1 nb(n) = m 6= 0. The function z 7→ 1− B(z) is analytic on the disk

{z ∈ C : |z|< β} and does not vanish on {z ∈ C : |z| ≤ 1}\{1}. Since the zeros of
an analytic functions are isolated, there exists β̃ ∈ (1,β ) such that 1−B(z) 6= 0 for
all z 6= 1 such that |z|< β̃ .

Thus the function z 7→ W (z) = (1− z)(1− B(z))−1 is analytic on the disc{
z ∈ C : |z|< β̃

}
. This implies that ∑

∞
k=1 rk|w(k)| < ∞ for r ∈

(
1, β̃
)

. Since

limk→∞ u(n) = 1/m by Blackwell’s Theorem 8.1.7, we obtain for r ∈
(

1, β̃
)

,

rn|u(n)−1/m|= rn
∣∣∣∣ limk→∞
{u(n)−u(k)}

∣∣∣∣= rn

∣∣∣∣∣ limk→∞

k

∑
j=n+1

w( j)

∣∣∣∣∣
≤ rn

∞

∑
k=n+1

|w(k)| ≤
∞

∑
k=n+1

|w(k)|rk < ∞ .

This proves (ii).
Conversely, if (ii) holds, then the function z 7→ W (z) is analytic on the disk{

z ∈ C : |z|< β̃

}
. Indeed, for any r < β̃ ,

∞

∑
n=1
|u(n)−u(n−1)|rn ≤

∞

∑
n=1
|u(n)−m−1|rn +

∞

∑
n=1
|u(n−1)−m−1|rn

≤ (1+ r)
∞

∑
n=0
|u(n)−m−1|rn .

This implies that ∑
∞
n=1 |u(n)− u(n− 1)| < ∞, hence applying Blackwell’s Theo-

rem 8.1.7, we obtain

W (1) = 1+
∞

∑
n=1
{u(n)−u(n−1)}= lim

n→∞
u(n) = 1/m .

By (8.1.21), we have, for |z| < 1, B(z) = 1+(z− 1)/W (z). Since B(z) is bounded
on {|z| ≤ 1}, this implies that W (z) 6= 0 for |z| ≤ 1, z 6= 1. This implies that r0 =
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inf{|z| : W (z) = 0}> 1, hence B is analytic on {|z|< β} with β = β̃ ∧ r0 > 1. This
proves (i). 2

8.2 Renewal theory and atomic Markov chains

In this section, P is a Markov kernel on X×X having a recurrent atom α , i.e.
Pα(σα < ∞) = 1. We will now build a renewal process based on the successive
visits to the atom α . Define recursively

S0 = σα , Sk+1 = Sk +σα ◦θSk , k ≥ 0 . (8.2.1)

By construction, the random variables Sk are the successive visits of the chain {Xn}
to the atom α: Sk = σ

(k+1)
α for all k ≥ 0. Define

Y0 = S0 = σα , Yk = Sk−Sk−1 , k ≥ 1 .

Proposition 8.2.1 Let α be a recurrent atom. Let ξ ∈M1(X ) be an initial dis-
tribution such that Pξ (σα < ∞) = 1. Then, under Pξ , {Sn, n ∈ N} is a renewal
process with waiting time distribution b and delay distribution aξ defined by

b(k) = Pα(σα = k) , aξ (k) = Pξ (σα = k) , k ∈ N.

Proof. This is a direct application of Proposition 6.5.1 since Y0 = σα is Fσα
mea-

surable by definition and for k ≥ 1, Yk = σα ◦θSk−1 . 2

The renewal process {Sn, n ∈ N} is called the renewal process associated to the
Markov chain {Xn, n ∈ N}. The pure and delayed renewal sequences associated to
this renewal process can be related to the original chain as follows. For ξ ∈M1(X )
and n≥ 0,

u(n) = Pα(Xn ∈ α) , (8.2.2a)
vaξ

(n) = Pξ (Xn ∈ α) . (8.2.2b)

The initial distribution of the forward recurrence process associated to the renewal
process is given by

µaξ
(k) = Pξ (σα = k) , k ≥ 1 . (8.2.3)

If the atom α is accessible and positive, then Theorem 6.4.2 shows that the Markov
kernel P admits a unique invariant probability π . As shown in the following result, if
the Markov chain is started from stationarity, then the renewal sequence associated
to the atom α is also stationary.
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Proposition 8.2.2 Let P be a Markov kernel on X×X admitting an accessi-
ble and positive atom α . Denote by π the unique invariant probability. Then
aπ is the stationary delay distribution and the invariant probability µaπ

of the
associated forward recurrence time chain is given by µaπ

(k) = Pπ(σα = k),
k ≥ 1.

Proof. By (8.2.2b), vaπ
(n) = Pπ(Xn ∈ α) = π(α) for all n ∈ N. Thus vaπ

is con-
stant. The second statement is an immediate consequence of (8.2.2), (8.2.3) and
Proposition 8.1.5. 2

Corollary 8.2.3 Let P be a Markov kernel on X×X admitting an accessible,
aperiodic and positive atom α . Then

lim
n→∞

Pn(α,α) =
1

Eα [σα ]
.

Proof. Since the atom is aperiodic, the waiting-time distribution b(n) =Pα(σα = n)
n ∈ N∗ is also aperiodic. Since the atom is positive, we have ∑

∞
j=1 jPα(σα = j) =

Eα [σα ]< ∞. Applying Blackwell’s Theorem (see Theorem 8.1.7), we get

lim
n→∞

Pn(α,α) = lim
n→∞

u(n) =
1

Eα [σα ]
> 0 .

2

8.2.1 Convergence in total variation distance

In this section, we study the convergence of the iterates of a Markov kernel P using
the renewal theory. We show that if the Markov kernel admits an aperiodic positive
atom, then the iterates of the chain converge in total variation towards the invariant
law. The key of the proof is to combine the first-entrance last-exit decomposition
(see Section 3.4) and the Blackwell’s and Kendall’s theorems.

Proposition 8.2.4 Let P be a Markov kernel on X×X with an accessible atom
α satisfying Pα(σα < ∞) = 1. Then for all f ∈ F+(X)∪Fb(X), ξ ∈M1(X )
and n≥ 1, we get

Eξ [ f (Xn)] = Eξ [1{σα≥n} f (Xn)]+aξ ∗u∗ψ f (n). (8.2.4)
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where for n≥ 1,

ψ f (0) = 0 and ψ f (n) = Eα [ f (Xn)1{σα≥n}] ,n≥ 1 . (8.2.5)

Proof. Recall that for k ≥ 1, Pξ (Xk = α) = [aξ ∗u](k). Then

Eξ [ f (Xn)]

= Eξ [1{σα≥n} f (Xn)]+
n−1

∑
k=1
Eξ [1{Xk ∈ α,Xk+1 /∈ α, . . . ,Xn−1 /∈ α} f (Xn)]

= Eξ [1{σα≥n} f (Xn)]+
n−1

∑
k=1
Pξ (Xk ∈ α)Eα [1{X1 /∈ α, . . . ,Xn−k−1 /∈ α} f (Xn−k)]

= Eξ [1{σα≥n} f (Xn)]+
n−1

∑
k=1
Pξ (Xk ∈ α)ψ f (n− k)

= Eξ [1{σα≥n} f (Xn)]+aξ ∗u∗ψ f (n) ,

where we have used in the last identity ψ f (0) = 0 and aξ (0) = 0. 2

Corollary 8.2.5 Assume that P is a Markov kernel on X×X with an ac-
cessible positive atom α . Denote b π as invariant probability. Then, for all
ξ ∈M1(X ), we get

‖ξ Pn−π‖TV ≤ Pξ (σα ≥ n)+ |aξ ∗u−π(α)| ∗ψ(n)+π(α)
∞

∑
k=n+1

ψ(k) ,

(8.2.6)
where ψ(0) = 0 and ψ(n) = ψ1(n) = Pα(n≤ σα) for n≥ 1.

Proof. Let f ∈Fb(X). By Theorem 6.4.2, the invariant probability may be expressed
as

π( f ) = π(α)Eα

[
σα

∑
k=1

f (Xk)

]

= π(α)
∞

∑
k=1
Eα

[
1{σα≥k} f (Xk)

]
= π(α)

∞

∑
k=1

ψ f (k)< ∞ ,

where ψ f is defined in (8.2.5). Since π(α)∑
n
k=1 ψ f (n) = π(α) ∗ψ f (n), Proposi-

tion 8.2.4-(8.2.4) implies
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ξ Pn( f )−π( f )

= Eξ [ f (Xn)1{n≤σα}]+ [aξ ∗u−π(α)]∗ψ f (n)−π(α)
∞

∑
k=n+1

ψ f (k) . (8.2.7)

Therefore, by taking the supremum over f ∈ Fb(X) satisfying | f |∞ ≤ 1, we get

‖ξ Pn−π‖TV = sup
| f |∞≤1

|ξ Pn f −π( f )|

≤ Pξ (n≤ σα))+ |aξ ∗u−π(α)| ∗ψ(n)+π(α)
∞

∑
k=n+1

ψ(k) .

2

We now apply Blackwell’s theorem (Theorem 8.1.7) to show the convergence of the
iterates of the Markov chain towards its invariant probability measure.

Theorem 8.2.6. Let P be a Markov kernel on X×X . Assume that P admits an
accessible, aperiodic and positive atom α and an invariant probability measure π .
If ξ ∈M1(X ) is such that Pξ (σα < ∞) = 1, then limn→∞ dTV(ξ Pn,π) = 0.

Proof. We will use Corollary 8.2.5 and show that each term in the right-hand side
of the inequality (8.2.6) tends towards 0. Note first that

∞

∑
k=1

ψ(k) =
∞

∑
k=1
Pα(k ≤ σα) = Eα [σα ]< ∞ .

This implies that limn→∞ ∑
∞
k=n+1 ψ(k) = 0. On the other hand, since Pξ (σα <

∞) = 1, we get that limn→∞Pξ (σα ≥ n) = 0. By Corollary 8.2.3, limn→∞ u(n) =
{Eα(σα)}−1 = π(α). Recall that if {v(n), n ∈ N} and {w(n), n ∈ N} are two se-
quences such that limn→∞ v(n) = 0 and ∑

∞
n=0 |w(n)|< ∞, then limn→∞ v∗w(n) = 0.

Therefore we get that limn→∞[aξ ∗{u−π(α)}](n) = 0 and

lim
n→∞
{aξ ∗π(α)}(n) = lim

n→∞

n

∑
k=1

aξ (k) = π(α) .

We conclude by decomposing the difference aξ ∗u−π(α) as follows,

aξ ∗u−π(α) = aξ ∗{u−π(α)}+aξ ∗π(α)−π(α) .

2

Remark 8.2.7. Recall that α+ = {x ∈ X : Px(σα < ∞) = 1}) and that π(α+) = 1
by Lemma 6.4.5. Hence, for every ξ ∈M1(X ) such that ξ (αc

+) = 0, we get that
Pξ (σα < ∞) = 1. N
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8.2.2 Geometric convergence in total variation distance

We now apply Kendall’s theorem (Theorem 8.1.9) to prove the geometric conver-
gence of the iterates of the Markov kernel to its stationary distribution.

Lemma 8.2.8 Let P be a Markov kernel on X×X . Assume that P admits an
aperiodic positive atom α . Denote by π its unique invariant probability. Then
Eα [β

σα ]< ∞ for some β > 1 if and only if ∑
∞
n=1 δ n|Pn(α,α)−π(α)|< ∞ for some

δ > 1.

Proof. We apply Theorem 8.1.9 with b(n) = Pα(σα = n), u(n) = Pα(Xn = α) =
Pn(α,α) and π(α) = 1/Eα [σα ]. 2

Theorem 8.2.9. Let P be a Markov kernel on X×X . Assume that P admits an
accessible aperiodic atom α ∈X and β > 1 such that Eα [β

σα ] < ∞. Then P has
a unique invariant probability π and there exist δ ∈ (1,β ] and ς < ∞ such that, for
all ξ ∈M1(X ),

∞

∑
n=1

δ
ndTV(ξ Pn,π)≤ ςEξ [δ

σα ] . (8.2.8)

Proof. Set b(n) = Pα(σα = n), u(n) = Pα(Xn = α) = Pn(α,α). Since ψ(n) =
Pα(σα ≥ n), we have for δ > 1

∞

∑
n=1

ψ(n)δ n ≤ δ

δ −1
Eα [δ

σα ] . (8.2.9)

The assumption implies that Eα [σα ]< ∞ and by Theorem 6.4.2, it admits a unique
invariant probability π . We will use the well-known property that the moment gen-
erating function of a convolution is the product of the moment generating functions
of the terms of the product, i.e. for every non negative sequences {c(n), n ∈N} and
{d(n), n ∈ N} and for every δ > 0,

∞

∑
n=0

c∗d(n)δ n =

(
∞

∑
i=0

c(i)δ i

)(
∞

∑
j=0

d( j)δ j

)
. (8.2.10)

The bound (8.2.6) in Corollary 8.2.5 and (8.2.9) yield 2∑
∞
n=1 δ ndTV(ξ Pn,π) ≤

∑
3
i=1 Ai with A1 = ∑

∞
n=1Pξ (σα ≥ n)δ n, A2 = π(α)∑

∞
n=1 ∑

∞
k=n+1 ψ(k)δ n and A3 =

B1 ·B2 with

B1 =
∞

∑
n=1
|aξ ∗u−π(α)|δ n and B2 =

∞

∑
n=1

ψ(n)δ n (8.2.11)

We will now consider each of these terms. Note first that
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A1 = Eξ

[
σα

∑
n=1

δ
n

]
≤ δ

δ −1
Eξ [δ

σα ] , (8.2.12)

Now consider A2.

A2 = π(α)
∞

∑
k=1

ψ(k)
k−1

∑
n=1

δ
n ≤ δπ(α)

δ −1

∞

∑
k=1

ψ(k)δ k ≤ δπ(α)

(δ −1)2Eα [δ
σα ] . (8.2.13)

Finally, we consider A3. Note first

A3 = B1 ·B2 ≤
δ

δ −1
Eα [δ

σα ]
∞

∑
n=0
|aξ ∗u(n)−π(α)|δ n , (8.2.14)

Using for n≥ 0 the bound

|aξ ∗u(n)−π(α)| ≤ aξ ∗ |u(n)−π(α)|+π(α)
∞

∑
k=n+1

aξ (k) ,

we obtain using again (8.2.10),

B1 ≤

(
∞

∑
n=0

aξ (n)δ
n

)(
∞

∑
n=0
|u(n)−π(α)|δ n

)
+

∞

∑
n=0

∞

∑
k=n+1

aξ (k)δ
n

≤ Eξ [δ
σα ]

∞

∑
n=0
|u(n)−π(α)|δ n +

δ

δ −1
Eξ [δ

σα ] . (8.2.15)

By Lemma 8.2.8, there exists δ > 1 such that ∑
∞
n=0 |u(n)− π(α)|δ n < ∞. Hence,

using (8.2.14), there exists ς < ∞ such that A3 ≤ ςEξ [δ
σα ]. Eq. (8.2.8) follows from

(8.2.12) and (8.2.13). 2

8.3 Coupling inequalities for atomic Markov chains

In this section, we obtain rates of convergence for dTV(ξ Pn,ξ ′Pn) using an approach
based on coupling techniques. We have already used the coupling technique in Sec-
tion 7.6 for Markov kernels on a discrete state space. We will show in this Section
how these techniques can be adapted to a Markov kernel P on a general state space
admitting an atom.

Let P be a Markov kernel on X×X admitting an accessible atom α . Define the
Markov kernel P̄ on X2×X ⊗2 as follows: for all (x,x′) ∈ X2 and A ∈X ⊗2

P̄((x,x′),A) =
∫

P(x,dy)P(x′,dy′)1A(y,y
′) . (8.3.1)
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Let {(Xn,X ′n), n ∈N} be the canonical process on the canonical product space Ω =
(X×X)N. For ξ ,ξ ′ ∈M1(X ), let P̄ξ⊗ξ ′ be the probability measure on Ω such that
{(Xn,X ′n), n∈N} is a Markov chain with kernel P̄ and initial distribution ξ⊗ξ ′. The
notation Ēξ⊗ξ ′ stands for the associated expectation operator. An important feature
is that α×α is an atom for P̄. Indeed, for all x,x′ ∈ α and A,A′ ∈X ,

P̄((x,x′),A×A′) = P(x,A)P(x′,A) = P(α,A)P(α,A′) .

For an initial distribution ξ ′ ∈M1(X ) and a random variable Y on Ω , if the function
x 7→ Ēδx⊗ξ ′ [Y ] does not depend on x∈α , then we write Ēα⊗ξ ′ [Y ] for Ēδx⊗ξ ′ [Y ] when
x ∈ α . Similarly, for x,x′ ∈ α , we write Ēα⊗α [Y ] for Ēδx⊗δx′

[Y ] if the latter quantity
is constant on α×α .

Let ξ and ξ ′ be two probability measures on X. Denote by T the return time to
α×α for the Markov chain {(Xn,X ′n), n ∈ N}, i.e.

T = σα×α = inf
{

n≥ 1 : (Xn,X ′n) ∈ α×α
}
. (8.3.2)

The fundamental result about the coupling time T is stated in the following Lemma
(which is an atomic version of Proposition 7.6.3).

Lemma 8.3.1 Let P be a Markov kernel with an atom α . For all ξ ,ξ ′ ∈M1(X )
and all n ∈ N,

dTV(ξ Pn,ξ ′Pn)≤ P̄ξ⊗ξ ′(T ≥ n) , (8.3.3)

Moreover, for every nonnegative sequence {r(n), n ∈ N},

∞

∑
n=0

r(n)dTV(ξ Pn,ξ ′Pn)≤ Ēξ⊗ξ ′
[
r0(T )

]
, (8.3.4)

where r0(n) = ∑
n
k=0 r(k) for all n ∈ N.

Proof. Let ξ ,ξ ′ ∈M1(X ). Then, for all f ∈ Fb(X),

ξ Pn( f ) = Ēξ⊗ξ ′ [ f (Xn)]

= Ēξ⊗ξ ′ [ f (Xn)1{n≤ T}]+ Ēξ⊗ξ ′ [ f (Xn)1{n > T}]
= Ēξ⊗ξ ′ [ f (Xn)1{n≤ T}]+ Ēξ⊗ξ ′ [1{n > T}Pn−T f (α)] .

Similarly,

ξ
′Pn( f ) = Ēξ⊗ξ ′ [ f (X

′
n)1{n≤ T}]+ Ēξ⊗ξ ′ [1{n > T}Pn−T f (α)] .

Altogether, this implies that

|ξ Pn( f )−ξ
′Pn( f )| ≤ osc ( f ) P̄ξ⊗ξ ′(n≤ T ) .

The bound (8.3.3) follows by application of Proposition D.2.4. Applying (8.3.3)
yields
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∞

∑
n=0

r(n)dTV(ξ Pn,ξ ′Pn)≤
∞

∑
n=0
Ēξ⊗ξ ′ [r(n)1{T ≥ n}] = Ēξ⊗ξ ′

[
r0(T )

]
.

2

Lemma 8.3.1 suggests that rates of convergence in total variation distance of
the iterates of the kernel to the invariant probability will be obtained by finding
conditions under which Ēξ⊗ξ ′ [r0(T )] < ∞. We first give a proof of Theorem 8.3.2)
using the coupling method.

Theorem 8.3.2. Let P be a Markov kernel on X×X . Assume that P admits an
accessible, aperiodic and positive atom α and invariant probability measure π . If
ξ ∈M1(X ) is such that Pξ (σα < ∞) = 1, then limn→∞ dTV(ξ Pn,π) = 0.

Proof. Recall that α+ = {x ∈ X : Px(σα < ∞) = 1} is the domain of attraction of
the atom α . By Lemma 6.4.5, π(α+) = 1, hence Pπ(σα < ∞) = 1. Write N′ ={

k ∈ N : X ′k ∈ α
}

(N is a random set). By Theorem 6.2.2, for every probability
measure ξ ′ such that Pξ ′(σα < ∞) = 1, we have

Pξ ′(card(N′) = ∞) = Pξ ′

(
∞

∑
k=0

1α(X
′
k) = ∞

)
= 1 .

By the strong Markov property, the successive visits σ
(n)
α to α define an aperiodic

renewal process with delay distribution a(n) = Pξ (τα = n). Therefore, for each ω ′

such that card(N′(ω ′)) = ∞, by Lemma 8.1.8, we have

Pξ

(
∞

∑
n=1

1N′(ω ′)(σ
(n)
α ) = ∞

)
= 1.

This yields that

P̄ξ⊗ξ ′

(
∞

∑
n=1

1N′(σ
(n)
α ) = ∞

)
= Pξ ′(card(N′) = ∞) = 1 .

Thus, for any initial distribution ξ ′ such that Pξ ′(σα < ∞) = 1, we have

P̄ξ⊗ξ ′(σα×α < ∞)≥ P̄ξ⊗ξ ′(card(N) = ∞) = 1 .

The proof is concluded by applying (8.3.3). 2

We now state two technical lemmas which will be used to obtain polynomial
rates of convergence.
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Lemma 8.3.3 Let P be a Markov kernel on X×X with a positive atom α . For all
ξ ∈M1(X ) and k,n ∈ N∗,

Eξ

[
{σ (n)

α }k
]
≤ nk−1[Eξ [σ

k
α ]+ (n−1)Eα(σ

k
α)] .

Proof. Since σ
(n)
α = σ

(n−1)
α +σα ◦θ

σ
(n−1)
α

, we have

{
Eξ

[
{σ (n)

α }k
]}1/k

≤
{
Eξ

[
{σ (n−1)

α }k
]}1/k

+
{
Eξ

[
σ

k
α ◦θ

σ
(n−1)
α

]}1/k

=
{
Eξ

[
{σ (n−1)

α }k
]}1/k

+
{
Eα [σ

k
α ]
}1/k

and the result follows by induction. Using Jensen’s inequalitywe obtain

Eξ

[
{σ (n)

α }k
]
= nk

[
1
n

{
Eξ [σ

k
α ]
}1/k

+
n−1

n

{
Eα [σ

k
α ]
}1/k

]k

≤ nk−1
{
Eξ [σ

k
α ]+ (n−1)Eα [σ

k
α ]
}
.

2

Lemma 8.3.4 Let P be a Markov kernel on X×X with a positive aperiodic atom
α . Assume that Eα [σ

k
α ] < ∞ for some k ∈ N∗. Then there exists a constant ς < ∞

such that, for all ξ , ξ ′ ∈M1(X ),

Ēξ⊗ξ ′ [T
k]≤ ςEξ [σ

k
α ]Eξ ′ [σ

k
α ] . (8.3.5)

Proof. Denote by π the unique invariant probability. Set ρn = Pn(α,α). By Propo-
sition 6.3.6, we may choose m large enough such that ρn > 0 for all n ≥ m. Since
Pn(α,α)> 0 for all n≥ m and by Corollary 8.2.3, limn→∞ ρn = 1/π(α), we obtain
supn≥m ρ−1

n ≤ ς < ∞.

Let T = σα×α , S = σ
(m)
α×X. Let r ∈ N∗. Since T ≤ S+T ◦θS, we get

Ēξ⊗ξ ′ [T
r]≤ 2r−1

{
Eξ [{σ

(m)
α }r]+ Ēξ⊗ξ ′ [T

r ◦θS]
}
. (8.3.6)

Then

Ēξ⊗ξ ′ [T
r ◦θS] =

∞

∑
n=m

Ēξ⊗ξ ′
[
1{S=n}Ēα,X ′n [T

r]
]

=
∞

∑
n=m

Pξ (σ
(m)
α = n)Ēξ⊗ξ ′ [Ēα,X ′n [T

r]]

=
∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Pα(Xn ∈ α)Ēξ⊗ξ ′ [Ēα,X ′n [T
r]] . (8.3.7)
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Note that Ēξ⊗ξ ′ [Ēα,X ′n [T
r]] =

∫
ξ ′(dx′)Ēα,x′ [T r] does not depend upon the initial dis-

tribution ξ ∈M1(X ). Hence Ēξ⊗ξ ′ [Ēα,X ′n [T
r]] = Ēα⊗ξ ′ [Ēα,X ′n [T

r]]. Plugging this
expression in (8.3.7) yields

Ēξ⊗ξ ′ [T
r ◦θS]≤

∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Ēα⊗ξ ′ [1α(Xn)Ēα,X ′n [T
r]] (8.3.8)

≤
∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Ēα⊗ξ ′ [ĒXn,X ′n [T
r]] .

By the Markov property, we get Ēα⊗ξ ′ [ĒXn,X ′n [T
r]] = Ēα⊗ξ ′ [T r ◦θn]. Since T ◦θn ≤

σ
(n)
α×α , we get by applying Lemma 8.3.3 with T = σα×α instead of σα ,

Ēα⊗ξ ′ [ĒXn,X ′n [T
r]] = Ēα⊗ξ ′ [T

r ◦θn]

≤ Ēα⊗ξ ′ [{σ
(n+1)
α×α }r]≤ (n+1)r−1{Ēα⊗ξ ′ [T

r]+nĒα⊗α [T r]}

Plugging this bound into (8.3.8) yields

Ēξ⊗ξ ′ [T
r ◦θS]≤ 2r

ςEξ [σ
r
α ]
{
Ēα⊗ξ ′ [T

r]+ Ēα⊗α [T r]
}
,

which, combined with (8.3.6), implies

Ēξ⊗ξ ′ [T
r]≤ ςrEξ [{σ

(m)
α }r]

{
Ēα⊗ξ ′ [T

r]+ Ēα⊗α [T r]
}
, (8.3.9)

where ςr < ∞. By interchanging ξ and ξ ′, we obtain along the same lines

Ēξ⊗ξ ′ [T
r]≤ ςrEξ ′ [{σ

(m)
α }r]

{
Ēξ⊗α [T

r]+ Ēα⊗α [T r]
}
.

showing that
Ēα⊗ξ ′ [T

r]≤ 2ςrEξ ′ [{σ
(m)
α }r] Ēα⊗α [T r] . (8.3.10)

Plugging this bound in (8.3.9) and using Lemma 8.3.3, there exists a constant κr <∞

such that
Ēξ⊗ξ ′ [T

r]≤ κrEξ [σ
r
α ]Eξ ′ [σ

r
α ]Ēα⊗α [T r] . (8.3.11)

To prove (8.3.5), it remains to show that Ēα⊗α [T k] < ∞. We proceed by induction.
The set α×α is an accessible atom for P̄ and π⊗π is an invariant probability for P̄.
Since π⊗π(α×α)= {π(α)}2 > 0, the atom α×α is recurrent by Proposition 6.2.8
and positive by Theorem 6.4.2: Ēα⊗α [T ]< ∞.

Assume now that Ēα⊗α [T r]< ∞ for r ∈N∗ with r < k. Lemma 6.4.3 implies that
Eπ [σ

r
α ]< ∞. Applying (8.3.11) with ξ = ξ ′ = π shows that

Ēπ⊗π [T r]≤ κr {Eπ [σ
r
α ]}

2 Ēα⊗α [T r]

Applying now Lemma 6.4.3 to the coupling kernel P̄ yields Ēα⊗α [T r+1]< ∞. 2
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Theorem 8.3.5. Let P be a Markov kernel on X×X . Assume that P admits an
accessible aperiodic and positive atom α . Denote by π the invariant probability.

(i) Assume that Eα [σ
k
α ]< ∞ for some k ∈ N∗. Then, there exists a constant ς < ∞

such that for all ξ ,ξ ′ ∈M1(X ) and n ∈ N,

nkdTV(ξ Pn,ξ ′Pn)≤ ςEξ [σ
k
α ]Eξ ′ [σ

k
α ] , (8.3.12)

∞

∑
n=1

nk−1dTV(ξ Pn,ξ ′Pn)≤ ςEξ [σ
k
α ]Eξ ′ [σ

k
α ] . (8.3.13)

(ii) Assume that Eα [σ
k+1
α ]< ∞. Then there exists a constant ς < ∞ such that for all

ξ ∈M1(X ),
dTV(δxPn,π)≤ ςEξ [σ

k
α ]n
−k . (8.3.14)

Proof. Note that if Eα [σ
k
α ] < ∞, then Lemma 6.4.3 shows that Eπ [σ

k
α ] < ∞. The

bounds (8.3.12), (8.3.13) and (8.3.14) follow directly from Lemmas 8.3.1 and 8.3.4.
2

We now extend these results to geometric convergence.

Lemma 8.3.6 Let P be a Markov kernel on X×X with an attractive positive atom
α satisfying P(α,α) > 0. Assume that Eα [β

σα ] < ∞ for some β > 1. Then there
exist δ > 1 and a constant ς < ∞ such that, for all ξ , ξ ′ ∈M1(X ),

Ēξ⊗ξ ′ [δ
T ]≤ ςEξ [β

σα ]Eξ ′ [β
σα ] . (8.3.15)

Proof. As in Lemma 8.3.4, we may choose m ∈ N∗ such that supn∈m ρ−1
n ≤ ς <

∞ where ρn = Pn(α,α). Set T = σα×α and S = σ
(m)
α×X. Lemma 8.2.8 shows that

∑
∞
n=1 κn|Pn(α,α)−π(α)|< ∞ for some κ > 1, which implies

∞

∑
n=1

κ
n|Pn(α,α)Pn(α,α)−π(α)π(α)|< ∞.

Applying again Lemma 8.2.8 to the Markov kernel P̄ on X2×X ⊗2 (noting that
α×α is an atom for P̄), we get that there exists γ > 1 such that

Ēα×α [γ
T ]< ∞ . (8.3.16)

We can choose γ such that Ēα×α [γ
T ] ≤ β and δ > 1 such that δ 2 ≤ β ∧ γ . Using

that T ≤ S+T ◦θS and uv≤ (1/2)(u2 + v2), we get

Ēξ⊗ξ ′ [δ
T ]≤ Ēξ⊗ξ ′ [δ

S+T◦θS ]≤ 1
2
Eξ [δ

2σ
(m)
α ]+

1
2
Ēξ⊗ξ ′ [δ

2T◦θS ]. (8.3.17)



186 8 Convergence of atomic Markov chains

We now compute a bound for Ēξ⊗ξ ′ [δ
2T◦θS ]. By the Markov property

Ēξ⊗ξ ′ [δ
2T◦θS ] =

∞

∑
n=m

Pξ (σ
(m)
α = n)Ēξ⊗ξ ′ [Ēα,X ′n [δ

2T ]]

=
∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Pα(Xn ∈ α)Ēξ⊗ξ ′ [Ēα,X ′n [δ
2T ]] . (8.3.18)

Note that Ēξ⊗ξ ′ [Ēα,X ′n [δ
2T ]] =

∫
ξ ′(dx′)Ēα,x′ [δ

2T ] does not depend upon the initial
distribution ξ ∈M1(X ). Hence Ēξ⊗ξ ′ [Ēα,X ′n [δ

2T ]] = Ēα⊗ξ ′ [Ēα,X ′n [δ
2T ]]. Plugging

this expression in (8.3.18) yields

Ēξ⊗ξ ′ [δ
2T◦θS ] =

∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Ēα⊗ξ ′ [1α(Xn)Ēα,X ′n [δ
2T ]] (8.3.19)

≤
∞

∑
n=m

Pξ (σ
(m)
α = n)ρ−1

n Ēα⊗ξ ′ [ĒXn,X ′n [δ
2T ]].

The Markov property implies Ēα⊗ξ ′ [ĒXn,X ′n [δ
2T ]] = Ēα⊗ξ ′ [δ

2T ◦θn]. Since σα×α ≥
1, we get T ◦θn ≤ σ

(n+1)
α×α . Using σ

(n+1)
α×α = σ

(n)
α×α +T ◦θ

σ
(n)
α×α

recursively, we finally

obtain

Ēα⊗ξ ′ [ĒXn,X ′n [δ
2T ]]≤ Ēα⊗ξ ′ [δ

2T ][Ēα⊗α [δ
2T ]]n ≤ Ēα⊗ξ ′ [δ

2T ]β n .

Plugging this relation in (8.3.19) and using (8.3.17) yields

Ēξ⊗ξ ′ [δ
T ]≤ (1/2)

{
Eξ [β

σ
(m)
α ]+ ςEξ [β

σ
(m)
α ]Ēα⊗ξ ′ [γ

T ]

}
. (8.3.20)

By interchanging ξ and ξ ′ we obtain similarly

Ēξ⊗ξ ′ [δ
T ]≤ (1/2)

{
Eξ ′ [β

σ
(m)
α ]+ ςEξ ′ [β

σ
(m)
α ]Ēξ⊗α [γ

T ]

}
. (8.3.21)

Setting ξ = δα in (8.3.21) implies that

Ēα⊗ξ ′ [δ
T ]≤ 1/2

{
Eξ ′ [β

σ
(m)
α ]+ ςEξ ′ [β

σ
(m)
α ]Ēα⊗α [γ

T ]

}
.

Note that Eξ [β
σ
(m)
α ]≤ {Eα [β

σα ]}m−1Eξ [β
σα ]. The proof is concluded by plugging

this relation into (8.3.20) and then (8.3.16). 2

As an immediate consequence of Lemmas 8.3.1 and 8.3.6, we obtain the follow-
ing result.
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Theorem 8.3.7. Let P be a Markov kernel on X×X which admits an accessible
aperiodic atom α and β > 1 such that Eα [β

σα ]< ∞. Then P has a unique invariant
distribution π and there exist δ ∈ (1,β ] and ς < ∞ such that, for all ξ ∈M1(X ),

∞

∑
n=1

δ
ndTV(ξ Pn,π)≤ ςEξ [δ

σα ] . (8.3.22)

8.4 Exercises

8.1. Consider a sequence of independent Bernoulli trials with success probability
p. A renewal Vn occurs at time n ∈ N if a success occurs. Show using (8.1.10) that
the waiting time-distribution is geometric with mean 1/p.

8.2. Consider a zero-delayed renewal process, i.e. S0 = Y0 = 0 and define the se-
quence of random times by {ηk, k ∈ N}

ηk = sup{n ∈ N : Sn ≤ k} . (8.4.1)

That is, ηk is the last renewal before time k. Note that ηk is not a stopping time.
There is a simple relation between ηk and ρk defined in (8.1.13):

ηk = sup{n ∈ N : Sn ≤ k}= inf{n ∈ N : Sn > k}−1 = ρk−1 .

The backward recurrence time chain (also called the age process) {Bk, k ∈ N} is
defined for k ∈ N by

Bk = k−Sηk . (8.4.2)

The total lifetime is the sum of the residual lifetime Ak and the age Bk:

Ck = Sρk − k+ k−Sηk = Sηk+1−Sηk = Yηk ,

which is the total duration of the current renewal interval.
Show that the backward recurrence time chain {Bk, k ∈ N} is a nonnegative

integer-valued Markov chain. Determine its Markov kernel.

8.3. We use the notations and definitions of Exercise 8.2. Show that the kernel R is
strongly irreducible and recurrent on {0, . . . ,sup{n ∈ N : b(n) 6= 0}}. Assume that
the mean waiting m=∑

∞
j=1 jb( j)<∞ time is finite. Show that R is positive recurrent

and admits an invariant probability measure π̄ on N defined by
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π̄( j) = m−1P0(Y1 > j) = m−1
∞

∑
`= j+1

b(`) , j ≥ 0 .

8.4. This exercise provides an analytical proof of the Blackwell theorem.

1. Set L = limsupn u(n) and {nk, k ∈ N} be a subsequence which converges to L.
Show that there exists a sequence {q( j), j ∈ Z} such that

lim
k→∞

u(nk + j)1{ j≥−nk} = q( j) ,

for all j ∈ Z.
2. Show that q(p) = ∑

∞
j=1 b( j)q(p− j).

3. Set S = {n≥ 1 : b(n)> 0}. Show that q(−p) = L for all p ∈ S.
4. Show that q(−p) = L if p = p1 + · · ·+ pn with pi ∈ S for i = 1, . . . ,n.
5. Show that q( j) = L for all j ∈ Z.
6. Set b̄( j) = ∑

∞
i= j+1 b(i), so that b̄(0) = 1 , b( j) = b̄( j− 1)− b̄( j), j ≥ 1 and

∑
∞
j=0 b̄( j) = m. Show that, for all n≥ 1,

n

∑
j=0

b̄( j)u(n− j) =
n−1

∑
j=0

b̄( j)u(n−1− j)

7. Show that, for all k ≥ 0,

∞

∑
j=0

b̄( j)u(nk− j)1{ j≤nk} = 1 . (8.4.3)

8. If m = ∞, show that L = 0.
9. If m < ∞, show that limsupn→∞ u(n) = liminfn→∞ u(n) = 1/m.

10. Conclude.

8.5. Consider a recurrent irreducible aperiodic Markov kernel P over a discrete state
space X. Fix one arbitrary state a ∈ X and set, for n≥ 0 and x ∈ X,

b(n) = Pa(σa = n) , ax(n) = Px(σa = n) , (8.4.4)
u(n) = Pa(Xn = a) , vax(n) = ax ∗u(n) = Px(Xn = a) . (8.4.5)

Show that u defined in (8.4.5) is the pure renewal sequence associated to b consid-
ered as a waiting time distribution and vax is the delayed renewal sequence associ-
ated to the delay distribution ax.

8.6. The bounds obtained in (8.2.6) can be used to obtain an alternative proof of
Theorem 7.6.4 for aperiodic and positive recurrent Markov kernels.

Let P be an irreducible aperiodic positive recurrent Markov kernel on a discrete
state space X and let π be its invariant probability. Show that for all x ∈ X,

lim
n→∞

dTV(δxPn,π) = 0 .
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8.7. Let P be a Markov kernel on a finite space X. Assume that P is strongly irre-
ducible.

1. Show that there exist a a finite integer r and ε > 0 such that for all x,y ∈ X,
Px(σy ≤ r)≥ ε .

2. Show that Px(σy > kr)≤ (1− ε)k.
3. Show that there exists b > 1 such that, for all x,y ∈ X×X, Ex[bσy ]< ∞.

8.8. Let P be a Markov kernel on a discrete state space X. Let C ⊂ X be a finite
set. Assume that P is strongly irreducible and that there exists β > 1 such that
supx∈CEx[β

σC ]< ∞.

1. Set νx = inf
{

n≥ 1 : X
σ
(n)
C

= x
}

. Show that the exists r > 1 such that Ex[rνx ]<

∞ for all x ∈C. [hint: consider the induced Markov chain
{

X
σ
(n)
C

: n ∈ N
}

on

C and apply Exercise 8.7]
2. Choose s > 0 such that Ms ≤ β 1/2. Show that

Px(σx ≥ n)≤
(

sup
x∈C
Ex[rνx ]

)
r−sn +(

√
β )−n

3. Show that there exists δ > 1 such that Ex[δ
σx ]< ∞ for all x ∈C.

8.5 Bibliographical notes

The basic facts on renewal theory can be found in Feller (1971) and Cox (1962).
Blackwell’s theorem (Theorem 8.1.7) was first proved by Blackwell (1948). Several
proofs were proposed, most of them not probabilistic. The simple coupling proof
presented here is due to Lindvall (1977) (see also Thorisson (1987)).

The Kendall’s theorem (Theorem 8.1.9) was first established in Kendall (1959).
The proof given here closely follows the original derivation. One weakness of this
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Improvements of the Kendall’s theorem were proposed in Meyn and Tweedie (1994)
and later by Baxendale (2005). Sharp estimates were introduced in (Bednorz, 2013,
Theorem 2.8).

The proof of convergence using the first-entrance last-exit decomposition pre-
sented in Section 8.2.1 was introduced in Nummelin (1978) and refined in Num-
melin and Tweedie (1978). Our presentation follows closely (Meyn and Tweedie,
2009, Chapter 13).





Chapter 9
Small sets, irreducibility and aperiodicity

So far, we have only considered atomic and discrete Markov chains. When the state
stace is not discrete, many Markov chains do not admit accessible atoms. Recall
that a set C is an atom if each time the chain visits C, it regenerates, i.e. it leaves
C under a probability distribution which is constant over C. If the state space does
not posses an atom, we may require instead that the chain restarts anew from C with
some fixed probability (stricly less than one) which is constant over C. Then this
property is satisfied by many more Markov chains. Such sets will be called small
sets. The purpose of this chapter is to provide the first basic properties of Markov
kernels which admits accessible small sets.

9.1 Small sets

Definition 9.1.1 (Small Set) Let P be a Markov kernel on X×X . A set C ∈X is
called a small set if there exist m ∈ N∗ and a non-zero measure µ ∈M+(X ) such
that for all x ∈C and A ∈X ,

Pm(x,A)≥ µ(A) . (9.1.1)

The set C is then said to be an (m,µ)-small set.

The definition entails that µ is a finite measure and 0 < µ(X) ≤ 1. Hence it can be
written µ = εν with ε = µ(X) and ν is a probability measure. If ε = 1, then equality
must hold in (9.1.1) and thus C is an atom. Hereafter, when we write “C is a (m,εν)
small set”, it will be always assumed that ε ∈ (0,1] and ν is a probability measure.
When we do not need to mention the associated measure, we may simply write “C
is an m-small set”. As we did for atoms, we further define certain specific properties
of small sets.

191
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Definition 9.1.2 An (m,µ)-small set C is said to be

• strongly aperiodic if m = 1 and µ(C)> 0;
• positive if Ex[σC]< ∞ for all x ∈C.

Example 9.1.3. An atom is a 1-small set. A small set is not necessarily strongly
aperiodic. Consider for instance the Forward Recurrence chain introduced in Sec-
tion 8.1.1. The state {1} is an atom, every finite subset of integers C is small. How-
ever, if the waiting time distribution b puts zero mass on C then C is not strongly
aperiodic. J

Recall from Definition 3.5.1 that a set A is said to be accessible if Px(σA <
∞)> 0 for all x ∈ X. The set of accessible sets is denoted X +

P .

Example 9.1.4. Consider the scalar autoregressive AR(1) model Xk = αXk−1 +Zk,
k ≥ 1 where {Zk, k ∈ N∗} is an i.i.d. sequence, independent of X0 and α ∈ R. As-
sume that the distribution of the innovation has a continuous everywhere positive
density f with respect to Lebesgue’s measure. Let C⊂R be a compact set such that
Leb(C)> 0. Then, for all Borel set A and x ∈C, we get

P(x,A) =
∫

A
f (y−αx)dy

≥
∫

A∩C
f (y−αx)dy≥ inf

(x,y)∈C×C
f (y−αx)Leb(A∩C) .

This shows that C is a small set. Of course, this set is accessible since, for all x ∈R,

P(x,C) =
∫

C
f (y−αx)dy > 0 .

J

Example 9.1.5. We can generalize Example 9.1.4. Let P be a Markov kernel on
Rd×B

(
Rd
)

such that

P(x,A)≥
∫

A
q(x,y)Lebd(dy) , A ∈B

(
Rd
)
,

where q is a positive lower semi-continuous function on Rd ×Rd . Then every
compact set C with positive Lebesgue measure is small. Indeed, for x ∈ C and
A ∈B

(
Rd
)
,
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P(x,A)≥
∫

A
q(x,y)‘Lebd(dy)

≥
∫

A∩C
q(x,y)Lebd(dy)≥ inf

(x,y)∈C×C
q(x,y)Lebd(A∩C) .

This proves that C is an εν-small set with ε = inf(x,y)∈C×C q(x,y) and ν = Lebd(·∩
C). Furthermore, C is accessible since P(x,C) =

∫
C q(x,y)Lebd(dy) > 0 for all x ∈

Rd . Such kernels will be further investigated in Chapter 12. J

Lemma 9.1.6 If C is an accessible (m,µ)-small set, then there exists m′ ≥ m and
µ ′ ∈M+(X ) such that C is an (m′,µ ′)-small set and µ ′(C)> 0.

Proof. Since C ∈X +
P , Lemma 3.5.2-(iii) shows that there exists n ∈ N∗ such that

µPn(C)> 0. Since C is an (m,µ)-small set, this yields, for every A ∈X and x ∈C,

Pm+n(x,A) =
∫

X
Pm(x,dy)Pn(y,A)≥

∫
X

µ(dy)Pn(y,A) = µPn(A) .

This proves that C is an (m′,µ ′)-small set with m′ = m+n and µ ′ = µPn. Moreover
µ ′(C) = µPn(C)> 0. 2

The following lemma will be very useful. It states formally the idea that a small
set leads uniformly to any accessible set and that a set which leads uniformly to a
small set is also a small set.

Lemma 9.1.7 Let C be an (m,µ)-small set.

(i) For every A ∈X +
P , there exists an integer q≥ m such that infx∈C Pq(x,A)> 0.

(ii) Let D ∈X . If there exists n ≥ 1 such that infx∈D Pn(x,C) ≥ δ , then D is an
(n+m,δ µ)-small set.

Proof. (i) Since A∈X +
P , by Lemma 3.5.2, there exists n≥ 1 such that µPn(A)> 0.

Thus, for x ∈C, we get

Pm+n(x,A) =
∫

X
Pm(x,dy)Pn(y,A)≥

∫
X

µ(dy)Pn(y,A) = µPn(A)> 0 .

(ii) For x ∈ D and A ∈X ,

Pn+m(x,A) =
∫

X
Pn(x,dy)Pm(y,A)≥

∫
C

Pn(x,dy)Pm(y,A)≥
∫

C
Pn(x,dy)µ(A)

= Pn(x,C)µ(A)≥ δ µ(A) .

2

Proposition 9.1.8 If there exists an accessible small set, then X is a countable
union of small sets.
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Proof. Let C be an accessible small set and for n,m≥ 1, define

Cn,m =
{

x ∈ X : Pn(x, C)≥ m−1} .

Since C is accessible, for every x ∈ X, there exists n ∈ N∗ such that Pn(x,C) > 0,
thus X =

⋃
n,m≥1 Cn,m. Moreover, each set Cn,m is small because by construction Cn,m

yields uniformly to the small set C (see Lemma 9.1.7 (ii)). 2

The following result is extremely important. It gives a convenient criterion for
checking the accessibility of a set, expressed in terms of the minorization measure
of an accessible small set.

Proposition 9.1.9 Assume that C is an accessible (m,µ)-small set. Then for
every A ∈X , µ(A)> 0 implies that A is accessible.

Proof. Since C is accessible, for every x ∈X, there exists n≥ 1 such that Pn(x,C)>
0. If µ(A)> 0, then

Pn+m(x,A)≥
∫

C
Pn(x,dx′)Pm(x′,A)≥ Pn(x,C)µ(A)> 0 .

Thus A is accessible. 2

9.2 Irreducibility

Mimicking Definition 7.1.1, we now introduce the general definition of irreducible
kernel where accessible small sets replace accessible states.

Definition 9.2.1 (Irreducible kernel) A Markov kernel P on X×X is said to be
irreducible if it admits an accessible small set.

Although seemingly weak, the assumption of irreducibility has some important
consequences. The definition guarantees that a small set is always reached by the
chain with some positive probability from any starting point.

We are now going to see that there exists an equivalent characterization of irre-
ducibility in terms of measures. There actually exist many other measures than those
introduced in Proposition 9.1.9 that provide a sufficient condition for accessibility
and possibly also a necessary condition. We will therefore introduce the following
definition.
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Definition 9.2.2 (Irreducibility measure) Let P be a Markov kernel on X×X .
Let φ ∈M+(X ) be a non trivial σ -finite measure.

• φ is said to be an irreducibility measure if φ(A)> 0 implies A ∈X +
P .

• φ is said to be a maximal irreducibility measure if φ is an irreducibility measure
and A ∈X +

P implies φ(A)> 0.

Remark 9.2.3. Since any irreducibility measure φ is σ -finite by definition, we can
assume when needed that φ is a probability measure. Indeed, let {An, n ∈ N∗} be a
measurable partition of X such that 0< φ(An)<∞ for all n≥ 1. Then φ is equivalent
to the probability measure φ ′ defined for A ∈X by

φ
′(A) =

∞

∑
n=1

2−n φ(A∩An)

φ(An)
.

Proposition 9.1.9 can now be rephrased in the language of irreducibility: the mi-
norizing measure of an accessible small set is an irreducibility measure. The follow-
ing result shows that maximal irreducibility measures exist and are all equivalent.

Theorem 9.2.4. If φ is an irreducibility measure, then for every ε > 0, φKaε
is a

maximal irreducibility measure. All irreducibility measures are absolutely continu-
ous with respect to any maximal irreducibility measure and all maximal irreducibil-
ity measures are equivalent.

Proof. Set ψ = φKaε
. If A is accessible, then for every ε ∈ (0,1) and for all x ∈ X,

Kaε
(x,A) > 0. This implies ψ(A) = φKaε

(A) > 0. Consider now the converse. Let
A ∈X such that ψ(A) = φKaε

(A)> 0. Define

Ā = {x ∈ X : Px(τA < ∞)> 0}= {x ∈ X : Kaε
(x,A)> 0} . (9.2.1)

Then by definition of Ā, we have

0 < ψ(A) =
∫

Ā
φ(dx)Kaε

(x,A) .

Hence φ(Ā) > 0 and thus Ā is accessible since φ is an irreducibility measure. The
strong Markov property implies that for all x ∈ X,

Px(σA < ∞)≥ Px(σĀ < ∞,τA ◦θσĀ
< ∞) = Ex[1{σĀ<∞}PXσĀ

(τA < ∞)]> 0 ,

showing that A is also accessible.
To prove the second statement, let ψ ′ be an irreducibility measure and ψ be a

maximal irreducibility measure. If ψ(A) = 0, then A is not accessible, which implies
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ψ ′(A) = 0 by definition. Therefore ψ ′ is absolutely continuous with respect to ψ .
This completes the proof. 2

Theorem 9.2.5. Let P an irreducible Markov kernel on X×X . Then any accessible
set contains an accessible (m,εν)-small set C with ν(C)> 0.

Proof. Since P is irreducible, there exists an accessible (n,εν)-small set C. Let ψ

be a maximal irreducibility measure and A be an accessible set. For p,q ∈N∗, write

Ap,q =
{

x ∈ A : Px(σC = p)≥ q−1} .

Since A is accessible, A =
⋃

p,q∈N∗ Ap,q and there exists p,q such that ψ(Ap,q)> 0.
For all x ∈ Ap,q and B ∈X , we get

Pm+p(x,B)≥ Px(σC = p,Xm ◦θp ∈ B) = Ex
[
1{σC=p}PXp(Xm ∈ B)

]
≥ q−1

εν(B) ,

showing that Ap,q is a (m+ p,εν)-small set. We conclude by Lemma 9.1.6. 2

We have seen that the minorizing measure of a small set is an irreducibility mea-
sure. We now prove the converse: if a Markov kernel P admits an irreducibility mea-
sure, then it admits an accessible small set. Therefore irreducibility can be defined
equivalently by the existence of a small set or of an irreducibility measure.

Theorem 9.2.6. Let P a Markov kernel on X×X . Assume in addition that the σ -
algebra X is countably generated. The Markov kernel P is irreducible if and only
if it admits an irreducibility measure.

Proof. The proof is postponed to Section 9.A and may be omitted on a first reading.
2

Example 9.2.7 (Example 9.1.4 continued). Consider the scalar AR(1) model Xk =
αXk−1 +Zk, k ≥ 1 where {Zk, k ∈ N∗} is an i.i.d. sequence, independent of X0 and
α ∈R. Assume that the distribution of the innovation has a density which is positive
in a neighborhood of zero. Assume for simplicity that Z1 is uniform on [−1,1].

• If |α| < 1, then the restriction of Lebesgue’s measure on [−1/2,1/2] is an irre-
ducibility measure. Indeed, for B⊂ [−1/2,1/2] and x ∈ [−1/2,1/2],

P(x,B) =
1
2

∫
B
1[−1,1](y−αx)dy =

1
2

Leb(B) . (9.2.2)

This proves that any B such that Leb(B) > 0 is accessible from [−1/2,1/2]. To
check accessibility from an arbitrary x, note that Xn = αnx+∑

n−1
j=0 α jZn− j. For M >

0, if max1≤ j≤n |Z j| ≤M, then
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n−1

∑
j=0
|α| j|Zn− j| ≤M/(1−|α|) .

Taking M = (1−|α|)/4, we obtain

Px (Xn ∈ [αnx−1/4,αnx+1/4])≥ {P(Z1 ∈ [−(1−|α|)/4,(1−|α|)/4])}n

≥ {(1−|α|)/4}n .

Thus, for n(x) such that |α|n(x)|x| ≤ 1/4, this yields Px(Xn ∈ [−1/2,1/2])> 0. This
proves that [−1/2,1/2] is accessible. Together with (9.2.2), this proves that every
set B⊂ [−1/2,1/2] with positive Lebesgue’s measure is accessible. Thus the chain
is irreducible.
• Assume now that |α|> 1. Then |Xn| ≥ |α|n|x|− |α|n+1/(|α|−1) and we obtain,
for every k > 0 that if x > (k+1)|α|/(|α|−1), then |Xn|> k|α|/(|α|−1)> k for all
n≥ 0 and thus [−k,k] is not accessible. This proves that the chain is not irreducible.

J

Theorem 9.2.5 shows that if the chain is irreducible, then there exists a maximal
irreducibility measure ψ such X +

P = {A ∈X : ψ(A)> 0}. The next result shows
that a set which is not accessible (ψ(A) = 0) is avoided from ψ-almost every starting
point. It is essential of course here to take for ψ a maximal irreducibility measure:
it is no longer true of course for an irreducibility measure: indeed any non trivial
restriction of an irreducibility measure is still an irreducibility measure.

Proposition 9.2.8 Let P be an irreducible kernel on X×X . A set A ∈ X
is not accessible for P if and only if the set {x ∈ X : Px(τA < ∞)> 0} is not
accessible for P.

Proof. For every ε ∈ (0,1), we have

{x ∈ X : Px(τA < ∞)> 0}= {x ∈ X : Kaε
(x,A)> 0} .

Let ψ be a maximal irreducibility measure. Then ψKaε
is also a maximal irre-

ducibility measure and is therefore equivalent to ψ . Hence ψ(A) = 0 if and only
if ψKaε

(A) = 0 showing that ψ({x ∈ X : Kaε
(x,A)> 0}) = 0. Since ψ is maximal,

the set {x ∈ X : Kaε
(x,A)> 0} is not accessible. 2

Proposition 9.2.9 Let P be an irreducible kernel on X×X . If A∈X and A /∈
X +

P , then Ac ∈X +
P . A countable union of non accessible sets is not accessible.



198 9 Small sets, irreducibility and aperiodicity

Proof. Let ψ be a maximal irreducibility measure. If A ∈X , then either ψ(A)> 0
or ψ(Ac) > 0, which means that at least one of A and Ac is accessible. If {An, n ∈
N} is a countable union of non accessible sets, then ψ(An) = 0 for all n ≥ 0, thus
ψ(∪n≥0An) = 0. 2

Remark 9.2.10. This provides a criterion for non irreducibility: if there exists A ∈
X such that neither A nor Ac is accessible, then P is not irreducible. In particular, if
there exist two disjoint absorbing sets, then the chain is not irreducible. N

Definition 9.2.11 (Full set) Let P be a Markov kernel on X×X . A set F ∈X is
said to be full if Fc is not accessible.

If P is an irreducible kernel, then a set F is full if ψ(Fc) = 0 for any maximal
irreducibility measure ψ . A full set is nearly the same thing as an absorbing set.

Proposition 9.2.12 Let P be an irreducible Markov kernel on X×X . Then
every non-empty absorbing set is full and every full set contains an absorbing
full set.

Proof. The first statement is obvious: if A is absorbing set, then by definition its
complementary is not accessible and thus A is full. Now let A be a full set and
define

C = {x ∈ A : Px(σAc = ∞) = 1}= {x ∈ X : Px(τAc = ∞) = 1} .

Note first that the set C is not empty, since otherwise Ac would be accessible from
A, i.e. Px(σAc < ∞) > 0 for all x ∈ A and this implies that Ac is accessible by
Lemma 3.5.2, which contradicts the assumption that A is full. For x ∈C, applying
the Markov property, we obtain,

1 = Px(σAc = ∞) = Px(τAc ◦θ1 = ∞)

= Ex[1Cc(X1)PX1(τAc = ∞)]+Ex[1C(X1)PX1(τAc = ∞)]

= Ex[1Cc(X1)PX1(τAc = ∞)]+Px(X1 ∈C) .

If x ∈ Cc, then Px(τAc = ∞) < 1, thus the previous identity implies that Px(X1 ∈
Cc) = 0 since otherwise the sum of the two terms would be strictly less than 1.
Thus, C is absorbing and hence full by the first statement. 2

Proposition 9.2.13 Let P be an irreducible Markov kernel on X×X . Assume
that there exist two measurable functions V0,V1 : X→ [0,∞] satisfying
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(i) V0(x) = ∞ ⇒ V1(x) = ∞,
(ii) V0(x)< ∞ ⇒ PV1(x)< ∞.

Then the set {V0 < ∞} is either empty or full and absorbing. If {V0 < ∞} 6= /0,
then there exists n0 ∈ N such that {V0 ≤ n0} is accessible.

Proof. Assume that the set S = {V0 < ∞} is not empty. Note that

Sc = {x ∈ X : V0(x) = ∞} ⊂ {x ∈ X : V1(x) = ∞} .

For all x ∈ S, we get Ex[1Sc(X1)V1(X1)] ≤ Ex[V1(X1)] = PV1(x) < ∞. Therefore,
the set S is absorbing and hence full by Proposition 9.2.12. Now, since S is full
and P is irreducible, Proposition 9.2.9 implies that S ∈ X +

P . Combining it with
S = ∪n∈N{V0 ≤ n} and applying again Proposition 9.2.9, we get the last statement
of the Proposition. 2

Corollary 9.2.14 Let P be an irreducible Markov kernel on X×X . Let r be
a positive increasing sequence such that limn→∞ r(n) = ∞ and A ∈X , A 6= /0.
Assume that supx∈AEx[r(σA)]< ∞. Then the set

{x ∈ X : Ex[r(σA)]< ∞}

is full and absorbing and A is accessible.

Proof. Set W (x) = Ex[r(σA)] (with the convention r(∞) = ∞). On the event {X1 6∈
A}, the relation σA = 1+σA ◦θ1 ≥ σA ◦θ1 holds, hence

PW (x) = Ex[1A(X1)EX1 [r(σA)]]+Ex[1Ac(X1)r(σA ◦θ1)]

≤M+Ex[r(σA)]≤M+W (x) ,

where M = supx∈AEx[r(σA)]. Applying Proposition 9.2.13 with V0 =V1 =W shows
that S = {W < ∞} is full absorbing. For all x ∈ S, since Ex[r(σA)] < ∞, we have
Px(σA < ∞) = 1. Now, note that since S is full and P is irreducible, Proposition 9.2.9
shows that S is accessible. Then, for all x ∈ X,

Px(σA < ∞)≥ Px(σS < ∞,σA ◦θσS < ∞)

= Ex[1{σS<∞}PXσS
(σA < ∞)] = Px(σS < ∞)> 0 ,

showing that A is accessible. 2
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Theorem 9.2.15. Let P be an irreducible Markov kernel. An invariant probability
measure for P is a maximal irreducibility measure.

Proof. Let π be an invariant probability measure. We must prove that π(A) > 0 if
and only if A is accessible. Fix ε > 0. The invariance of π with respect to P implies
that it is invariant with respect to Kaε

. If A is accessible, then by Lemma 3.5.2,
Kaε

(x,A)> 0 for all x ∈ X. This implies π(A) = πKaε
(A)> 0.

We now prove the converse implication. Let A ∈X be such that π(A) > 0. Set
Ā = {x ∈ X : Px(τA < ∞)> 0}. By the strong Markov property, we have for x ∈ Āc,

0 = Px(τA < ∞)≥ Ex

[
1{σĀ < ∞}PXσĀ

(σA < ∞)
]
.

Since PXσĀ
(τA < ∞) > 0 if σĀ < ∞, the previous identity implies that for x ∈ Āc,

Px(σĀ < ∞) = Px(τĀ < ∞) = 0 . This means that Kaε
(x, Ā) = 0 for all x ∈ Āc. Then,

since π is invariant,

π(Ā) = πKaε
(Ā) =

∫
X

Kaε
(x, Ā)π(dx) =

∫
Ā

Kaε
(x, Ā)π(dx) . (9.2.3)

Noting that A ⊂ Ā and π is a probability measure, 0 < π(A) ≤ π(Ā) ≤ 1 < ∞.
Combining with (9.2.3) yields Kaε

(x, Ā) = 1 for π-almost all x ∈ Ā. Equivalently,
Kaε

(x, Āc) = 0 for π-almost all x∈ Ā. Therefore, Āc is not accessible and by Proposi-
tion 9.2.9, Ā is accessible and consequently A is also accessible by Proposition 9.2.8.
2

This property of invariant probability measures for an irreducible kernel has an
important corollary.

Corollary 9.2.16 If P is irreducible, then it admits at most one invariant probability
measure.

Proof. Assume that P admits two distinct invariant probability measures. Then by
Theorem 1.4.6 there exists two mutually singular invariant probability measures π1
and π2. Since invariant probability measures are maximal irreducibility measures
and maximal irreducibility measures are equivalent by Theorem 9.2.4, we obtain a
contradiction. 2

It is worthwhile to note that according to Corollary 9.2.16, an irreducible kernel
admits at most one invariant probability measure but it may admit more than one
invariant measure. This is illustrated in the following example.
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Example 9.2.17. Let p ∈ (0,1) \ {1/2} and consider the Markov kernel P on Z
defined by

P(x,y) = p1{y = x+1}+(1− p)1{y = x−1} .

The measures λ0 and λ1 defined respectively by λ0(k) = 1 and λ1(k) = ((1− p)/p)k

for all k ∈ Z are both invariant with respect to P and are maximal irreducibility
measures. J

9.3 Periodicity and aperiodicity

For an irreducible kernel, it is possible to extend the notion of period to accessible
small sets. Let C be an accessible small set and define the set EC by

EC =

{
n ∈ N∗ : inf

x∈C
Pn(x,C)> 0

}
.

By Lemma 9.1.6, there exists an integer m and a measure µ such that C is an (m,µ)-
small set with µ(C)> 0. Then m ∈ EC since by definition, for all x ∈C,

Pm(x,C)≥ µ(C)> 0 .

Thus the set EC is not empty.

Definition 9.3.1 (Period of an accessible small set) The period of an accessible
small set C is the positive integer d(C) defined by

d(C) = g.c.d.
{

n ∈ N∗ : inf
x∈C

Pn(x,C)> 0
}

. (9.3.1)

Lemma 9.3.2 Let C be an accessible small set.

(i) EC is stable by addition.
(ii) There exists an integer n0 such that nd(C) ∈ EC for all n≥ n0.

Proof. (i) If n,m ∈ EC, then, for x ∈C,

Pn+m(x,C)≥
∫

C
Pn(x,dy)Pm(y,C)≥ Pn(x,C) inf

y∈C
Pm(y,C)

≥ inf
z∈C

Pn(z,C) inf
y∈C

Pm(y,C)> 0 .

(ii) Follows from Lemma 6.3.2 since EC is stable by addition.
2
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Lemma 9.3.3 Let C be an accessible (m,εν)-small set with ν(C)> 0.

(i) For every n ∈ EC, C is an (n+m,εηnν)-small set with ηn = infz∈C Pn(z,C).
(ii) There exist an integer n0 such that, for all n ≥ n0, C is an (nd(C),εnν)-small

set with εn > 0.

Proof. (i) For x ∈C and A ∈X ,

Pm+n(x,A)≥
∫

C
Pn(x,dy)Pm(y,A)≥ εPn(x,C)ν(A)≥ εηnν(A) .

(ii) Since m ∈ EC, d(C) divides m and the result follows from Lemma 9.3.2-(ii)
and Lemma 9.3.3-(i).

2

As in the countable space case, it can be shown that the value of d(C) is in fact a
property of the Markov kernel P and does not depend on the particular small set C
chosen.

Lemma 9.3.4 Let C and C′ be accessible small sets. Then d(C) = d(C′).

Proof. Assume that C and C′ are (m,µ) and (m′,µ ′)-small sets and µ(C) > 0
µ ′(C′) > 0. By Lemma 9.1.7 accessible sets are uniformly accessible from small
sets i.e. there exist k,k′ ∈ N∗ such that

inf
x∈C

Pk(x,C′)> 0 and inf
x∈C′

Pk′(x,C)> 0 .

For n∈EC and n′ ∈EC′ , we have infx∈C Pn(x,C)> 0 and infx∈C′ Pn′(x,C′)> 0. Then,
for x ∈C, we have

Pk+n′+k′+n(x,C)≥
∫

C′
Pk(x,dx′)

∫
C′

Pn′(x′,dy′)
∫

C
Pk′(y′,dy)Pn(y,C)

≥ inf
x∈C

Pn(x,C) inf
x∈C′

Pk′(x,C) inf
x∈C′

Pn′(x,C′) inf
x∈C

Pk(x,C′)> 0 .

Thus k+n′+ k′+n ∈ EC. Since n′ ∈ EC′ is arbitrary and EC′ is closed by addition,
the same holds with 2n′, i.e. k+2n′+k′+n∈ EC. Thus n′ = (k+2n′+k′+n)−(k+
n′+k′+n) is a multiple of d(C) and this implies that d(C) divides d(C′). Similarly,
d(C′) divides d(C) and this yields d(C) = d(C′). 2

Let us introduce the following definition.

Definition 9.3.5 (Period, aperiodicity, strong aperiodicity) Let P be an irre-
ducible Markov kernel on X×X .

• The common period of all accessible small sets is called the period of P.
• If the period is equal to one, the kernel is said to be aperiodic.
• If there exists an accessible (1,µ)-small set C with µ(C)> 0, the kernel is said

to be strongly aperiodic.
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If P is an irreducible Markov kernel with period d, then the state space can be par-
titioned similarly to what happens for a denumerable state space; see Theorem 7.4.1.
We will later see than this decomposition is essentially unique.

Theorem 9.3.6. Let P be an irreducible Markov kernel with period d. There exists
a sequence C0,C1, . . . ,Cd−1 of pairwise disjoint accessible sets such that for i =
0, . . . ,d−1 and x ∈Ci, P(x,Ci+1 [d]) = 1. Consequently,

⋃d−1
i=0 Ci is absorbing.

Proof. Let C be an accessible small set. For i = 0, . . . ,d−1, define

C̄i =

{
x ∈ X :

∞

∑
n=1

Pnd−i(x,C)> 0

}
.

Note that since C has period d, C ⊂ C̄0. Since C is accessible, X =
⋃d−1

i=0 C̄i. Let
i, j ∈ {0, . . . ,d−1} and assume that C̄i∩C̄ j is accessible. For n, p,k ∈ N∗, define

An,p,k =
{

x ∈ C̄i∩C̄ j : Pnd−i(x,C)∧Ppd− j(x,C)> 1/k
}
.

Since
⋃

n,p,k≥1 An,p,k = C̄i ∩ C̄ j is assumed to be accessible, there exists n, p,k ≥ 1
such that An,p,k is accessible. Lemma 9.1.7 shows that there exist α > 0 and r ∈ N
such that infx∈C Pr(x,An,p,k)≥α . Denote ηn = infx∈C Pn(x,C). This yields, for x∈C
and s ∈ EC,

Ps+r+nd−i+s(x,C)≥
∫

C
Ps(x,dy)

∫
An,p,k

Pr(y,dx′)
∫

C
Pnd−i(x′,dy′)Ps(y′,C)

≥ ηs

∫
C

Ps(x,dy)
∫

An,p,k

Pr(y,dx′)Pnd−i(x′,C)

≥ k−1
ηs

∫
C

Ps(x,dy)Pr(y,An,p,k)≥ k−1
ηsαPs(x,C)≥ k−1

η
2
s α .

This implies that s+ r+nd− i+ s ∈ EC. Similarly, s+ r+nd− j+ s ∈ EC and this
implies that d divides (i− j). Since i, j ∈ {0,1, . . . ,d−1}, this implies that i = j.

We have thus proved that if i 6= j, then C̄i∩C̄ j is not accessible. Set

G =
d−1⋃
i, j=0

(C̄i∩C̄ j) and F =
d−1⋃
i=0

C̄i \G = X\G .

Then F is full and thus by Proposition 9.2.12, there exists an absorbing full set D⊂
F . For i = 0, . . . ,d−1, set Ci = (C̄i \G)∩D. The sets {Ci}d−1

i=0 are pairwise disjoint
and

⋃d−1
i=0 Ci =D is full and absorbing. Thus, for x∈D, there exists i∈ {0, . . . ,d−1}

such that P(x,Ci)> 0. Then
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∑
n≥1

Pnd−(i−1)(x,C)≥
∫

Ci

P(x,dy) ∑
n≥1

Pnd−i(y,C)> 0 .

Thus x ∈Ci−1 if i > 0 and x ∈Cd−1 if i = 0. Since the sets Ci are pairwise disjoints,
this in turn implies that P(x,Ci) = 1. 2

The sets {Ci}d−1
i=0 in Theorem 9.3.6 are called periodicity classes and the decompo-

sition {Ci}d−1
i=0 is called a cyclic decomposition. This is a deep result which ensures

that we can think of cycles in general spaces exactly as we think of them in count-
able spaces. The following corollary shows that, up to a non accessible set, this
decomposition is unique.

Corollary 9.3.7 Let (C0, . . . ,Cd−1) and (D0, . . . ,Dd−1) be two cyclic
decomposition. Then there exists j ∈ {0, . . . ,d − 1} such that{

Ci∩Di+ j : i = 0, . . . ,d−1
}

(where addition is modulo d) is a cyclic
decomposition.

Proof. Since ∪d−1
i=0 Di is absorbing, it is full. Then, setting N = (∪D j)

c, N is non-
accessible. Write

C0 = (C0∩N)
d−1⋃
j=0

(C0∩D j) .

Since C0 is accessible, there exists by Proposition 9.2.9 at least one j such that
C0∩D j is accessible. Up to a permutation, we can assume without loss of generality
that C0∩D0 is accessible. For i = 0, . . . ,d−1, set Ei =Ci∩Di and Ed = E0. Then,
the sets Ei i = 0, . . . ,d− 1 are pairwise distinct and for i = 0, . . . ,d− 1 and x ∈ Ei,
P(x,Ci+1) = P(x,Di+1) = 1. Thus,

P(x,Ei+1) = P(x,Ci+1∩Di+1)≥ 1−P(x,Cc
i+1)−P(x,Dc

i+1) = 1 .

This implies that ∪d−1
i=0 Ei is absorbing and that (E0, . . . ,Ed−1) is a cyclic decompo-

sition. 2

An important consequence of this cycle decomposition is that an accessible small
set must be included in a periodicity class.

Corollary 9.3.8 Let P be an irreducible Markov kernel on X×X . If C is an
accessible small set and (D0, . . . ,Dd−1) is a cyclic decomposition, then there
exists a unique j ∈ {0, . . . ,d−1} such that C ⊂D j∪N, where N = (

⋃d−1
i=0 Di)

c

is not accessible.

Proof. By Lemma 9.1.6, we can assume that C is an accessible (m,µ) small set with
µ(C)> 0. By Proposition 9.1.9 µ(Sc) = 0. Thus there exists k ∈ {0, . . . ,d−1} such
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that µ(C∩Dk) > 0. If x ∈ C∩Dk, Pm(x,C∩Dk) ≥ µ(C∩Dk) > 0 so m = rd for
some r ∈ N∗. Now if x ∈C, Prd(x,C∩Dk)> 0 which implies that x /∈ D j for j 6= k.
This shows that C ⊂ Dk ∪Sc. 2

Another interesting consequence of the cyclic decomposition is a simple condition
for P to be aperiodic.

Lemma 9.3.9 Let P be an irreducible Markov kernel on X×X with invariant prob-
ability measure π . If for all A∈X +

P , limn→∞ Pn(x,A)= π(A) for π-almost all x∈X,
then P is aperiodic.

Proof. The proof is by contradiction. Assume that the period d is larger than 2. Let
C0, . . . ,Cd−1 be a cyclic decomposition as stated in Theorem 9.3.6 and note that
π(C0) > 0 since C0 is accessible and π is a maximal irreducibility measure (see
Theorem 9.2.15). By assumption, there exists x ∈C0 such that limn→∞ Pn(x,C0) =
π(C0)> 0. But since P1+kd(x,C1) = 1 for all k ∈N, we must have P1+kd(x,C0) = 0,
which contradicts the fact that limn→∞ Pn(x,C0) = π(C0)> 0. 2

Theorem 9.3.10. Let P be an irreducible Markov kernel on X×X . The chain is
aperiodic if and only if for all A∈X +

P and x∈X, there exists k0 such that Pk(x,A)>
0 for all k ≥ k0.

Proof. Assume first that P is aperiodic. Choose A ∈ X +
P and x ∈ X. By Theo-

rem 9.2.5, there exists an accessible (m,εν)-small set B ⊂ A with ν(B) > 0. By
Lemma 9.3.3, there exist r ≥ 1 and a sequence of constants εk > 0 such that B is
a (k,εkν)-small set for all k ≥ r. Since B is accessible, there exists n ≥ 1 such that
Pn(x,B)> 0. Thus, for k ≥ n+ r,

Pk(x,A)≥ Pk(x,B)≥
∫

B
Pn(x,dy)Pk−n(y,B)

≥ εk−nν(B)Pn(x,B)> 0 .

Conversely, if P is not aperiodic, then Theorem 9.3.6 implies that the condition of
the proposition cannot be satisfied. 2

It will become clear as we proceed that it is much easier to deal with strongly aperi-
odic chains. Regrettably, this condition is not satisfied in general; however, we can
often prove results for strongly aperiodic chains and then use special methods to
extend them to general chains through the m-skeleton chain or the resolvent kernel.

Theorem 9.3.11. Let P be an irreducible and aperiodic kernel on X×X and m ∈
N∗. Then,
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(i) A set A is accessible for P if and only if A is accessible for Pm, i.e. X +
P =X +

Pm .
(ii) Pm is irreducible and aperiodic.
(iii) If C is an accessible small set for P, then C is an accessible small set for Pm.

Moreover, there exists m0 ∈ N such that C is an accessible 1-small set for Pm0 .

Proof. (i) Obviously X +
Pm ⊂X +

P . We now establish that X +
P ⊆X +

Pm for any
m ∈ N. Let A ∈X +

P . Applying Theorem 9.3.10, for all x ∈ X there exists k0 such
that Pk(x,A)> 0 for all k ≥ k0. This implies that A ∈X +

Pm for all m ∈ N∗,
(ii) Let φ be an irreducibility measure for P and let A ∈X such that φ(A)> 0.

Then, A ∈X +
P and by (i), A ∈X +

Pm . Hence, φ is also an irreducibility measure for
Pm and consequently, Pm is irreducible. Since X +

Pm ⊂X +
P , Theorem 9.3.10 shows

that for all A ∈X +
Pm and x ∈ X, there exists k0 > 0 such that Pk(x,A) > 0 for all

k≥ k0 and thus A ∈X +
P . This of course implies that for `≥ dk0/me, P`m(x,A)> 0.

Theorem 9.3.10 then shows that Pm is aperiodic.
(iii) Let C be an accessible (r,εν)-small set. Since P is aperiodic, Lemma 9.3.2

shows that there exists n0 such that for all n≥ n0, infx∈C Pn(x,C)> 0. For all n≥ n0,
all x ∈C and A ∈X ,

Pn+r(x,A)≥
∫

C
Pn(x,dy)Pr(y,A)≥ εν(A) inf

x∈C
Pn(x,C) ,

Choosing n ≥ n0 such that n+ r is a multiple of m, this relation shows that C is a
small set for the skeleton Pm. Hence there exists k ∈ N such that C is 1-small for
Pkm. Moreover, C is accessible for Pkm by (i).

2

9.4 Petite sets

Small sets are very important in the theory of Markov Chains, but unfortunately, the
union of two small sets is not necessarily small. For example, setting X = {0,1} and
P(0,1) = P(1,0) = 1, we have that {0} and {1} are small but the whole state space
{0,1} is not small. Therefore we introduce a generalization of small sets, called
petite sets which will be a convenient substitute to small sets. We will later see that
for aperiodic kernels, petite sets and small sets coincide. First we introduce the set
of probabilities on N which puts zero mass at zero.

M∗1(N) = {a = {a(n), n ∈ N} ∈M1(N) : a(0) = 0} . (9.4.1)

Note that M∗1(N) is stable by convolution, i.e. if a ∈M∗1(N) and b ∈M∗1(N), then
c = a∗b ∈M∗1(N).
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Definition 9.4.1 (Petite set) A set C ∈X is called petite if there exist a ∈M1(N)
and a non-zero measure µ ∈M+(X ) such that for all x ∈C and A ∈X ,

Ka(x,A)≥ µ(A) .

The set C is then said to be an (a,µ)-petite set.

In other words, a petite set is a 1-small set for a sampled kernel Ka. The empty set
is petite. An (m,µ)-small set is a petite set for the sampling distribution a which puts
mass 1 at m. The converse is generally false, as will be shown after Proposition 9.4.5.

Lemma 9.4.2 If the Markov kernel P admits an accessible (a,µ)-petite set, then µ

is an irreducibility measure and P is irreducible.

Proof. Let C be an accessible (a,µ)-petite set, ε ∈ (0,1), x ∈ X and A ∈X such
that µ(A)> 0. Since C is accessible, Kaε

(x,C)> 0. Using the generalized Chapman-
Kolmogorov formula (Lemma 1.2.11), we have

Ka∗aε
(x,A)≥

∫
C

Kaε
(x,dy)Ka(y,A)≥ µ(A)Kaε

(x,C)> 0 .

This shows that A is accessible and µ is a irreducibility measure. 2

Lemma 9.4.3 Let P be an irreducible Markov kernel on X×X . Let C,D ∈X .
Assume that C is a (a,µ)-petite set and that there exists b ∈M1(N) such that δ =
infx∈D Kb(x,C)> 0. Then D is a petite set.

Proof. For all x ∈C and A ∈X , we get that

Kb∗a(x,A)≥
∫

C
Kb(x,dy)Ka(y,A)≥ µ(A)Kb(x,C)≥ δ µ(A) .

2

The following Lemma shows that the minorization measure in the definition of pe-
tite set may always be chosen to be a maximal irreducibility measure when P is
irreducible. For p ∈ N, define the probability γp ∈M1(N)

γp(k) = 1/p for k ∈ {1, . . . , p} and γp(k) = 0 otherwise. (9.4.2)

Proposition 9.4.4 Let P be an irreducible Markov kernel on X×X and let C
be a petite set.

(i) There exist a sampling distribution b ∈ M∗1(N) and a maximal irre-
ducibility measure ψ such that C is a (b,ψ)-petite set.



208 9 Small sets, irreducibility and aperiodicity

(ii) There exist p ∈ N and a non-trivial measure µ such that C is a (γp,µ)-
petite set.

Proof. (i) Let C be a (a,µC)-petite set and D be an accessible (m,µD)-small set
(such a set always exists by Definition 9.2.1).By Proposition 9.1.9, µD is an irre-
ducibility measure. Since D is accessible, for every ε ∈ (0,1), Lemma 3.5.2 implies
µCKaε

(D) > 0. The measure ψ = µCKaε
(D)µDKaε

is then a maximal irreducibil-
ity measure by Theorem 9.2.4. Therefore, for x ∈ C and A ∈X , using again the
generalized Chapman-Kolmogorov equations, we get

Ka∗aε∗δm∗aε
(x,A)≥

∫
D

Ka∗aε
(x,dy)

∫
X

Pm(y,dz)Kaε
(z,A)

≥
∫

D
Ka∗aε

(x,dy)µDKaε
(A) = Ka∗aε

(x,D)µDKaε
(A)

≥
∫

Ka(x,dy)Kaε
(y,D)µDKaε

(A)≥ µCKaε
(D)µDKaε

(A) = ψ(A) .

This proves that C is a (b,ψ)-petite set, with b = a∗aε ∗δm ∗aε . Note that b(0) = 0.
(ii) By (i), we can assume that C is a (b,ψ)-petite set where ψ is a maximal

irreducibility measure and b ∈M1(N). For all x ∈C, Kb(x,D)≥ ψ(D)> 0. Choose
N such that ∑

∞
k=N+1 b(k)≤ (1/2)ψ(D). Then, for all x ∈C,

N

∑
k=0

Pk(x,D)≥
N

∑
k=0

b(k)Pk(x,D)≥ 1
2

ψ(D) .

and for all A ∈X ,

N+m

∑
k=1

Pk(x,A)≥
N

∑
k=0

Pk+m(x,A)≥
N

∑
k=0

∫
D

Pk(x,dy)Pm(y,A)

≥ µD(A)
N

∑
k=0

Pk(x,D)≥ 1
2

ψ(D)µD(A) .

2

A main difference between small and petite sets is that the union of two petite sets
is petite whereas the union of two small sets is not necessarily small.

Proposition 9.4.5 Let P be an irreducible kernel on X×X . Then, a finite
union of petite sets is petite and X is covered by an increasing denumerable
union of petite sets.
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Proof. Let C be an (a,µ)-petite set and D be a (b,ν)-petite set. By Proposition 9.4.4,
we can assume that µ and ν are maximal irreducibility measures. Set c = (a+b)/2.
Since the Markov kernel P is irreducible, there exists an accessible small set B. Then
µ(B)> 0, ν(B)> 0 and for x ∈C∪D, we have

Kc(x,B) =
1
2

Ka(x,B)+
1
2

Kb(x,B)≥
1
2

µ(B)1C(x)+
1
2

ν(B)1D(x)

≥ 1
2
{µ(B)∧ν(B)}> 0 .

Thus C∪D is petite by Lemma 9.4.3.
By definition, P admits at least one accessible small set. By Proposition 9.1.8,

X is covered by a countable union of small sets {C j, j ∈ N∗}, i.e. X =
⋃

∞
i=1 Ci. For

j≥ 1, set D j =
⋃ j

i=1 Ci. Then D j ⊂D j+1 and X=∪ j≥1D j. Moreover, for each j≥ 1,
D j is petite as a finite union of small sets. 2

Definition 9.4.6 (Uniform accessibility) A set B is uniformly accessible from A if
there exists m ∈ N∗ such that infx∈APx(σB ≤ m)> 0.

Lemma 9.4.7 Let P be an irreducible Markov kernel on X×X and C, D ∈X .

(i) Let m ∈ N.

inf
x∈C
Px(σD ≤ m)> 0⇐⇒ inf

x∈C
Kγm(x,D)> 0

where γm is defined in (9.4.2).
(ii) If D is petite and uniformly accessible from C ∈X , then C is petite.

Proof. (i) Any of these conditions is equivalent to the existence of δ > 0 satis-
fying the following condition: for all x ∈C, there exists r(x) ∈ {1, . . . ,m} such that
Pr(x)(x,D)≥ δ/m.

(ii) Follows from (i) and Lemma 9.4.3.
2

Lemma 9.4.8 Let P be an irreducible Markov kernel on X×X and C be a petite
set. Let r be a non-negative increasing sequence such that limn→∞ r(n) = ∞.

(i) For every d > 0 the set {x ∈ X : Ex[r(τC)]≤ d} is petite.
(ii) Every set B ∈X such that supx∈BEx[r(τC)]< ∞ is petite.

Proof. (i) Set D = {x ∈ X : Ex[r(τC)]≤ d}. Since C is petite, D∩C is also pe-
tite. Consider now x ∈ D∩Cc. For all k ∈ N∗, we have

Px(σC ≥ k) = Px(τC ≥ k) = Px(r(τC)≥ r(k))≤ [r(k)]−1Ex[r(τC)]≤ [r(k)]−1d .
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Thus, for k sufficiently large, infx∈D∩Cc Px(σC ≤ k) ≥ 1/2. This proves that C is
uniformly accessible from D∩Cc hence D∩Cc is petite by Lemma 9.4.7. Since the
union of two petite sets is petite by Proposition 9.4.5, this proves that D is petite.

(ii) By assumption, there exists b > 0 such that B ⊂ {x ∈ X : Ex[r(τC)]≤ b}
which is petite by (i) and therefore B is also petite.

2

Proposition 9.4.9 Let P be an irreducible Markov kernel. A set C is petite if
and only if every accessible set A is uniformly accessible from C.

Proof. Assume that C is a petite set. By Proposition 9.4.4, we can assume that C
is (b,ψ)-petite where ψ is a maximal irreducibility measure and b ∈M1(N) is a
probability onN satisfying b(0) = 0. Let A∈X +

P . We have for all x∈C, Kb(x,A)≥
ψ(A)> 0. There exists m ∈ N such that

m

∑
k=1

Pk(x,A)≥
m

∑
k=1

b(k)Pk(x,A)≥ 1
2

ψ(A) .

Conversely, assume that every accessible set is uniformly accessible from C. Since
P is irreducible, there exists an accessible (n,µ)-small set D. This implies that
infx∈CPx(σD ≤ m)> 0 for some m > 0 and by Lemma 9.4.7 C is petite. 2

We have now all the ingredients to prove that for an aperiodic kernel, petite sets
and small sets coincide.

Theorem 9.4.10. If P is irreducible and aperiodic, then every petite set is small.

Proof. Let C be a petite set and D be an accessible (r,µ)-small set with µ(D) > 0.
By Proposition 9.4.9, we can also choose m0 and δ > 0 such that

inf
x∈C
Px(τD ≤ m0)≥ inf

x∈C
Px(σD ≤ m0)≥ δ .

Since P is aperiodic, Lemma 9.3.3 shows that we can choose ε > 0 and then m≥m0
large enough so that infx∈D Pk(x, ·)≥ εµ(·) for k = m,m+1, . . . ,2m. Then, for x∈C
and B ∈X ,

P2m(x,B) = Px(X2m ∈ B)≥
m

∑
k=0
Px(τD = k,X2m ∈ B)

=
m

∑
k=0
Ex
[
1{τD = k}PXk(X2m−k ∈ B)

]
≥ εµ(B)

m

∑
k=0
Px(τD = k)≥ δεµ(B) .
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Therefore, C is a (2m,µ)-small set. 2

Proposition 9.4.11 An irreducible Markov kernel P on X×X is aperiodic if
and only if X is covered by an increasing denumerable union of small sets.

Proof. By Proposition 9.4.5, X is covered by an increasing denumerable union of
petite sets {D j, j ∈N}. Since P is aperiodic, by Theorem 9.4.10, D j is small for all
j ∈ N.

Conversely, assume that X = ∪ j≥1D j where {D j, j ∈ N∗} is an increasing se-
quence of small sets. By Proposition 9.2.9, there exists j such that D j is accessible.
Applying Corollary 9.3.8, there exists a periodicity class C0 such that D j ⊂C0∪N j
where N j is non-accessible. Since Dk is also an accessible small set for all for all
k ≥ j and contains D j, Corollary 9.3.8 also implies Dk ⊂C0∪Nk where Nk is non-
accessible. Finally, ∪k≥ jDk = X is therefore included in a periodicity class up to a
non-accessible set and P is aperiodic. 2

We conclude by a very important property of petite sets: invariant measures give
finite mass to petite sets.

Lemma 9.4.12 Let P be an irreducible Markov kernel on X×X . Let µ ∈M+(X )
be a σ -finite measure such that µP≤ µ . Then µ(C)< ∞ for every petite set C.

Proof. Let C be a (a,ν)-petite set where a∈M1(N). Since µ is σ -finite, there exists
B ∈X such that µ(B)< ∞ and ν(B)> 0. Then

∞ > µ(B)≥
∫

C
µ(dx)Ka(x,B)≥ ν(B)µ(C) .

Thus µ(C) is finite. 2

9.5 Exercises

9.1. Let P be a Markov kernel on X×X . Assume that P is irreducible. For any A ∈
X +

P and any irreducibility measure φ , show that φA(·) = φ(A∩·) is an irreducibility
measure.

9.2. Assume that P admits an accessible atom α . Construct a maximal irreducibility
measure.

9.3. Let {Zk, k ∈ N∗} be an i.i.d. sequence of real-valued random variables with
cumulative distribution function F . Let X0 be a real-valued random variable inde-
pendent of {Zk, k ∈N∗}. Consider the Markov chain defined by Xn = (Xn−1 +Zn)

+

for n≥ 1. Denote by P the Markov kernel associated to this Markov chain.
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1. Show that P is irreducible if and only if F((−∞,0))> 0.

Assume now that F((−∞,0))> 0.

2. Show that {0} is uniformly accessible from any compact C ⊂ R.

9.4. Let P be an irreducible and aperiodic Markov kernel on X×X with invariant
probability π . Show that for any accessible set B there is a small set C⊂ B such that
for some n and δ > 0,

Pn(x,A)≥ δπ(A) , x ∈C,A⊂C .

9.5. Let P be a Markov kernel on X×X . Assume that there exist a σ -finite measure
λ and a sequence {pn, n∈N∗} of nonnegative functions defined on X2 such that for
every n≥ 1 and x ∈ X, pn(x, ·) is measurable and for every n≥ 1, x ∈ X and A ∈X ,

Pn(x,A)≥
∫

A
pn(x,y)λ (dy) .

Assume that there exists a set C ∈ X such that λ (C) > 0 and for all x ∈ X,
∑

∞
n=1 pn(x,y) > 0 for λ -almost every y ∈ C. Show that λ restricted to C is an ir-

reducibility measure.

9.6. Let P be a Markov kernel on X×X . Assume that there exist an integer m, a
set C ∈X , a probability measure ν and, for any B ∈X a measurable function y 7→
ε(y,B) such that, for all x ∈C, Pm(x,B)≥ ε(x,B)ν(B). Show that, if C is accessible
and for any B ∈X , ε(x,B)> 0 for every x ∈C, then P is irreducible.

9.7. Let λ ∈M+(X ) a σ -finite measure. Let π be a probability density with re-
spect to λ . Let q : X×X 7→ R+ be a probability transition kernel with respect to λ .
Consider the Metropolis-Hastings kernel with target density π and transition density
q. Assume that

π(y)> 0 ⇒ (q(x,y)> 0 for all x ∈ X)

Show that P is irreducible.

9.8. Let P be an irreducible aperiodic Markov chain on X×X , where X is count-
ably generated. Assume that P has an invariant probability denoted by π . Call a
subset S ∈X hyper-small if π(S) > 0 and there is ε > 0 and m ∈ N such that S
is (m,επ)-small. Show that every set of positive π-measure contains a hyper-small
set.

9.9. Let P be Markov kernel on X×X . Assume that there exist two disjoint ab-
sorbing sets A1,A2 ∈X (i.e. A1 and A2 are absorbing and A1∩A2 = /0). Show that
the Markov kernel P is not irreducible.

9.10. Let {Zk, k ∈ N∗} be a sequence of i.i.d. real-valued random variables. Let X0
be a real-valued random variable, independent of {Zk, k ∈ N}. Consider the unre-
stricted random walk defined by Xk = Xk−1 +Zk for k ≥ 1.



9.5 Exercises 213

Assume that the increment distribution (the distribution of Z1) has an absolutely
continuous part with respect to Lebesgue measure Leb on R with a density γ which
is positive and bounded from zero at the origin; that is, for some for some β > 0,δ >
0,

P(Z1 ∈ A)≥
∫

A
γ(x)dx ,

and γ(x)≥ δ > 0 for any |x|< β .

1. Show that C = [−β/2,β/2] is an accessible small set.
2. Show that Leb(·∩C) is an irreducibility measure.

Assume now that the increment distribution is concentrated on Q, more precisely,
for any r ∈Q, P(Z1 = r)> 0.

3. Show that the Markov chain is not irreducible.

9.11. Let P1,P2 be two Markov kernels defined on X×X . Let α ∈ (0,1). Assume
that C ∈X is a accessible small set for the Markov kernel P1. Show that C is an
accessible small set for P = αP1 +(1−α)P2.

9.12. Let P1,P2 be two Markov kernels defined on X×X . Suppose that C is a
(1,εν)-accessible small set for P1. Show that C is also a small set for P1P2 and P2P1.

9.13. Consider the Metropolis-Hastings algorithm on a topological space X. Let ν

be a σ -finite measure. Assume that the target distribution and the proposal kernel are
dominated by ν , i.e. π = hπ ·ν and Q(x,A) =

∫
A q(x,y)ν(dy) where q : X×X→R+.

Assume that

(i) The density hπ is bounded above on compact sets of X.
(ii) The transition density q is bounded from below on compact sets of X×X

Show that P is irreducible with ν as an irreducibility measure, strongly aperiodic
and every non-empty compact set C is small. This shows that any compact set is
small and that π|C the restriction of π to the set C is an irreducibility measure.

9.14. Consider the Metropolis-Hastings algorithm on a metric space (X,d). Let ν be
a σ -finite measure. Assume that the target distribution and the proposal kernel are
dominated by ν , i.e. π = hπ ·ν and Q(x,A) =

∫
A q(x,y)ν(dy) where q : X×X→R+.

Assume that hπ is bounded away from 0 and ∞ on compact sets and that there
exist δ > 0 and ε > 0 such that for every x ∈ X, infB(x,δ ) q(x, ·) ≥ ε . Show that
the Metropolis-Hastings kernel P is irreducible with ν as an irreducibility measure,
strongly aperiodic and every non-empty compact set is small.

9.15. Let P be a Markov kernel on X×X . Let C ∈X be a (m,εν)-small set, where
m ∈ N and ε > 0. Show that for all (x,x′) ∈C×C,∥∥Pm(x, ·)−Pm(x′, ·)

∥∥
TV ≤ 2(1− ε) .



214 9 Small sets, irreducibility and aperiodicity

9.16. Let P be an irreducible Markov kernel on X×X . Denote by d the period of P.
Let {Ci}d−1

i=0 a cyclic decomposition. Show that any small set C must be essentially
contained inside one specific member of the cyclic class, i.e. that there exists an
i0 ∈ {0, . . . ,d− 1} such that ψ(C∆Ci0) = 0, where ψ is a maximal irreducibility
measure.

9.17. Consider the independent Metropolis-Hastings sampler introduced in Exam-
ple 2.3.3 (we use the notation introduced in this example). Show that if h(x)≤ cq̄(x)
for some constant c > 0 that the state space X is small.

9.18. Let π ∈M1(X ) be a probability and P be a Metropolis-Hastings kernel on
the state space X×X and with proposal kernel Q(x, ·). Show that for all m ∈ N,
A ∈X and x ∈ A:

Pm(x,A)≤
m

∑
i=0

(
m
i

)
Qi(x,A) . (9.5.1)

9.19. Consider the random walk Metropolis algorithm introduced in Example 2.3.2.
Denote by π the target distribution on (Rd ,B(Rd)). We assume that

(i) π has a density denoted hπ with respect to the d-dimensional Lebesgue mea-
sure Moreover, the density hπ is a continuous positive density function.

(ii) the increment distribution has a density q̄ with respect to the d-dimensional
Lebesgue measure. which is continuous, positive and bounded.

Let P be the kernel of a d-dimensional Random Walk Metropolis (RWM) with target
distribution π . Show that the unbounded sets are not small for P.

9.20. Let P be an irreducible and aperiodic kernel on X×X and m∈N∗. Show that
there exists m0 ∈ N∗ such that Pr is strongly aperiodic for all integers r ≥ m0.

9.21. We use the notations of Exercise 9.19. Let C ∈B(Rd).

1. Show that for all x ∈ X, P(x,{x}c)≤ |q|∞/π(x).

Let C be a (m,εν)-small set. Assume that π is unbounded on C.

1. Show that we may choose x1 6= x2 ∈C such that Pm(xi,{xi}) > (1− ε/2), i =
1,2.

2. Show that the set C is not small [hint: use Exercise 9.15 to prove that for all
(x,x′) ∈C×C, ‖Pm(x, ·)−Pm(x′, ·)‖TV ≤ (1− ε)].

9.22. Let P be an irreducible kernel on X×X . Assume that for some measurable
function V : X→ [0,∞]. Assume that {V < ∞} is accessible. Show that there exists
n such that for all k ≥ n, {V ≤ k} is accessible.
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9.6 Bibliographical notes

The use of irreducibility as a basic concept for general state space Markov chain
was initially developed by Doeblin (1940) in one of the very first studies devoted to
the analysis of Markov chains of general state space. This idea was later developed
by Doob (1953), Harris (1956), Chung (1964), Orey (1959) and Orey (1971). The
concept of maximal irreducibility measure was introduced in Tweedie (1974a) and
Tweedie (1974b). The results on full sets (Proposition 9.2.12) was established in
Nummelin (1984).

A precursor of the notion of small set was already introduced by Doeblin (1940)
for Markov chain over general state space (see Meyn and Tweedie (1993a) for a
modern exposition of these results). The existence of small set as it is defined in this
chapter was established by Jain and Jamison (1967). Our proof of Theorem 9.2.6
is borrowed from the monograph Orey (1971): most of the existing proof of these
results reproduce the arguments given in this work.

Petite sets, as defined Section 9.4 were introduced in Meyn and Tweedie (1992).
This definition generalizes previous versions introduced in Nummelin and Tuomi-
nen (1982) and Duflo (1997). These authors have basically introduced the notion of
petite set but with specific sampling distributions.

Note that our definition of irreducibility is not classic. A kernel is said to be irre-
ducible if there exists a non trivial irreducibility measure. We have adopted another
equivalent point of view: a Markov kernel is said to be irreducible if there exists an
accessible small set. These two definitions are equivalent by Theorem 9.2.6.

9.A Proof of Theorem 9.2.6

We preface the proof by several preliminary results and auxiliary lemmas.

Lemma 9.A.1 Let (E,B,µ) be a probability space and let {Pn : n ∈ N} be a
sequence of finite increasing partitions of E such that B = σ {Pn : n ∈ N}. Let
A ∈ B with µ(A) > 0. Then, for all ε > 0, there exists U ∈

⋃
n Pn such that

µ(A∩U)≥ (1− ε)µ(U)> 0.

Proof. For x ∈ E, let En
x be the element of Pn which contains x and set

Xn(x) =

{
µ(A∩En

x )/µ(En
x ) if µ(En

x ) 6= 0 ,

0 if µ(En
x ) = 0 .

Then Xn is a version of E [1A |σ(Pn)]. By the martingale theorem, limn→∞ Xn = 1A
µ −a.s. Thus, there exists x∈A such that limn Xn(x) = 1 and one can choose U =En

x
for an integer n sufficiently large. 2

Proposition 9.A.2 Let (X,X ) be a measurable space such that the σ -field X is
countably generated. Let P be a Markov kernel on X×X and let µ ∈M1(X ).
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Then, there exist a measurable function f ∈ F+
(
X2,X ⊗2

)
and a kernel N on X×

X such that for all x ∈ X, N(x, ·) and µ are mutually singular and for all x ∈ X,
P(x, ·) = f (x, ·) ·µ +N(x, ·).

Proof. For every a ∈ X, by the Radon–Nikodym theorem, there exist a measurable
function fa on (X,X ) and a measure N(a, ·) such that µ and N(a, ·) are mutually
singular and

P(a, ·) = fa ·µ +N(a, ·) . (9.A.1)

Since X is countably generated, there exists an increasing sequence of finite par-
titions Pn =

{
Ak,n : 1≤ k ≤ mn

}
, n ≥ 1, such that X = σ(Pn , n ∈ N). Set

Xn = σ(Pn) and write

fn(a,x) =
mn

∑
k=1

P(a,Ak,n)

µ(Ak,n)
1Ak,n

(x) .

Then, (a,x) being fixed, {( fn(a,x),Xn), n ∈ N} is a nonnegative µ-martingale
and thus limn→∞ fn(a,x) exists µ − a.s. Denote by f∞(a,x) this limit. Since fn ∈
F+
(
X2,X ⊗2

)
for each n ∈ N, we also have f∞ ∈ F+

(
X2,X ⊗2

)
. To complete the

proof, it thus remains to show that fa = f∞(a, ·), µ − a.s. and that N is a kernel on
X×X .

For all g∈F+(X), denoteEµ [g] =
∫

gdµ . Then, for all A∈Pn, we get by (9.A.1),

Eµ [ fa |A] =
1

µ(A)

∫
A

fadµ ≤ P(a,A)
µ(A)

,

so that Eµ [ fa |Xn]≤ fn(a, ·) and letting n to infinity, we get fa ≤ f∞(a, ·) µ − a.s.
We now turn to the converse inequality. By Fatou’s lemma, for all A∈P` and hence,
for all for all A ∈ ∪`P`,∫

A
f∞(a,u)µ(du) =

∫
A

liminf
n→∞

fn(a,u)µ(du)≤ liminf
n→∞

∫
A

fn(a,u)µ(du)≤ P(a,A) .

(9.A.2)
To extend (9.A.2) to all A ∈X , note that ∪`P` is an algebra, X = σ(∪`P`) and∫

X
f∞(a,u)µ(du)+P(a,X)≤ 2P(a,X) = 2 < ∞ .

Then for all A ∈X and all ε > 0, there exists Aε ∈ ∪`P` such that∫
A∆Aε

f∞(a,u)µ(du)+P(a,A∆Aε)≤ ε .

Combining with (9.A.2), yields that (9.A.2) holds for all A ∈X . Now, choose B ∈
X such that µ(Bc) = 0 and N(a,B) = 0. Then,∫

A
f∞(a,u)µ(du) =

∫
A∩B

f∞(a,u)µ(du)≤ P(a,A∩B) =
∫

A
fa(u)µ(du) .
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Thus, f∞(a, ·) ≤ fa µ − a.s. Finally f∞(a, ·) = fa µ − a.s. and (9.A.1) holds
with fa replaced by f∞(a, ·). The fact that N is indeed a kernel follows from
f∞ ∈ F+

(
X2,X ⊗2

)
, P is a kernel on X×X and for all A ∈X ,

N(·,A) = P(·,A)−
∫

A
f∞(·,u)µ(du) .

The proof is completed. 2

Corollary 9.A.3 Assume that the space (X,X ) is separable. Let P be a Markov
kernel on X×X and µ ∈M1(X ). If for all x ∈ X, P(x, ·)� µ , there exists f ∈
F+(X ⊗2) such that, for all x ∈ X, P(x, ·) = f (x, ·) ·µ .

Lemma 9.A.4 Let P be a Markov kernel on X×X . Let φ be an irreducibility
measure. For all n ∈ N, there exist a bimeasurable function pn on X2 and a kernel
Sn on X×X such that Sn(x, ·) and φ are mutually singular for all x ∈ X,

Pn(x,dy) = pn(x,y)φ(dy)+Sn(x,dy) , (9.A.3)

and for all m,n ∈ N and x,y ∈ X,

pm+n(x,y)≥
∫

X
Pm(x,dz)pn(z,y)≥

∫
X

pm(x,z)pn(z,y)φ(dz) . (9.A.4)

Moreover, for all x ∈ X,

∑
n≥1

pn(x, ·)> 0 φ −a.e. (9.A.5)

Proof. By Proposition 9.A.2 for every n ≥ 1, there exists a bimeasurable function
p0

n : X2→ R+ and a kernel Sn on X×X such that, for all x ∈ X and A ∈X ,

Pn(x,A) =
∫

X
p0

n(x,y)φ(dx)+Sn(x,A) .

Define inductively the sequence of positive measurable functions {pn, n ∈ N} on
X2 in the following way: set p1 = p0

1 and for all n > 1 and x,y ∈ X, set

pn(x,y) = p0
n(x,y)∨ sup

1≤k<n

∫
X

Pn−k(x,dz)pk(z,y) . (9.A.6)

By construction, pn satisfies the first inequality in (9.A.4). We now show by induc-
tion on n ≥ 1 that for every x ∈ X, pn(x,y) = p0

n(x,y), for φ − almost all y. Indeed,
this is true for n= 1 by definition of p1. For n≥ 2, assume that the induction assump-
tion is true for n−1, i.e. for all k = 1, . . . ,n−1, pk(x,y) = p0

k(x,y), φ −almost all y.
Then, we have, for all k = 1, . . . ,n−1 and (x,A) ∈ X×X ,
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Pn(x,A) =
∫

Pn−k(x,dz)Pk(z,A)

≥
∫

Pn−k(x,dz)
∫

A
p0

k(z,y)φ(dy) =
∫

A

∫
Pn−k(x,dz)p0

k(z,y)φ(dy) .

Let the set Bx
n ∈X be such that φ(Bx

n) = 0 and Sn(x,Bx
n) = Sn(s,X). Then, applying

the previous inequality and the induction assumption, we obtain∫
A

p0
n(x,y)φ(dy) = Pn(x,A\Bx

n)≥
∫

A\Bx
n

(∫
Pn−k(x,dz)p0

k(z,y)
)

φ(dy)

=
∫

A

(∫
Pn−k(x,dz)p0

k(z,y)
)

φ(dy)

=
∫

A

(∫
Pn−k(x,dz)pk(z,y)

)
φ(dy) .

This implies that for all 1≤ k ≤ n and x ∈ X,

p0
n(x, ·)≥

∫
Pn−k(x,dz)pk(z, ·) φ − a.e.

Since the set A is arbitrary, this proves that the induction assumption is true for n.
Therefore, for all x ∈ X, (9.A.3) and the first inequality in (9.A.4) hold. This in turn
proves the second inequality in (9.A.4).

We now prove the last statement. Fix one particular x0 ∈ X. Set F = ∩n≥1(B
x0
n )c,

where Bx0
n was defined above. Then φ(Fc)≤ ∑n≥1 φ(Bx0

n ) = 0 and for every n≥ 1,
Sn(x0,F) = 0. Since φ is an irreducibility measure for P, for B⊂ F such that φ(B)>
0, there exists m such that Pm(x0,B) =

∫
B pm(x0,y)φ(dy)> 0. This implies∫

B
∑
n≥1

pn(x0,y)φ(dy)≥
∫

B
pm(x0,y)φ(dy)> 0 .

Since B is an arbitrary subset of F and φ(Fc) = 0, this implies ∑n≥1 pn(x0, ·) > 0
φ -a.e.. This proves (9.A.5). 2

Let H ∈X +
P . We are going to prove that there exists an accessible small set D such

that D⊂H. Let ψ be a maximal irreducibility measure. Then ψH(·) =ψ(·∩H) is an
irreducibility measure. Therefore, by remark 9.2.3, we can choose an irreducibility
measure φ such that φ(H) = 1 and φ(Hc) = 0.

Let F ∈X ⊗2 be a set. Given x,y ∈ X, we define the sections F1(x) and F2(y)
by F1(x) = {y ∈ X : (x,y) ∈ F} and F2(y) = {x ∈ X : (x,y) ∈ F} This definition
entails the identity 1F1(x)

(y) = 1F2(y)
(x) = 1F(x,y). For A,B ∈X ⊗2, define

EA,B =
{
(x,y,z) ∈ X3 : (x,y) ∈ A,(y,z) ∈ B

}
.

Lemma 9.A.5 Assume that φ⊗3(EA,B) > 0. Then, there exist C,D ∈X such that
φ(C)> 0, φ(D)> 0 and
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inf
x∈C,z∈D

φ(A1(x)∩B2(z))> 0 .

Proof. Since X is countably generated, there exists a sequence of finite and in-
creasing partitions Pn such that X ⊗3 = σ(

⋃
n P3

n ). By Lemma 9.A.1, there exists
an integer n and U,V,W ∈Pn such that

φ
⊗3(EA,B∩ (U×V ×W )) =

∫
U×V×W

1A(x,y)1B(y,z)φ(dx)φ(dy)φ(dz)

>
3
4

φ(U)φ(V )φ(W )> 0 .

This yields

φ(W )
∫

U×V
1A(x,y)φ(dx)φ(dy)≥

∫
U×V×W

1A(x,y)1B(y,z)φ(dx)φ(dy)φ(dz)

>
3
4

φ(U)φ(V )φ(W ) ,

Since φ(W )> 0, this implies∫
U×V

1A(x,y)φ(dx)φ(dy)>
3
4

φ(U)φ(V ) . (9.A.7)

Similarly, ∫
V×W

1B(y,z)φ(dy)φ(dz)>
3
4

φ(V )φ(W ) . (9.A.8)

Define the sets C and D by

C =

{
x ∈U : φ(A1(x)∩V )>

3
4

φ(V )

}
,

D =

{
z ∈W : φ(B2(z)∩V )>

3
4

φ(V )

}
.

Since
∫

U×V 1A(x,y)φ(dx)φ(dy) =
∫

U φ(A1(x)∩V )φ(dx), (9.A.7) yields φ(C) > 0.
Similarly, (9.A.8) yields φ(D) > 0. Let µ be the probability measure on X de-
fined by µ(G) = φ(G∩V )/φ(V ). Then, for x ∈C and z ∈ D, µ(A1(x)) > 3/4 and
µ(A1(x)) > 3/4 and since µ is a probability measure, this implies that µ(A1(x)∩
A1(x))> 1/2. Finally, this shows that for all x ∈C and z ∈ D,

φ(A1(x)∩B2(z))≥ φ(A1(x)∩B2(z)∩V )>
1
2

φ(V )> 0 .

2

Proof (of Theorem 9.2.6). For every x ∈ X, ∑n≥1 pn(x, ·) > 0, φ − a.e. Therefore,
there exist r,s ∈ N such that
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X3

pr(x,y)ps(y,z)φ(dx)φ(dy)φ(dz)> 0.

For η > 0, define

Fη =
{
(x,y) ∈ X2 : pr(x,y)> η

}
,

Gη =
{
(y,z) ∈ X2 : ps(y,z)> η

}
.

Then, for η > 0 sufficiently small,

φ
⊗3({(x,y,z) : (x,y) ∈ Fη , (y,z) ∈ Gη})> 0 .

Applying Lemma 9.A.5 with A = Fη and B = Gη , we obtain that there exist C,D ∈
X such that φ(C) > 0, φ(D) > 0 and γ > 0 such that, for all x ∈ C and z ∈ D,
φ(Fη

1 (x)∩Gη

2 (z)) ≥ γ > 0. Then, for all u ∈C and v ∈ D, by definition of Fη and
Gη , we obtain

pr+s(u,v)≥
∫

X
pr(u,y)ps(y,v)φ(dy)

≥
∫

Fη

1 (x)∩Gη

2 (z)
pr(u,y)ps(y,v)φ(dy)≥ η

2
γ > 0 . (9.A.9)

Since φ is an irreducibility measure and φ(C) > 0, C is accessible, thus for all
x ∈ X, ∑k≥1 Pk(x,C) > 0. Since φ(D) > 0, we obtain

∫
D φ(dx)∑k≥1 Pk(x,C) > 0.

Thus, there exists k ∈ N∗ such that
∫

D φ(dx)Pk(x,C) > 0. This in turn implies that
there exists G ⊂ D and δ > 0 such that φ(G) > 0 and Pk(x,C) ≥ δ for all x ∈ G.
Since φ(G)> 0, the set G is accessible. To conclude, we prove that G is a small set.
Using (9.A.4) and (9.A.9), we have for all x ∈ G and z ∈ G⊂ D,

pr+s+k(x,z)≥
∫

C
Pk(x,dy)pr+s(y,z)≥ δη

2
γ > 0 . (9.A.10)

Finally, define m = r + s + k and µ(·) = δη2γφ(· ∩C). Then, applying (9.A.3)
and (9.A.10), we obtain, for all x ∈ G and B ∈X ,

Pm(x,B)≥
∫

B
pm(x,z)φ(dz)≥

∫
B∩C

pm(x,z)φ(dz)≥ µ(B) .

This proves that G is an (m,µ)-small set. Since φ(Hc) = 0 and φ(G) > 0, then
φ(H ∩G)> 0. Since H ∩G is a small set, H ∩G is an accessible small set.

Therefore, we have established that if P admits an irreducibility measure, then
any accessible set H contains an accessible small set G and therefore that P is irre-
ducible. Conversely, if P is irreducible, then it admits an irreducibility measure by
Proposition 9.1.9. 2



Chapter 10
Transience, recurrence and Harris recurrence

Recurrence and transience properties have already been examined in Chapter 6 and
Chapter 7 for atomic or discrete Markov chains. We revisit these notions for irre-
ducible Markov chains. Some of the properties we have shown for atomic chains ex-
tend quite naturally to irreducible chains. This is in particular true of the dichotomy
between recurrent and transient chains (compare Theorem 6.2.7 or Theorem 7.1.2
with Theorem 10.1.5 below). Other properties are more specific such as Harris-
recurrence which will be introduced in 10.2.

10.1 Recurrence and transience

Recall the definitions of recurrent sets and kernels given in Definition 6.2.5.

Definition 10.1.1 (Recurrent set, Recurrent kernel)
• A set A ∈X is said to be recurrent if U(x,A) = ∞ for all x ∈ A.
• A Markov kernel P on X×X is said to be recurrent if P is irreducible and

every accessible set is recurrent.

Theorem 10.1.2. A Markov kernel P on X×X is recurrent if and only if it admits
an accessible recurrent petite set.

Proof. Let P be an irreducible Markov kernel. Then it admits an accessible small
set C and if P is recurrent then by definition C is recurrent.

Conversely, let C be a recurrent petite set. The kernel P being irreducible,
Proposition 9.4.4 shows that there exist a ∈ M∗1(N) and a maximal irreducibil-
ity measure ψ such that C is (a,ψ)-petite. Let A be an accessible set. Define

221
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Â = {x ∈ A : U(x,A) = ∞} and for r ≥ 1, Ar = {x ∈ A : U(x,A)≤ r}. Then

A =

(⋃
r≥1

Ar

)
∪ Â .

By the maximum principle, we have

sup
x∈X

U(x,Ar)≤ sup
x∈Ar

U(x,Ar)≤ sup
x∈Ar

U(x,A)≤ r .

Since by Lemma 4.2.3 UKa = KaU ≤U , we get that

r ≥U(x,Ar)≥UKa(x,Ar)≥
∫

C
U(x,dy)Ka(y,Ar)≥U(x,C)ψ(Ar) .

Since U(x,C) = ∞ for x ∈ C, this implies that ψ(Ar) = 0 for all r ≥ 1. Since A is
accessible, ψ(A) > 0 and thus it must hold that ψ(Â) > 0. Hence, since ψ is an
irreducibility measure, the set Â is accessible. By Lemma 3.5.2, this implies that
Kaε

(x, Â)> 0 for all x ∈ X and ε ∈ (0,1). Using again U ≥ Kaε
U , we obtain, for all

x ∈ X,

U(x,A)≥ Kaε
U(x,A)≥

∫
Â

Kaε
(x,dy)U(y,A) = ∞×Kaε

(x, Â) .

This implies that U(x,A) = ∞ for all x ∈ A and A is recurrent. 2

We have seen in Chapter 6 that a Markov kernel admitting an accessible atom is
either recurrent or transient. In order to obtain a dichotomy between transient and
recurrent irreducible kernels, we introduce the following definition.

Definition 10.1.3 (Uniformly Transient set, Transient set)
• A set A ∈X is called uniformly transient if supx∈A U(x,A)< ∞.
• A set A∈X is called transient if A =

⋃
∞
n=1 An, where An is uniformly transient.

• A Markov kernel P is said to be transient if X is transient.

Proposition 10.1.4 Let P be an irreducible Markov kernel on X×X . Then
P is transient if and only if there exists an accessible uniformly transient set.
Furthermore, if P is transient, every petite set is uniformly transient.

Proof. Assume first that P is transient. By Definition 10.1.3, X =
⋃

∞
n=1 An where for

each n ∈ N∗, the set An is uniformly transient. Among the collection {An, n ∈ N},
there is at least one accessible set, showing that there exists an accessible uniformly
transient set.
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Assume now that there exists an uniformly transient set A. We will show that
every petite set is uniformly transient. We will then conclude that P is transient
since we know by Proposition 9.4.5 that X is covered by an increasing denumerable
union of petite sets. Let C be a petite set. By Proposition 9.4.4, we can choose the
sampling distribution a ∈ M∗1(N) and the measure ψ in such a way that C is an
(a,ψ)-petite set where ψ is a maximal irreducibility measure. By Lemma 4.2.3 we
get for all x ∈ X,

U(x,A)≥UKa(x,A)≥
∫

C
U(x,dy)Ka(y,A)≥ ψ(A)U(x,C) .

Thus, since A is accessible and uniformly transient, the maximum principle yields

sup
x∈C

U(x,C)≤ sup
x∈X

U(x,A)/ψ(A) = sup
x∈A

U(x,A)/ψ(A)< ∞ .

Hence C is uniformly transient.
Since P is irreducible, by Proposition 9.1.8, X is a countable union of small,

hence petite sets. By the first statement, these sets are also uniformly transient.
Hence X is transient. 2

Theorem 10.1.5. An irreducible kernel P on X×X is either recurrent or transient.
Let C be an accessible (a,µ)-petite set with µ(C)> 0.

(i) If µU(C)< ∞, then P is transient.
(ii) If µU(C) = ∞, then P is recurrent.

Proof. Let ψ be a maximal irreducibility measure. Assume that P is not recurrent.
Then there exist an accessible set A and x0 ∈ A such that U(x0,A) < ∞. Set Ā =
{x ∈ X : U(x,A)< ∞}. Since PU ≤U , we get for all x ∈ Ā,∫

Āc
P(x,dy)U(y,A)≤ PU(x,A)≤U(x,A)< ∞

showing that P(x, Āc) = 0. Hence, Ā is absorbing and since it is non-empty, Ā is
full by Proposition 9.2.12. This implies that ψ({x ∈ X : U(x,A) = ∞}) = 0. Let
An = {x ∈ A : U(x,A)≤ n}. Then ψ(An) ↑ ψ(A)> 0. For sufficiently large n, An is
accessible and uniformly transient since,

sup
x∈An

U(x,An)≤ sup
x∈An

U(x,A)≤ n .

Proposition 10.1.4 shows that the kernel P is transient.
Conversely, assume that the Markov kernel P is transient. In this case, X =⋃

∞
n=1 Xn, where for every n ∈ N∗, Xn is uniformly transient. There exists n ∈ N∗
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such that ψ(Xn) > 0. Hence Xn is accessible and uniformly transient and therefore
the kernel P cannot be recurrent.

Let C be an accessible (a,µ)-small set with µ(C)> 0. If P is recurrent, then for
all x ∈ C, U(x,C) = ∞ and hence, since µ(C) > 0, µU(C) = ∞. If P is transient,
then X =

⋃
∞
n=1 Xn where Xn is uniformly transient. Proposition 10.1.4 shows that C

is uniformly transient. Since supx∈X U(x,C)≤ supx∈C U(x,C)<∞ (by the maximum
principle Theorem 4.2.2), we obtain that µU(C)< ∞. 2

Theorem 10.1.6. Let P be an irreducible Markov kernel on X×X . If P admits an
invariant probability measure then P is recurrent.

Proof. Assume that P is transient. Then, X =
⋃

∞
m=1 Bm, where Bm are uniformly

transient sets. By the maximum principle this implies that supx∈X U(x,Bm)< ∞. Let
π be an invariant probability measure. Then for all integers m,n≥ 1, we have

nπ(Bm) =
n−1

∑
k=0

πPk(Bm)≤ πU(Bm)≤ sup
x∈X

U(x,Bm)< ∞ .

Since the left hand side remains bounded as n increases, this implies π(Bm) = 0 for
all m and π(X) = 0. This is a contradiction since π(X) = 1 by assumption. 2

Proposition 10.1.7 Let P be an irreducible Markov kernel on X×X . Every
non accessible set is transient.

Proof. Let N be non accessible. Then by definition Nc is full and by Proposi-
tion 9.2.12 Nc contains a full absorbing and accessible set H. Since N ⊂ Hc, it
suffices to prove that Hc is transient. Set Am,r = {x ∈ Hc : Pm(x,H)≥ 1/r} for
m,r ≥ 1. Since the set H is accessible, it holds that

Hc =
∞⋃

m,r=1

Am,r .

We now show that Am,r is uniformly transient. Since H is absorbing, for all m ≥ 1
and x ∈ X, we have Px(Xm ∈ H) ≤ Px(σ

(m)
Hc = ∞) or equivalently, Px(σ

(m)
Hc < ∞) ≤

Px(Xm 6∈ H). Therefore, for m,r ≥ 1 and x ∈ Am,r,

Px(σ
(m)
Am,r

< ∞)≤ Px(σ
(m)
Hc < ∞)≤ Px(Xm 6∈ H)≤ 1−1/r = δ .

As in the proof of Proposition 4.2.5, applying the strong Markov property we obtain
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sup
x∈Am,r

Px(σ
(mn)
Am,r

< ∞)≤ δ
n .

This yields, for x ∈ Am,r,

U(x,Am,r) = 1+
∞

∑
n=1
Px(σ

(n)
Am,r

< ∞)≤ 1+m
∞

∑
n=1
Px(σ

(mn)
Am,r

< ∞)≤ 1+
mδ

1−δ
.

Thus the sets Am,r are uniformly transient and Hc and N are transient. 2

The next result parallels Proposition 9.2.8 for transient sets.

Lemma 10.1.8 Let A ∈X .

(i) If A is uniformly transient and there exists a∈M1(N) such that infx∈B Ka(x,A)>
0, then B is uniformly transient.

(ii) If A is transient, then the set Ã defined by

Ã = {x ∈ X : Px(σA < ∞)> 0} (10.1.1)

is transient.

Proof. (i) Set δ = infx∈B Ka(x,A). Let A be uniformly transient set. Lemma 4.2.3
implies that for all x ∈ B,

U(x,A)≥UKa(x,A)≥
∫

B
U(x,dy)Ka(y,A)≥ δU(x,B) .

By the maximum principle Theorem 4.2.2, this yields

sup
x∈B

U(x,B)≤ δ
−1 sup

x∈B
U(x,A)≤ δ

−1 sup
x∈A

U(x,A)< ∞ .

Thus B is uniformly transient.
(ii) If A is transient, it can be expressed as A =

⋃
∞
n=1 An where the set An is

uniformly transient for each n. For n, i, j ≥ 1, set

Ãn,i, j =

{
x ∈ X :

j

∑
k=1

Pk(x,An)> 1/i

}

and Ãn =
⋃

∞
i, j=1 Ãn,i, j. Applying (i) with the sampling distribution a j = j−1

∑
j
k=1 δk

yields that Ãn,i, j is uniformly transient and consequently that Ãn is transient. Since
A =

⋃
n≥1 An, we have

Ã =
∞⋃

n=1

{x ∈ X : Px(σAn < ∞)> 0}=
∞⋃

n=1

Ãn =
⋃

n,i, j≥1

Ãn,i, j .

Therefore the set Ã is also transient.
2
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Lemma 10.1.9 Let P be a recurrent irreducible kernel on X×X , ψ be a maximal
irreducibility measure and A ∈X +

P . Then ψ({x ∈ A : Px(σA < ∞)< 1}) = 0

Proof. Set B = {x ∈ A : Px(σA < ∞)< 1} and define for every n ∈ N∗, Bn =
{x ∈ A : Px(σA < ∞)< 1−1/n}. Since Bn ⊂ A, we have for all x ∈ Bn,

Px(σBn < ∞)≤ Px(σA < ∞)≤ 1−1/n .

Applying then Proposition 4.2.5-(i), we get supx∈Bn
U(x,Bn) ≤ n so that Bn is not

recurrent. Since P is recurrent, this implies that Bn /∈X +
P . Using that

⋃
∞
n=1 Bn = B,

Proposition 9.2.9 therefore yields ψ(B) = 0. 2

Theorem 10.1.10. Let P be a recurrent Markov kernel on X×X and A be an ac-
cessible set.

(i) For every maximal irreducibility measure ψ , There exists Ã⊂ A such that ψ(A\
Ã) = 0 and Px(NÃ = ∞) = 1 for all x ∈ Ã.

(ii) The set A∞ = {x ∈ X : Px(NA = ∞) = 1} is absorbing and full.

Proof. (i) We set

A1 = {x ∈ A : Px(σA < ∞) = 1} , B1 = {x ∈ A : Px(σA < ∞)< 1} .

Lemma 10.1.9 shows that ψ(B1) = 0 for every maximal irreducibility measure. Set

Ã = {x ∈ A1 : Px(σB1 < ∞) = 0} , B2 = {x ∈ A1 : Px(σB1 < ∞)> 0} .

Since ψ(B1)= 0 and ψ is a maximal irreducibility measure, Proposition 9.2.8 shows
that ψ(B2) = 0. Furthermore for x ∈ Ã, we get

0 = Px(σB1 < ∞)≥ Px(σB2 < ∞,σB1 ◦θσB2
< ∞) = Ex[1{σB2<∞}PXσB2

(σB1 < ∞)] .

This proves that Px(σB2 < ∞) = 0. Hence for x ∈ Ã, we get Px(σBi < ∞) = 0,
i = 1,2 and Px(σA < ∞) = 1, which implies Px(σÃ < ∞) = 1 and hence, by Propo-
sition 3.3.6, Px(NÃ = ∞) = 1.

(ii) We first prove that A∞ is absorbing. For x ∈ A∞, we have

1 = Px(NA = ∞) = Px(X1 ∈ A∞,NA = ∞)+Px(X1 ∈ Ac
∞,NA = ∞)

= Px(X1 ∈ A∞)+Px(X1 ∈ Ac
∞,NA = ∞) .

This implies Px(X1 ∈ Ac
∞) = Px(X1 ∈ Ac

∞,NA = ∞) and by definition of A∞ this is
impossible unless Px(X1 ∈ Ac

∞) = 0. This proves that A∞ is absorbing.
Since Ã⊂ A∞ and ψ(Ã)> 0, A∞ 6= /0 and thus it is full.

2
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We give here a drift criterion for transience. In the following section, we will
exhibit a drift criterion for recurrence.

Theorem 10.1.11. Let P be an irreducible kernel on X×X . Assume that there
exists a nonnegative bounded function V and r ≥ 0 such that

(i) the level sets {V ≤ r} and {V > r} are both accessible,
(ii) PV (x)≥V (x) for all x ∈ {V > r}.

Then P is transient.

Proof. Define C = {V ≤ r} and

h(x) =

{
{|V |∞−V (x)}/{|V |∞− r} x 6∈C ,

1 x ∈C .
(10.1.2)

By construction the function h is nonnegative and for all x ∈ X, we get

Ph(x) =
∫

C
P(x,dy)h(y)+

∫
Cc

P(x,dy)h(y)

=
∫

X
P(x,dy)

|V |∞−V (y)
|V |∞− r

+
∫

C
P(x,dy)

(
1− |V |∞−V (y)

|V |∞− r

)
=
|V |∞−PV (x)
|V |∞− r

+
∫

C
P(x,dy)

V (y)− r
|V |∞− r

≤ |V |∞−PV (x)
|V |∞− r

.

Since PV (x)≥V (x) for all x∈Cc, the previous inequality implies that Ph(x)≤ h(x)
for all x ∈ Cc. Corollary 4.4.7 shows that h(x) ≥ Px(τC < ∞) for all x ∈ X. Since
h(x)< 1 for all x ∈Cc, this implies that

Px(τC < ∞) = Px(σC < ∞)< 1 ,

for all x ∈Cc. On the other hand, for x ∈C, since Px(σCc < ∞)> 0,

Px(σC = ∞)≥ Px(σC = ∞,σCc < ∞) = Ex

[
1{σCc < ∞}PXσCc (σC = ∞)

]
> 0 .

Therefore, Px(σC < ∞)< 1 for all x ∈C.
If P is recurrent, then Lemma 10.1.9 shows that Px(σC < ∞) = 1 for ψ-almost

every x ∈ C and every maximal irreducibility measure ψ , which contradicts the
previous statement. 2

We conclude this section by showing that if the kernel P is aperiodic, the recur-
rence and transience of P is equivalent to the recurrence and transience of any of its
skeleton Pm.
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Proposition 10.1.12 Let P be an irreducible and aperiodic Markov kernel on
X×X .

1. The Markov kernel P is transient if and only if one (and then every) m-
skeleton Pm is transient.

2. The Markov kernel P is recurrent if and only if one (and then every) m-
skeleton Pm is recurrent.

Proof. The Chapman-Kolmogorov equations show that, for any A ∈X and x ∈ X,

∞

∑
j=1

P j(x, A) =
m

∑
r=1

∫
Pr(x,dy)∑

j
P jm(y, A)≤ mM . (10.1.3)

This elementary relation is the key equation in the proof.

(i) If A is a uniformly transient set for the m-skeleton Pm, with ∑ j P jm(x, A)≤M,
then (10.1.3) implies that ∑

∞
j=1 P j(x, A)≤ mM Thus A is uniformly transient for P.

Hence P is transient whenever a skeleton is transient. Conversely, if P is transient
then every Pk is transient, since

∞

∑
j=1

P j(x, A)≥
∞

∑
j=1

P jk(x, A) .

(ii) If the m-skeleton Pm is recurrent then from (10.1.3) we again have that

∑P j(x, A) = ∞, x ∈ X,A ∈X +
P .

so that the Markov kernel P is recurrent.
(iii) Conversely, suppose that P is recurrent. For any m it follows from aperi-

odicity and Theorem 9.3.11 that Pm is irreducible; hence by Theorem 10.1.5, this
skeleton is either recurrent or transient. If it were transient we would have P tran-
sient, from the previous question and would lead to a contradiction.

2

10.2 Harris recurrence

For atomic and discrete chains, we have seen in Theorem 6.2.2 that the recurrence
in the sense of Definition 10.1.1 of an atom is equivalent to the property that the
number of visits to the atom is infinite when starting from the atom. In the general
case, this is no longer true and we have to introduce the following definition.
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Definition 10.2.1 (Harris recurrence) Let P be a Markov kernel on X×X .

(i) A set A ∈X is said to be Harris recurrent if for all x ∈ A, Px(NA = ∞) = 1.
(ii) The kernel P is said to be Harris recurrent if all accessible sets are Harris

recurrent.

It is obvious from the definition that if a set is Harris recurrent, then it is recurrent.
Harris recurrence is a strengthening of recurrence in the sense that it requires an
almost sure infinite number of visits instead of an infinite expected number of visits
to a set.

By Proposition 4.2.5, if for some A ∈X , Px(σA < ∞) = 1 for all x ∈ A, then
Px(σ

(p)
A < ∞) = 1 for all p ∈N∗ and x ∈ A and Px(NA = ∞) = 1 for all x ∈ A. Then,

the set A is Harris recurrent. Conversely, if for all x ∈ A, Px(NA = ∞) = 1, then
Px(σA < ∞) = 1 for all x ∈ A. Therefore, a set A is Harris recurrent if and only if,
for all x ∈ A, Px(σA < ∞) = 1. The latter definition is often used.

We prove next that if P is Harris recurrent, then the number of visits to an acces-
sible set is almost surely infinite starting from any point in the space.

Proposition 10.2.2 If P is a Harris recurrent Markov kernel on X×X , then
for all A ∈X +

P and x ∈ X, Px(NA = ∞) = 1.

Proof. Let A be an accessible Harris recurrent set and x0 be an arbitrary element of
X. Set B= {x0}∪A. We have infx∈BPx(σA <∞) = δ > 0, since infx∈APx(σA <∞) =
1 and Px0(σA <∞)> 0. Thus, by Theorem 4.2.6, Px0(NB =∞)≤Px0(NA =∞). Since
B is accessible, it is Harris recurrent under the stated assumption, which implies that
1 = Px0(NB = ∞) = Px0(NA = ∞). 2

A Harris recurrent kernel is of course recurrent but as illustrated by the next exam-
ple, the converse does not hold.

Example 10.2.3 (Recurrent but not Harris recurrent). Let {a(n), n ∈ N} be a
sequence of positive numbers such that, a(n)> 0 for all n ∈N. We define a Markov
kernel on X = N by

P(0,0) = 1 , P(n,n+1) = e−a(n) , P(n,0) = 1− e−a(n) , n≥ 1 .

In words, this Markov chain either moves to the right with probability e−a(n) or
jumps back to zero where it is absorbed. For n≥ 1 an easy calculation shows that

Pn(σ0 = ∞) = e−∑
∞
k=n a(k) , Pn(σ0 < ∞) = 1− e−∑

∞
k=n a(k) .

The Markov kernel P is irreducible and {0} is absorbing, therefore δ0 is a max-
imal irreducibility measure and every accessible set must contain 0. Let B be an
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accessible set and 1 ≤ n ∈ B. Then Pn(NB = ∞) = Pn(σ0 < ∞). If ∑
∞
k=1 a(k) = ∞,

then for all n ∈ N, Pn(σ0 < ∞) = 1 and the Markov kernel P is Harris recurrent. If
∑

∞
k=1 a(k) < ∞, then 0 < Pn(σ0 < ∞) = Pn(NB = ∞) < 1 hence En[NB] = ∞ for all

n ∈ N and P is recurrent, but not Harris recurrent.

Proposition 10.2.4 Let P be an irreducible Markov kernel on X×X . If there
exists a petite set C such that Px(σC < ∞) = 1 for all x /∈ C, then P is Harris
recurrent.

Proof. By Proposition 3.3.6, the condition Px(σC < ∞) = 1 for all x 6∈C implies that
Px(σC < ∞) = 1 and Px(NC = ∞) = 1 for all x ∈ X.

Let A be an accessible set. Since C is petite, Proposition 9.4.9 shows that A is uni-
formly accessible from C so Theorem 4.2.6 implies 1 = Px(NC = ∞)≤ Px(NA = ∞)
for all x ∈ X. Every accessible set is thus Harris recurrent and P is Harris recurrent.
2

Definition 10.2.5 (Maximal absorbing set) Let A be an absorbing set. The set A is
said to be maximal absorbing if A = {x ∈ X : Px(σA < ∞) = 1}.

Recall that the set A+ = {x ∈ X : Px(σA < ∞) = 1} is called the domain of at-
traction of the set A (see Definition 3.5.3). Then, A is a maximal absorbing set if
A = A+.

Example 10.2.6. We pursue with Example 10.2.3. The set {0} is absorbing. If
∑

∞
k=1 a(k) = ∞, then for all n ∈ N, Pn(σA < ∞) = 1. Therefore {0} is not max-

imal absorbing. It is easy to see that N is the only maximal absorbing set. If
∑

∞
k=1 a(k) = ` < ∞, then Pn(σA < ∞) < 1 for all n ∈ N∗. Hence {0} is maximal

absorbing.

Even though all Markov kernels may not be Harris recurrent, the following theo-
rem provides a very useful decomposition of the state space of a recurrent Markov
kernel.

Theorem 10.2.7. Let P be a recurrent irreducible Markov kernel on X×X . Then
there exists a unique partition X = H ∪N such that

(i) H is maximal absorbing,
(ii) N is transient,

(iii) the restriction of P to H is Harris recurrent.



10.2 Harris recurrence 231

For any accessible petite set C, we have

H = {x ∈ X : Px(NC = ∞) = 1} . (10.2.1)

If P is not Harris recurrent then the set N is non-empty and Px(σH = ∞)> 0 for all
x ∈ N. Furthermore, for all petite sets C ⊂ N and x ∈ N, Px(NC = ∞) = 0.

Proof. Let C be an accessible petite set. Define H by (10.2.1). By Theorem 10.1.10,
H is absorbing and full. By definition, for every x ∈ H+, Px(σH < ∞) = 1, thus

Px(NC = ∞)≥ Px(NC ◦θσH = ∞) = Ex

[
1{σH<∞}PXσH

(NC = ∞)
]
= 1 .

Therefore x∈H and thus H+ ⊂H. Conversely, since H is absorbing, Px(σH < ∞) =
1 for all x ∈ H, thus H ⊂ H+. Therefore, H is maximal absorbing. Now, let A be an
accessible set for the restriction of P to H. This implies that A is accessible for P
from any x∈H. Since H is itself accessible for the Markov kernel P from any x∈X,
this shows that A is also accessible for P (from any x ∈ X). By Proposition 9.4.9,
accessible sets A are uniformly accessible from petite sets. By Theorem 4.2.6, this
implies that for all x ∈ X, Px(NC = ∞)≤ Px(NA = ∞). This yields, for all x ∈ H and
all accessible sets A,

1 = Px(NC = ∞)≤ Px(NA = ∞) .

Thus, the restriction of P to H is Harris recurrent. The set N =X\H is not accessible
since H is full and is therefore transient by Proposition 10.1.7.

We will now establish that the decomposition is unique. Consider a partition
X = H ′ ∪N′ satisfying the conditions (i)–(iii). The sets H and H ′ are full and ab-
sorbing; hence, H∩H ′ is also full and absorbing and H∩H ′ is accessible. Since the
restriction of P to H ′ is Harris recurrent, then for any x ∈ H ′, Px(σH∩H ′ < ∞) = 1.
This shows that H ′ ⊂ (H ∩H ′)+ ⊂ H+ = H (where the last equality holds since H
is maximal absorbing). Reversing the roles of H and H ′, we finally get H = H ′ and
hence N = N′.

We finally prove the last statement. Assume that P is not Harris-recurrent, i.e.
N is not empty. If x ∈ N, then Px(σH = ∞) > 0 since H is maximal absorbing by
assumption. Let C ⊂ N be a petite set. By Proposition 9.4.9, the set H being acces-
sible, H is uniformly accessible from C, i.e. infx∈CPx(σH < ∞) > 0. For all x ∈ N,
we have

Px(NC = ∞) = Px(NC = ∞,σH < ∞)+Px(NC = ∞,σH = ∞) .

Since H is absorbing and C∩H = /0, for any x ∈ N, Px(NC = ∞,σH < ∞) = 0. On
the other hand, since infx∈CPx(σH < ∞)> 0, Theorem 4.2.6 yields: for all x ∈ N,

Px(NC = ∞,σH = ∞)≤ Px(NH = ∞,σH = ∞) = 0 .
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Finally for all x ∈ N, Px(NC = ∞) = 0. The proof is completed. 2

Corollary 10.2.8 Let P be a recurrent irreducible Markov kernel. Every ac-
cessible set A contains an accessible Harris recurrent set B such that A \B is
not accessible.

Proof. Write X = H ∪N where H and N are defined in Theorem 10.2.7 and choose
B = A∩H. 2

Example 10.2.9. Consider again Example 10.2.3. The Dirac mass at 0 is a maximal
irreducibility measure and the set {0} is full and absorbing. Moreover, P restricted
to {0} is Harris recurrent and N∗ is transient. This example shows that the decom-
position of Theorem 10.2.7 is not always informative. J

We now give a criterion for Harris recurrence in terms of harmonic functions
(which were introduced in Section 4.1). We preface the proof by a Lemma, which
is of independent interest.

Lemma 10.2.10 Let P be an Harris-recurrent irreducible kernel on X×X . Let ψ

be a maximal irreducibility measure. If h is is a positive superharmonic function,
then there exists c≥ 0 such that h = c ψ-a.e. and h≥ c everywhere.

Proof. If h is not constant ψ-a.e., there exists a < b such that ψ({h < a}) > 0,
ψ({h > b}) > 0. For all initial distribution µ ∈ M1(X ), {(h(Xn),F X

n ),n ∈ N}
is a positive Pµ -supermartingale so {h(Xn),n ∈ N} converges Pµ − a.s. to Z =
limsupn→∞ h(Xn). Since P is Harris recurrent, every accessible set is visited in-
finitely often with probability one, for any initial distribution. Hence, under Pµ ,
{h(Xn),n ∈ N} visits infinitely often the sets {h < a} and {h > b},

Pµ({h(Xn)< a, i.o.}) = 1 = Pµ({h(Xn)> b, i.o.})

which results in a contradiction. Hence ψ({x ∈ X : h(x) = c}c) = 0.
For any ε > 0, define Dε = {x ∈ X : c− ε < h(x)< c+ ε} The set Dε is acces-

sible since {x ∈ X : h(x) = c} is accessible. Hence, {h(Xn),n ∈ N} visits infinitely
often Dε , Pµ(NDε

= ∞) = 1 which implies that the limit of the sequence Z belongs
to Dε with probability 1: Pµ(c− ε < Z < c+ ε) = 1. Since this result holds for any
ε > 0, this also implies Pµ(Z = c) = 1. By Fatou’s lemma, for all x ∈ X,

c = Ex

[
lim
n→∞

h(Xn)
]
≤ liminf

n→∞
Ex[h(Xn)]≤ Ex[h(X0)] = h(x) .

2

Theorem 10.2.11. Let P be an irreducible kernel on X×X .
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(i) If every bounded harmonic function is constant, then P is either transient or
Harris recurrent.

(ii) If P is Harris recurrent then every bounded harmonic function is constant.

Proof. (i) Assume that P is not transient. Then by Theorem 10.1.5, it is re-
current. By Theorem 10.2.7, there exists a full absorbing set H such that, for all
A ∈X +

P , h(x) = Px(NA = ∞) = 1 for all x ∈ H.
The function x 7→ h(x) = Px(NA = ∞) is harmonic by Proposition 4.2.4. If every
harmonic function is constant, then h(x) = Px(NA = ∞) = 1 for all x ∈ X, that is, P
is Harris recurrent.

(ii) Let h be a bounded harmonic function. The two functions h+ |h|∞ and |h|∞−
h are positive and superharmonic on X. By Lemma 10.2.10 there exists c and c′ such
that h+ |h|∞ = c ψ-a.e., h+ |h|∞ ≥ c, |h|∞− h = c′ ψ-a.e. and |h|∞− h ≥ c′. This
implies c−|h|∞ = |h|∞−c′ and h≥ c−|h|∞ = |h|∞−c′ ≥ h. Therefore h is constant.

2

Theorem 10.2.12. Let P be an irreducible Harris recurrent Markov kernel. Then,

(i) If A ∈X +
P then Px(NA = ∞) = 1 for all x ∈ X.

(ii) If A 6∈X +
P then Px(NA = ∞) = 0 for all x ∈ X.

Proof. The assertion (i) is a restatement of the definition. Consider assertion (ii).
Let A ∈X . The set F = {NA = ∞} is invariant. By Proposition 5.2.2 the function

x 7→ h(x) = Px(F) is bounded and harmonic and h(Xn)
P∗-a.s.−→ 1F . Hence by Theo-

rem 10.2.11 the function h is constant and we have either Px(F)≡ 1 or Px(F)≡ 0.
If A /∈X +

P , then Proposition 9.2.8 shows that {x ∈ X : Px(σA < ∞)> 0} is also not
accessible. Therefore there exists x ∈X such that Px(F) = 0 hence Px(F) = 0 for all
x ∈ X. 2

We conclude this Section by providing a sufficient drift condition for the Markov
kernel P to be Harris-recurrent.

Theorem 10.2.13. Let P be an irreducible Markov kernel on X×X . Assume that
there exist a function V : X→ [0,∞) and a petite set C such that

(i) the function V is superharmonic outside C, i.e. for all x 6∈C, PV (x)≤V (x);
(ii) for all r ∈ N, the level sets {V ≤ r} are petite.

Then P is Harris recurrent.
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Proof. By Theorems 10.1.5 and 10.2.7, P is either transient or recurrent and we
can write X = H ∪N with H ∩N = /0, N is transient and H is either empty (if P is
transient) or a maximal absorbing set (if P is recurrent) and in the latter case the
restriction of P to H is Harris recurrent. By Proposition 10.1.4 and Theorem 10.2.7,
the set N has the following properties:

(a) for all x ∈ N, Px(σH = ∞)> 0,
(b) for all x ∈ N and all petite set G⊂ N, Px (NG = ∞) = 0.

Define the sequence {Un, n ∈ N} by Un = V (Xn)1{τC ≥ n}. Since PV (x) ≤ V (x)
for x 6∈C, we get for n≥ 1,

E [Un |Fn−1] = 1{τC ≥ n}E [V (Xn) |Fn−1]≤ 1{τC ≥ n−1}V (Xn−1) =Un−1 .

This implies that {Un, n ∈ N} is a nonnegative supermartingale and therefore con-
verges Px − a.s. to a finite limit for all x ∈ X.

For r > 0, set G = {V ≤ r}∩N. Then G is a petite set by assumption (ii). Thus,
the property (b) implies that for all x ∈ N,

Px

(
∞

∑
n=0

1{V (Xn)≤ r}= ∞,τH = ∞

)
= Px (NG = ∞,τH = ∞)

≤ Px (NG = ∞) = 0 .

This proves that, for all x ∈ N and all r > 0,

Px

(
limsup

n→∞

V (Xn)> r,τH = ∞

)
= Px(τH = ∞) . (10.2.2)

By the monotone convergence theorem, this yields, for all x ∈ N,

Px

(
limsup

n→∞

V (Xn) = ∞,τH = ∞

)
= Px(τH = ∞) . (10.2.3)

This equality obviously holds for x ∈ H since both sides are then equal to zero thus
it holds for all x∈X. Since Px(limsupn→∞ Un <∞) = 1 for all x∈X and Un =V (Xn)
on τC = ∞, we have

Px

(
limsup

n→∞

V (Xn) = ∞,τC = ∞,τH = ∞

)
= Px

(
limsup

n→∞

Un = ∞,τC = ∞,τH = ∞

)
= 0 . (10.2.4)

Combining (10.2.3) and (10.2.4) yields, for all x ∈ X,
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Px(τH = ∞) = Px

(
limsup

n→∞

V (Xn) = ∞,τC < ∞,τH = ∞

)
≤ Px (τC < ∞,τH = ∞)≤ Px (τH = ∞) .

Therefore, for all x ∈ X, Px (τC < ∞,τH = ∞) = Px (τH = ∞) and

Px (τC = ∞,τH = ∞) = 0 .

If H 6= /0, then it is full and absorbing and P restricted to H is Harris recurrent by
assumption. Thus there is an accessible petite set D⊂ H such that Px(τD < ∞) = 1
for all x ∈ H, which further implies that Px(τD = ∞,τH < ∞) = 0 for all x ∈ X. If
H = /0 is empty, set D = /0. Then, in both cases, we have for all x ∈ X,

Px(τC∪D = ∞) = Px(τC∪D = ∞,τH = ∞)+Px(τC∪D = ∞,τH < ∞)

≤ Px(τC = ∞,τH = ∞)+Px(τD = ∞,τH < ∞) = 0 .

Since C∪D is petite by Proposition 9.4.5, we have proved that there exists a petite
set F such that Px(τF = ∞) = 1 for all x ∈ X. By Proposition 10.2.4 this proves that
P is Harris recurrent. 2

We conclude this section by showing that if the kernel P is aperiodic, P is Harris
recurrent if and only if all its skeletons are Harris recurrent.

Proposition 10.2.14 Let P be an irreducible and aperiodic Markov kernel on
X×X . The kernel P is Harris recurrent if and only if each m-skeleton Pm is
Harris recurrent for any m≥ 1.

Proof. (i) Assume that Pm-is Harris recurrent. Since mσA,m≥σA for any A∈X ,
where

σA,m = inf{k ≥ 1 : Xkm ∈ A} (10.2.5)

it follows that P is also Harris recurrent.
(ii) Suppose now that P is Harris recurrent. For any m≥ 2 we know from Propo-

sition 10.1.12 that Pm is recurrent; hence by Theorem 10.2.7 there exists a maximal
absorbing set Hm for the m-skeleton Pm such that the restriction of Pm to Hm is
Harris recurrent.
By Theorem 9.3.11, since P is aperiodic, X +

P = X +
Pm . Since Hc

m 6∈X +
Pm then Hm 6∈

X +
P , showing that Hm is full for P. Proposition 9.2.12 shows that, since Hm is full,

there exists a subset H ⊂ Hm which is absorbing and full for P.
Since P is Harris recurrent we have that, for all x ∈ X, Px(σH < ∞) = 1 and since
H is absorbing we know that mσH,m ≤ σH +m (where σH,m is defined in (10.2.5)).
This shows that, for all x ∈ X, Px(σH,m < ∞) = Px(σH < ∞) = 1.
Let A ∈X +

Pm = X +
P . By the strong Markov property, for any x ∈ X, we have
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Px(σA,m < ∞)≥ Px(σH,m +σA,m ◦σH,m < ∞)

= Ex[1{σH,m<∞}PXσH,m
(σA,m < ∞)] = Px(σH,m < ∞) = 1 .

This shows that the m-skeleton Pm is Harris recurrent.
2

10.3 Exercises

10.1 (Random walk on Rd). Consider {Xn, n∈N} a random walk on X =Rd , i.e.,
Xn = Xn−1 + Zn, where {Zn, n ∈ N∗} is an i.i.d. sequence of Rd-valued random
variables defined on some probability space (Ω ,F ,P). Assume that the increment
distribution µ is absolutely continuous with respect to the Lebesgue measure µ �
Leb and that its support contains a ball centered at the origin supp(µ)⊃ B(0,a) for
some a > 0. Denote by g the density of µ with respect to the Lebesgue measure:
µ = g ·Leb. Let h be a bounded harmonic function. For any x ∈ Rd and n ∈ N, set
Mn(x) = h(x+Z1 + . . .+Zn).

1. Show that h is uniformly continuous on Rd .
2. Show that limsupn→∞ Mn(x) = liminfn→∞ Mn(x) = H(x) P − a.s. and Mn(x) =
E
[

H(x)|F Z
n
]
P − a.s..

3. Show that H(x) = h(x) P−a.s. and that h(x+Z1) = h(x) P−a.s. [Hint: use the
zero-one law].

4. Show that any bounded harmonic function h is constant.
5. Show that P is either transient or Harris-recurrent.

10.2. Let P be an irreducible Markov on X×X kernel admitting an invariant prob-
ability π . Assume that P admits a density p with respect to a σ -finite measure ν .

1. Show that π � ν .
2. Show that P is Harris recurrent.

10.3. We use the notations of Section 2.3. Let (X,X ) be a measurable space and
ν be a σ -finite measure on X . Let hπ be a positive function satisfying ν(hπ) <
∞. Let Q be a Markov kernel having a density q with respect to ν i.e. Q(x,A) =∫

A q(x,y)ν(dy) for every x∈X and A∈X . Consider the Metropolis-Hastings kernel
given by

P(x,A) =
∫

A
α(x,y)q(x,y)ν(dy)+ ᾱ(x)δx(A)

where ᾱ(x) =
∫

X{1− α(x,y)}q(x,y)ν(dy). Denote by π the measure π = hπ ·
ν/ν(hπ) Let h be a bounded harmonic function for P.

1. Show that P is recurrent and that h = π(h) π-almost everywhere.
2. Show that {1− ᾱ(x)}{h(x)−π(h)}= 0 for all x ∈ X.
3. Show that ᾱ(x)< 1 for all x ∈ X.
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4. Show that P is Harris recurrent.

10.4. Suppose that π is a mixture of Gaussian distribution

π =
∞

∑
i=1

6π
−2i−2 N(i, e−i2)

Consider the Metropolis-Hastings algorithm which uses the following proposal. For
x 6∈ Z+

Q(x,dy) =
1√
2π

exp{−(y− x)2/2}dy ,

that is an ordinary Gaussian random walk proposal. However for x ∈ Z+ instead we
propose

Q(x,dy) =
1
x2

1√
2π

e−(y−x)2/2dy+(1− 1
x2 )

1
2
{δx−1(dy)+δx+1(dy)}

where a ∈ (0,1)

1. Show that N = Z+ is transient.
2. Show that H = R\Z+ is maximal absorbing and that the restriction of P to H

is Harris-recurrent.

10.5 (Random walk on R+). Consider the Markov chain on R+ defined by

Xn = (Xn−1 +Wn)
+ (10.3.1)

where {Wn, n∈N} is an i.i.d. sequence of random variable with a density q with re-
spect to the Lebesgue measure. Assume that q is positive and lower-semi-continuous
and E [|W1|]< ∞.

1. Show that δ0 is an irreducibility measure for P and that compact sets are small.

Assume first that E [W1]< 0.

2. Set V (x) = x and let x0 < ∞ be such that
∫

∞

−x0
wγ(w)dw < E [W1]/2 < 0. Show

that V (x) = x, for x > x0

PV (x)−V (x)≤
∫

∞

−x0

wq(w)dw .

3. Show that the Markov kernel P is recurrent.

Assume now that E [W1] = 0 and E
[
W 2

1
]
= σ2 < ∞. We use the test function

V (x) =

{
log(1+ x) if x > R ,

0 if 0≤ x≤ R ,
(10.3.2)

where R is a positive constant to be chosen.
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4. Show that for x > R,

PV (x)≤ (1−Q(R− x)) log(1+ x)+U1(x)−U2(x) ,

where Q is the cumulative distribution function of the increment distribution
and

U1(x) = (1/(1+ x))E [W11{W1 > R − x}]
U2(x) = (1/(2(1+ x)2))E

[
W 2

1 1{R− x <W1 < 0}
]
.

5. Show that U1(x) = o(x−2) and

U2(x) = (1/(2(1+ x)2))E
[
W 2

1 1{W1 < 0}
]
−o(x−2) ,

6. Show that the Markov kernel is recurrent.

10.6 (Functional autoregressive models). Consider the first-order functional au-
toregressive model on Rd defined iteratively by

Xk = m(Xk−1)+Zk , (10.3.3)

where {Zk, k ∈ N} is an i.i.d. sequence of random vectors independent of X0 and
m : Rd → Rd is measurable function, bounded on every compact set. Assume that
the distribution of Z0 has a density q with respect to Lebesgue measure on Rd which
is bounded away from zero on every compact sets.

Assume that µβ = E [exp(βZ1)] < ∞ and that liminf|x|→∞ |m(x)| / |x| > 1. Set
V (x) = 1− exp(−β |x|).

1. Show that the Markov kernel P associated to the recursion (10.3.3) is given for
all x ∈ Rd and A ∈B(Rd) by P(x,A) =

∫
A q(y−m(x))dy.

2. Show that every compact set with non empty interior is 1-small.
3. Show that PV (x)≤V (x)−W (x) where lim|x|→∞ W (x) = ∞

4. Show that the Markov kernel P is transient.

10.7. Let P be an irreducible Markov kernel on X×X . Show that P is transient if
and only if there exists a bounded nonnegative function V and C ∈X +

P such that
PV (x)≥V (x) for x 6∈C and D =

{
x ∈ X : V (x)> supy∈C V (y)

}
∈X +

P .

10.8. Let P be an irreducible Markov kernel on X×X . Suppose that P admits an
invariant probability, denoted by π , i.e. πP = π .

1. Show that P is recurrent.
2. Let A ∈X +

P . Show that Py(NA = ∞) = 1 for π-almost every y ∈ X.

Assume that there exists m ∈ N such that for all x ∈ Rd , Pm(x, ·)� π and let r(x,y)
denote the Radon-Nikodym derivative of Pm(x, ·) with respect to π .

3. Show that P is Harris recurrent.
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10.9. Let P be an irreducible Harris recurrent Markov kernel which admits a
unique invariant probability measure π . Show that for all Y ∈ L1(Ω ,F ,Pπ) and
ξ ∈M1(X ),

1
n

n−1

∑
k=0

Y ◦θk
Pξ -a.s.
−→ Eπ [Y ] .

10.4 Bibliographical notes

We have closely followed in this Chapter the presentation given in (Meyn and
Tweedie, 2009, Chapters 8 and 9). A great deal of work was devoted to charac-
terizing the recurrence and transience of irreducible Markov kernels and the pre-
sentation we give in this chapter focused on the more important results and ignore
many possible refinements.

On countable state space, the recurrence / transience dichotomy that we general-
ize here are classical. Detailed expositions can be found in Chung (1967), Kemeny
et al (1976) and Norris (1998) among many others. Extensions for Markov chains
on general state spaces was initiated in the 1960. The early book by Orey (1971)
already contain most of the results presented in this Chapter, even though the exact
terminology has changed a little bit.

The notion of uniformly transient was introduced in Meyn and Tweedie (2009).
Many closely related concepts have appeared earlier in Tweedie (1974a), Tweedie
(1974b). Some of the techniques of proofs are inherited from Nummelin (1978) and
Nummelin (1984).

The concept of Harris recurrence was introduced in Harris (1956). The decompo-
sition Theorem 10.2.7, which shows that recurrent kernels are “almost” Harris (the
restriction to full absorbing set is Harris) was shown by Tuominen (1976) (earlier
versions of this result can be found in Jain and Jamison (1967)).

The proof of the drift condition for Harris recurrence Theorem 10.2.13 is bor-
rowed from Fralix (2006).





Chapter 11
Splitting construction and invariant measures

Chapter 6 was devoted to the study of Markov kernels admitting an accessible atom.
The existence of an accessible atom had very important consequence, in particular
for the existence and characterization of invariant measures. These results cannot be
used if the state space does not admit an atom, which is the most frequent case for
Markov kernels on a general state space.

The main goals of this Chapter is to show that if P is an irreducible Markov
kernel, that is if P admits an accessible small set, it is then possible to define a kernel
P̌ on an extended state space (X̌,X̌ ) which admits an atom and such that P is the
projection of P̌ onto X. This means that we can build a Markov chain {(Xk,Dk), k ∈
N} with kernel P̌ admitting an accessible atom and whose first component process
{Xk, k∈N} is a Markov chain with kernel P. The chain {(Xk,Dk), k∈N} is referred
to as the split chain and its properties are directly related to those of the original
chain. Most importantly, since P̌ admits an accessible atom, it admits a unique (up
to scaling) invariant measure. In Section 11.2, we will use this measure to prove that
P also admits a unique (up to scaling) invariant measure. In Sections 11.3 and 11.4,
we will give results on the convergence in total variation distance of the iterates of
the kernel by means of this splitting construction.

11.1 The splitting construction

Let P be an irreducible Markov kernel on X×X admitting an a (1,µ)-small set C
with µ(C) = 1. Without loss of generality, we may assume that C is a (1,2εν)-small
set with ε ∈ (0,1) and ν(C) = 1. Using 2ε as a constant may seem arbitrary here, we
will see later in the construction the importance of this choice. Define the residual
kernel R for x ∈ X and A ∈X by

R(x,A) =

{
{P(x,A)− εν(A)}/(1− ε) x ∈C
P(x,A) x 6∈C .

(11.1.1)

241
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The splitting construction is based on the following decomposition of the Markov
kernel P: for x ∈ X and A ∈X ,

P(x,A) = {1− ε1C(x)}R(x,A)+ ε1C(x)ν(A) . (11.1.2)

Hence the kernel P is a mixture of two kernels with weights depending on x. It is
worthwhile to note that the second kernel on the right-hand side of the previous
equation does not depend on x. We will use this fundamental property to construct
an atom.

The construction requires to consider the extended state space X̌ = X×{0,1},
equipped with the associated product σ -field X̌ =X ⊗P({0,1}). We first provide
an informal description of a transition step of the split chain {(Xn,Dn), n ∈ N}
associated to P̌.

• If Xn 6∈C, then Xn+1 is sampled from P(Xn, ·).
• If Xn ∈C and Dn = 0 then Xn+1 is sampled from R(Xn, ·).
• If Xn ∈C and Dn = 1 then Xn+1 is sampled from ν .
• The bell variable Dn+1 is sampled from a Bernoulli distribution with success

probability ε), independently from the past.

Xn

Dn

Xn+1

Dn+1

Xn+2

Fig. 1 Dependence graph of {(Xn,Dn), n ∈ N}.

We now proceed with a rigourous construction of the split kernel P̌. Let bε be the
Bernoulli distribution with success probability ε ,

bε = (1− ε)δ{0}+ εδ{1} . (11.1.3)

For f ∈ F+(X̌,X̌ )∪Fb(X̌,X̌ ), we define a function f̄ε on X by

f̄ε(x) = [δx⊗bε ] f = (1− ε) f (x,0)+ ε f (x,1) . (11.1.4)

If ξ̌ ∈M+(X̌ ) is a measure defined on the product space, we define the measure
ξ̌0 on X by

ξ̌0(A) = ξ̌ (A×{0,1}) , A ∈X . (11.1.5)

If for all x ∈ X, f (x,0) = f (x,1) (in words, f does not depend on the second com-
ponent), then ξ̌ ( f ) = ξ̌0( f̄ε). This definition also entails that for ξ ∈ M+(X ),
[ξ ⊗bε ]0 = ξ . Moreover, for f ∈ F+(X̌,X̌ )∪Fb(X̌,X̌ ) and ξ ∈M+(X ),
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ξ ( f̄ε) = [ξ ⊗bε ]( f ) . (11.1.6)

We now define the split Markov kernel P̌ on X̌× X̌ as follows. For (x,d) ∈ X̌ and
Ǎ ∈ X̌ , set

P̌(x,d; Ǎ) = Q(x,d; ·)⊗bε(Ǎ) , (11.1.7)

where Q is the Markov kernel on X̌×X defined by, for all B ∈X ,

Q(x,d;B) = 1C(x)
(
1{0}(d)R(x,B)+1{1}(d)ν(B)

)
+1Cc(x)P(x,B) . (11.1.8)

Equivalently, for all g ∈ F+(X,X )∪Fb(X,X ), we get

Qg(x,0) = 1C(x)Rg(x)+1Cc(x)Pg(x)

Qg(x,1) = 1C(x)ν(g)+1Cc(x)Pg(x) .

To stress the dependence of the splitting kernel on (ε,ν), we write P̌ε,ν in-
stead of P̌ whenever there is an ambiguity.

It follows immediately from these definitions that for all f ∈ F+(X̌,X̌ ) ∪
Fb(X̌,X̌ ),

P̌ f (x,d) = Q f̄ε(x,d) . (11.1.9)

An important feature of this construction is that {Dn, n ∈ N∗} is an i.i.d. sequence
of Bernoulli random variables with success probability ε which is independent of
{Xn, n ∈ N}. The essential property of the split chain is that if X0 and D0 are inde-
pendent, then {(Xk,F

X
k ), k ∈ N} is a Markov chain with kernel P.

Lemma 11.1.1 Let P be an irreducible Markov kernel on X×X and C be a
(1,εν)-small set. For all ξ ∈M+(X ) and n ∈ N,

[ξ ⊗bε ]P̌n = ξ Pn⊗bε . (11.1.10)

Proof. For f ∈ F+(X̌,X̌ ), Fubini’s theorem, (11.1.9), (11.1.2) and (11.1.6) yield

[ξ ⊗bε ]P̌ f = (1− ε)ξ (1CR f̄ε)+ εξ (1Cν( f̄ε))+ξ (1CcP f̄ε)

= ξ (1CP f̄ε)+ξ (1Cc P f̄ε) = ξ P( f̄ε) = [ξ P⊗bε ]( f ) .

An easy induction yields the general result. 2

We now consider the canonical chain associated to the kernel P̌ on X̌×X̌ . We adapt
the notations of Section 3.1. For µ̌ ∈M1(X̌ ), we denote by P̌µ̌ the probability mea-
sure on the canonical space (X̌N,X̌ ⊗N) such that the coordinate process, denoted
here {(Xk,Dk), k ∈ N}, is a Markov chain with initial distribution µ̌ and Markov
kernel P̌ called the split chain. We also denote by {F̌k, k ∈ N} and {F X

k , k ∈ N}
the natural filtration of the canonical process {(Xk,Dk), k ∈ N} and of the process
{Xk, k ∈ N}, respectively.
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In what follows, for any g ∈ F+(X), define the function g⊗1 ∈ F+(X̌,X̌ ) by

g⊗1(x,d) = g(x) for any (x,d) ∈ X̌. (11.1.11)

Proposition 11.1.2 Let P be an irreducible Markov kernel on X×X and C be
a (1,εν)-small set. Set P̌ = P̌ε,ν . Then, for any ξ ∈M1(X ), {(Xk,F

X
k ), k ∈

N} is under P̌ξ⊗bε
a Markov chain on X×X with initial distribution ξ and

Markov kernel P.

Proof. Write ξ̌ = ξ ⊗bε . For g ∈ F+(X) and n≥ 0, we get using (11.1.9), (11.1.2)
and the obvious identity {g⊗1}

ε
(x) = g(x),

Ě
ξ̌

[
g(Xn+1) |F X

n
]

= Ě
ξ̌

[
Ě

ξ̌

[
{g⊗1}(Xn+1) |F̌n

]∣∣∣F X
n

]
= Ě

ξ̌

[
P̌[g⊗1](Xn,Dn)

∣∣F X
n
]

= 1C(Xn)
[
Rg(Xn)P̌ξ̌

(
Dn = 0 |F X

n
)
+ν(g)P̌

ξ̌

(
Dn = 1 |F X

n
)]

+1Cc(Xn)Pg(Xn)

= 1C(Xn)[(1− ε)Rg(Xn)+ εν(g)]+1Cc(Xn)Pg(Xn) = Pg(Xn) .

2

We show that any invariant measure for P̌ can always be written as the product of
an invariant measure for P and bε .

Proposition 11.1.3 Let P be an irreducible Markov kernel on X×X and C be
a (1,εν)-small set. Setting P̌ = P̌ε,ν , we have the two following properties.

(i) If λ ∈M+(X ) is P-invariant, then λ ⊗bε is P̌-invariant.
(ii) If λ̌ ∈ M+(X̌ ) is P̌-invariant, then λ̌ = λ̌0⊗ bε where λ̌0 is defined in

(11.1.5). In addition, λ̌0 is P̌-invariant.

Proof. (i) If λ ∈M+(X ) is P-invariant, applying Lemma 11.1.1 yields [λ ⊗
bε ]P̌ = λP⊗bε = λ ⊗bε showing that λ ⊗bε is P̌-invariant.

(ii) Assume now that λ̌ is P̌-invariant. Let f ,h∈ F+(X̌,X̌ ) be such that f̄ε = h̄ε .
If follows from (11.1.9) that P̌ f = P̌h since these two quantities depend on f and h
through f̄ε and h̄ε only. Since λ̌ is P̌-invariant, applying the previous identity with
h = f̄ε ⊗1, we get

λ̌ ( f ) = λ̌ P̌( f ) = λ̌ P̌( f̄ε ⊗1) = λ̌ ( f̄ε ⊗1) = λ̌0( f̄ε) = [λ̌0⊗bε ]( f )

This identity holds for all f ∈ F+(X̌,X̌ ) thus λ̌ = λ̌0 ⊗ bε . Since λ̌0 ⊗ bε is P̌-
invariant, Lemma 11.1.1 yields, for g ∈ F+(X),
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λ̌0(g) = [λ̌0⊗bε ](g⊗1) = [λ̌0⊗bε ]P̌(g⊗1) = [λ̌0P⊗bε ](g⊗1) = λ̌0P(g) ,

showing that λ̌0 is P-invariant.
2

The essential property of the split kernel P̌ stems from the fact that α̌ =C×{1}
is an atom for the split kernel P̌, which inherits some properties of the set C.

Proposition 11.1.4 Let P be an irreducible Markov kernel on X×X and C
be a (1,2εν)-small set with ν(C) = 1. Setting P̌ = P̌ε,ν , we have the following
results.

(i) The set α̌ =C×{1} is an aperiodic atom for P̌.
(ii) If C is accessible, the atom α̌ is accessible for P̌ and hence P̌ is irreducible.

(iii) The set C×{0,1} is small for the kernel P̌.
(iv) For any k ≥ 1, P̌k(α̌, α̌) = ενPk−1(C).
(v) If C is recurrent for P, then α̌ is recurrent for P̌.

(vi) If C is Harris-recurrent for P, then for all ξ ∈M1(X ) satisfying Pξ (σC <

∞) = 1, P̌ξ⊗δd
(σα̌ < ∞) = 1 for all d ∈ {0,1}. Moreover, if P is Harris-

recurrent, then P̌ is Harris-recurrent.
(vii) If C is accessible and if P admits an invariant probability measure π , then

α̌ is positive for P̌.

Proof. (i) By definition, for every (x,d) ∈ α̌ and Ǎ ∈ X̌ , we get P̌(x,d; Ǎ) =
[ν ⊗ bε ](Ǎ), thus α̌ is an atom for P̌. Taking Ǎ = α̌ , we get for every (x,d) ∈ α̌ ,
P̌(x,d; α̌) = εν(C) = ε > 0, showing that the atom α̌ is aperiodic.

(ii) For all x ∈ C and A ∈X , R(x,A) ≥ εν(A). Applying the identity (11.1.7)
yields, for x ∈C, d ∈ {0,1} and Ǎ ∈ X̌ ,

P̌(x,d; Ǎ)≥ ε1{0}(d){ν⊗bε}(Ǎ)+1{1}(d){ν⊗bε}(Ǎ)≥ ε{ν⊗bε}(Ǎ) .

(iii) For every k ≥ 1 and x ∈ X, since P̌(x,d)(Dk = 1|F X
k ) = ε , we get

P̌(x,d)((Xk,Dk) ∈ α̌) = P̌(x,d) (Xk ∈C,Dk = 1) = εP̌(x,d)(Xk ∈C) . (11.1.12)

Since under P̌(x,d) the law of (X1,D1) is Q(x,d; ·)⊗bε (with Q defined in (11.1.8)),
the Markov property implies

P̌(x,d)(Xk ∈C) = Ě(x,d)[Ě(X1,D1)[1C(Xk−1)]] = P̌Q(x,d;·)⊗bε
(Xk−1 ∈C) .

Applying Proposition 11.1.2, we finally get

P̌(x,d)(Xk ∈C) = PQ(x,d;·)(Xk−1 ∈C) =
∫

Q(x,d;dx1)Pk−1(x1,C) . (11.1.13)
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Since C ∈X +
P , Lemma 3.5.2 shows that for all (x,d) ∈ X̌, there exists k ∈ N∗ such

that
∫

Q(x,d;dx1)Pk−1(x1,C)> 0 which implies P̌(x,d)((Xk,Dk) ∈ α̌)> 0, showing
that the set α̌ is accessible.

(iv) By (11.1.12), we have for all x ∈ X and k ≥ 1, P̌(x,1)((Xk,Dk) ∈ α̌) =

εP̌(x,1)(Xk ∈ C). It follows from (11.1.8) that for x ∈ C, Q(x,1; ·) = ν(·). There-
fore, for all x ∈C, (11.1.13) shows that for k ≥ 1, P̌(x,1)(Xk ∈C) = Pν(Xk−1 ∈C) =

νPk−1(C).
(v) Assume that C is recurrent for P. Since ν(C)= 1 and C is recurrent, summing

over k ≥ 1 yields for all (x,1) ∈ α̌ ,

∞

∑
k=1

P̌k(α̌, α̌) = ε

∞

∑
k=0

νPk(C) = ε

∫
C

ν(dx)U(x,C) = ∞ ,

showing that α̌ is recurrent.
(vi) Recall that infx∈C P(x,C)≥ 2ε . Then, it follows from the definitions that

inf
x∈C

P̌(x,0;C×{1}) = ε inf
x∈C

R(x,C)≥ ε
2 ,

and infx∈C P̌(x,1;C×{1}) = ε . Hence, inf(x,d)∈C×{0,1} P̌(x,d)(X1 ∈ α̌) ≥ ε2. Now,
assume that Pξ (σC < ∞) = 1. Proposition 11.1.2 shows that P̌ξ⊗bε

(σC×{0,1} < ∞) =

Pξ (σC < ∞) = 1 and for all (x,d) ∈ C×{0,1}, P̌δx⊗bε
(σC×{0,1} < ∞) = Px(σC <

∞) = 1. For all x ∈C, we have

P̌ξ⊗bε
(σC×{0,1} < ∞) = (1− ε)P̌ξ⊗δ0

(σC×{0,1} < ∞)+ εP̌ξ⊗δ1
(σC×{0,1} < ∞)

P̌δx⊗bε
(σC×{0,1} < ∞) = (1− ε)P̌(x,0)(σC×{0,1} < ∞)+ εP̌(x,1)(σC×{0,1} < ∞) .

Thus for d ∈ {0,1}, we have P̌ξ⊗δd
(σC×{0,1} <∞) = 1 and P̌(x,d)(σC×{0,1} <∞) = 1

for all (x,d) ∈C×{0,1}. This in turn implies that P̌ξ⊗δd
(NC×{0,1} = ∞) = 1. Since

inf(x,d)∈C×{0,1} P̌(x,d; α̌)≥ ε2 > 0, Theorem 4.2.6 implies that

1 = P̌ξ⊗δd
(NC×{0,1} = ∞) = P̌ξ⊗δd

(Nα̌ = ∞) .

(vii) By (ii) and Proposition 11.1.3, P̌ is irreducible and admits π ⊗ bε as an
invariant probability measure. Then, by Theorem 10.1.6, the Markov kernel P̌ is
recurrent. Then, (ii) implies that α̌ is accessible for the recurrent kernel P̌, hence
recurrent. Applying Theorem 6.4.2-(iv), the atom α̌ is positive.

2
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11.2 Existence of invariant measures

In this section we prove the existence and uniqueness (up to a scaling factor) of an
invariant measure for a Markov kernel P admitting an accessible recurrent petite
set. We start with the case where the kernel P admits a strongly aperiodic accessible
small set.

Proposition 11.2.1 Let P be an irreducible Markov kernel on X×X . If there
exists an accessible, recurrent, (1,µ)-small set C with µ(C)> 0, then P admits
an invariant measure λ , unique up to multiplication by a positive constant and
such that 0 < λ (C)< ∞.

Proof. Let C be an accessible, recurrent, (1,µ)-small set with µ(C) > 0. Without
loss of generality, we can assume that C is (1,2εν)-small with ν(C) = 1, which in
particular implies that infx∈C P(x,C)≥ 2ε . Consider P̌= P̌ε,ν the split kernel defined
in (11.1.7). According to Proposition 11.1.4, α̌ = C×{1} is an atom for P̌ which
is accessible and recurrent for P̌. By Theorem 6.4.2, this implies the existence of an
invariant measure λ̌ for P̌. Without loss of generality, we can assume that λ̌ (α̌) = 1.
Define a measure λ on X by λ (A) = λ̌0(A) = λ̌ (A×{0,1}). By Proposition 11.1.3,
λ is invariant for P and λ̌ = λ ⊗ bε . Let now λ ′ be another invariant measure for
P. Then λ̌ ′ = λ ′⊗bε is invariant for P̌ by Proposition 11.1.3. By Theorem 6.4.2, λ̌ ′

must then be proportional to λ̌ , i.e. there exists c > 0 such that λ̌ ′ = cλ̌ . This yields,
for every A ∈X ,

λ
′(A) = λ̌

′(A×{0,1}) = cλ̌ (A×{0,1}) = cλ (A) .

We now show that 0< λ (C)<∞. Since λ̌ (α̌) = 1, we have λ (C) = λ̌ (C×{0,1})≥
λ̌ (α̌) = 1. Thus λ (C)> 0. Moreover, since λ is P-invariant and C is (1,εν)-small,
λ (C)< ∞ by Lemma 9.4.12. 2

We now extend this result to the case of an accessible recurrent m-small set. For
this purpose, we need the following lemmas.

Lemma 11.2.2 Let C be an accessible small set. Then C is an accessible (1,µ)-
small set with µ(C) > 0 for the resolvent kernel Kaη

for any η > 0. Moreover, if C
is recurrent for P, then it is also recurrent for Kaη

.

Proof. Without loss of generality, we can assume by Lemma 9.1.6 that C is (m,µ)-
small with µ(C)> 0. For η ∈ (0,1), x ∈C and A ∈X , we have

Kaη
(x,A)≥ (1−η)ηmPm(x,A)≥ (1−η)ηm

µ(A) .

Thus C is a strongly aperiodic small set for Kaη
. Moreover, if C is accessible for P,

then it is also accessible for Kaη
by Lemma 3.5.2.
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Assume now that C is recurrent for P. We prove below that it is also recurrent for
Kaη

. We first establish the identity

∞

∑
n=1

Kn
aη

=
1−η

η
U , (11.2.1)

where U is the potential kernel, see Definition 4.2.1. Indeed, by Lemma 1.2.11
Kn

aη
= Ka∗nη

which implies

∞

∑
n=1

Kn
aη

=
∞

∑
n=1

Ka∗nη
=

∞

∑
n=1

∞

∑
k=0

a∗nη (k)Pk =
∞

∑
k=0

(
∞

∑
n=1

a∗nη (k)

)
Pk . (11.2.2)

Moreover, for all z ∈ (0,1),

∞

∑
k=0

(
∞

∑
n=1

a∗nη (k)

)
zk =

∞

∑
n=1

(
∞

∑
k=0

a∗nη (k)zk

)
=

∞

∑
n=1

(
(1−η)

∞

∑
k=0

η
kzk

)n

=
∞

∑
n=1

(
1−η

1−ηz

)n

=
1−η

η(1− z)
=

1−η

η

∞

∑
n=0

zn .

Thus, for all k ∈ N, ∑
∞
n=1 a∗nη (k) = (1−η)/η . Plugging this identity into (11.2.2)

proves (11.2.1). If C is recurrent for P, then U(x,C) = ∞ for all x ∈C and thus, by
(11.2.1), the set C is also recurrent for Kaη

. 2

Lemma 11.2.3 Let λ ∈M+(X ) and η ∈ (0,1). Then λ is invariant for P if and
only if it is invariant for Kaη

.

Proof. If λ = λP, then λ = λKaη
. Conversely, assume that λ = λKaη

. The identity
Kaη

= (1−η)I +ηKaη
P yields λ = (1−η)λ +ηλP. Thus λ (A) = λP(A) for all

A ∈X such that λ (A)< ∞. Since by definition λ is σ -finite, this yields λP = λ . 2

Lemma 11.2.4 Let P be an irreducible and recurrent Markov kernel on X×X .
Then every subinvariant measure is invariant. Let λ be an invariant measure and A
be an accessible set. Then, for all h ∈ F+(X),

λ (h) =
∫

A
λ (dx)Ex

[
σA−1

∑
k=0

h(Xk)

]
=
∫

A
λ (dx)Ex

[
σA

∑
k=1

h(Xk)

]
. (11.2.3)

Proof. The proof consists in checking the assumptions of Theorem 3.6.5.
Let B be accessible set. Using that λ is σ -finite, there exists A ⊂ B such that

λ (A) < ∞ and A is accessible. By Lemma 3.6.4-(iv), it suffices to prove that λ is
invariant and that λ = λ 0

A where λ 0
A is defined in (3.6.1).

Let λ be a subinvariant measure and let A be an accessible set such that λ (A)<∞.
By Theorem 10.1.10 the set A∞ = {x ∈ X : Px(NA = ∞) = 1} is full and absorbing.
Define Ã = A∩A∞. Then for x ∈ Ã, Px(σA < ∞) = 1 and Px(XσA ∈ Ã) = 1 since A∞

is absorbing. Thus, Px(σA = σÃ) = 1 for all x∈ Ã. This implies that Px(σÃ < ∞) = 1
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for all x ∈ Ã. Note also that since A∞ is full and A is accessible, Ã = A∩ A∞ is
accessible. We can therefore apply Theorem 3.6.5 and we obtain that λ is invariant
and λ = λ 0

Ã , where λ 0
Ã is defined in (3.6.1). Since Ã ⊂ A, by Lemma 3.6.4, this

implies that λ = λ 0
A = λ 1

A . 2

Theorem 11.2.5. Let P be an irreducible and recurrent Markov kernel on X×X .
Then, P admits a non zero invariant measure λ , unique up to multiplication by a
positive constant and such that λ (C) < ∞ for all petite sets C. Moreover for every
accessible set A and h ∈ F+(X),

λ (h) =
∫

A
λ (dx)Ex

[
σA−1

∑
k=0

h(Xk)

]
=
∫

A
λ (dx)Ex

[
σA

∑
k=1

h(Xk)

]
. (11.2.4)

Proof. Since the kernel P is irreducible and recurrent, it admits a recurrent and
accessible small set C. Then, by Lemma 11.2.2, C is a (1,µ)-small set with µ(C)>
0 for the kernel Kaη

for any fixed η ∈ (0,1). According Proposition 11.2.1, Kaη

admits an invariant measure λ which is unique up to scaling and 0 < λ (C) < ∞.
By Lemma 11.2.3, this implies that λ is also the unique (up to scaling) invariant
measure for P. Lemma 9.4.12 yields λ (B) < ∞ for all petite sets B and (11.2.4)
follows from Lemma 11.2.4. 2

We have shown in Theorem 9.2.15 that an invariant probability measure is a maxi-
mal irreducibility measure. We now extend this property to possibly non finite mea-
sures.

Corollary 11.2.6 Let P be an irreducible and recurrent Markov kernel on X×
X . Then an invariant measure is a maximal irreducibility measure.

Proof. Let λ be an invariant measure. We show that A∈X +
P if and only if λ (A)> 0.

If A is an accessible set then Kaε
(x,A) > 0 for all x ∈ X and ε ∈ (0,1). Since λ is

invariant, λ = λKaε
showing that λ (A) = λKaε

(A)> 0.
Conversely, assume that A is not accessible. Then, by Proposition 9.2.8, the set

Ā = {x ∈ X : Px(τA < ∞)> 0} is also not accessible. Set A0 = Āc. Hence A0 is
accessible and we can therefore apply Theorem 11.2.5 to show that

λ (A) =
∫

A0
λ (dx)Ex

[
σA0

∑
k=1

1A(Xk)

]
.

Since Px(σA = ∞) = 1 for all x ∈ A0, we obtain that Ex

[
∑

σA0
k=11A(Xk)

]
= 0, whence

λ (A) = 0. 2
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We now address the existence of an invariant probability measure. We start with
a definition.

Definition 11.2.7 (Positive and null Markov kernel) Let P be a Markov kernel on
X×X . If P is irreducible and admits an invariant probability measure π , the
Markov kernel P is called positive. If P does not admit such a measure, then we
call P null.

Theorem 11.2.8. Let P be an irreducible and recurrent Markov kernel on X×X .
Denote by λ a non-zero invariant measure for P. If there exists an accessible petite
set C such that ∫

C
λ (dx)Ex[σC]< ∞ , (11.2.5)

then P is positive. Moreover if h ∈ F+(X) and
∫

C λ (dx)Ex

[
∑

σC−1
k=0 h(Xk)

]
< ∞, then

λ (h)< ∞.

Proof. Since P is irreducible and recurrent, then by Theorem 11.2.5 P admits an
invariant measure λ with 0 < λ (C)< ∞, unique up to a multiplication by a constant.
Taking h≡ 1 in (11.2.4) yields

λ (X) =
∫

C
λ (dx)Ex[σC] .

This proves that λ is a finite measure and can be normalized to be a probability
measure. Applying again Theorem 11.2.5 we obtain, for h ∈ F+(X),

λ (h) =
∫

C
λ (dx)Ex

[
σC−1

∑
k=0

h(Xk)

]
< ∞.

This proves the second statement. 2

Corollary 11.2.9 If P is an irreducible Markov kernel on X×X and if there
exists a petite set C such that

sup
x∈C
Ex[σC]< ∞ (11.2.6)

then P is positive.
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Proof. First note that (11.2.6) implies that for all x ∈C, Px(σC < ∞) = 1 and hence
Px(NC = ∞) = 1. Then, for all x ∈ C, U(x,C) = ∞ and the set C is recurrent. On
the other hand, Corollary 9.2.14 shows that the set C is also accessible. Then, Theo-
rem 10.1.2 applies and the Markov kernel P is recurrent. By Theorem 11.2.5, P ad-
mits a non-zero invariant measure λ satisfying λ (C)< ∞ (since C is petite), unique
up to a multiplication by a constant. Together with (11.2.6), this implies (11.2.5).
The proof is then completed by applying Theorem 11.2.8. 2

11.3 Convergence in total variation to the stationary distribution

Theorem 8.2.6 shows that if P admits an accessible aperiodic positive atom α , then
for all ξ ∈M1(X ) satisfying Pξ (σα < ∞) = 1, we have limn→∞ dTV(ξ Pn,π) = 0,
where π is the unique invariant probability measure. By using the splitting construc-
tion, we now extend this result to irreducible positive Markov kernels. We use below
the notations introduced in the splitting construction (see Section 11.1).

Theorem 11.3.1. Let P be a positive aperiodic Markov kernel on X×X . Denote
by π the unique invariant probability measure and H the maximal absorbing set
such that the restriction of P to H is Harris recurrent (see Theorem 10.2.7). For any
ξ ∈M1(X ) satisfying ξ (Hc) = 0, limn→∞ dTV(ξ Pn,π) = 0.

Proof. Since the restriction of P to H is Harris-recurrent and H is maximal ab-
sorbing, we may assume without loss of generality that P is Harris recurrent. There
exists a (m,µ)-accessible small set C with µ(C)> 0 which is Harris-recurrent. We
consider separately two cases.

(I) Assume that C is (1,µ)-small with µ(C) > 0. Setting P̌ = P̌ε,ν , Proposi-
tion 11.1.4 shows that P̌ is irreducible and applying Proposition 11.1.3, it turns out
that π ⊗ bε is the (unique) invariant probability measure of P̌. Proposition 11.1.4
then shows that α̌ = C×{1} is an accessible aperiodic positive atom for P̌. Let
ξ ∈M1(X ) be a probability measure. Since P is Harris recurrent, Pξ (σC < ∞) = 1
and Proposition 11.1.4-(vi) shows that P̌ξ⊗bε

(σα̌ < ∞) = 1. Theorem 8.2.6 then
implies

lim
n→∞

dTV([ξ ⊗bε ]P̌n,π⊗bε) = 0 . (11.3.1)

From Lemma 11.1.1 and Proposition 11.1.3 we get that dTV(ξ Pn,π) ≤ dTV([ξ ⊗
bε ]P̌n, [π⊗bε ]). Hence, limn→∞ dTV(ξ Pn,π) = 0.

(II) Theorem 9.3.11 and Proposition 10.2.14 show that Pm is irreducible, ape-
riodic and Harris-recurrent. Moreover, the kernel Pm is positive with invariant
distribution π . We can therefore apply the first part (I) to Pm and we obtain
limn→∞ dTV(ξ Pnm,π) = 0. For all ξ ,ξ ′ ∈M1(X ), dTV(ξ P,ξ ′P)≤ dTV(ξ ,ξ

′) (see
Lemma D.2.10), thus we have, for all r ∈ {0, . . . ,m−1},
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dTV(ξ Pnm+r,π)≤ dTV(ξ PnmPr,πPr)≤ dTV(ξ Pnm,π) ,

which concludes the proof.

2

We now extend this result to periodic Markov kernels.

Corollary 11.3.2 Let P be a d-periodic Harris recurrent Markov kernel on X×
X with an invariant probability π . Let C0, . . . ,Cd−1 be a cyclic decomposition.
For k ∈ {0, . . . ,d−1} denote by πk the probability on Ck given for all A ∈X
by πk(A) = π(A∩Ck)/π(Ck).

(i) For all ξ ∈M1(X ) such that ξ ([∪d−1
k=0Ck]

c) = 0 and all j ≥ 0,

lim
n→∞

∥∥∥∥∥ξ Pnd+ j−
d−1

∑
k=0

ξ (Ck)π(k+ j) [d]

∥∥∥∥∥
TV

= 0

(ii) For all ξ ∈M1(X ),

lim
n→∞

∥∥∥∥∥d−1
d−1

∑
j=0

ξ Pnd+ j−π

∥∥∥∥∥
TV

= 0 . (11.3.2)

If P is recurrent (but not necessarily Harris recurrent), then there exists an
accessible Harris-recurrent small set C and (11.3.2) holds for any ξ ∈M1(X )
satisfying Pξ (σC < ∞) = 1.

Proof. (i) Applying Theorem 11.3.1 to Pd on Ck, for k ∈ {0, . . . ,d−1}, we ob-
tain for any ν ∈M1(X ) satisfying ν(Cc

k) = 0

lim
n→∞

∥∥∥νPdn−πk

∥∥∥
TV

= 0 . (11.3.3)

Note that, for any j ∈ {0, . . .d−1}, νPdn+ j = νP jPdn and for A ∈X ,

πkP j(A) =
1

π(Ck)

∫
Ck

π(dy)P j(y,A) =
1

π(Ck)

∫
Ck

π(dy)P j(y,A∩C(k+ j) [d])

=
1

π(Ck)

∫
π(dy)P j(y,A∩C(k+ j) [d]) =

π(A∩C(k+ j) [d])

π(Ck)
.

Since π(Ck) = π(C(k+ j) [d]), we get πkP j = π(k+ j) [d] and (11.3.3) therefore implies
limn→∞

∥∥νPdn+ j−πk [d]
∥∥

TV = 0. Setting ξk(A) = ξ (A∩Ck)/ξ (Ck) if ξ (Ck)> 0, we
obtain

ξ Pdn+ j = ∑
k=, ξ (Ck)>0

ξ (Ck)ξkPdn+ j
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and the result follows.
(ii) If ξ ([∪d−1

k=0Ck]
c) = 0 (ii) follows from (i) by summation. Set

uk(x) =

∥∥∥∥∥d−1
d−1

∑
j=0

δxP(k+ j)−π

∥∥∥∥∥
TV

.

It follows from this definition that uk ≤ 2 and limn→∞ udn(x) = 0 for all x ∈ C =
∪d−1

k=0Ck. Let ξ ∈M1(X ). Since the Markov kernel P is Harris recurrent, Pξ (τC <
∞) = 1. We have, for h ∈ Fb(X) such that |h|∞ ≤ 1,∣∣∣∣∣d−1

d−1

∑
j=0

ξ Pnd+ j(h)−π(h)

∣∣∣∣∣=
∣∣∣∣∣Eξ

[
d−1

d−1

∑
j=0

h(Xnd+ j)−π(h)

]∣∣∣∣∣
≤ 2Pξ (τC > nd)+

∣∣∣∣∣Eξ

[
1{τC≤nd}

{
d−1

d−1

∑
j=0

h(Xnd−τC+ j)◦θτC −π(h)

}]∣∣∣∣∣
= 2Pξ (τC > nd)+

∣∣∣∣∣Eξ

[
1{τC≤nd}

{
d−1

d−1

∑
j=0

Pnd−τC+ jh(XτC)−π(h)

}]∣∣∣∣∣
≤ 2Pξ (τC > nd)+Eξ

[
1{τC≤nd}und−τC(XτC)

]
→n→∞ 0

by Lebesgue’s dominated convergence theorem uniformly in |h| ≤ 1.
2

11.4 Geometric convergence in total variation distance

We have shown Section 8.2.2 that if the kernel P is aperiodic and admits an atom
α such that Eα [β

σα ] < ∞ for some β > 1, then there exists δ ∈ (1,β ) such that
∑

∞
k=1 δ ndTV(ξ Pn,π)< ∞ for all initial distribution satisfying Eξ [δ

σα ]< ∞. We will
show that this result extends to the irreducible and aperiodic Markov kernels on
general state space by using the splitting method.

Before going further, we will establish a result that will play a crucial role in the
proof.

Theorem 11.4.1. Let P be a Markov kernel on X×X , C ∈ X and ρ,τ be two
stopping times with τ ≥ 1. Assume that for all n ∈ N,

ρ ≤ n+ρ ◦θn , on {ρ > n} . (11.4.1)

Moreover, assume that there exists γ > 0 such that, for all x ∈C,

Px(τ < ∞, Xτ ∈C) = 1 , Px(ρ ≤ τ)≥ γ . (11.4.2)
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Then,

(i) For all x ∈C, Px(ρ < ∞) = 1.
(ii) If supx∈CEx [β

τ ] < ∞ for some β > 1, then there exist δ ∈ (1,β ) and ς < ∞

such that, for all h ∈ F+(X),

sup
x∈C
Ex

[
ρ−1

∑
k=0

δ
kh(Xk)

]
≤ ς sup

x∈C
Ex

[
τ−1

∑
k=0

β
kh(Xk)

]
. (11.4.3)

Proof. Define τ(0) = 0, τ(1) = τ and for n ≥ 1, τ(n) = τ(n−1) + τ ◦ θ
τ(n−1) . Using

(11.4.2), the strong Markov property shows that for all k ∈ N and x ∈C, Px(τ
(k) <

∞,X
τ(k) ∈C) = 1.

(i) Using (11.4.1) we get

{ρ > τ
(k),τ(k) < ∞} ⊂ {ρ > τ

(k−1),ρ ◦θ
τ(k−1) > τ ◦θ

τ(k−1) ,τ
(k−1) < ∞} . (11.4.4)

The strong Markov property then yields, for x ∈C,

Px(ρ > τ
(k))≤ Px(ρ > τ

(k−1),ρ ◦θ
τ(k−1) > τ ◦θ

τ(k−1)) (11.4.5)

≤ (1− γ)Px(ρ > τ
(k−1)) .

By induction, this yields for x ∈C,

Px(ρ > τ
(k))≤ (1− γ)k . (11.4.6)

Therefore Px(ρ = ∞)≤ limk→∞Px(ρ > τ(k)) = 0, i.e. Px(ρ < ∞) = 1 for all x ∈C.
(ii) For h ∈ F+(X) and δ ∈ (1,β ], we set

M(h,δ ) = sup
x∈C
Ex

[
τ−1

∑
k=0

δ
kh(Xk)

]
. (11.4.7)

Using the strong Markov property, we get

Ex

[
ρ−1

∑
k=0

δ
kh(Xk)

]
≤

∞

∑
k=0
Ex

[
1{ρ>τ(k)}δ

τ(k)EX
τ(k)

[
τ−1

∑
j=0

δ
jh(X j)

]]

≤M(h,β )
∞

∑
k=0
Ex

[
1{ρ>τ(k)}δ

τ(k)
]
. (11.4.8)

Note this inequality remains valid even if M(h,β ) = ∞. By Jensen’s inequality, for
all x ∈C,
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Ex [δ
τ ]≤ {Ex[β

τ ]}log(δ )/ log(β ) ≤Φ(δ ) :=
{

sup
x∈C
Ex[β

τ ]

}log(δ )/ log(β )

.

By the strong Markov property, we further have supx∈CEx

[
δ τ(k)

]
≤{Φ(δ )}k. Since

limδ→1 Φ(δ ) = 1, we can choose 1 < δ ≤
√

β such that (1− γ)Φ(δ 2) < 1. For
every x ∈C, applying (11.4.6) and the Cauchy-Schwarz inequality, we obtain

∞

∑
k=0
Ex

[
1

{
ρ > τ

(k)
}

δ
τ(k)
]
≤

∞

∑
k=0

{
Px(ρ > τ

(k))
}1/2 {

Ex

[
δ

2τ(k)
]}1/2

≤
∞

∑
k=0

(1− γ)k/2[Φ(δ 2)]k/2 < ∞ .

Plugging this bound into (11.4.8) proves (11.4.3) with ς =∑
∞
k=0
{
(1− γ)Φ(δ 2)

}k/2.

2

Theorem 11.4.2. Let P be a Markov kernel on X×X . Assume that there exists an
accessible (m,µ) small set C and β > 1 such that µ(C)> 0 and supx∈CEx[β

σC ]<∞.
Then P has a unique invariant probability measure π and there exist δ > 1 and
ς < ∞ such that for all ξ ∈M1(X )

∞

∑
k=1

δ
kdTV(ξ Pk,π)≤ ςEξ [β

σC ] .

Proof. The Markov kernel P is positive by Corollary 11.2.9.

(i) Assume first that the set C is (1,µ)-small and hence that the Markov kernel
P is strongly aperiodic. We consider the split chain P̌ associated to C. By Propo-
sition 11.1.4-(vi), for all (x,d) ∈ C×{0,1}, P̌(x,d)(σα̌ < ∞) = 1. Furthermore, by
Lemma 11.1.1,

(1− ε)Ě(x,0)[β
σC×{0,1} ]+ εĚ(x,0)[β

σC×{0,1} ] = Ex[β
σC ] .

which implies that

sup
(x,d)∈C×{0,1}

Ě(x,d)[β
σC×{0,1} ] = M < ∞ .

We apply Theorem 11.4.1 to the set C×{0,1}, ρ = σα̌ , τ = σC×{0,1} and h≡ 1. We
obtain that, for some γ ∈ (1,β ], sup(x,d)∈C×{0,1} Ě(x,d)[γ

σα̌ ] < ∞ which implies that
Ěα̌ [γ

α̌ ]< ∞.
By Theorem 8.2.9 there exists δ ∈ (1,γ] and ς < ∞ such that, for all ξ̌ ∈M1(X̌,X̌ ),
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∞

∑
k=1

δ
kdTV(ξ̌ P̌k,π⊗bε)≤ ςE

ξ̌
[γσα̌ ] .

From Lemma 11.1.1 and Proposition 11.1.3 we get that dTV(ξ Pn,π) ≤ dTV([ξ ⊗
bε ]P̌n, [π⊗bε ]). On the other hand, since σα ≤ σC×{0,1}+σα̌ ◦θσC×{0,1} , we get

Ěξ⊗bε
[γσα̌ ]≤ Ěξ⊗bε

[γσC×{0,1}ĚXσC×{0,1}
[γ α̌ ]]

≤MĚξ⊗bε
[γσC⊗{0,1} ] = MEξ [β

σC ] .

(ii) We are now going to extend this result for irreducible Markov kernels that
are aperiodic but not strongly aperiodic. We set

V (x) = Ex[λ
−τC ] (11.4.9)

with λ = β−1 ∈ [0,1). Proposition 4.3.3 shows that

PV ≤ λV +b1C , (11.4.10)

with bsupx∈CEx[λ
−σC ] By Lemma 9.4.8, {V ≤ d} is, for all d > 0, a petite set hence

a small set because P is aperiodic; see Theorem 9.4.10. By Corollary 9.2.14, the set
{V < ∞} is full absorbing so that π({V < ∞}) = 1. We can choose d ≥ 2b/(1−λ )
such that {V ≤ d} is an accessible (m,µ)-small set with µ(C)> 0. Iterating m times
the inequality (11.4.10), we obtain

PmV ≤ λ
mV +bm , bm = b

1−λ m

1−λ
. (11.4.11)

Set η = (1+λ m)/2. Since d > 2b/(1−λ ), we get

(η−λ
m)d =

1−λ m

2
d ≥ bm . (11.4.12)

From (11.4.11), we get

PmV ≤ ηV +bm− (η−λ
m)V

and (11.4.12) shows that on {V ≥ d}, PmV ≤ ηV . Therefore, {V ≤ d} is a 1-small
set for Pm and

PmV ≤ ηV +bm1{V≤d} . (11.4.13)

Set σD,m = inf{k ≥ 1 : Xkm ∈ D}. Applying Proposition 4.3.3-(ii) to the Markov
kernel Pm we obtain

sup
x∈D
Ex[η

−σD,m ]< ∞ .

Since the Markov kernel Pm is strongly aperiodic, we can apply the first part of
the proof to Pm to show that there exist δ ∈

[
1,η−1

)
and ς0 < ∞ such that, for all

ξ ∈M1(X ),
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∞

∑
k=1

δ
kdTV(ξ Pmk,π)≤ ς0Eξ [η

−σD,m ] .

Since dTV(ξ P,ξ ′P) ≤ dTV(ξ ,ξ
′) for all ξ ,ξ ′ ∈ M1(X ), the previous inequality

implies

∞

∑
k=1

δ
k/mdTV(δxPk,π)≤ mδ

m
∞

∑
k=1

δ
kdTV(δxPmk,π)≤ ς0Eξ [η

−σD,m ] .

Applying again Proposition 4.3.3-(ii) to Pm, (11.4.13) shows that for all x ∈ X,

Ex[η
−σD,m ]≤V (x)+bmη

−1 ≤ (1+bmη
−1)V (x),

where V (x) =Ex[λ
−τC ] (see (11.4.9)). The proof is concluded by noting that V (x)≤

Ex[λ
−σC ] = Ex[β

σC ].

2

Example 11.4.3 (Functional Autoregressive Model). The first-order functional
autoregressive model on Rd is defined iteratively by Xk = m(Xk−1) + Zk, where
{Zk, k ∈ N∗} is an i.i.d. sequence of random vectors independent of X0 and m :
Rd → Rd is a locally bounded measurable function satisfying

limsup
|x|→∞

|m(x)|
|x|

< 1 . (11.4.14)

Assume that the distribution of Z1 has a density q with respect to Lebesgue measure
onRd which is bounded away from zero on every compact sets and that E [|Z1|]<∞.
Let K be a compact set with non empty interior. Then 0 < Leb(K)< ∞ and for every
x ∈ K,

P(x,A) =
∫

A
q(y−m(x))dy≥

∫
A∩K

q(y−m(x))dy≥ εKν(A) ,

with

νK(A) =
Leb(A∩K)

Leb(K)
, εK = Leb(K) min

(t,x)∈K×K
q(t−m(x)) .

Therefore, every compact subset K with non empty interior is a (1,εKνK)-small.
Setting V (x) = 1+ |x|, we thus obtain for all d > 0, the sets {V ≤ d} are compact
with non-empty interior. They are hence small and since q is positive, these sets are
also accessible. Moreover,

PV (x) = 1+E [|m(x)+Z1|]≤ 1+ |m(x)|+E [|Z1|] . (11.4.15)

By (11.4.14), there exist λ ∈ [0,1) and r ∈R+ such that, for all |x| ≥ r, |m(x)|/|x| ≤
λ . For |x| ≥ r, this implies
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PV (x)≤ 1+λ |x|+E|Z1|= λV (x)+1−λ +E|Z1| .

Since m is bounded on compact sets, (11.4.15) implies that PV is also bounded on
compact sets. Thus, setting b = (1−λ +E|Z1|)∨sup|x|≤r PV (x), we obtain PV (x)≤
λV (x)+b.

11.5 Exercises

11.1. Consider a Markov chain on X = {0,1} with transition matrix given by

P =

(
0 1
1 0

)
.

Define A = {X2k = 1 , i.o.}.
1. Show that A is asymptotic but is not invariant.
2. Show that the asymptotic σ -field is not trivial.

11.2. Let P be an irreducible Markov kernel on X×X and f : X→ R+ be a mea-
surable function. Assume that there exists a (1,εν)-small set with ε ∈ (0,1). Set
P̌ = P̌ε,ν .

1. Show that, for all ξ ,ξ ′ ∈M1(X ) and k∈N such that ξ Pk f <∞ and ξ ′Pk f <∞,∥∥∥ξ Pk−ξ
′Pk
∥∥∥

f
≤
∥∥∥[ξ ⊗bε ]P̌k− [ξ ′⊗bε ]P̌k

∥∥∥
f⊗1

. (11.5.1)

2. Assuma that P admits an invariant probability measure π satisfying π( f ) < ∞.
Show that for any ξ ∈M1(X ) and k ∈ N such that ξ Pk f < ∞, we have∥∥∥ξ Pk−π

∥∥∥
f
≤
∥∥∥[ξ ⊗bε ]P̌k− [π⊗bε ]

∥∥∥
f⊗1

. (11.5.2)

11.3. Let P be an aperiodic recurrent Markov kernel. If there exist a petite set C and
ε > 0 such that limn→∞ Pn(x,C) = ε for all x ∈ X, then P is Harris positive.

The following exercises use definitions and results introduced in Section 11.A.

11.4. Assume that the asymptotic σ -field A is almost surely trivial. Then, for all
A∈A , the mapping defined onM1(X ) by µ 7→ Pµ(A) is constant and this constant
(which may depend on A) is either equal to 0, or equal to 1.

11.5. Let P be a Harris null recurrent Markov kernel with invariant measure µ . The
aim of this exercise is to prove that limn→∞ Pn(x,A) = 0 for all x ∈ X and A ∈X
such that µ(A)< ∞. Assume that there exist A ∈X and x ∈ X such that µ(A)< ∞

and limsupn→∞ Pn(x,A)> 0. Fix ε > 0 and choose δ > 0 such that

limsup
n→∞

Pn(x,A)≥ δ (µ(A)+ ε) . (11.5.3)
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Assume first that P is aperiodic

1. Show that there exists B such that µ(B) ≥ 1/δ and limn→∞ supy∈B |Pn(x,A)−
Pn(y,A)|= 0.

2. Show that we may choose n0 large enough so that, for all n≥ n0,

µ(A)≥ µ(B)(Pn(x,A)− εδ/2) .

3. Conclude.

In the general case, consider the cyclic decomposition C0,C1, . . . ,Cd−1 such that
C =∪d−1

i=0 Ci is full and absorbing thus µ(Cc) = 0 since µ is a maximal irreducibility
measure by Corollary 11.2.6.

4. Show that limn→∞ Pn(x,A) = 0 for every x ∈C.
5. Show that limn→∞ Pn(x,A) = 0 for every x 6∈C,
6. Conclude.

11.6 Bibliographical notes

The concept of regeneration plays a central role in the theory of recurrent Markov
chains. The splitting techniques were introduced by Nummelin (1978). In this foun-
dational paper, the author deduces various basic results using the renewal meth-
ods previously employed for atomic Markov chain. In particular, Nummelin (1978)
provides the construction of the invariant measure (Theorem 11.2.5). Essentially
the same technique was introduced in Athreya and Ney (1978). The splitting con-
struction introduced here is slightly different: we have learned it froDedecker and
Gouëzel (2015).

The renewal representation of Markov chain can be extended to Markov chains
which are not irreducible: see for example Nummelin (1991) and Nummelin (1997).

Theorem 11.A.4 is due to Orey (1971) (an earlier version is given in Orey (1962)
for discrete state space Markov chains; see also Blackwell and Freedman (1964)).
The proof is not based of the renewal decomposition and utilized the concept of tail
σ -algebra.

11.A Another proof of the convergence of Harris recurrent
kernels

Definition 11.A.1 (Asymptotic or tail σ -algebra) Let P be a Markov kernel on
X×X .
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• The σ -algebra A defined by

A = ∩n∈NAn , An = σ {Xk : k ≥ n} ,

is called the asymptotic or tail σ -field. indexgenertail σ -field
• An event A belonging to A is said to be an asymptotic or tail event.
• A random variable measurable with respect to A is said to be an asymptotic or

tail random variable.
• The asymptotic σ -field A is said to be trivial if for all µ ∈M1(X) and A ∈A ,
Pµ(A) = 0 or 1.

The event A is asymptotic if and only if for all n ∈ N, there exists An ∈ An such
that A = θ−1

n (An). The σ -algebra I of invariant events is thus included in A . The
converse is not true.

We extend the definition of Pµ to all bounded measures µ ∈Mb(X ): define

Pµ(A) =
∫

µ(dx)Px(A) .

Lemma 11.A.2 If A is a.s. trivial, then, for all B ∈X ⊗N and ν ∈Mb(X),

lim
n→∞

sup
A∈An

|Pν(A∩B)−Pν(A)Pν(B)|= 0 .

Proof. Write

sup
A∈An

|Pν(A∩B)−Pν(A)Pν(B)|= sup
A∈An

|Eν [1A(1B−Pν(B))]|

= sup
A∈An

|Eν [1A(Pν (B |An)−Pν(B))]|

≤ Eν [|Pν (B |An)−Pν(B)|] .

The last terms tends to 0 by Lebesgue’s dominated convergence theorem since
limn→∞Pν (B |An) = Pν (B |A ) by Theorem E.3.9 and Pν (B |A ) = Pν(B) since
A is trivial. 2

Let Q be the Markov kernel on the measurable space(X×N,X ⊗P(N)) defined
by

Q f (x,m) =
∫

f (y,m+1)P(x,dy), f ∈ F+(X×N) .

By iterating the kernel Q, we obtain for all n≥ 0,

Qn f (x,m) =
∫

f (y,m+n)Pn(x,dy) .
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Denote by (Zn,PQ
z ) the canonical chain associated to the Markov kernel Q. If z =

(x,m), then Pz is the distribution of {(Xn,m+n) : n≥ 0} under Px.

Proposition 11.A.3 Let P be a kernel on X×X . The following assertions are
equivalent:

(i) the asymptotic σ -field A is a.s. trivial,
(ii) the bounded Q-harmonic functions are constant,

(iii) for all λ ,µ ∈M1(X), limn→∞ ‖λPn−µPn‖TV = 0.

Proof. (i)⇒ (iii). Assume that (i) holds. Let λ ,µ ∈M1(X ) and assume that
λ 6= µ . Denote by ν+ and ν− the positive and negative parts of ν = λ −µ and let S
be a Jordan set for ν , i.e. S ∈X and ν+(Sc) = ν−(S) = 0. Since {Xn ∈D} ∈An for
all D∈X and by definition of the Jordan set S, Pν+(Xn ∈D)=P|ν |(Xn ∈D,X0 ∈ S),
we obtain

sup
D∈X

|Pν+(Xn ∈ D)−Pν+(X0 ∈ S)P|ν |(Xn ∈ D)|

= sup
D∈X

|P|ν |(Xn ∈ D,X0 ∈ S)−P|ν |(X0 ∈ S)P|ν |(Xn ∈ D)|

≤ sup
A∈An

|P|ν |(A∩{X0 ∈ S})−P|ν |(X0 ∈ S)P|ν |(A)| .

Applying Lemma 11.A.2 to |ν | and B = {X0 ∈ S} yields

lim
n→∞

sup
D∈X

|Pν+(Xn ∈ D)−Pν+(X0 ∈ S)P|ν |(Xn ∈ D)|= 0 .

Replacing {X0 ∈ S} by {X0 ∈ Sc}, we obtain similarly

lim
n→∞

sup
D∈X

|Pν−(Xn ∈ D)−Pν−(X0 ∈ Sc)P|ν |(Xn ∈ D)|= 0 .

Since Pν+(X0 ∈ S) = ν+(S) = ν−(Sc) = Pν−(X0 ∈ Sc), the previous limits imply
that

lim
n→∞

sup
D∈X

|Pν+(Xn ∈ D)−Pν−(Xn ∈ D)|= 0 ,

which is equivalent to limn→∞ ‖λPn−µPn‖TV = 0. This shows (iii).
(iii)⇒ (ii). Assume that (iii) holds. Let h be a bounded Q-harmonic function.

We have

|h(x,m)−h(y,m)|= |Qnh(x,m)−Qnh(y,m)|

=

∣∣∣∣∫
X

h(z,m+n)Pn(x,dz)−
∫

X
h(z,m+n)Pn(y,dz)

∣∣∣∣
≤ |h|∞

∥∥δxPn−δyPn∥∥
TV .
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By assumption, the right-hand side tends to 0 as n tends to infinity. This implies
that (x,m) 7→ h(x,m) does not depend on x and we can thus write h(x,m) = g(m)
for a bounded function g : N→ R. The assumption that h is Q-harmonic implies
that g(m) = g(m+ 1) for all m ∈ N. Hence g and consequently h is constant. This
proves (ii).

(ii)⇒ (i) Assume that (ii) holds. Fix a distinguished x0 ∈ X and define a map-
ping θ−1 on XN by

θ−1(ω0,ω1, . . .) = (x0,ω0,ω1, . . .) .

Then for all p≥ 1, we define θ−p by the following recursion: θ−(p+1) = θ−p ◦θ−1.
If A ∈ An then θ

−1
−n (A) does not depend on the choice of x0. Indeed, writing 1A =

fn(Xn,Xn+1, . . .), it follows that

1
θ
−1
−n (A)

= 1A ◦θ−n = fn(X0,X1, . . .) .

Note that θ−1 is not a left inverse of the shift θ . However, for A∈An and n > m+1,
1A ◦θ−(m+1) ◦θ = 1A ◦θ−m. For A∈A , define the function h on X×N by h(x,m) =

Px(θ
−1
−m(A)) and h(x,0) = Px(A). We have

Qh(x,m) =
∫

h(y,m+1)P(x,dy) = Ex[EX1 [1A ◦θ−(m+1)]]

= Ex[1A ◦θ−(m+1) ◦θ ] = Ex[1A ◦θ−m] = h(x,m) . (11.A.1)

This proves that h is a bounded Q-harmonic function, hence is constant by assump-
tion. Then there exists β such that h(x,m) = β for all (x,m) ∈ X×N. In particular
β = h(x,0) = Px(A). Now, for all n ∈ N,

PXn(A) = h(Xn,0) = h(Xn,n) = EXn [1A ◦θ−n]

= Ex
[
1A ◦θ−n ◦θn |F X

n
]
= Ex

[
1A |F X

n
]
.

By Theorem E.3.7, Px(A|F X
n ) converges Px − a.s. to 1A as n tends to infinity so

that β ∈ {0,1}. We have thus proved that for all A ∈A , the function x 7→ Px(A) is
constant and equal either to 1 or 0, i.e. (i) holds.

2

Theorem 11.A.4. Let P be an aperiodic Harris recurrent kernel on X×X . Then
for all λ ,µ ∈M1(X), limn→∞ ‖λPn−µPn‖TV = 0. If P is positive with invariant
probability measure π then limn→∞ ‖Pn(x, ·)−π‖TV = 0 for all x ∈ X.

Proof. By Proposition 11.A.3, it is sufficient to prove that if h is a bounded Q-
harmonic function, then h is constant. Let h be a bounded Q-harmonic function and
set h̃(x,m) = h(x,m+1). If we can prove that h = h̃, then (x,m) 7→ h(x,m) does not
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depend on m and can thus be written, by abuse of notation, h(x,m) = h(x) where h
is a bounded P-harmonic function so that h is constant by Theorem 10.2.11.

The proof is by contradiction. Assume that there exists z0 = (x0,m0) such that
h(z0) 6= h̃(z0). Let {Zn, n ∈ N} be a Markov chain with transition kernel Q. It can
be easily checked that h̃ is also a Q-harmonic function so that h(Zn) and h̃(Zn) are
bounded martingales which converge to H and H̃, Pz0 − a.s. We have Ez0 [H] =
h(z0) 6= h̃(z0) = Ez0 [H̃] so that Pz0(H 6= H̃)> 0. Assume for instance that Pz0(H <
H̃) > 0. The case Pz0(H > H̃) > 0 can be treated in the same way. Note first that
there exist a < b such that Pz0(H < a < b < H̃) > 0. Let A = {z : h(z)< a}, B ={

z : h̃(z)> b
}

. Since a < b, Thus,

{(x,n) ∈ X×N : (x,n) ∈ A∩B,(x,n+1) ∈ A∩B}
⊂ {(x,n) ∈ X×N : h(x,n+1)< a < b < h(x,n+1)}= /0 . (11.A.2)

Since h(Zn) converges to H and h̃(Zn) converges to H̃ Pz0 − a.s. and since Pz0(H <
a < b < H̃)> 0, we have

Pz0(∃k , ∀n≥ k , Zn ∈ A∩B)

= Pz0(∃k , ∀n≥ k , h(Zn)< a < b < h̃(Zn))> 0. (11.A.3)

Define

Dk =
∞⋂

n=k

{Zn ∈ A∩B} , D =
⋃
k≥0

Dk .

Then (11.A.3) implies that Pz0(D) > 0. Define g(z) = Pz(
⋂

∞
n=0{Zn ∈ A∩ B}) =

Pz(D0). By the Markov property,

g(Zk) = PZk(D0) = P

(
∞⋂

n=k

{Zn ∈ A∩B}

∣∣∣∣∣F Z
k

)
= P

(
Dk |F Z

k
)
.

We first show that Pz0(limk→∞ g(Zk) = 1D) = 1. Indeed, since Dk is increasing, we
have for all m≤ k,

|P(Dk|F Z
k )−P(D|F Z

∞)| ≤ P(D\Dk|F Z
k )+ |P(D|F Z

k )−P(D|F Z
∞)|

≤ P(D\Dm|F Z
k )+ |P(D|F Z

k )−P(D|F Z
∞)| .

Letting k then m tend to infinity yields

limsup
k→∞

|P(Dk|F Z
k )−P(D|F Z

∞)| ≤ lim
m→∞

P(D\Dm|F Z
∞) = 0 Pz0 − a.s.

We obtain

lim
k→∞

g(Zk) = lim
k→∞

P(Dk|F Z
k ) = P(D|F Z

∞) = 1D Pz0 − a.s.
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Thus,
Pz0

(
lim
n→∞

g(Zn) = 1
)
= Pz0 (1D = 1) = Pz0(D)> 0 . (11.A.4)

Let C be an accessible small set. By Lemma 9.3.3, there exist a probability measure
ν , ε ∈ (0,1] and m ∈ N such that C is both an (m,εν) and a (m+ 1,εν) small set,
i.e. for all x ∈C,

Pm(x, ·)≥ εν , Pm+1(x, ·)≥ εν . (11.A.5)

Since C is accessible, Proposition 10.2.2 implies that Px0(Xn ∈ C i.o.) = 1. By
(11.A.4) it also holds that Pz0(limn→∞ g(Zn) = 1,Xn ∈C i.o.) > 0. Therefore, there
exists z1 = (x1,n1) such that x1 ∈C and g(z1)> 1− (ε/4)ν(C), i.e.

Pz1(∃n, Zn /∈ A∩B) = 1−g(z1)< (ε/4)ν(C) .

Define

C0 = {x ∈C : (x,n1 +m) /∈ A∩B} ,
C1 = {x ∈C : (x,n1 +m+1) /∈ A∩B} .

We have, using the first inequality in (11.A.5),

εν(C0)≤ Px1(Xm ∈C0)≤ Px1((Xm,n1 +m) /∈ A∩B) = Pz1(Zm /∈ A∩B)

≤ Pz1(∃n, Zn /∈ A∩B) = 1−g(z1)≤ (ε/4)ν(C) .

This yields ν(C0)< ν(C)/4. Similarly, using the second inequality in (11.A.5), we
obtain

εν(C1)≤ Px1(Xm+1 ∈C0)≤ Px1((Xm+1,n1 +m+1) /∈ A∩B)

= Pz1(Zm+1 /∈ A∩B)≤ Pz1(∃n, Zn /∈ A∩B) = 1−g(z1)≤ (ε/4)ν(C) .

Thus ν(C1)< ν(C)/4 and altogether these two bounds yield ν(C0∪C1)≤ ν(C)/2<
ν(C) and C contains a point x which does not belong to C0 ∪C1 i.e. (x,n1 +m) ∈
A∩B and (x,n1 +m+1) ∈ A∩B. This contradicts (11.A.2). 2



Chapter 12
Feller and T-kernels

So far, we have considered Markov kernels on abstract state spaces without any
topological structure. In the overwhelming majority of examples, the state space
will be a metric space endowed with its Borel σ -field and we will in this chapter
take advantage of this structure.

Throughout this chapter, (X,d) will be a metric space endowed with its Borel σ -
field denoted X .

In Sections 12.1 and 12.2, we will introduce Feller, strong Feller and T -kernels;
examples include most of the usual Markov chains on Rd . These types of kernels
have certain smoothness properties which can be used to obtain convenient criteria
for irreducibility. Another convenient property is that compact sets are petite for
an irreducible T -kernel and also for a Feller kernel under an additional topological
condition.

In Section 12.3, we will investigate topological conditions for the existence of
an invariant probability measure. These conditions can in some cases be applied to
certain non irreducible Feller kernels for which the existence results of Chapter 11
do not apply.

12.1 Feller kernels

Recall that a sequence of probability measures {µn, n∈N} on a metric space (X,d)
is said to converge weakly to a probability measure µ (which we denote µn

w⇒
µ) if limn→∞ µn( f ) = µ( f ) for all functions f ∈ Cb(X), the space of real-valued
bounded continuous functions on X. The space Cb(X) endowed with the supremum
norm | · |∞ and the induced topology of uniform convergence is a Banach space.
We have already seen in Proposition 1.2.5 that a Markov kernel P maps bounded

265
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functions onto bounded functions. Thus a Markov kernel maps Cb(X) into Fb(X)
but not necessarily into Cb(X) itself. This property must be assumed.

Definition 12.1.1 (Feller kernel and strong Feller kernels) Let P be a Markov
kernel on a metric space (X,d).

(i) P is called a Feller kernel if P f ∈ Cb(X) for all f ∈ Cb(X).
(ii) P is called a strong Feller kernel if P f ∈ Cb(X) for all f ∈ Fb(X).

Alternatively, a Markov kernel P is Feller if for every sequence {xn, n ∈ N} in
X such that limn→∞ xn = x, the sequence of probability measures {P(xn, ·),n ∈ N}
converges weakly to P(x, ·), i.e. for all f ∈ Cb(X), limn→∞ P f (xn) = P f (x).

A Markov kernel P is strong Feller if and only if for every sequence {xn, n ∈N}
in X such that limn→∞ xn = x ∈ X, the convergence limn→∞ P f (xn) = P f (x) holds
for every f ∈ Fb(X). This mode of convergence of the sequence of probability mea-
sures P(xn, ·) to P(x, ·) is called setwise convergence. Hence, P is strong Feller if
{P(xn, ·),n ∈N} converges setwise to P(x, ·) for every sequence {xn} converging to
x.

Proposition 12.1.2 Let P be a Markov kernel on a metric space (X,d).

(i) If the kernel P is Feller then Pn is a Feller kernel for all n ∈ N. The
sampled kernel Ka is also Feller for every sampling distribution a.

(ii) If P is strong Feller, then Pn is strong Feller for all n ∈ N. The sampled
kernel Ka is strong Feller for every sampling distribution a = {a(n), n ∈ N}
such that a(0) = 0.

Proof. (i) If P is Feller, then Pn is Feller for all n ∈ N. For any bounded con-
tinuous function f ∈ Cb(X), the function Ka f is bounded continuous by Lebesgue’s
dominated convergence theorem showing that Ka is Feller.

(ii) The proof is the same. Note that the result is not true if a(0) > 0 (for any
x ∈ X, the kernel Q(x,A) = δx(A) for A ∈X is Feller but not strong Feller).

2

Remark 12.1.3. If X is a countable set equipped with the discrete topology, then
Fb(X) = Cb(X) and P satisfies the strong Feller property. N

Since Cb(X) ⊂ Fb(X), a strong Feller kernel is a Feller kernel. The converse is
not true.

Example 12.1.4 (A Feller kernel which is not strong Feller). Consider the Markov
kernel on (R,B(R)) given by P(x,A) = δx+1(A) for all x ∈R and A ∈B(R). Then,
for any Borel function f , P f (x) = f (x+ 1). The Markov kernel P is clearly Feller
(P f is continuous if f is continuous), but is not strong Feller. J



12.1 Feller kernels 267

We have seen in Theorem 1.3.6 that a Markov chain can be expressed as a random
iterative system Xn+1 = F(Xn,Zn+1) where {Zn, n ∈ N∗} is a sequence of i.i.d. ran-
dom elements on a probability space (Z,Z ), independent of X0 and F : X×Z→ X
is a measurable function. If the function F has some smoothness property, then it
defines a Feller kernel.

Lemma 12.1.5 Let (X,d) be a metric space and (Z,Z ) be a measurable space,
µ ∈M1(Z ), Z a random variable with distribution µ and let F : X×Z→ X be a
measurable function. Let P be the Markov kernel associated to the function F and
the measure µ , defined for x ∈ X and f ∈ Fb(X) by

P f (x) = E [ f (F(x,Z))] =
∫

f (F(x,z))µ(dz) .

If the function x→ F(x,z) is continuous with respect to x for µ almost all z ∈ Z,
then P is a Feller kernel.

Proof. Let f ∈Cb(X) and x ∈X. By assumption, the function f (F(x,z)) is bounded
and continuous with respect to x for µ-almost all z. By Lebesgue’s dominated con-
vergence theorem, this implies that P f (x) = E [ f (F(x,Z))] is continuous. 2

Proposition 12.1.6 A Feller kernel on X×X is a bounded linear operator
on the Banach space (Cb(X), | · |∞) and a sequentially continuous operator on
M1(X ) endowed with the topology of weak convergence.

Proof. Let P be a Feller kernel. For f ∈ Cb(X) and x ∈ X,

|P f (x)| ≤
∫

X
| f (y)|P(x,dy)≤ | f |∞P(x,X)≤ | f |∞ .

This proves the first statement. Let {µn, n ∈ N} be a sequence of probability mea-
sures on (X,X ) such that µn converges weakly to a probability measure µ . Then,
for every f ∈ Cb(X), since P f is also in Cb(X), we have

lim
n→∞

(µn P)( f ) = lim
n→∞

µn(P f ) = µ(P f ) = (µP)( f ) .

This proves that the sequence {µn P, n ∈ N} converges weakly to µP. 2

Proposition 12.1.7 Let (X,d) be a complete separable metric space and let P
be a Markov kernel on X×X . If P is strong Feller, then there exists a probabil-
ity measure µ on B (X) such that P(x, ·) is absolutely continuous with respect to
µ for all x∈X. In addition, there exists a bimeasurable function (x,y) 7→ p(x,y)
such that p(x,y) = dP(x, ·)/dµ(y).
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Proof. Since (X,d) is a complete metric separable space, there exists a sequence
{xn, n ∈ N∗} which is dense in X. Define the measure µ on B (X) by µ =

∑
∞
n=1 2−nP(xn, ·). For A ∈B (X) such that µ(A) = 0, we have P(xn,A) = 0 for all

n≥ 1. Since P is strong Feller, the function x 7→ P(x,A) is continuous. Since it van-
ishes on a dense subset of X, this function is identically equal to 0. Thus P(x, ·) is
absolutely continuous with respect to µ for all x in X. The existence of the bimea-
surable version of the Radon Nykodym derivative is given by Corollary 9.A.3. 2

We now give a characterization the Feller and strong Feller properties in terms
of lower semi-continuous functions (see Definition B.1.5).

Proposition 12.1.8 Let (X,d) be a metric space.

(i) A Markov kernel P is Feller if and only if the function P(·,U) is lower
semi-continuous for every open set U.

(ii) A Markov kernel P is strong Feller if and only if the function P(·,A) is
lower semi-continuous for every Borel set A ∈X .

Proof. (i) Assume that the Markov kernel P is Feller. If U is an open set, then
there exists an increasing sequence { fn, n ∈N} ⊂ Cb(X) such that 1U = limn→∞ fn.
(Take fn(x) = 1∧ nd(x,Uc) for instance). By the monotone convergence theorem
it also holds that P(·,U) = limn→∞ P fn and for every n ∈ N P fn is continuous (and
therefore lower semi-continuous). Hence P(·,U) is a pointwise increasing limit of
lower semi-continuous functions and is therefore lower semi-continuous by Propo-
sition B.1.7-(iii).
Conversely let f ∈ Cb(X) be such that 0≤ f ≤ 1. Then f = limn→∞ fn with

fn = 2−n
2n

∑
k=1

1{ f>k2−n} =
2n

∑
k=1

k−1
2n 1[(k−1)2−n,k2−n)( f ) . (12.1.1)

Since f is continuous, for each k ∈ {1, . . . ,2n − 1}, { f < k2−n} is an open set.
Hence the function P(·,{ f < k2−n}) is lower semi-continuous and so is P fn (a finite
sum of lower semi-continuous functions being lower semi-continuous; see Propo-
sition B.1.7-(iv)). By the monotone convergence theorem, P f = limn→∞ P fn which
is lower semi-continuous by Proposition B.1.7-(iii). Similarly, P(1− f ) = 1−P f is
also lower semi-continuous. This implies that P f is both lower semi-continuous and
upper semi-continuous, hence continuous. This proves that P is Feller.

(ii) The direct implication is obvious; the proof of the converse is a verbatim
repetition of the previous proof except that the argument that { f < k2−n} is an open
set is replaced by { f < k2−n} is a Borel set.

2

A very important property of irreducible is that the compact sets are petite. To
prove this property we first need to prove that the closure of a petite set is petite.
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Lemma 12.1.9 Let P be an irreducible Feller kernel. Then the closure of a petite
set is petite.

Proof. Let A be a (a,µ)-petite set, i.e. Ka(x,B) ≥ µ(B) for all x ∈ A and B ∈X .
Let A be the closure of A. We will show that there exists a petite set H such that
infx∈A Ka(x,H)> 0. The set H being petite, this implies that the set A is also petite
by Lemma 9.4.7.

Since P is irreducible, Proposition 9.1.8 shows that X is the union of a countable
collection of small sets. Since µ is non-trivial, µ(C) > 0 for some small set C ∈
B (X).

By Theorem B.2.17, µ is inner regular, thus there exists a closed set H ⊂ C
such that µ(H) > 0. Since P is Feller, the sampled kernel Ka is also Feller. Since
Hc is an open set, by Proposition 12.1.8, Ka(·,Hc) is lower semi-continuous so
Ka(·,H) = 1−Ka(·,Hc) is upper semi-continuous. By Proposition B.1.9 (ii), we
have

inf
x∈A

Ka(x,H) = inf
x∈A

Ka(x,H)≥ µ(H)> 0

which concludes the proof. 2

Theorem 12.1.10. Let P be an irreducible Feller kernel. If there exists an accessible
open petite set, then all compact sets are petite. If there exists a maximal irreducibil-
ity measure whose topological support has a non-empty interior, then there exists an
accessible open petite set and all compact sets are petite.

Proof. Assume that there exists an accessible open petite set. Then Kaε
(x,U) >

0 for all x ∈ X. Since P is a Feller kernel, the function Kaε
(·,U) is lower semi-

continuous by Proposition 12.1.8. Thus, for every compact set H infx∈H Kaε
(x,U)>

0 by Proposition B.1.7 (v). Therefore H is petite by Lemma 9.4.7.
Let now ψ be a maximal irreducibility measure whose support has a non empty

interior. Since P is irreducible, there exists an accessible small set A. For ε ∈ (0,1)
and k ∈ N∗, set

Bk = {x ∈ X : Kaε
(x,A)≥ 1/k} .

Since A is accessible, X =
⋃

∞
k=1 Bk. Each Bk leads uniformly to the small set A thus

Bk is also petite by Lemma 9.4.7. By Lemma 12.1.9, Bk is also petite and the set
Ck defined by Ck = Bk ∩ supp(ψ) is petite and closed since supp(ψ) is closed by
definition. By construction, supp(ψ) =

⋃
∞
k=1 Ck and by assumption supp(ψ) has a

non-empty interior. By Baire’s Theorem B.1.1, there must exist at least one k such
that Ck has a non-empty interior, say U which is a petite set (as a subset of a petite
set). Moreover ψ(U)> 0 by definition of the support of ψ (see Proposition B.2.15).
This implies that U is accessible 2



270 12 Feller and T-kernels

12.2 T -kernels

We now introduce the notion of T -kernel, which is a significant generalization of
the strong Feller property that holds in many applications.

Definition 12.2.1 (T -kernel, continuous component) A Markov kernel P is called
a T -kernel if there exist a sampling distribution a ∈M1(N) and a submarkovian
kernel T such that

(i) T (x,X)> 0 for all x ∈ X;
(ii) for all A ∈X , the function x 7→ T (x,A) is lower semi-continuous;

(iii) for all x ∈ X and A ∈X , Ka(x,A)≥ T (x,A).

The submarkovian kernel T is called the continuous component of P.

A strong Feller kernel is a T -kernel: simply takes T = P and a = δ1. A Feller
kernel is not necessarily a T -kernel. The T -kernels form a larger class of Markov
kernels than strong Feller kernels. For instance, it will be shown in Exercise 12.6 that
the Markov kernel associated to a random walk on Rd is always Feller but is strong
Feller if and only if its increment distribution is absolutely continuous with respect
to Lebesgue’s measure. However, it is a T -kernel under a much weaker condition.
For instance, a Metropolis-Hasting MCMC sampler is generally not a strong Feller
kernel but is a T -kernel under weak additional conditions.

Lemma 12.2.2 Let T be a submarkovian kernel such that for all A∈X the function
x 7→ T (x,A) is lower semi-continuous. Then for all f ∈ F+(X), the function x 7→
T f (x) is lower semi-continuous.

Proof. Every f ∈ F+(X) is an increasing limit of simple functions { fn, n ∈N}. For
every n ∈ N, fn is simple and T fn is therefore lower semi-continuous, as a finite
sum of lower semi-continuous functions. By the monotone convergence theorem
T f = limn→∞ T fn and by Proposition B.1.7-(iii) an increasing limit of lower semi-
continuous functions is lower semi-continuous, T f is lower semi-continuous. 2

For a T -kernel (and a fortiori for a strong Feller kernel), we have a stronger result
than for Feller kernels: all compact sets are petite without any additional assumption.

Theorem 12.2.3. Let P be an irreducible T -kernel. Then every compact set is petite.

Proof. Since P is irreducible, there exists an accessible petite set A satisfying
Kaε

(x,A) > 0 for all x ∈ X and ε ∈ (0,1) (see Lemma 9.1.6). Since P is a T -
kernel, there exists a sampling distribution a and a continuous component T such
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that Ka≥ T and T (x,X)> 0 for all x∈X. By the generalized Chapman-Kolmogorov
formula (Lemma 1.2.11), this implies that for all x ∈ X,

Ka∗aε
(x,A) = KaKaε

(x,A)≥ T Kaε
(x,A)> 0 .

Let C be a compact set. By Lemma 12.2.2 the function T Kaε
(·,A) is lower semi-

continuous. Moreover it is positive everywhere on X, so it is uniformly bounded
from below on C. This implies that infx∈C Ka∗aε

(x,A) > 0 and that C is petite by
Lemma 9.4.7. 2

Theorem 12.2.3 admits a converse. On a locally compact separable metric space, if
every compact set is petite, then P is a T -kernel. To prove this result we need the
following lemma.

Lemma 12.2.4 Let P be a Markov kernel. If X is a countable union of open petite
sets, then P is a T -kernel.

Proof. Let {Uk,k ∈ N} be a collection of open petite sets such that X =
⋃

∞
k=1 Uk.

By definition of a petite set, for every integer k, there exist a sampling distribution
a(k) ∈M1(N) and a non trivial measure νk ∈M+(X) such that Ka(k) ≥ 1Uk

νk. We
then set Tk = 1Uk

νk, T = ∑
∞
k=1 2−kTk and a = ∑k≥1 2−ka(k). The function T is well

defined since Tk(x,X)≤ 1 for all k ∈ N and x ∈ X. This yields

Ka = ∑
k≥1

2−kKa(k) ≥ T .

The indicator function of an open set being lower semi-continuous, the function x 7→
Tk(x,A) is lower semi-continuous for every A ∈X . Thus the function x 7→ T (x,A)
is lower semi-continuous as an increasing limit of lower semi-continuous functions.
Finally, since Tk(x,X)> 0 for all x ∈Uk and X =

⋃
k≥1 Uk, we have that T (x,X)> 0

for all x ∈ X. 2

Theorem 12.2.5. Assume that (X,d) is a locally compact separable metric space.
Let P be a Markov kernel on X×X . If every compact set is petite, then P is a
T -kernel.

Proof. Let {xk, k ∈ N} be a dense sequence in X. For every integer k, there exists
a relatively compact open neighborhood of xk. Then Uk is compact hence petite,
and therefore Uk is also petite since a subset of a petite set is petite. Hence X is a
countable union of open petite set and P is a T -kernel by Lemma 12.2.4. 2

Combining Theorem 12.1.10 and Theorem 12.2.5, we obtain the following crite-
rion for a Feller kernel to be a T kernel.
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Corollary 12.2.6 Let P be an irreducible Feller kernel on a locally compact
separable metric space (X,d). If there exists a maximal irreducibility measure
whose topological support has a non-empty interior, then P is a T -kernel.

This result also provides a criterion to check that a Feller kernel is not a T chain.
See Exercise 12.10.

Example 12.2.7 (Vector autoregressive process). Consider the vector autoregres-
sive process (see Example 2.1.2) defined by the recursion

Xn+1 = FXn +GZn+1 (12.2.1)

where {Zn, n ∈ N∗} is a sequence of Rq-valued i.i.d. random vectors, X0 is a Rp-
valued random vector independent of {Zn, n ∈ N}, F is a p× p matrix and G is a
p×q matrix (p≥ q). Assume that the pair (F,G) is controllable (see Section 12.A)
and that the distribution µ of the random vector Z1 is non singular with respect to the
Lebesgue measure, i.e. there exists a nonnegative function g such that Leb(g) > 0
and µ ≥ g ·Leb .

Assume first that p = q and G = Iq. For A ∈B(Rp), define

T (x,A) =
∫
1A(y)g(y−Fx)dy .

Note that for all x∈Rq, T (x,Rq) = Leb(g)> 0. Since the function z 7→
∫
|g(y−z)−

g(y)|dy is continuous, for any A ∈B(Rq), x 7→ T (x,A) is continuous. Hence, P is a
T -kernel.

We now consider the general case. By iterating (2.1.3), we get

Xn = FnX0 +
n

∑
k=1

Fn−kGZk . (12.2.2)

We assume again that the pair (F,G) is controllable. This means that the matrix
Cm = [G |FG | · · · |Fm−1G] has full rank for some sufficiently large m (it suffices to
take for m the degree of the minimal polynomial of F). Denote X̃n = Xnm, F̃ = Fm,
and

Z̃n+1 = Fm−1GZnm+1 +Fm−2GZnm+2 + · · ·+FGZnm+m−1 +GZnm+m ,

we may rewrite the recursion (12.2.1) as follows

X̃n+1 = F̃X̃n + Z̃n+1 .

Define by Φ : Rmq→ Rp the linear map

(z1,z2, . . . ,zm)→ Fm−1Gz1 +Fm−2Gz2 + . . .+FGzm−1 +Gzm .
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The rank of Φ is p since the pair (F,G) is controllable. The distribution of the ran-
dom vector (ZT

nm+1,Z
T
nm+1, . . . ,Z

T
nm+m−1)

T over Rmp is µ⊗m which by assumption
satisfies g⊗m ·Leb. It can be shown (see Exercise 12.12) that there exists a function
g such that the distribution ν = µ⊗m ◦Φ−1 of the random vector Z̃1 has a contin-
uous component, i.e. there exists a nonnegative function g̃ such that Leb(g) > 0
and ν ≥ g̃ ·Leb. Using the first part of the proof, Pm(x,A) ≥

∫
A g̃(y− F̃x)dy where

x 7→ T (x,A) is continuous and T (x,X) = Leb(g̃)> 0. Hence P is a T -kernel.

We now introduce reachable points which will in particular provide a characteriza-
tion of irreducibility.

Definition 12.2.8 (Reachable point) A point x∗ is reachable if every open neigh-
borhood of x∗ is accessible.

Theorem 12.2.9. Let P be a T -kernel. If there exists a reachable point x∗, then P is
irreducible and φ = T (x∗, ·) is an irreducibility measure. In addition, T (x∗, ·)� µ

for every invariant measure µ and there exists at most one invariant probability
measure.

Proof. Let T be a continuous component of Ka. Then by definition, T (x∗,X) > 0.
Let A ∈X be such that T (x∗,A)> 0. Since the function x 7→ T (x,A) is lower semi-
continuous, there exists U ∈ Vx∗ such that T (x,A)≥ δ > 0 for all x ∈U . Since x∗ is
assumed to be reachable, this implies that Kaε

(x,U)> 0 for all x ∈ X and ε ∈ (0,1).
Then, by Lemma 1.2.11, for all x ∈ X,

Kaε∗a(x,A) =
∫

X
Kaε

(x,dy)Ka(y,A)≥
∫

U
Kaε

(x,dy)Ka(y,A)

≥
∫

U
Kaε

(x,dy)T (y,A)≥ δKaε
(x,U)> 0 .

Therefore A is accessible and hence T (x∗, ·) is an irreducibility measure. If µ is
an invariant measure and T (x∗,A) > 0, then µ(A) =

∫
µ(dx)Kaε∗a(x,A) > 0. Thus

T (x∗, ·) is absolutely continuous with respect to µ .
The last statement is a consequence of Corollary 9.2.16: an irreducible kernel has

at most one invariant probability measure. 2

Example 12.2.10. We pursue the investigation of the first order vector autoregres-
sive process Xn+1 = FXn +GZn+1 and we use the notation introduced in Exam-
ple 12.2.7. We will find sufficient conditions upon which the associated kernel pos-
sesses a reachable state. Denote by ρ(F) the spectral radius for F , i.e. ρ(F) the
maximal modulus of the eigenvalues of F . It is well-known that if the spectral radius
ρ(F)< 1, there exist constants c and ρ̄ < 1, such that for every n∈N, 9Fn9 ≤ cρ̄n.
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Assume that the pair (F,G) is controllable and that the distribution µ of the
random vector Z1 satisfies µ ≥ ρ01B(z∗,ε0)

· Lebp for some z∗ ∈ Rp, ρ0 > 0 and
ε0 > 0. Define by x∗ ∈ Rq the state given by

x∗ =
∞

∑
k=0

FkGz∗ (12.2.3)

For all n ∈ N, Xn = FnX0 +∑
n
k=1 Fn−kGZk, thus for all x ∈ Rp and all open neigh-

borhood O of x∗ there exist n large enough and ε sufficiently small such that, on the
event

⋂n
k=1{|Zk− z∗| ≤ ε}

Xn = Fnx+
n

∑
k=1

Fn−kGZk ∈ O ,

showing that Pn(x,O)≥ µn(B(z∗,ε))> 0. Hence the state x∗ is reachable. If in addi-
tion the pair (F,G) is controllable, then as shown in Example 12.2.7, P is a T -kernel.
Hence P is an irreducible T -kernel: Theorem 12.2.3 shows that every compact sets
are petite (as shown in Exercise 12.13, the compact sets are even small). J

12.3 Existence of an invariant probability

For µ ∈M1(X ) consider the probability measures π
µ
n , n≥ 1 defined by

π
µ
n = n−1

n−1

∑
k=0

µPk . (12.3.1)

This probability is the expected n-step occupation measure with initial distribution µ

i.e. for every A ∈B(X), π
µ
n (A) = n−1Eµ

[
∑

n−1
k=0 1A(Xk)

]
. By definition of π

µ
n , the

following relation between π
µ
n and π

µ
n P holds:

π
µ
n P = π

µ
n +

1
n
{µPn−µ} . (12.3.2)

This relation is the key to the following result.

Proposition 12.3.1 Let P be a Feller kernel on a metric space (X,d). For
µ ∈M1(X ), all the weak limits of {πµ

n , n ∈ N∗} along subsequences are P-
invariant.

Proof. Let π be a weak limit along a subsequence {πµ
nk ,k ∈ N}. Since P is Feller

P f ∈ Cb(X) for all f ∈ Cb(X). Thus, using (12.3.2),
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|πP( f )−π( f )|= |π(P f )−π( f )|= lim
k→∞
|πµ

nk
(P f )−π

µ
nk
( f )|

= lim
k→∞

1
nk
|µPnk( f )−µ( f )| ≤ lim

k→∞

2| f |∞
nk

= 0 .

This proves that π = πP by Corollary B.2.18. 2

This provides a method for proving the existence of an invariant probability mea-
sure. However, to be of any practical use, this method requires a practical way to
prove relative compactness. Such a criterion is provided by tightness. The family Π

of probability measures on X is tight if for every ε > 0, there exists a compact set K
such that, for all ξ ∈Π , ξ (K)≥ 1− ε; see Appendix C.2.

Theorem 12.3.2. Let P be a Feller kernel. Assume that there exists µ ∈M1(X )
such that the family of probability measures {πµ

n ,n ∈ N} is tight. Then P admits an
invariant probability measure.

Proof. By Prohorov’s Theorem C.2.2, if {πµ
n ,n ∈ N} is tight, then it is relatively

compact and thus there exists π ∈M1(X ) and a sequence {nk,k ∈ N} such that
{πnk ,k ∈N} converges weakly to π . By Proposition 12.3.1, the probability measure
π is P-invariant. 2

An efficient way to check the tightness of the sequence {πµ
n ,n ∈ N} is by means of

Lyapunov functions.

Theorem 12.3.3. Let P be a Feller kernel on a metric space (X,d). Assume that
there exist a measurable function V : X → [0,∞] such that V (x0) < ∞ for at
least one x0 ∈ X, a measurable function f : X → [1,∞) such that the level sets
{x ∈ X : f (x)≤ c} are compact for any c > 0 and a constant b < ∞ such that

PV + f ≤V +b . (12.3.3)

Then P admits an invariant probability measure.

Proof. For any n ∈ N, we obtain by induction

PnV +
n−1

∑
k=0

Pk f ≤V +(n+1)b .

Therefore, we get for all n ∈ N that π
δx0
n ( f ) ≤ V (x0)+ b which implies that for all

c > 0 and n ∈ N, π
δx0
n ({ f ≥ c})≤ {V (x0)+b}/c. 2
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The drift condition (12.3.3) does not always hold. It is thus of interest to de-
rive a weaker criterion for the existence of an invariant probability. This can be
achieved if the space (X,d) is a locally compact separable metric space, see Ap-
pendix B.1.3. A function f ∈ Cb(X) is said to vanish at infinity if for every ε > 0,
there exists a compact set K such that | f (x)| ≤ ε for all x /∈K and that the set of con-
tinuous functions vanishing at infinity is denoted by C0(X); see Definition B.1.11.
This function space induces a new form of weak convergence, namely the weak*
convergence. A sequence of bounded measures {µn, n ∈ N} converges weakly* to

µ ∈Mb(X ), which we write µn
w∗⇒ µ , if limn→∞ µn( f ) = µ( f ) for all f ∈ C0(X).

Note that weak* convergence is weaker than weak convergence and that the weak*
limit of a sequence of probability measures is a bounded measure but not necessarily
a probability measure. See Appendix C.

We first extend Proposition 12.3.1 to weak* convergence.

Proposition 12.3.4 Let (X,d) be a locally compact separable metric space and
P be a Feller kernel. If π is a weak* limit of {πµ

n , n ∈ N} along a subsequence
then π is invariant.

Proof. Assume that the subsequence {πµ
nk ,k ∈ N} converges weakly* to π . Since P

is Feller, P f ∈ C+
b (X) for all f ∈ C+

0 (X). Applying Proposition C.1.2 and the bound
|πµ

nk(P f )−π
µ
nk( f )| ≤ 2n−1

k | f |∞ (see (12.3.2)), we obtain that for any f ∈ C+
0 (X),

π(P f )≤ liminf
k→∞

π
µ
nk
(P f ) = liminf

k→∞
π

µ
nk
( f ) = π( f ) . (12.3.4)

Therefore, πP( f ) = π(P f ) ≤ π( f ) for all f ∈ C+
0 (X). By B.2.21 this implies that

πP≤ π and since πP(X) = π(X) we conclude that then πP = π . 2

As mentioned above, weak∗ limits of a sequence of probability measures are
bounded measures but not necessarily probability measures and can even be the
trivial measure (identically equal to zero), in which case we would have achieved
very little. We need an additional assumption to ensure the existence of an invariant
probability measure.

Theorem 12.3.5. Let (X,d) be a locally compact separable metric space and P be
a Feller kernel. Assume that there exists f0 ∈ C+

0 (X) and µ ∈M1(X ) such that
liminfn→∞ π

µ
n ( f0)> 0. Then P admits an invariant probability measure.

Proof. By Proposition C.1.3, M1(X ) is weak* sequentially compact. Therefore,
there is a subsequence {πµ

nk ,k ∈N} that converges weakly* to a bounded measure ν

which is invariant by Proposition 12.3.4. Under the stated assumption ν( f0)> 0 and
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therefore ν is non trivial. Since ν is bounded, the measure ν/ν(X) is an invariant
probability measure. 2

Theorem 12.3.6. Let P be a Markov kernel on a locally compact separable metric
space (X,d). Assume that there exist k≥ 1 such that Pk is Feller, a function V : X→
[1,∞] finite for at least one x0 ∈ X, a compact set K and a positive real number b
such that

PkV ≤V −1+b1K(x) . (12.3.5)

Then P admits an invariant probability measure.

Proof. We start with the case k = 1. Write the drift condition as V ≥ PV +1−b1K
and iterate n times to obtain, setting πx

n = πδx
n ,

V (x0)≥ PnV (x0)+n−b
n−1

∑
k=0

Pk(x0,K) = PnV (x0)+n−nbπ
x0
n (K) .

Since V (x0)< ∞, rearranging terms and multiplying by n−1 yields

−1
n

V (x0)+1≤ 1
n
{PnV (x0)−V (x0)}+1≤ bπ

x0
n (K) . (12.3.6)

By Proposition C.1.3, a bounded sequence of measures admits a weak* limit point.

Thus there exist π ∈Mb(X ) and a subsequence {nk, k ∈N} such that π
x0
nk

w∗⇒ π and
by Proposition 12.3.4, πP = π . By (12.3.6) and Proposition C.1.2, we obtain

b−1 ≤ limsup
k→∞

π
x0
nk
(K)≤ π(K) ,

which implies that π(K)> 0. This π is a bounded non zero invariant measure, so it
can be normalized into an invariant probability measure.

In the case k > 1, the previous part implies that Pk admits an invariant probability
measure and thus P admits an invariant probability measure by Lemma 1.4.7. 2

12.4 Topological recurrence

Definition 12.4.1 (Topological recurrence)
(i) A point x∗ is said to be topologically recurrent if Ex∗ [NO] = ∞ for all O ∈ Vx∗ .
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(ii) A point x∗ is said to be topologically Harris recurrent if Px∗(NO = ∞) = 1 for
all O ∈ Vx∗ .

Reachable topologically recurrent points can be used to characterize recurrence.

Theorem 12.4.2. Let P be an irreducible Markov kernel on a complete separable
metric space (X,d).

(i) If P is recurrent then every reachable point is topologically recurrent.
(ii) If P is a T -kernel and if there exists a reachable and topologically recurrent

point then P is recurrent.

Proof. (i) If x∗ is reachable then by definition every O∈ Vx∗ is accessible. If P is
recurrent then every accessible set is recurrent thus U(x∗,O) = ∞ for every O ∈ Vx∗

i.e. x∗ is topologically recurrent.
(ii) If P is a T -kernel then there exists a sampling distribution a such that

Ka(x, ·) ≥ T (x, ·) for all x ∈ X and by Theorem 12.2.9, T (x∗, ·) is an irreducibil-
ity measure. The proof is by contradiction. If P is transient then X is a countable
union of uniformly transient set. Since T (x∗, ·) is non-trivial, there exists a uni-
formly transient set B such that T (x∗,B)> 0. The function x 7→ T (x,B) being lower
semi-continuous, by Lemma B.1.6 there exists F ∈ Vx∗ such that infx∈F T (x,B)> 0
which in turn implies that infx∈F Ka(x,B) = δ > 0. By Lemma 10.1.8-(i) this yields
that F is uniformly transient. This contradicts the assumption that x∗ is topologically
recurrent. Therefore P is recurrent.

2

We now provide a convenient criterion to prove the topological Harris recurrence
of a point.

Theorem 12.4.3. Let P be a Markov kernel. If Px∗(σO < ∞) = 1 for all O ∈ Vx∗ ,
then x∗ is topologically Harris recurrent.

Proof. We prove by induction that Px∗(σ
( j)
V < ∞) = 1 for all j ≥ 1 and all V ∈ Vx∗ .

This is true for j = 1 by assumption. Assume that it is true for one j≥ 1. For O∈Vx∗ ,
we have

Px∗(XσO = x∗,σ ( j+1)
O < ∞) = Px∗(XσO = x∗,σ ( j)

O ◦θσO < ∞)

= Px∗(XσO = x∗) . (12.4.1)
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Let Vn ∈ Vx∗ be a decreasing sequence of open neighborhoods of x∗ such that such
that V⊂O for all n ∈ N and {x∗} =

⋂
n≥1 Vn. Then, for all n ≥ 1, the induction as-

sumption yields

Px∗(XσO ∈O\Vn,σ
( j+1)
O < ∞)≥ Px∗(XσO ∈O\Vn,σ

( j)
Vn

< ∞) = Px∗(XσO ∈O\Vn) .

The later inequality implies that

Px∗(XσO ∈ O\{x∗},σ ( j+1)
O < ∞)≥ liminf

n
Px∗(XσO ∈ O\Vn,σ

( j+1)
O < ∞)

≥ liminf
n

Px∗(XσO ∈ O\Vn)

= Px∗(XσO ∈ O\{x∗}) = 1−Px∗(XσO = x∗) . (12.4.2)

Combining (12.4.1) and (12.4.2) yields Px∗(σ
( j+1)
O < ∞) = 1. 2

12.5 Exercises

12.1. Consider the functional autoregressive model:

Xk = m(Xk−1)+σ(Xk−1)Zk , k ∈ N∗ , (12.5.1)

where {Zk, k ∈ N} is an i.i.d. sequence, taking value in Rp, independent of X0, m :
Rq 7→Rq is a continuous function and σ :Rq 7→Rq×q is a matrix-valued continuous
function. Denote by P the Markov kernel associated to this Markov chain.

1. Show that P is Feller.

Assume that for each x ∈ Rq, σ(x) is invertible and the function x 7→ σ−1(x) is
continuous. Assume in addition that µ admits a density g with respect to Lebesgue’s
measure on Rq.

2. Show that P is strong Feller.

12.2. Let {Zk, k ∈ N∗} be a sequence of i.i.d. Bernoulli random variables with
mean p ∈ (0,1), independent of the random variable X0 with values in [0,1] and
let {Xk, k ∈ N} be the Markov chain defined by the following recursion

Xn+1 =
1
3
(Xn +Zn+1) , n≥ 0 .

Denote by P the Markov kernel associated to this chain. Show that P is Feller but
not strong Feller.

12.3. Let P be the Markov kernel defined in Exercise 12.2. In this exercise, we show
by contradiction that P is not a T -kernel. Assume indeed that there exist a sampling
distribution a ∈M∗1(N) and a submarkovian kernel T such that
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(i) T (x,X)> 0 for all x ∈ X;
(ii) for all A ∈X , the function x 7→ T (x,A) is lower semi-continuous;

(iii) for all x ∈ X and A ∈X , Ka(x,A)≥ T (x,A).

1. Show that for all x ∈Q∩ [0,1], T (x,Qc∩ [0,1]) = 0.
2. Deduce using (ii) that for all x ∈ [0,1], T (x,Qc∩ [0,1]) = 0. Conclude.

12.4. Let P be the Markov kernel defined in Exercise 12.2. In this exercise, we show
that P is not irreducible.

1. Show that for all x ∈Q∩ [0,1], Px(σQc∩[0,1] < ∞) = 0.
2. Similarly, show that for all x ∈Qc∩ [0,1], Px(σQ∩[0,1] < ∞) = 0.
3. Conclude.

12.5. Let P be a Markov kernel on a metric space (X,d). Assume that there exists
µ ∈M+(X ) and a bounded measurable function g on X×X, continuous with re-
spect to its first argument such that P f (x) =

∫
g(x,y) f (y)µ(dy) for all f ∈ Fb(X)

and x ∈ X. Prove that P is strong Feller.

12.6. Let {Zk, k ∈ N} be a sequence of i.i.d. random variables with common
distribution µ on Rq, independent of the Rq-valued random variable X0 and de-
fine, for k ≥ 1, Xk = Xk−1 + Zk. The kernel of this Markov chain is given by
P(x,A) = µ(A− x) for x ∈ Rq and A ∈B(Rq).

1. Show that the kernel P is Feller.
2. Assume that µ has a density with respect to the Lebesgue measure on Rq. Show

that P is strong Feller.

We will now prove the converse. Assume that the Markov kernel P is strong Feller.

3. Let A be a measurable set such that µ(A) = δ > 0. Show that we may choose
an open set O ∈ V0 such that P(x,A) = µ(A− x)≥ δ/2 for all x ∈ O.

4. Show that Leb(A)≥ δ

2 Leb(O)> 0 and conclude.

12.7. A probability measure µ on B
(
Rd
)

is said to be is spread out if there exists
p such that µ∗p is non-singular with respect to Lebesgue’s measure.

Show that the following properties are equivalent.

(i) µ is spread out.
(ii) There exists q ∈ N∗ and a compactly supported, non identically zero and con-

tinuous function g such that µ∗q ≥ g ·Leb.
(iii) There exist an open set O, α > 0 and q ∈ N∗ such that 1O ·µ∗q ≥ α1O ·Leb.

Let P be the Markov kernel of the random walk with increment distribution µ de-
fined by P(x,A) = µ(A− x), x ∈ X, A ∈X .

4. Show that, if µ is spread out, then there exists q ∈ N∗ and a non zero function
g ∈ C+

c (Rd) such that Pq(x,A)≥ Leb(1A ∗g(x)) and P is a T -kernel.
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We finally show the converse: if P is a T -kernel, the increment measure is spread
out. The proof is by contradiction. Assume that P is a T -kernel (i.e. there exists
a∈M1(N∗), such that T (x,A)≥Ka(x,A) for all x ∈X and A∈X ) and that µ is not
spread out.

1. Show that there exists A ∈ B(Rd) such that for all n ≥ 1, µ∗n(A) = 1 and
Leb(A) = 0.

2. Show that there exists a neighborhood O of 0 such that infx∈O Ka(x,A)≥ δ > 0.
3. Show that Leb(A) =

∫
Pn(x,A)dx.

4. Show that Leb(A)≥ δLeb(O)> 0 and conclude.

12.8. Consider the autoregressive process of order p, Yk = α1Yk−1 + · · ·+αpYk−p +
Zk, where {Zk, k ∈ N} is an i.i.d. sequence; see Example 2.1.2. Denote α(z) =
1−α1z1−·· ·−αpzp and let A be the companion matrix of the polynomial α(z),

A =


α1 · · · · · · αp
1 0 0
...

. . .
...

0 1 0

 (12.5.2)

1. Show that the AR(p) model can be rewritten as a first order vector autoregres-
sive sequence Xk = AXk−1+BZk with Xk = [Yk, . . . ,Yk−p+1]

′, A is the companion
matrix of α(z) and B = [1,0, . . . ,0]′.

2. Show that the pair (A,B) is controllable.

Denote by P the Markov kernel associated to the Markov chain {Xk, k∈N}. Assume
that the distribution of Z1 has a non-trivial continuous component with respect to
Lebesgue measure.

3. Show that P is a T -kernel.
4. Assume that the zeros of the characteristic polynomials lie outside the unit cir-

cle. Show that P is an irreducible T-kernel which admits a reachable point

12.9. Let X= [0,1] endowed with the usual topology, α ∈ (0,1) and let P be defined
by

P(x,0) = 1−P(x,x) = x , x in [0,1] .

1. Prove that P is irreducible and Feller.
2. Prove that limx→0Px(σ0 ≤ n) = 0.
3. Prove that P is Harris recurrent.
4. Prove that the state space is not petite and that X is not a T -chain.

12.10. Let X = [0,1] endowed with the usual topology, α ∈ (0,1) and let P be de-
fined by

P(x,0) = 1−P(x,αx) = x , P(0,0) = 1 .
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1. Prove that P is irreducible and Feller.
2. Prove that limx→0Px(σ0 ≤ n) = 0.
3. Prove that P is recurrent but not Harris recurrent.
4. Prove that the state space is not petite and that X is not a T -chain.

12.11. Consider the recursion Xk = FXk−1 +GZk where F is a p× p matrix, G is a
p×q matrix and {Zk, k ∈ N} is an i.i.d. sequence of random Gaussian vector in Rq

with zero-mean and identity covariance matrix. Denote by P the associated Markov
kernel.

1. Show that the kernel P is irreducible, that any non-trivial measure φ which pos-
sesses a density on Rp is an irreducibility measure and that Lebesgue’s measure
is a maximal irreducibility measure.

2. Show that for any compact set A and any set B with positive Lebesgue measure
we have infx∈APx(σB < ∞)> 0.

12.12. Let Φ : Rs 7→ Rq be a linear map from (s≥ q) with rank q. Let ξ ∈M1(Rs)
be a probability on Rs such that ξ ≥ f ·Lebs 6= 0, for some nonegative integrable
function f . Show that there exist a nonnegative integrable function g such that ξ ◦
Φ−1 ≥ g ·Lebq 6= 0.

12.13. We use the assumptions and notation of Example 12.2.10.

1. Show that the exists a small set C and an open set O containing x∗ such that
infx∈O T (x,C) = δ > 0.

2. Show that O is a small set.
3. If A is a compact set, then infx∈A Pn(x,O) = γ > 0.
4. Show that every compact sets are small.

12.14. Assume that there exists µ ∈ M1(X ) such that the family of probability
measures {µPn,n ∈ N} is tight. Show that P admits an invariant probability.

12.15. Let P be a Feller kernel on a compact metric space. Show that P admits an
invariant probability.

12.16. Let P be a Feller kernel on a metric space (X,d). Assume that there exists a
nonnegative function V ∈ C(X) such that the sets {V ≤ c} are compact for all c > 0.
Assume further that there exist λ ∈ [0,1) and b ∈ R+ such that

PV ≤ λV +b . (12.5.3)

Show that there exists a P-invariant probability measure and each invariant proba-
bility measure π satisfy π(V )< ∞ [Hint: use Exercise 12.14].

12.17. Let P be a Feller kernel on a (X,d).

1. Let µ,π ∈M1(X ). Show that if µPn w⇒ π then π is P-invariant.
2. Let π ∈M1(X ). Assume that for every x ∈ X δxPn w⇒ π . Prove that π is the

unique P-invariant probability and ξ Pn w⇒ π for every ξ ∈M1(X ).
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12.18. Consider the log-Poisson autoregressive process defined in Example 2.2.5.
Assume that |b+ c|∨ |b|∨ |c|< 1.

1. Prove that its Markov kernel P defined in (2.2.11) is Feller.
2. Prove that the drift condition (12.3.3) holds with V (x) = e|x|.
3. Conclude that an invariant probability exists under this condition.

12.19. We consider the Metropolis-Hastings algorithm introduced in Section 2.3.1.
We use the notations introduced in this section: hπ ∈ F+(X) is the unnormalized
density of the target distribution π with respect to a σ -finite measure ν , (x,y) 7→
q(x,y) is the proposal density kernel. We assume below that hπ is continuous and
q : X→ X→R+ is continuous. We must define the state space of the Markov chain
to be the set Xπ = {x ∈ X : hπ(x)> 0}. The assumption that hπ is continuous means
Xπ is an open set. Show that the Metropolis-Hastings kernel is a T -kernel.

12.20. Let {Zk, k∈N} be an i.i.d. sequence of scalar random variables. Assume that
the distribution of Z1 has a density with respect to the Lebesgue measure denoted p.
Assume that p is positive and lower semi-continuous. Consider a Markov chain on
R defined by the recursion Xk = F(Xk−1,Zk) where F :R→R is a C∞(R) function.
We denote by P the associated Markov kernel.

For any x0 ∈R and any sequence of real numbers {zk, k ∈N}, define recursively

Fk(x0,z1, . . . ,zk) = F(Fk−1(x0,z1, . . . ,zk−1),zk) .

Assume that for each initial condition x0 ∈ R, there exists k ∈ N∗ and a sequence
(z0

1, . . . ,z
0
k) such that the derivative[

∂Fk
∂u1

(x0,z0
1, . . . ,z

0
k) · · ·

∂Fk
∂uk

(x0,z0
1, . . . ,z

0
k)
]

is non zero. Show that P is a T -kernel.

12.21. Let P be a Markov kernel on a complete separable metric space and R be the
set of points which are topologically Harris recurrent. Let {Vn, n ∈ N} be the set of
open balls with rational radius and center in a countable dense subset. Set

An( j) =
{

y ∈Vn : Py(σVn < ∞)≤ 1−1/ j
}
.

1. Show that Rc =
⋃

n, j An( j).
2. Show that An( j) is uniformly transient and that Rc is transient.

12.22. Let ν be a probability measure which is equivalent to Lebesgue’s measure on
R (e.g. the standard Gaussian distribution) and let µ be a distribution on the rational
numbers such that µ(q) > 0 for all q ∈ Q (which is possible since Q is countable).
Let P be the Markov kernel on R such that

P(x, ·) =

{
ν if x ∈ R\Q ,

µ if x ∈Q .
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Prove that the kernel P is topologically Harris recurrent and admits two invariant
measures.

In the following exercises, we will discuss the notion of evanescence. In all what
follows, X is a locally compact separable metric space. We say that a X-valued
sequence {un, n ∈ N} tends to infinity if for every compact set K of X, the set
{n ∈ N : un ∈ K} is finite. A function f : X→R+ is said to tend to infinity if for all
A > 0 there exists a compact set K such that f (x)≥ A for all x /∈K. If {Xn, n∈N} is
a stochastic process, we denote by {Xn→ ∞} the set of paths which tend to infinity.

Since X is locally compact separable metric space there exists an increasing se-
quence {Kn,n ∈N} of compact sets with non-empty interior such that X = ∪n≥0Kn.
The event {Xn → ∞} is the set of paths which visit each compact finitely many
times:

{Xn→ ∞}=
⋂
j≥0

{Xn ∈ K j, i.o.}c.

Equivalently, Xn 6→ ∞ if and only if there exists a compact set K which is visited
infinitely often by {Xn}. In Rd endowed with any norm, this notion correspond to
the usual one: Xn→ ∞ if and only if limn→∞ |Xn|= ∞ in the usual sense.

Let P be a Markov kernel on X×X .

(i) P is said to be evanescent if for all x ∈ X, Px(Xn→ ∞) = 1.
(ii) P is said to be non-evanescent if for all x ∈ X, Px(Xn→ ∞) = 0.

12.23. Let P be an irreducible Markov kernel on X×X . Assume that P is evanes-
cent.

1. Show that there exists an accessible compact set K and that for all x ∈ X,
Px(NK = ∞) = 0.

2. Show that P is transient [hint: proceed by contradiction: if P is recurrent, K
contains an accessible Harris-recurrent set K̃].

12.24. Let P be an irreducible Markov kernel on X×X . Assume that P is Harris-
recurrent.

1. Show that there exists x0 ∈ X such that h(x0) < 1 where h(x) = Px(Xn → ∞)
[hint: use Exercise 12.23]

2. Show that h(x) = h(x0) for all x ∈ X.
3. Show that P is non-evanescent. [Hint: show that PXn(A)=Px (A |Fn) converges
Px − a.s. to 1A for all x ∈ X.]

12.25. Assume that there exists a non-negative finite measurable function V on X
and a compact set C such that PV (x)≤V (x) if x /∈C and V tends to infinity.

1. Show that for all x ∈ X, there exists a random variable M∞ which is Px almost
surely finite for all x ∈ X such that for all n ∈ N, V (Xn∧τC)→M∞.

2. Prove that Px(σC = ∞, Xn→ ∞) = 0 for all x ∈ X.
3. Show that {Xn→ ∞}= limp→∞ ↑ {Xn→ ∞,σC ◦θp = ∞}.
4. Show that P is non-evanescent.
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12.26. Assume that P is a T -kernel. Let A ∈X be a transient set. Define

A0 = {x ∈ X : Px(σA < ∞) = 0} .

1. Let Ã = {x ∈ X : Px(σA < ∞)> 0}. Show that Ã =
⋃

∞
i=1 Ãi where the sets Ãi

are uniformly transient.

For i, j ∈ N∗, set U j =
{

x : T (x,A0)> 1/ j
}

and Ui, j = {x : T (x,Ai)> 1/ j}.

2. Show that
{
(Ui,Ui, j) : i, j > 0

}
is an open covering of X.

3. Let K be a compact set. Show that there exists k≥ 1 such that K⊂Uk∪
⋃k

i=1 Ui,k.
4. Show that {Xn ∈ K i.o.} ⊂ {Xn ∈Uk i.o.} Px − a.s..
5. Let a be a sampling distribution such that Ka ≥ T . Show that for all y ∈ Uk,
Py(σA0 < ∞)≥ Ka(y,A0)≥ T (y,A0) = 1/k.

6. Show that {Xn ∈ K i.o.} ⊂ {σA0 < ∞} Px −a.s. for all x ∈ X and every compact
set K.

7. Show that for all x ∈ X, Px({Xn→ ∞}∪{σA0 < ∞}) = 1.

12.27. This exercise use the results obtained in Exercises 12.23, 12.24 and 12.26.
Let P be an irreducible T -kernel.

1. P is transient if and only if P is evanescent.
2. P is recurrent if and only if there exists x ∈ X such that Px(Xn→ ∞)< 1,
3. P is Harris recurrent if and only if P is non evanescent [hint: if P is non-

evanescent, P is recurrent by question 2 and by Theorem 10.2.7, we can write
X = H ∪N with H maximal absorbing, N transient and H ∩N = /0, where H is
maximal absorbing and N is transient. Prove that N is empty].

12.6 Bibliographical notes

The concept of Feller chains was introduced by W. Feller. Numerous results on the
Feller chains were obtained in the works of Foguel (1962, 1968, 1969) and Lin
(1970, 1971); see Foguel (1973) for a review of these early references.

Most of the results in Section 12.3 were first established in Foguel (1962,
1968). The presentation of the results and the proofs in this Section follow closely
(Hernández-Lerma and Lasserre, 2003, Chapter 7).

12.A Linear control system

Let p,q be integers and {uk, k ∈ N} be a deterministic sequences of vectors in
Rq. Denote by F a p× p matrix and G be a q× q matrix. Consider the sequence
{xk, k ∈ N} of vectors in Rp defined recursively for k ≥ 1 by
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xk = Fxk−1 +Guk . (12.A.1)

These equations define a linear system. The sequence {uk, k ∈ N} is called the
input. The solution to the difference equation (12.A.1) can be expressed explicitly
as follows

xk = Fkx0 +
k−1

∑
`=0

F`Guk−` . (12.A.2)

The pair of matrices (F,G) is controllable if for each pair of states x0, x? ∈ X =
Rp, there exists an integer m and a sequence (u?1, . . . , u?m) ∈ Rq such that xm =
x? when (u1, . . . , um) = (u?1, . . . , u?m) and the initial condition is equal to x0. In
words, controllability asserts that the inputs uk can be chosen in such a way that any
terminal state x? can be reached from any starting point x0.

For any integer k, using some control sequence (u1, . . . , um) , we have

xm = Fmx0 +[G|FG| · · · |Fm−1G]

um
...
u1

 .

The linear recursion is controllable if for some integer r the range space of the matrix

Cr = [G |FG | · · · |Fr−1G] . (12.A.3)

is equal to Rp. Define

m(F,G) = inf{r > 0 : rank(Cr) = p} , (12.A.4)

with the usual convention inf /0 = ∞. The pair (F,G) is said to be controllable if
m(F,G)< ∞. Clearly, if rank(G) = p, then m(F,G) = 1.

Morevover, if the pair (F,G) is controllable, then m(F,G)≤ m0 ≤ n where m0 is
the degree of the minimal polynomial of F . Note indeeed that the minimal poly-
nomial is the monic polynomial α of lowest degree for which α(F) = 0. For
any r > m0, Fr−1 can be expressed as a linear combination of Fr−2, . . . , I, hence
Cr =Cm0 .
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Chapter 13
Rates of convergence for atomic Markov chains

In this chapter we will complement the results that obtained in Chapter 8 on the con-
vergence of the distribution of the n-th iterate of a positive recurrent atomic Markov
chain its invariant distribution. We will go beyond the geometric and polynomial
rates of convergence considered in Section 8.3. In Section 13.1 we will introduce
general subgeometric rates which include the polynomial rate. We will also extend
the results of Section 8.3 (which dealt only with convergence in total variation dis-
tance) to convergence in the f -total variation distance for certain unbounded func-
tions f ≥ 1.

These results will be obtained by means of the same coupling method as in Sec-
tion 8.3: given a kernel P which admits an accessible atom, we consider two inde-
pendent copies of a Markov chain with kernel P and the coupling time T will simply
be the first time when both chain simultaneously visit the atom. In Section 13.2 we
will recall this construction and give a number of (very) technical lemmas whose
purpose will be to relate modulated moments of the return time to the atom to sim-
ilar moment for the coupling time T . As a reward for our efforts, we will easily
obtain Sections 13.3 and 13.4 our main results.

13.1 Subgeometric sequences

A subgeometric sequence increases to infinity more slowly than any exponential
sequence, that is, it satisfies limsupn→∞ logr(n)/n = 0. For instance, a polynomial
sequence is subgeometric. This first definition is not always sufficiently precise and
must be refined. We first introduce the following notation which will be often used.
Given a sequence r : N→ R, we define its primitive r0 by

r0(n) =
n

∑
k=0

r(k) , n≥ 0 . (13.1.1)

289
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We now introduce the sets of subgeometric sequences. We will obviously impose
restrictions on the type of sequences we can consider, the mildest being the log-
subadditivity.

Definition 13.1.1 (Log-subadditive sequences) A sequence r : N→ [1,∞) is said
to be log-subadditive if r(n+m) ≤ r(n)r(m) for all n,m ∈ N. The set S is the set
of non decreasing log-subbaditive sequence.

The set S̄ is the set of sequences r such that there exist a sequence r̃ ∈S and
constants c1,c2 ∈ (0,∞) that satisfy c1r̃ ≤ r ≤ c2r̃.

If r ∈ S̄ , then r is not necessarily increasing but there exists a constant Mr such
that r(n+m)≤Mrr(n)r(m) for all n,m≥ 0. Geometric sequences {β n, n∈N} with
β ≥ 1 belong to S .

Definition 13.1.2
(i) Λ0 the set of sequences r ∈S such that the sequence n 7→ n−1 logr(n) is non

increasing and limn→∞ n−1 logr(n) = 0.
(ii) Λ1 is the set of sequences r ∈S such that limn→∞ r(n+1)/r(n) = 1.

(iii) Λ2 is the set of sequences r ∈S such that limsupn→∞ r(n)/r0(n) = 0.
For i ∈ 1,2, Λ̄i is the set of sequences r such that there exist 0 < c1 < c2 < ∞ and

ri ∈Λi satisfying c1ri ≤ r ≤ c2ri.

It is easily shown that following sequences belong to Λ0

(a) Logarithmic sequences: logβ (1+n), β > 0.
(b) Polynomial sequences: (1+n)β , β > 0.
(c) Subexponential sequences: {1+ log(1+ n)}α(n+ 1)β ecnγ

, for α,β ∈ R, γ ∈
(0,1) and c > 0.

Lemma 13.1.3 (i) Λ0 ⊂Λ1 ⊂Λ2.
(ii) Let r ∈ Λ1. For every ε > 0 and m0 ∈ N, there exists M < ∞ such that, for all

n≥ 0 and m≤ m0, r(n+m)≤ (1+ ε)r(n)+M.

Proof. (i) Let r ∈Λ0. Since n 7→ n−1 logr(n) is decreasing, we have

0≤ log
r(n+1)

r(n)
= (n+1)

logr(n+1)
n+1

− (n+1)
logr(n)

n
+

logr(n)
n

≤ logr(n)
n

.

Since moreover limn→∞ n−1 logr(n) = 0, then limn→∞ r(n+ 1)/r(n) = 1. This es-
tablishes the inclusion Λ0 ⊂Λ1.
Let r ∈Λ1. By induction, it obviously holds that

lim
n→∞

r(n+ k)/r(n) = lim
n→∞

r(n− k)/r(n) = 1 ,
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for every k ≥ 1. Thus, for every m≥ 1, we have

liminf
n→∞

n

∑
k=0

r(k)
r(n)

≥ liminf
n→∞

n

∑
k=n−m

r(k)
r(n)

= m+1 .

Since m is arbitrary, this proves that limn→∞ r0(n)/r(n) = ∞. This proves that Λ1 ⊂
Λ2

(ii) Fix ε > 0 and m0 ≥ 1. There exists n0 ∈ N such that, for all n ≥ n0, r(n+
m0)≤ r(n){1+ ε}. Set M = r(n0 +m0). Then, for all n≥ 0 and m≤ m0, since r is
increasing, we obtain

r(n+m)≤ r(n+m0)≤ (1+ ε)r(n)1{n≥ n0}+ r(n0 +m0)1{n < n0}
≤ r(n)(1+ ε)+M .

2

Lemma 13.1.4 (i) If r ∈S , then r0 ∈ S̄ .
(ii) If r ∈Λi, then r0 ∈ Λ̄i, i = 1,2.

Proof. (i) If r ∈S , then

r0(m+n) = r0(m)+
n

∑
i=1

r(m+ i)≤ r0(m−1)+ r(m)r0(n)

≤ r0(m)+ r(m)r0(n)≤ 2r0(m)r0(n) .

Thus 2r0 ∈S .
(ii) If r ∈Λ2 (which includes the case r ∈Λ1),

r0(n+1)
r0(n)

= 1+
r(n+1)

r0(n)
≤ 1+ r(1)

r(n)
r0(n)

→ 1 ,

as n→ ∞ and thus r0 ∈Λ1 ⊂Λ2. This also proves that r ∈Λ1 implies r0 ∈Λ1.
2

13.2 Coupling inequalities for atomic Markov chains

Let P be a Markov kernel on X×X admitting an accessible atom α . For conve-
nience, we reintroducce here the notation and definitions of Section 8.3. Define the
Markov kernel P̄ on X2×X ⊗2 as follows: for all (x,x′) ∈ X2 and A ∈X ⊗2

P̄((x,x′),A) =
∫

P(x,dy)P(x′,dy′)1A(y,y
′) . (13.2.1)

Let {(Xn,X ′n), n ∈N} be the canonical process on the canonical product space Ω =
(X×X)N. For ξ ,ξ ′ ∈M1(X ), let P̄ξ⊗ξ ′ be the probability measure on Ω such that
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{(Xn,X ′n), n∈N} is a Markov chain with kernel P and initial distribution ξ⊗ξ ′. The
notation Ēξ⊗ξ ′ stands for the associated expectation operator. An important feature
is that α×α is an atom for P̄. Indeed, for all x,x′ ∈ α and A,A′ ∈X ,

P̄((x,x′),A×A′) = P(x,A)P(x′,A) = P(α,A)P(α,A′) .

For an initial distribution ξ ′ ∈M1(X ) and a random variable Y on Ω , if the function
x 7→ Ēδx⊗ξ ′ [Y ] does not depend on x∈α , then we write Ēα×ξ ′ [Y ] for Ēδx⊗ξ ′ [Y ] when
x ∈ α . Similarly, for x,x′ ∈ α , we write Ēα×α [Y ] for Ēδx⊗δx′

[Y ] if the latter quantity
is constant on α×α .

Denote by T the return time to α ×α for the Markov chain {(Xn,X ′n), n ∈ N},
i.e.

T = σα×α = inf
{

n≥ 1 : (Xn,X ′n) ∈ α×α
}
. (13.2.2)

By Lemma 8.3.1, we know that

• For all ξ ,ξ ′ ∈M1(X ) and all n ∈ N,

dTV(ξ Pn,ξ ′Pn)≤ P̄ξ⊗ξ ′(T ≥ n) , (13.2.3)

• For every nonnegative sequence {r(n), n ∈ N},

∑
n≥0

r(n)dTV(ξ Pn,ξ ′Pn)≤ Ēξ⊗ξ ′
[
r0(T )

]
, (13.2.4)

where r0(n) = ∑
n
k=0 r(k) for all n ∈ N.

We will establish bounds on the coupling time T by considering the following
sequence of stopping times. Fix a positive integer q and let θ̄ be the shift operator on
(X×X)N: for all x = {(xk,x′k), k ∈N}, θ̄(x) = y where y =

{
(xk+1,x′k+1) : k ∈ N

}
.

Now, define
ν−1 = σα×X∧σX×α , ν0 = σα×X∨σX×α

and for k ≥ 0,

νk+1 =


∞ if νk = ∞ ,

νk +q+ τX×α ◦ θ̄νk+q1
{

Xνk ∈ α
}

+ τα×X ◦ θ̄νk+q1
{

Xνk /∈ α
}
, if νk < ∞ .

For all k ≥ 0, set
Uk = νk−νk−1 . (13.2.5)

For j ∈ N, let B j be the σ -algebra defined by

B j = F̄ν j−1 ∨σ(U j) , (13.2.6)

Obviously, F̄ν j−1 ⊂B j ⊂ F̄ν j .
By construction, at time νk, if finite, then at least one of the components of the

chain (Xn,X ′n) is in α . If both components are in α , then weak coupling occurs.
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X

X ′

q

Uk+1

νk

νk+1

Fig. 1 The dots stand for the time indices when Xk or X ′k enters the atom α . In this particular
example, the event {Xνk ∈ α} holds and νk+1 is the first time index after νk +q that X ′k ∈ α .

If only one component is in α at time νk, then νk+1 is the return time to α of the
other component after time νk +q, for a time lag q. If the atom is recurrent, all the
stopping times νk are almost surely finite.

Lemma 13.2.1 Let α be a recurrent atom. Then for all initial distributions ξ and
ξ ′ such that Pξ (σα < ∞) = Pξ ′(σα < ∞) = 1 and all k ∈ N,

P̄ξ⊗ξ ′(νk < ∞) = 1 .

Proof. Since α is a recurrent atom and Pξ (σα < ∞) = 1, we have

P̄ξ⊗ξ ′(Nα×X = ∞) = Pξ (Nα = ∞) = 1 .

Similarly, P̄ξ⊗ξ ′(NX×α = ∞) = Pξ ′(Nα = ∞) = 1. Noting that {NX×α = ∞ ,Nα×X =

∞} ⊂ {νk < ∞}, we obtain P̄ξ⊗ξ ′(νk < ∞) = 1 for all k ∈ N. 2

Remark 13.2.2 The dependence in q is implicit in the notation but is crucial and
should be kept in mind. If α is an accessible, aperiodic and positive atom, Corol-
lary 8.2.3 implies that for every γ ∈ (0,π(α)), there exists q ∈ N∗ such that for all
n ≥ q, Pα(Xn ∈ α) = Pn(α,α) > γ . In the rest of the chapter, we fix one arbitrary
γ ∈ (0,π(α)) and q is chosen in such a way in the definition of the stopping times
νk.

Consider the first time κ in the sequence {νk, k ∈ N} where both chains are
simultaneously in α , that is,

κ = inf
{

n≥ 0 : (Xνn ,X
′
νn) ∈ α×α

}
.

By construction, T is bounded by νκ :

T ≤ νκ . (13.2.7)

The following lemma will be used several times.
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Lemma 13.2.3 Let P be a Markov kernel on X×X . Assume that P admits an
accessible, aperiodic and positive atom α . Let h be a nonnegative function on N
and define H(u) = Eα [h(q+ τα ◦θu+q)]. Then, for all j ∈ N,

Ē
[

h(U j+1)
∣∣B j

]
= H(U j) ,

where U j and B j are defined in (13.2.5) ad (13.2.6), respectively. Moreover, for all
f ∈ F+(X) and j ∈ N,

1α(Xν j−1)Ē
[

f (Xν j)
∣∣B j

]
= 1α(Xν j−1)P

U j f (α) ,

1αc(Xν j−1)Ē
[

f (X ′ν j
)
∣∣∣B j

]
= 1αc(Xν j−1)P

U j f (α) .

Proof. Let j ∈ N be fixed. Since B j = F̄ν j−1 ∨σ(U j), it is sufficient to show that,
for all A ∈ F̄ν j−1 and all k ≥ q,

Ēξ⊗ξ ′ [1A1{U j=k}h(U j+1)] = Ēξ⊗ξ ′ [1A1{U j=k}H(U j)] (13.2.8)

Ēξ⊗ξ ′ [1α(Xν j−1)1A1{U j=k} f (Xν j)] = Ēξ⊗ξ ′ [1α(Xν j−1)1A1{U j=k}P
U j f (α)]

(13.2.9)

Ēξ⊗ξ ′ [1αc(Xν j−1)1A1{U j=k} f (X ′ν j
)]

= Ēξ⊗ξ ′ [1αc(Xν j−1)1A1{U j=k}P
U j f (α)] (13.2.10)

By Lemma 13.2.1, we have P̄(ν j−1 < ∞) = 1. Thus, applying the strong Markov
property yields

Ēξ⊗ξ ′ [1α(Xν j−1)1A1
{

U j = k
}

h(U j+1)]

= Ēξ⊗ξ ′

[
1α(Xν j−1)1A1

{
τX×α ◦ θ̄ν j−1+q = k−q

}
h(q+ τα×X ◦ θ̄ν j−1+q+k)

]
= Ēξ⊗ξ ′

[
1α(Xν j−1)1AĒ(α,X ′ν j−1

)[1
{

τX×α ◦ θ̄q = k−q
}

h(q+ τα×X ◦ θ̄q+k)]
]

which implies that

Ēξ⊗ξ ′ [1α(Xν j−1)1A1
{

U j = k
}

h(U j+1)] = Eα [h(q+ τα ◦θq+k)]

× Ēξ⊗ξ ′

[
1α(Xν j−1)1AEX ′ν j−1

[1
{

τα ◦θq = k−q
}
]
]
. (13.2.11)

Using this equality with h≡ 1, we get

Ēξ⊗ξ ′ [1α(Xν j−1)1A1
{

U j = k
}
]

= Ēξ⊗ξ ′

[
1α(Xν j−1)1AEX ′ν j−1

[1
{

τα ◦θq = k−q
}
]
]

(13.2.12)
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Finally, plugging (13.2.12) into (13.2.11) and using the definition of H,

Ēξ⊗ξ ′ [1α(Xν j−1)1A1
{

U j = k
}

h(U j+1)] = Ēξ⊗ξ ′ [1α(Xν j−1)1A1
{

U j = k
}

H(U j)] .

Similarly,

Ēξ⊗ξ ′

[
1αc(Xν j−1)1A1

{
U j = k

}
h(U j+1)

]
= Ēξ⊗ξ ′

[
1αc(Xν j−1)1A1

{
U j = k

}
H(U j)

]
.

Thus, (13.2.8) is shown. The proof of (13.2.9) and (13.2.10) follow the same lines
and are omitted for brevity. 2

Lemma 13.2.4 Let P be a Markov kernel on X×X . Assume that P admits an ac-
cessible, aperiodic and positive atom α . For every nonnegative sequence {r(n), n∈
N} and j ≥ 1,

Ē
[
1{κ > j}r(ν j)

∣∣F̄ν j−1

]
≤ (1− γ)1{κ > j−1} Ē

[
r(ν j)

∣∣F̄ν j−1

]
. (13.2.13)

Proof. First note that by Lemma 13.2.1, P̄ξ⊗ξ ′(νk < ∞) = 1 for all k ∈ N. Assume
now for instance that Xν j−1 ∈ α . Applying Lemma 13.2.3 and recalling that by con-
struction U j ≥ q, we obtain

Ē
[
1{κ > j}r(ν j)

∣∣F̄ν j−1

]
1α(Xν j−1)

= Ē
[
1αc(Xν j)r(ν j)

∣∣F̄ν j−1

]
1α(Xν j−1)1{κ > j−1}

= Ē
[
Ē
[
1αc(Xν j)

∣∣B j
]

r(ν j)
∣∣F̄ν j−1

]
1α(Xν j−1)1{κ > j−1}

= Ē
[

PU j(α,αc)r(ν j)
∣∣F̄ν j−1

]
1α(Xν j−1)1{κ > j−1}

≤ (1− γ)Ē
[

r(ν j)
∣∣F̄ν j−1

]
1α(Xν j−1)1{κ > j−1} .

This proves (13.2.13). 2

Taking r ≡ 1 in (13.2.13) yields

P̄
(

κ > j |F̄ν0

)
≤ (1− γ) j . (13.2.14)

Lemma 13.2.5 Let P be a Markov kernel with a recurrent atom α . Then, for all
n ∈ N and k ∈ N,

Pα(τα ◦θn = k)≤ Pα(σα > k) . (13.2.15)

(i) For every nonnegative sequence {r(n), n ∈ N},

Eα [r(τα ◦θn)]≤ Eα [r0(σα −1)] ,
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(ii) For a nonnegative sequence r, set r̄(n)=max0≤ j≤n r( j). IfEα [r̄(σα)]<∞, then,

Eα [r(τα ◦θn)]≤ nEα [r̄(σα)] , (13.2.16)

lim
n→∞

n−1Eα [r(τα ◦θn)] = 0 . (13.2.17)

(iii) Assume that there exists β > 1 such that Eα [β
σα ]< ∞. Then, for all q≥ 0 and

ε > 0, there exists δ ∈ (1,β ) such that

sup
n∈N
Eα [δ

q+τα◦θn ]≤ 1+ ε .

Proof. Set σ
(0)
α = 0 and for k≥ 0, pk =Pα(σα = k) and qk =Pα(σα > k)=∑ j>k p j.

Then,

Pα(τα ◦θn = k) =
∞

∑
j=0
Pα(σ

( j)
α < n≤ σ

( j+1)
α ,τα ◦θn = k)

=
∞

∑
j=0

n−1

∑
i=0
Pα(σ

( j)
α = i,σα ◦θ

σ
( j)
α

= k+n− i)

=
n−1

∑
i=0

∞

∑
j=0
Pα(σ

( j)
α = i)Pα(σα = k+n− i)≤

n−1

∑
i=0

pk+n−i =
n

∑
j=1

pk+ j . (13.2.18)

This proves (13.2.15).

(i) Follows from (13.2.15) by summation by parts.
(ii) Using (13.2.18) and the fact that r̄ is increasing,

Eα [r̄(τα ◦θn)]≤
n

∑
j=1

∞

∑
k=0

r̄(k)pk+ j ≤
n

∑
j=1

∞

∑
k=0

r̄(k+ j)pk+ j

≤
n

∑
j=1
Eα [r̄(σα)]≤ nEα [r̄(σα)] .

This proves (13.2.16) by noting that r ≤ r̄. Since r̄ is increasing, using again
(13.2.18), we obtain

1
n
Eα [r̄(τα ◦θn)]≤

1
n

∞

∑
k=1

r̄(k)
n

∑
j=1

pk+ j

=
1
n

n

∑
j=1

{
∞

∑
k= j+1

r̄(k− j)pk

}
≤ 1

n

n

∑
j=1

{
∞

∑
k= j+1

r̄(k)pk

}
.

Since lim j→∞ ∑
∞
k= j+1 r̄(k)pk = 0, this proves (13.2.17) by noting that r ≤ r̄.

(iii) Set q j = ∑k> j pk. For ε > 0, we have
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∞

∑
k=0

β
kqk =

∞

∑
k=0

β
k
∑
j>k

p j =
∞

∑
j=1

p j

j−1

∑
k=0

β
k

≤ 1
β −1

∞

∑
j=1

β
j p j = Eα [β

σα ]/(β −1)< ∞ .

Now, choose ` sufficiently large so that β q
∑

∞
k=` β kqk ≤ ε/2. This integer ` being

fixed, pick δ ∈ (1,β ) such that δ q+` ≤ 1+ ε/2. The proof is completed by using
again (13.2.18),

Eα [δ
q+τα◦θn ] = Eα

[
δ

q+τα◦θn1{τα◦θn≤`}

]
+Eα

[
δ

q+τα◦θn1{τα◦θn>`}

]
≤ δ

q+`+β
q

∞

∑
k=`

β
kPα(τα ◦θn = k)≤ δ

q+`+β
q

∞

∑
k=`

β
kqk ≤ 1+ ε .

2

Lemma 13.2.6 Let P be a Markov kernel on X×X . Assume that P admits an
accessible, aperiodic and positive atom α . Let r = {r(n), n ∈ N} be a positive
sequence and set r̄(n) = max0≤ j≤n r( j).

(i) If Eα [r̄(σα + q)] < ∞, then, for every ρ ∈ (1− γ,1), there exists a constant C
such that for all j ∈ N,

Ē
[

r(U j+1)1{κ > j}
∣∣F̄ν0

]
≤Cρ

jU0 . (13.2.19)

(ii) If Eα [r0(σα + q− 1)] < ∞, then for every ε > 0, there exists an integer ` such
that for all n≥ ` and all j ∈ N,

Ē
[

r(U j+1)1
{

U j+1 ≥ n
}∣∣B j

]
≤ ε . (13.2.20)

Proof. (i) Since {κ > j−1} ∈ F̄ν j−1 ⊂B j, we obtain, by Lemma 13.2.3,

Ē
[

r(U j+1)1{κ > j}
∣∣F̄ν0

]
≤ Ē

[
1{κ > j−1} Ē

[
r(U j+1)

∣∣B j
]∣∣F̄ν0

]
= Ē

[
1{κ > j−1}Hr(U j)

∣∣F̄ν0

]
(13.2.21)

with Hr(u) = Eα [r(q+ τα ◦θu+q)]. Applying Lemma 13.2.5-(ii) yields

Hr(u)≤ (u+q)Eα [r̄(q+σα)] .

Set w j = Ē
[
U j1{κ > j−1}

∣∣F̄ν0

]
. Combining this inequality with (13.2.14) yields

Ē
[

r(U j+1)1{κ > j}
∣∣F̄ν0

]
≤ Eα [r̄(q+σα)]Ē

[
U j1{κ > j−1}

∣∣F̄ν0

]
+qEα [r̄(q+σα)]P̄

(
κ > j−1 |F̄ν0

)
≤ Eα [r̄(q+σα)]w j +qEα [r̄(q+σα)](1− γ) j−1 , (13.2.22)

Using again (13.2.21) with r(u) = u, we obtain
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w j+1 = Ē
[
U j+11{κ > j}

∣∣F̄ν0

]
≤ Ē

[
1{κ > j−1}H(U j)

∣∣F̄ν0

]
, (13.2.23)

where we now define H(u) = q+Eα [τα ◦θu+q]. Lemma 13.2.5-(ii) (applied to the
identity sequence r(n) = n) implies that limu→∞ H(u)/u = 0. Thus, there exists a
constant M1 such that for all u ∈ N, H(u) ≤ (1− γ)u+M1. Combining this with
(13.2.23) yields

w j+1 ≤ (1− γ)Ē
[
U j1{κ > j−1}

∣∣F̄ν0

]
+M1P̄

(
κ > j−1 |F̄ν0

)
≤ (1− γ)w j +M1(1− γ) j−1 .

Noting that w0 = Ē
[
U0 |F̄ν0

]
= U0, we obtain w j ≤ (1− γ) jU0 + jM1(1− γ) j−2.

Plugging this inequality into (13.2.22) completes the proof of (13.2.19).
(ii) Fix now ε > 0. Applying Lemma 13.2.3, we have, for all j ∈ N and all n≥ q,

Ē
[

r(U j+1)1
{

U j+1 ≥ n
}∣∣B j

]
≤ sup

u
Eα [r(q+ τα ◦θq+u)1

{
q+ τα ◦θq+u ≥ n

}
]

≤ ∑
k≥n−q

r(k+q)Pα(σα > k)

Since ∑
∞
k=0 r(k+ q)Pα(σα > k) = Eα [r0(σα + q− 1)] < ∞ by assumption, we can

choose ` such that for all n≥ `, ∑k≥n−q r(k+q)Pα(σα > k)≤ ε .
2

13.2.1 Coupling bounds

Proposition 13.2.7 Let P be a Markov kernel on X×X . Assume that P ad-
mits an accessible, aperiodic and positive atom α . If ξ ,ξ ′ ∈M1(X ) satisfy
Pξ (σα < ∞) = Pξ ′(σα < ∞) = 1, then P̄ξ⊗ξ ′(T < ∞) = 1.

Proof. First note that by Lemma 13.2.1, P̄ξ⊗ξ ′(νk <∞) = 1 for all k ∈N. Moreover,
by (13.2.14),

P̄ξ⊗ξ ′(κ > n)≤ (1− γ)n , (13.2.24)

whence P̄ξ⊗ξ ′(κ < ∞) = 1 and P̄ξ⊗ξ ′(T < ∞) = 1 by (13.2.7). 2

We now give a bound for geometric moments of the coupling time T .

Proposition 13.2.8 Let P be a Markov kernel on X×X . Assume that P admits
an accessible, aperiodic and positive atom α and that there exists β > 1 such
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that Eα [β
σα ]< ∞. Then there exist δ ∈ (1,β ) and ς < ∞ such that for all initial

distributions ξ and ξ ′,

Eξ⊗ξ ′ [δ
T ]≤ ς{Eξ [β

σα ]+Eξ ′ [β
σα ]} .

Proof. For every nonnegative increasing sequence r, we have

Ēξ⊗ξ ′ [r(T )]≤ Ēξ⊗ξ ′ [r(νκ)] =
∞

∑
j=0
Ēξ⊗ξ ′ [1{κ = j}r(ν j)]

≤ Ēξ⊗ξ ′ [r(ν0)]+
∞

∑
j=1
Ēξ⊗ξ ′ [1{κ > j−1}r(ν j)] . (13.2.25)

Applying (13.2.25) to r(k) = δ k and then using the Cauchy–Schwarz inequality, we
obtain

Ēξ⊗ξ ′ [δ
T ]≤ Ēξ⊗ξ ′ [δ

ν0 ]+
∞

∑
j=0
Ēξ⊗ξ ′ [1{κ > j}δ

ν j+1 ]

≤ Ēξ⊗ξ ′ [β
ν0 ]+

∞

∑
j=0
{P̄ξ⊗ξ ′(κ > j)Ēξ⊗ξ ′ [δ

2ν j+1 ]}1/2 .

We now bound each term of the right-hand side. Recall that by (13.2.14), P̄ξ⊗ξ ′(κ >

j)≤ (1−γ) j. Choose ε > 0 such that (1+ε)(1−γ)< 1. Combining Lemma 13.2.3
and Lemma 13.2.5-(iii), there exists δ ∈ (1,β ) such that for all j ∈ N,

Ē
[

δ
2U j+1

∣∣B j
]
≤ sup

u∈N
Eα

[
δ
(2q+2τα◦θ̄u+q)

]
≤ 1+ ε ,

Then, for all j ∈ N,

Ēξ⊗ξ ′ [δ
2ν j+1 ] = Ēξ⊗ξ ′

[
δ

2ν j Ē
[

δ
2U j+1

∣∣B j
]]
≤ (1+ ε)Ēξ⊗ξ ′ [δ

2ν j ] ,

and by induction,

Ēξ⊗ξ ′ [δ
2ν j ]≤ (1+ ε) jĒξ⊗ξ ′ [δ

ν0 ]≤ (1+ ε) jĒξ⊗ξ ′ [β
ν0 ] .

Finally,

Ēξ⊗ξ ′ [δ
T ]≤ Ēξ⊗ξ ′ [β

ν0 ]+ (1+ ε)1/2Ē1/2
ξ⊗ξ ′ [β

ν0 ]
∞

∑
j=0
{(1− γ)(1+ ε)} j/2 .

The series is convergent because of the choice of ε . The proof is completed by
noting that
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1≤ Ēξ⊗ξ ′ [β
ν0 ] = Ēξ⊗ξ ′ [β

σα×X ∨β
σX×α ]≤ Eξ [β

σα ]+Eξ ′ [β
σα ] .

2

We now turn to the case of subgeometric moments.

Proposition 13.2.9 Let P be a Markov kernel on X×X . Assume that P ad-
mits an accessible, aperiodic and positive atom α . Let r ∈ Λ̄1 be such that
Eα [r0(σα)] < ∞. Then, there exists a constant ς < ∞ such that for all initial
distributions ξ and ξ ′,

Ēξ⊗ξ ′ [r(T )]≤ ς{Eξ [r(σα)]+Eξ ′ [r(σα)]} .

Proof. Without loss of generality, we assume that r ∈Λ1. Set

w j = Ēξ⊗ξ ′ [1{κ > j−1}r(ν j)] .

Applying (13.2.25), we obtain

Ēξ⊗ξ ′ [r(T )]≤
∞

∑
j=0

w j . (13.2.26)

Set ε > 0 such that ε̃ := (1+ ε)(1− γ)+ ε < 1. By Lemma 13.2.6, there exists a
constant n0 such that for all n≥ n0 and all j ∈ N,

Ē
[

r(U j+1)1
{

U j+1 ≥ n
}∣∣B j

]
≤ ε .

Such an integer n0 being chosen and there exists a constant ς such that r(m+n) ≤
(1+ε)r(m)+ς +1{n≥ n0}r(m)r(n) (see Lemma 13.1.3). Plugging this inequality
into w j+1 = Ēξ⊗ξ ′ [1{κ > j}r(ν j +U j)], we get

w j+1 ≤ (1+ ε)Ēξ⊗ξ ′ [1{κ > j}r(ν j)]

+ ςPξ⊗ξ ′(κ > j)+ Ēξ⊗ξ ′
[
1{κ > j}1

{
U j+1 > n0

}
r(ν j)r(U j+1)

]
We now bound each term of the right-hand side. By Lemma 13.2.4,

Ēξ⊗ξ ′ [1{κ > j}r(ν j)] = Ēξ⊗ξ ′

[
Ē
[
1{κ > j}r(ν j)

∣∣F̄ν j−1

]]
≤ (1− γ)Ēξ⊗ξ ′

[
1{κ > j−1} Ē

[
r(ν j)

∣∣F̄ν j−1

]]
= (1− γ)w j .

Applying (13.2.20) yields
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Ēξ⊗ξ ′
[
1{κ > j}1

{
U j+1 > n0

}
r(ν j)r(U j+1)

]
= Ēξ⊗ξ ′

[
1{κ > j−1}r(ν j)Ē

[
r(U j+1)1

{
U j+1 > n0

}∣∣B j
]]
≤ εw j .

Finally, applying (13.2.24), we obtain

w j+1 ≤ (1+ ε)(1− γ)w j + ς(1− γ) j + εw j ≤ ε̃w j + ς ε̃
j .

This implies that w j ≤ ε̃ jw0 + ς jε̃ j−1. The proof is completed by plugging this
inequality into (13.2.26) together with

w0 = Ēξ⊗ξ ′ [r(ν0)]≤ Ēξ⊗ξ ′ [r(σα×X)∨ r(σX×α)]≤ Eξ [r(σα)]+Eξ ′ [r(σα)] .

2

Proposition 13.2.10 Let r ∈ Λ̄1 such that Eα [r0(σα)] < ∞. Then, there exists
a constant ς < ∞ such that for all initial distributions ξ and ξ ′,

Ēξ⊗ξ ′ [r
0(T )]≤ ς{Eξ [r

0(σα)]+Eξ ′ [r
0(σα)]} .

Proof. Without loss of generality, we assume that r ∈ Λ1. Applying (13.2.25) with
r replaced by r0 and defining now w j = Ēξ⊗ξ ′ [1{κ > j−1}r0(ν j)], we get

Ēξ⊗ξ ′ [r
0(T )]≤

∞

∑
j=0

w j . (13.2.27)

Set ε̃ = (1+ ε)(1− γ)+ ε and choose ε > 0 such that ε̃ < 1. We now prove that
the right-hand side of (13.2.27) is a convergent series. According to Lemma 13.2.6,
there exists m such that Ē

[
r(U j+1)1

{
U j+1 > m

}∣∣B j
]
≤ ε for all j ∈ N. This m

being chosen, write w j+1 = w(0)
j+1 +w(1)

j+1 where

w(0)
j+1 := Ēξ⊗ξ ′ [1

{
κ > j,U j+1 > m

}
r0(U j+1 +ν j)] ,

w(1)
j+1 := Ēξ⊗ξ ′ [1

{
κ > j,U j+1 ≤ m

}
r0(ν j +U j+1)] .

Since r ∈ Λ1 ⊂S (see Definition 13.1.1), by Lemma 13.1.4, r0 ∈ S̄ . This allows
to apply Lemma 13.2.6 (i) with r replaced by r0 ∈ Λ̄1: for all ρ ∈ (1− γ,1), there
exists a finite constant ς0 such that for all j ∈ N,

Ēξ⊗ξ ′ [1{κ > j}r0(U j+1)]≤ ς0ρ
jĒξ⊗ξ ′ [U0] . (13.2.28)

Then, using (13.2.28) and r0 ∈ S̄ , we have
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w(0)
j+1

≤ Ēξ⊗ξ ′ [1{κ > j}r0(U j+1)]+ Ēξ⊗ξ ′ [1{κ > j}r0(ν j)r(U j+1)1
{

U j+1 > m
}
]

≤ ς0ρ
jĒξ⊗ξ ′ [U0]+ Ēξ⊗ξ ′

[
1{κ > j−1}r0(ν j)Ē

[
r(U j+1)1

{
U j+1 > m

}∣∣B j
]]

≤ ς0ρ
jĒξ⊗ξ ′ [U0]+ εw j .

Moreover, since limk→∞ r(k)/r0(k) = 0, there exists a finite constant ς1 such that for
all k ∈ N, r(k)r0(m)≤ εr0(k)+ ς1. Then, using again (13.2.28), we obtain

w(1)
j+1 ≤ Ēξ⊗ξ ′ [1

{
κ > j,U j+1 ≤ m

}
r0(ν j +m)]

≤ Ēξ⊗ξ ′ [1{κ > j}{r0(ν j)+ r(ν j)r0(m)}]
≤ (1− γ)Ēξ⊗ξ ′ [1{κ > j−1}{(1+ ε)r0(ν j)+ ς1}]
≤ (1− γ)(1+ ε)w j + ς1(1− γ) j .

Finally, there exists a finite constant M such that for all j ∈ N,

w j+1 ≤ {(1− γ)(1+ ε)+ ε}w j +{ς0Ēξ⊗ξ ′ [U0]+ ς1}(1− γ) j ≤ ε̃w j +Mε̃
j .

This implies that w j ≤ ε̃ jw0 +M jε̃ j−1. The proof is completed by plugging this
inequality into (13.2.27) and noting that

w0 = Ēξ⊗ξ ′ [r
0(ν0)]≤ Ēξ⊗ξ ′ [r

0(σα×X)∨ r0(σX×α)]

≤ Eξ [r
0(σα)]+Eξ ′ [r

0(σα)] .

2

We conclude this section with a bound on a polynomial moment Ēξ⊗ξ ′ [T s] of the
coupling time. When s> 1 this is simply a particular case of 13.2.10. However, when
s ∈ (0,1), the function r(n) = (n+1)s−1 is decreasing and thus does not belong to
Λ̄1 so that Proposition 13.2.10 does not apply.

Proposition 13.2.11 Let P be a Markov kernel on X×X . Assume that P ad-
mits an accessible, aperiodic and positive atom α . Let s > 0 and assume that
Eα [σ

s
α ] < ∞. Then, there exists ς > 0 such that for all initial distributions ξ

and ξ ′,
Ēξ⊗ξ ′ [T

s]≤ ς{Eξ [σ
s
α ]+Eξ ′ [σ

s
α ]} .

Proof. If s≥ 1, we apply Proposition 13.2.10 to r(n) = (n+1)s−1. If s ∈ (0,1), we
can apply the bound (a0+ . . .+an)

s ≤ as
0+ . . .+as

n. Using the convention ∑
0
j=1 ai =

0, we obtain
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Ēξ⊗ξ ′ [T
s]≤ Ēξ⊗ξ ′ [ν

s
κ ]≤ Ēξ⊗ξ ′

[(
ν

s
0 +

κ

∑
j=1

U s
j

)]

≤ Ēξ⊗ξ ′ [ν
s
0]+

∞

∑
j=1
Ēξ⊗ξ ′

[
U s

j1{κ > j−1}
]
. (13.2.29)

By Lemma 13.2.6-(i) applied with r(k) = k, for every ρ ∈ (1− γ,1), there exists a
constant M such that for all j ≥ 1,

Ē
[
1{κ > j}U j+1

∣∣Fν0

]
≤Mρ

jU0

This implies, using the concavity of the function u→ us,

Ēξ⊗ξ ′
[
U s

j+11{κ > j}
]
= Ēξ⊗ξ ′

[
Ē
[
U s

j+11{κ > j}
∣∣F̄0

]]
≤ Ēξ⊗ξ ′

[
Ē
[
U j+11{κ > j}

∣∣F̄0
]s]≤ ς

s
ρ

s jĒξ⊗ξ ′ [U
s
0 ] .

Plugging this into (13.2.29) and noting that 1≤w0 = Ēξ⊗ξ ′ [ν
s
0]≤Eξ [σ

s
α ]+Eξ ′ [σ

s
α ]

complete the proof. 2

13.3 Rates of convergence in total variation distance

In this section, we show how the coupling inequalities (Lemma 8.3.1) combined
with Propositions 13.2.8 to 13.2.10 yield rates of convergence in the total variation
distance of δxPn to the invariant probability measure π (whose existence is ensured
by the existence of a positive atom α).

Theorem 13.3.1. Let P be a Markov kernel on X×X and α an accessible ape-
riodic and positive atom. Denote by π the unique invariant probability. Assume
that there exists β > 1 such that Eα [β

σα ] < ∞. Then Eπ [β
σα ] < ∞ and there exist

δ ∈ (1,β ) and ς < ∞ such that for every initial distribution ξ ,

∞

∑
n=0

δ
ndTV(ξ Pn,π)≤ ςEξ [β

σα ] .

Remark 13.3.2. SinceEπ [β
σα ]<∞, the series ∑

∞
n=0 δ ndTV(P

n(x, ·),π) is summable
for π-almost all x ∈ X. N

Proof. By Corollary 6.4.4, Eπ [β
σα ] < ∞. Applying the bound (8.3.4) and Proposi-

tion 13.2.8 with µ = π , we obtain that there exist δ ∈ (1,β ) and ς < ∞ such that for
all ξ ∈M1(X ),
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∞

∑
n=0

δ
ndTV(ξ Pn,π)≤ Eξ⊗π

[
T

∑
n=0

δ
n

]
≤ δ (δ −1)−1Eξ⊗π [δ

T ]≤ ς
{
Eξ [β

σα ]+Eπ [β
σα ]
}
.

2

To state the results in the subgeometric case, we introduce the following convention.
The first difference ∆r of a sequence r is defined by

∆r(n) = r(n)− r(n−1) , n≥ 1 , ∆r(0) = r(0) .

Note that with this convention we have, for all n≥ 0,

r(n) =
n

∑
k=0

∆r(k) = (∆r)0(n) .

Theorem 13.3.3. Let P be a Markov kernel on X×X and α an accessible, ape-
riodic and positive atom α . Denote by π the unique invariant probability measure.
Assume that there exists r ∈ Λ̄1 such that Eα [r0(σα)]< ∞.

(i) There exists a constant ς < ∞ such that for all initial distributions ξ and µ ,

∞

∑
n=0

r(n)dTV(ξ Pn,µPn)≤ ς
(
Eξ [r

0(σα)]+Eµ [r0(σα)]
)
. (13.3.1)

(ii) There exists a constant ς < ∞ such that for every initial distribution ξ and all
n ∈ N

r(n)dTV(ξ Pn,π)≤ ςEξ [r(σα)] . (13.3.2)

(iii) If either limn→∞ ↑ r(n) = ∞ and Eξ [r(σα)] < ∞ or limn→∞ r(n) < ∞ and
Pξ (σα < ∞) = 1, then for

lim
n→∞

r(n)dTV(ξ Pn,π) = 0 . (13.3.3)

(iv) If in addition ∆r ∈ Λ̄1, then there exists a constant ς < ∞ such that for every
initial distribution ξ ,

∞

∑
n=1

∆r(n)dTV(ξ Pn,π)≤ ςEξ [r(σα)] .

Proof. Without loss of generality, we assume that r ∈Λ1.

(i) The bound (13.3.1) is obtained by applying (8.3.4) and Proposition 13.2.10.
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(ii) By Lemma 6.4.3, the condition Eα [r0(σα)] implies that Eπ [r(σα)] < ∞:
hence, Pπ(σα < ∞) = 1. Proposition 13.2.9 shows that there exists ς < ∞ such that
Ēξ⊗π [r(T )]≤ ς{Eξ [r(σα)]+Eπ [r(σα)]}. By Lemma 8.3.1, we get

r(n)dTV(ξ Pn,π)≤ P̄ξ⊗π(T ≥ n)≤ Ēξ⊗π [r(T )] .

(iii) This is a refinement of (ii). The case limsupr(n) < ∞ and Pξ (σα < ∞) =
1 is dealt with in Theorem 8.2.6. Note that limn→∞ ↑ r(n) = ∞, the condition
Eξ [r(σα)] < ∞ implies that Pξ (σα < ∞) = 1. Since Eπ [r(σα)] < ∞, we also have
Pπ(σα < ∞) = 1. Proposition 13.2.7 shows that P̄ξ⊗π(T < ∞) = 1.
On the other hand, by Proposition 13.2.9 we have Ēξ⊗π [r(T )] ≤ ς{Eξ [r(σα)] +

Eπ [r(σα)]}, thus Eξ [r(σα)]< ∞ and Eπ [r(σα)]< ∞ imply Ēξ⊗π [r(T )]< ∞. Since
the sequence {r(n), n ∈ N} is non decreasing it holds that

r(n)P̄ξ⊗π(T ≥ n)≤ Ēξ⊗π [r(T )1{T≥n}] .

Since P̄ξ⊗π(T < ∞) = 1 and Ēξ⊗π [r(T )] < ∞, Lebesgue’s dominated convergence
theorem shows that limn→∞ r(n)P̄ξ⊗π(T ≥ n) = 0. The proof is concluded by
Lemma 8.3.1 which shows that, for all n ∈ N, dTV(ξ Pn,π)≤ P̄ξ⊗π(T ≥ n).

(iv) We assume without loss of generality that ∆r ∈Λ1. Applying (8.3.4) we get
that for any ξ ∈M1(X ),

∞

∑
n=1

∆r(n)dTV(ξ Pn,π)≤ Ēξ⊗π [r(T )] , (13.3.4)

Applying now Proposition 13.2.9 to the sequence ∆r, there exists ς1 < ∞ such
that Ēξ⊗π [r(T )] ≤ ς

{
Eξ [r(σα)]+Eπ [r(σα)]

}
. The proof is concluded upon not-

ing that, by Lemma 6.4.3, Eπ [r(σα)]< ∞.

2

13.4 Rates of convergence in f -norm

Let f : X→ [1,∞) be a measurable function fixed once and for all throughout this
section. Define the f -norm of a measure ξ ′ ∈M±(X ) as follows:∥∥ξ

′∥∥
f = sup

g∈F(X)
|g|≤ f

ξ
′(g) . (13.4.1)

Properties of the f -norm are given in Appendix D.3. The next result, which funda-
mentally relies on the fact that α is an atom, provides a very simple link between
the rate of convergence in total variation norm and in f -norm.



306 13 Rates of convergence for atomic Markov chains

Proposition 13.4.1 Let P be a Markov kernel on X×X . Assume that P admits
an accessible, aperiodic and positive atom α .

(i) For all n ∈ N∗,∥∥ξ Pn−ξ
′Pn∥∥

f ≤ Eξ

[
f (Xn)1{σα≥n}

]
+Eξ ′

[
f (Xn)1{σα≥n}

]
+

n−1

∑
j=1
|ξ P j(α)−ξ

′P j(α)|Eα

[
f (Xn− j)1{σα≥n− j}

]
. (13.4.2)

(ii) For every sequence r ∈S and initial distributions ξ and ξ ′,

∞

∑
n=1

r(n)
∥∥ξ Pn−ξ

′Pn∥∥
f ≤ Eξ

[
σα

∑
j=1

r( j) f (X j)

]
+Eξ ′

[
σα

∑
j=1

r( j) f (X j)

]

+Eα

[
σα

∑
j=1

r( j) f (X j)

]
∞

∑
n=1

r(n)|ξ Pn(α)−ξ
′Pn(α)| . (13.4.3)

Remark 13.4.2. By definition of the total variation distance, in (13.4.2) and (13.4.3),
the terms |ξ Pn(α)−ξ ′Pn(α)| can be further bounded by dTV(ξ Pn,ξ ′Pn). N

Proof (of Proposition 13.4.1).

(i) Let g ∈ Fb(X). Then,

Eξ [g(Xn)] = Eξ [g(Xn)1{σα ≥ n}]+
n−1

∑
j=1
Eξ [1α(X j)1αc(X j+1) · · ·1αc(Xn)g(Xn)]

= Eξ [g(Xn)1{σα ≥ n}]+
n−1

∑
j=1
Eξ

[
1α(X j)EX j [g(Xn− j)1{σα ≥ n− j}]

]
= Eξ [g(Xn)1{σα ≥ n}]+

n−1

∑
j=1
Pξ (X j ∈ α)Eα [g(Xn− j)1{σα ≥ n− j}]

= Eξ [g(Xn)1{σα ≥ n}]+
n−1

∑
j=1

ξ P j(α)Eα [g(Xn− j)1{σα ≥ n− j}] .

In the previous computations, we used the last-exit decomposition and the fact that
α is an atom was crucial. This yields, for all g ∈ Fb(X) such that |g| ≤ f ,

|ξ Png−ξ
′Png| ≤ Eξ [ f (Xn)1{σα ≥ n}]+Eξ ′ [ f (Xn)1{σα ≥ n}]

+
n−1

∑
j=1
|ξ P j(α)−ξ

′P j(α)|Eα [ f (Xn− j)1{σα ≥ n− j}] .
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Taking the supremum over all g ∈ Fb(X) such that |g| ≤ f yields (13.4.2), by Theo-
rem D.3.2.

(ii) For every initial distribution ξ , we have

∞

∑
n=1

r(n)Eξ [ f (Xn)1{σα ≥ n}] = Eξ

[
σα

∑
j=1

r( j) f (X j)

]
.

Thus, multiplying both sides of (13.4.2) by r(n) and summing over n, we obtain

∞

∑
n=1

r(n)
∥∥ξ Pn−ξ

′Pn∥∥
f ≤ Eξ

[
σα

∑
j=1

r( j) f (X j)

]
+Eξ ′

[
σα

∑
j=1

r( j) f (X j)

]

+
∞

∑
n=1

r(n)
n−1

∑
j=1
|ξ P j(α)−ξ

′P j(α)|Eα [ f (Xn− j)1{σα ≥ n− j}] .

Since r ∈S , (see Definition 13.1.1) we can write

∞

∑
n=1

r(n)
n−1

∑
j=1
|ξ P j(α)−ξ

′P j(α)|Eα [ f (Xn− j)1{σα ≥ n− j}]

=
∞

∑
j=1
|ξ P j(α)−ξ

′P j(α)|
∞

∑
n= j+1

r(n)Eα [ f (Xn− j)1{σα ≥ n− j}]

=
∞

∑
j=1
|ξ P j(α)−ξ

′P j(α)|
∞

∑
n=1

r(n+ j)Eα [ f (Xn)1{σα ≥ n}]

≤
∞

∑
j=1

r( j)|ξ P j(α)−ξ
′P j(α)|

∞

∑
n=1

r(n)Eα [ f (Xn)1{σα ≥ n}]

= Eα

[
σα

∑
j=1

r( j) f (X j)

]
∞

∑
j=1

r( j)|ξ P j(α)−ξ
′P j(α)| .

This proves (13.4.3).

2

Combining Theorems 13.3.1 and 13.3.3 and Proposition 13.4.1, we obtain rates
of convergence in f -norm for atomic chains.

Theorem 13.4.3. Let P be a Markov kernel on X×X and α an accessible, aperi-
odic and positive atom. Denote by π the unique invariant probability. Assume that
there exists δ > 1 such that

Eα

[
σα

∑
n=1

δ
n f (Xn)

]
< ∞ .
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Then, there exist β ∈ (1,δ ) and a constant ς such that, for every ξ ∈M1(X ),

∞

∑
n=1

β
n ‖ξ Pn−π‖ f ≤ ςEξ

[
σα

∑
n=1

δ
n f (Xn)

]
. (13.4.4)

Proof. By Lemma 6.4.3, we have Eπ [∑
σα

n=1 δ n f (Xn)]< ∞. Thus the bound (13.4.4)
is a consequence of Theorem 13.3.1 and Proposition 13.4.1. 2

Theorem 13.4.4. Let P be a Markov kernel on X×X and α an accessible, aperi-
odic and positive atom. Denote by π the unique invariant probability. Assume that
there exists r ∈ Λ̄1 such that

Eα

[
σα

∑
k=1

r(k) f (Xk)

]
< ∞ . (13.4.5)

(i) There exists ς < ∞ such that for any initial distributions ξ ,ξ ′ ∈M1(X ),

∞

∑
n=0

r(n)
∥∥ξ Pn−ξ

′Pn∥∥
f ≤ ς

{
Eξ

[
σα

∑
k=1

r(k) f (Xk)

]
+Eξ ′

[
σα

∑
k=1

r(k) f (Xk)

]}
.

(13.4.6)
(ii) There exists ς < ∞ such that for any initial distribution ξ ∈M1(X ),

r(n)‖ξ Pn−π‖ f ≤ ςEξ

[
σα

∑
k=1

r(k) f (Xk)

]
. (13.4.7)

(iii) If Eξ [∑
σα

k=1 r(k) f (Xk)]< ∞, then

lim
n→∞

r(n)‖ξ Pn−π‖ f = 0 . (13.4.8)

(iv) If ∆r∈ Λ̄1, then there exists a finite constant C such that for any ξ ∈M1(X ),

∞

∑
n=0

∆r(n)‖ξ Pn−π‖ f ≤CEξ

[
σα

∑
k=1

∆r(k) f (Xk)

]
. (13.4.9)

Proof. Without loss of generality, we assume that r ∈Λ1. Since f ≥ 1, the assump-
tion (13.4.5) implies that Eα [r0(σα)]< ∞, where r0(n) = ∑

n
k=0 r(k).

(i) Combining Theorem 13.3.3-(i) and Proposition 13.4.1-(ii) yields (13.4.6).
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(ii) By Proposition 13.4.1-(i)

r(n)‖ξ Pn−π‖ f ≤ r(n)Eξ [1{σα ≥ n} f (Xn)]+ r(n)Eπ [1{σα ≥ n} f (Xn)]

+ r(n)
n−1

∑
j=1

∥∥ξ P j−π
∥∥

TVEα [1{σα ≥ n− j} f (Xn− j)] .

(13.4.10)

The first term of the right-hand side of (13.4.10) is bounded byEξ

[
∑

σα

k=1 r(k) f (Xk)
]
.

Consider now the second term in the right-hand side in (13.4.10). Applying the same
computations as in the proof of Lemma 6.4.3, we have

r(n)Eπ [1{σα ≥ n} f (Xn)] = r(n)π(α)Eα

[
σα−1

∑
k=0

EXk [ f (Xn)1{σα ≥ n}]

]

= r(n)π(α)
∞

∑
k=0
Eα [1{σα > k} f (Xn+k)1{σα ≥ n+ k}]

= r(n)π(α)Eα

[
σα

∑
k=n

f (Xk)

]
≤ π(α)Eα

[
σα

∑
k=n

r(k) f (Xk)

]

≤ π(α)Eα

[
σα

∑
k=1

r(k) f (Xk)

]
.

The last term is finite by assumption (13.4.5). Consider now the last term in the
right-hand side of (13.4.10). Using r(n)≤ r( j)r(n− j) for 1≤ j ≤ n−1 and apply-
ing Theorem 13.3.3-(ii), we obtain

r(n)
n−1

∑
j=1

∥∥ξ P j−π
∥∥

TVEα [1{σα ≥ n− j} f (Xn− j)]

≤

{
sup
j∈N∗

r( j)
∥∥ξ P j−π

∥∥
TV

}
n−1

∑
j=1

r(n− j)Eα [1{σα ≥ n− j} f (Xn− j)]

≤ ςEξ

[
σα

∑
k=1

r(k) f (Xk)

]
∞

∑
k=1

r(k)Eα [1{σα ≥ k} f (Xk)]

= ςEξ

[
σα

∑
k=1

r(k) f (Xk)

]
Eα

[
σα

∑
k=1

r(k) f (Xk)

]
.

Since the last expectation is finite by assumption (13.4.5), the proof of (13.4.7) is
completed.

(iii) We now assume Eξ [∑
σα

k=1 r(k) f (Xk)] < ∞ and turn to the proof of (13.4.8).
We will use again the bound (13.4.10). The first term in the right-hand side of
(13.4.10) tends to zero since it is the general term of a summable series by assump-
tion. Consider the second term in the right-hand side of (13.4.10). As previously, it



310 13 Rates of convergence for atomic Markov chains

can be bounded by

r(n)Eπ [1{σα ≥ n} f (Xn)]≤ π(α)Eα

[
σα

∑
k=n

r(k) f (Xk)

]
.

Since the last expectation is finite by assumption (13.4.5), this shows that limn→∞ =
0 by Lebesgue’s dominated convergence theorem. We finally consider the last
term of the right-hand side in (13.4.10). Set a( j) = r( j)

∥∥ξ P j−π
∥∥

TV and b( j) =
r( j)Eα [1{σα ≥ j} f (X j)]. Using r(n)≤ r( j)r(n− j) for 1≤ j ≤ n−1, we have

r(n)
n−1

∑
j=1

∥∥ξ P j−π
∥∥

TVEα [1{σα ≥ n− j} f (Xn− j)]

≤
n−1

∑
j=1

a( j)b(n− j) =
∞

∑
k=1

b(k)a(n− k)1{1≤ k < n} .

By Theorem 13.3.3-(ii),

lim
n→∞

a(n− k)1{1≤ k ≤ n}= lim
n→∞

r(n)‖ξ Pn−π‖TV = 0 .

Moreover, ∑
∞
k=1 b(k)< ∞ by (13.4.5), thus Lebesgue’s dominated convergence the-

orem yields

lim
n→∞

r(n)
n−1

∑
j=1

∥∥ξ P j−π
∥∥

TVEα [1{σα ≥ n− j} f (Xn− j)]

= lim
n→∞

∞

∑
k=1

b(k)a(n− k)1{1≤ k < n}= 0 . (13.4.11)

The proof of (13.4.8) is completed.
(iv) Without loss of generality, we assume that ∆r ∈ S̄ . Since f ≥ 1, the as-

sumption (13.4.5) implies that Eα [r0(σα)] < ∞. Applying Proposition 13.4.1-(ii)
with r replaced by ∆r and ξ ′ replaced by π yields

∞

∑
n=1

∆r(n)‖ξ Pn−π‖ f ≤ Eξ

[
σα

∑
j=1

∆r( j) f (X j)

]
+Eπ

[
σα

∑
j=1

∆r( j) f (X j)

]

+Eα

[
σα

∑
j=1

∆r( j) f (X j)

]
∞

∑
n=1

∆r(n)‖ξ Pn−π‖TV . (13.4.12)

The second term of the right-hand side is finite according to Lemma 6.4.3 (with r
replaced by ∆r) and (13.4.9). Since r ∈ Λ1, Theorem 13.3.3-(iv) together (13.4.5)
imply that the last term of the right-hand side in (13.4.12) is finite.

2
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13.5 Exercises

13.1. Let P be a Markov kernel on X×X . Assume that P admits an accessible,
aperiodic and positive atom α . Let s > 0 and assume that Eα [σ

s
α ]< ∞.

1. Show that there exists M > 0 such that for all initial distributions λ and µ ,

∞

∑
n=0

ns−1dTV(λPn,µPn)≤M{Eλ [σ
s
α ]+Eµ [σ

s
α ]} . (13.5.1)

2. Assume that Eλ [σ
s
α ]+Eµ [σ

s
α ]< ∞. Show that limn→∞ nsdTV(λPn,µPn) = 0.

13.2. In this exercise, we use the notations of Chapter 8. We consider a renewal
process {Sk, k∈N}with aperiodic waiting time distribution b and delay distribution
a. We want to investigate the rate of convergence of the pure and delayed renewal
sequences {u(n), n∈N} and {va(n), n∈N} to its limit m−1, where m=∑

∞
n=1 nb(n),

assumed to be finite.

1. Assume that there exists β > 1 such that ∑
∞
n=1 β na(n) < ∞. Show that there

exists δ > 1 and a constant M such that

∞

∑
n=1

δ
n|va(n)−u(n)| ≤M

∞

∑
n=1

β
na(n) .

2. Assume that there exists r ∈ Λ̄1 such that ∑
∞
n=1 r0(n)b(n)< ∞. Show that there

exists a constant M such that for any delay distribution a,

∞

∑
n=1

∆r(n)|va(n)−u(n)|< M
∞

∑
n=1

r(n)a(n) ,

∞

∑
n=1

r(n)|va(n)−u(n)|< M
∞

∑
n=1

r0(n)a(n) .

13.3. Let {p(n), n ∈ N} be a sequence of positive real numbers such that p(0) =
1, p(n) ∈ (0,1) for all n ≥ 1 and limn→∞ ∏

n
i=1 p(i) = 0. Consider the backward

recurrence time chain with transition kernel P defined as P(n,n+1) = 1−P(n, 0) =
pn, for all n≥ 0 (see Exercise 8.2). Assume that

∞

∑
n=1

n

∏
j=1

p j < ∞,

Let σ0 be the return time to {0}.

1. Show that P is irreducible, aperiodic, positive recurrent and that the unique
invariant probability π is given for all j ∈ N by,

π( j) =
p0 · · · p j−2

∑
∞
n=1 p1 . . . pn

.



312 13 Rates of convergence for atomic Markov chains

2. Show that for any functions fk : N→ R+,

E0

[
σ0−1

∑
k=0

fk(Xk)

]
= E0

[
σ0−1

∑
k=0

fk(k)

]
.

(Therefore there is no loss of generality to consider only (1,r)-modulated mo-
ments of the return time to zero.)

3. Assume that supn≥1 pn ≤ λ < 1. Show that there exists β > 1 such that for all
initial distibution λ , limsupn→∞ β n ‖λPn−π‖TV = 0 .

4. Assume that, for some θ > 0, pn = 1− (1+θ)n−1 +o(n−1). Show that for all
β ∈ [0,θ) there exist a constant C such that for all initial distribution λ ,

∞

∑
n=1

n−1+β ‖λPn−π‖TV ≤C .

13.4 (Continuation of Exercise 1.12). Let X be a finite set and π be a probability
on X such that π(x)> 0 for all x∈X. Let M be a Markov transition matrix reversible
with respect to π , i.e. π(x)M(x,y) = π(y)M(y,x) for all x,y ∈ X. In this exercise, we
derive bounds on the rate of convergence in total variation distance in terms of the
eigenvalues of M.

Let (βy)y∈X be the eigenvalues of M, ( fy)y∈X be an orthonormal basis in L2(π)
consisting of right eigenfunctions of M and (gy)y∈X be an orthonormal basis in
L2(1/π) consisting of left eigenfunctions of M.

Show that for every initial state x, 4‖M(x, ·)−π(·)‖2
TV is bounded by each of

the following three quantities:

∑
y

β
2k
y f 2

y (x)−1 ,
1

π2(x) ∑
y

β
2k
y gy(x)−1 ,

1
π(x)

(β ∗)2k .

13.6 Bibliographical notes

Important references on coupling are for example Lindvall (1992) and Thorisson
(2000). Proposition 13.2.9 is due to Lindvall (1979) (see also Lindvall (1992)). Pre-
liminary version of this result is reported in Pitman (1974).



Chapter 14
Geometric recurrence and regularity

We have already seen that the successive visits to petite sets play a crucial role in
the study of the stability of an irreducible Markov chain. In Chapter 11, the exis-
tence of an invariant measure and its expression were obtained in terms of the return
time to an accessible petite set. In this chapter, we will start the study of the rates
of convergence to the invariant distribution by means of modulated moments of the
return time to a petite set. However, in practice, it is with few exceptions difficult
to compute these modulated moments. In this chapter, we introduce drift conditions
which only involve the kernel P or one of its iterates Pn rather than the return or
hitting times and relate them to the modulated moments of the excursions outside
a petite set C. We first consider geometric moments and geometric drift conditions.
The corresponding rates of convergence will be obtained in Chapter 15. Subgeo-
metric moments and rates of convergence will be investigated in a parallel way in
Chapters 16 and 17.

14.1 f -geometric recurrence and drift conditions

Definition 14.1.1 ( f -Geometric recurrence) Let f : X→ [1,∞) be a measurable
function and δ > 1. A set C ∈X is said to be ( f ,δ )-geometrically recurrent if

sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
< ∞ . (14.1.1)

The set C is said to be f -geometrically recurrent if it is ( f ,δ )-geometrically re-
current for some δ > 1. The set C is said to be geometrically recurrent if it is f -
geometrically recurrent for some f ≥ 1.

313
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Note that C is geometrically recurrent if and only if there exists δ > 1 such that
supx∈CEx[δ

σC ]< ∞. The f -geometric recurrence property is naturally associated to
drift conditions. The main results of this section provide necessary and sufficient
conditions for f -geometric recurrence in terms of drift conditions. The key tool is
the comparison theorem (Theorem 4.3.1) which is essential to establish f -geometric
recurrence of a set C from a sequence of drift conditions.

For f : X→ [1,∞) a measurable function and δ ≥ 1, define

W f ,δ
C (x) = Ex

[
τC−1

∑
k=0

δ
k+1 f (Xk)

]
, (14.1.2)

with the convention ∑
−1
0 = 0 so that W f ,δ

C (x) = 0 for x ∈C.

Proposition 14.1.2 Let P be a Markov kernel on X×X . Assume that there
exist a measurable function V : X→ [0,∞], a measurable function f : X→
[1,∞), δ ≥ 1 and a set C ∈X such that

PV (x)+ f (x)≤ δ
−1V (x) , x ∈Cc . (14.1.3)

Then,

(i) for all x ∈ X,

Ex
[
V (XσC)δ

σC1{σC < ∞}
]
+Ex

[
σC−1

∑
k=0

δ
k+1 f (Xk)

]
≤ δ{PV (x)+ f (x)}1C(x)+V (x)1Cc(x) , (14.1.4)

where we use the convention 0×∞ = 0 in the right-hand side of the in-
equality,

(ii) the function W f ,δ
C given by (14.1.2) satisfies the drift condition (14.1.3).

Proof. The proof of (14.1.4) is an application of Theorem 4.3.1 with τ = σC, Zn =
δ n+1 f (Xn)

V0 =V (X0)1Cc(X0) , Vn = δ
nV (Xn)n≥ 1 ,

Y0 = δ{PV (X0)+ f (X0)} , Yn = dδ
n
1C(Xn)n≥ 1 .

The proof of (ii) follows from elementary calculations. 2

Proposition 14.1.3 Let P be a Markov kernel on X×X , C ∈X , δ > 1 and f :
X→ [1,∞) be a measurable function. The following conditions are equivalent.
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(i) The set C is ( f ,δ )-geometrically recurrent.
(ii) There exists a measurable function V : X→ [0,∞] and b ∈ [0,∞) such that

PV + f ≤ δ
−1V +b1C , (14.1.5)

and supx∈C V (x)< ∞.

Moreover, if any, hence all, of these conditions holds, then the function V =

W f ,δ
C satisfies (14.1.5).

Proof. (i)⇒ (ii). Assume that C is ( f ,δ )-geometrically recurrent. Then for all
x ∈ X we get

δPW f ,δ
C (x)+δ f (x) = PW1(x)+ r(0)h(x) = δEx

[
σC−1

∑
k=0

δ
k f (Xk)

]
,

the function W f ,δ
C satisfies (14.1.5) with b= supx∈CEx

[
∑

σC−1
k=0 δ k f (Xk)

]
<∞. More-

over, supx∈C V (x) = supx∈C W f ,δ
C (x) = 0 < ∞.

(ii) ⇒ (i). Assume that V : X → [0,∞] is a function satisfying (14.1.5) and
supx∈C V (x)< ∞. Proposition 14.1.2 (i) shows that C is ( f ,δ )-geometrically recur-
rent.

2

We now examine these conditions for an irreducible Markov kernel.

Theorem 14.1.4. Let P be an irreducible Markov kernel on X×X . Let f : X→
[1,∞) be a measurable function and V : X→ [0,∞] be a measurable function such
that {V < ∞} 6= /0. The following conditions are equivalent.

(i) There exist λ ∈ [0,1) and b ∈ [0,∞) such that

PV + f ≤ λV +b . (14.1.6)

Moreover, for all d > 0, the sets {V ≤ d} are petite and there exists d0 ∈ [0,∞)
such that for all d ≥ d0, {V ≤ d} is accessible.

(ii) There exist λ ∈ [0,1) and b,d1 ∈ [0,∞) such that

PV + f ≤ λV +b1{V≤d1} (14.1.7)

and, for all d ≥ d1, the sets {V ≤ d} are petite and accessible.
(iii) There exist a petite set C, λ ∈ [0,1) and b ∈ [0,∞) such that

PV + f ≤ λV +b1C . (14.1.8)
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Proof. (i)⇒ (ii) Let d0 be as in (i). Choose λ̃ ∈ (λ ,1) and d1 ≥ d0 ∨ b(λ̃ −
λ )−1. The level set C = {V ≤ d1} is accessible and petite by assumption. For x ∈C,
(14.1.6) yields PV (x) + f (x) ≤ λ̃V (x) + b. For x /∈ C, −(λ̃ − λ )V (x) < −b and
(14.1.6) implies

PV (x)+ f (x)≤ λ̃V (x)+b− (λ̃ −λ )V (x)< λ̃V (x) .

(ii)⇒ (iii) We obtain (14.1.8) from (14.1.7) by setting C = {V ≤ d1}.
(iii)⇒ (i) Condition (14.1.8) obviously implies (14.1.6). We next prove that the

level set {V ≤ d} is petite for every d > 0. By (14.1.4), we get that

λ
−1Ex

[
σC−1

∑
k=0

λ
−k f (Xk)

]
≤ λ

−1{PV (x)+ f (x)}1C(x)+V (x)1Cc(x)

≤V (x)+λ
−1b1C(x) ,

showing that

{x ∈ X : V (x)≤ d} ⊂
{

x ∈ X : Ex[λ
−σC ]≤ (dλ +b)(λ−1−1)+1

}
.

Since C is petite, the set on the right hand-side is petite by Lemma 9.4.8 and there-
fore {x ∈ X : V (x)≤ d} is also petite. Using (14.1.8), Proposition 9.2.13 applies
with V = V0 = V1 and the non-empty set {V < ∞} is full and absorbing and that
there exists d0 such that {V ≤ d0} is accessible, which implies that for all d ≥ d0,
{V ≤ d} is accessible.

2

We now introduce a drift condition which covers many cases of interest.

Definition 14.1.5 (Condition Dg(V,λ ,b,C) : Geometric drift towards C) Let P
be a Markov kernel on X×X . The Markov kernel P is said to satisfy Condition
Dg(V,λ ,b,C), if V : X→ [1, ∞) is a measurable function, λ ∈ [0,1), b ∈ [0,∞) and
C ∈X and

PV ≤ λV +b1C , (14.1.9)

If C = X, we simply write Dg(V,λ ,b) .

The function V is called a drift or test or Lyapunov function. If (14.1.9) holds,
then for every a > 0, it also holds with V and b replaced by aV and ab. There-
fore there is no restriction in assuming V ≥ 1 rather than an arbitrary positive
lower bound. A bounded function V always satisfies condition Dg(V,λ ,b) for any
λ ∈ (0,1). It suffices to choose the constant b appropriately. Therefore Condition
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Dg(V,λ ,b) is meaningful mostly when V is an unbounded function. In that case, the
geometric drift condition is typically satisfied when:

limsup
R→∞

sup
V (x)≥R

PV (x)
V (x)

< 1 ,

for every R > 0, sup
V (x)≤R

PV (x)< ∞ .

Condition Dg(V,λ ,b,C) obviously implies Condition Dg(V,λ ,b) . The converse is
true if we set {V ≤ d} with d such that λ +b/d < 1 (see Exercise 14.1).

Note that the function f that appears in Proposition 14.1.2, Proposition 14.1.3
and Theorem 14.1.4 satisfies f ≥ 1 and therefore, it is useless to write Dg(V,λ ,b,C)
as PV + f ≤ λV +b1C with f ≡ 0 for applying these results. Instead, the following
remark allows to derive a drift condition with a function f ≥ 1.

Assume that the Condition Dg(V,λ ,b,C) is satisfied for some non-empty
petite set C. Then, for any λ̃ ∈ (λ ,1) we have PV +(λ̃ −λ )V ≤ λ̃V +b1C or
equivalently,

PṼ + f ≤ λ̃Ṽ + b̃1C .

where we have used the notation: Ṽ =V/(λ̃ −λ ), f =V ≥ 1 and b̃ = b/(λ̃ −
λ ). This shows that if C is petite, Dg(V,λ ,b,C) implies Theorem 14.1.4-(iii)
and hence that Ṽ and f satisfy any of the equivalent conditions raised in Theo-
rem 14.1.4.

This remark immediately implies the following corollary.

Corollary 14.1.6 Let P be an irreducible Markov kernel on X×X and let V : X→
[1,∞) be a measurable function. The following conditions are equivalent.

(i) There exist λ ∈ [0,1) and b ∈ [0,∞) such that

PV ≤ λV +b . (14.1.10)

Moreover, for all d > 0, the sets {V ≤ d} are petite and there exists d0 ∈ [0,∞)
such that {V ≤ d0} is accessible.

(ii) There exist λ ∈ [0,1) and b,d1 ∈ [0,∞) such that

PV ≤ λV +b1{V≤d1}

and, for all d ≥ d1, the sets {V ≤ d} are petite and accessible.
(iii) There exist a petite set C, λ ∈ [0,1) and b ∈ [0,∞) such that

PV ≤ λV +b1C . (14.1.11)
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Example 14.1.7 (Random walk Metropolis algorithm). Let π be probability
measure on R and assume that it has a density function hπ over R with respect
to the Lebesgue measure. Assume that hπ is continuous, positive (hπ(x)> 0 for all
x ∈ R) and hπ is log-concave in the tails, i.e. there exists α > 0 and some x1 such
that, for all y≥ x≥ x1,

loghπ(x)− loghπ(y)≥ α(y− x) , (14.1.12)

and similarly, for all y≤ x≤−x1,

loghπ(x)− loghπ(y)≥ α(x− y) . (14.1.13)

Denote by q̄ a continuous, positive and symmetric density on R and consider the
Random Walk Metropolis (RWM) algorithm (see Example 2.3.2) associated to the
increment distribution q̄. We denote by P the associated Markov kernel. For each
x ∈ R, define the sets

Ax = {y ∈ R : hπ(x)≤ hπ(y)} , Rx = {y ∈ R : hπ(x)> hπ(y)} ,

for the acceptance and (possible) rejection regions for the chain started from x ∈ R.
It is easily seen that the P is irreducible. It is not difficult to show that every compact
set C ⊂ R such that Leb(C) > 0 is small. Indeed, by positivity and continuity, we
have supx∈C hπ(x)< ∞ and infx,y∈C q̄(|y− x|)> 0. For a fixed x ∈C and B⊂C,

P(x,B)≥
∫

Rx∩B
q̄(|y− x|)α(x,y)dy+

∫
Ax∩B

q̄(|y− x|)α(x,y)dy

=
∫

Rx∩B

hπ(y)
hπ(x)

q̄(|y− x|)dy+
∫

Ax∩B
q̄(|y− x|)dy

≥ ε

d

∫
Rx∩B

hπ(y)dy+
ε

d

∫
Ax∩B

hπ(y)dy = εd−1
π(B) ,

with ε = infx,y∈C q̄(|y−x|) and d = supx∈C hπ(x). Hence, for all B∈B(R) and x∈C,

P(x,B)≥ P(x,B∩C)≥ επ(C)

d
π(B∩C)

π(C)
,

which shows that C is 1-small and hence that P is strongly aperiodic.
We next establish the geometric drift condition. Assume first that hπ is symmet-

ric. In this case, by (14.1.12), there exists x0 such that Ax = {y ∈ R : |y| ≤ |x|} for
|x|> x0. Let us choose a x∗≥ x0∨x1 and consider the Lyapunov function V (x)= es|x|

for any s < α . Denote by Q(x,dy) = q̄(y−x)dy. Identifying moves to Ax,Rx and {x}
separately, we can write, for x≥ x∗,
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λx :=
PV (x)
V (x)

= 1+
∫
{|y|≤x}

Q(x,dy)[exp(s(|y|− x))−1]

+
∫
{|y|>x}

Q(x,dy)[exp(s(|y|− x))−1][hπ(y)/hπ(x)]. (14.1.14)

The log-concavity implies that for y ≥ x ≥ x∗, hπ(y)/hπ(x) ≤ e−α(y−x). Therefore,
we have, for x≥ x∗ and s < α ,

λx ≤ 1+Q(x,(2x, ∞))+Q(x,(−∞,0))+
∫ x

0
Q(x,dy)[exp(s(y− x))−1]

+
∫ 2x

x
Q(x,dy)exp(−α(y− x))[exp(s(y− x))−1] . (14.1.15)

The terms Q(x,(2x, ∞)) and Q(x,(−∞,0)) are bounded by
∫

∞

x q̄(z)dz and can there-
fore be made arbitrarily small by taking x∗ large enough, since it is assumed that
x≥ x∗. We will have a drift toward C = [−x∗, x∗] if the sum of the second and third
terms in (14.1.15) is strictly bounded below 0 for all x ≥ x∗. These terms may be
expressed as∫ x

0
q̄(z)[e−sz−1+ e−(α−s)z− e−αz]dz =−

∫ x

0
q̄(z)[1− e−sz][1− e−(α−s)z]dz .

Since the integrand on the right is positive and increasing as z increases, we find
that, for suitably large x∗, λx in (14.1.15) is strictly less than 1.

For 0≤ x≤ x∗, the right-hand side of (14.1.15) is bounded by

1+2
∫

∞

x∗
q̄(z)dz+2exp(sx∗)

∫ x∗

0
q̄(z)dz .

For negative x the same calculations are valid by symmetry. Therefore, Dg(V,λ ,b,C)

holds with V (x) = es|x| and C = [−x∗,x∗] which is small. Thus, condition (iii) in
Corollary 14.1.6 is satisfied.

Consider now the general case. We have immediately from the construction of the
algorithm that there exists x0 ∈R such that for x > x0 the set (x, ∞)⊆ Rx and the set
(−x,x)⊆Ax; similarly for x<−x0 the set (−∞,x)⊆Rx and the set (x,−x)⊆Ax. Set
again V (x) = es|x|. The only difference stems from the fact that we need to control
the term, for x > 0∫

y≤−x
Q(x,dy)[exp(s(|y|− x))−1][1∨hπ(y)/hπ(x)] ,

in (14.1.14). This term be negligible if q(x) ≤ bexp(−α|x|). Under this addi-
tional condition, the condition Dg(V,λ ,b,C) is satisfied and condition (iii) in Corol-
lary 14.1.6 is again satisfied. J
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Proposition 14.1.8 Let P be a Markov kernel satisfying Condition Dg(V,λ ,b).
Then, for each positive integer m,

PmV ≤ λ
mV +

b(1−λ m)

1−λ
≤ λ

mV +
b

1−λ
. (14.1.16)

Conversely, if there exists m ≥ 2 such that Pm satisfies Condition
Dg(Vm,λm,bm), then P satisfies Condition Dg(V,λ ,b) with

V =Vm +λ
−1/m
m PVm + · · ·+λ

−(m−1)/m
m Pm−1Vm ,

λ = λ
1/m
m and b = λ

−(m−1)/m
m bm .

Proof. Assume that PV ≤ λV +b with λ ∈ (0,1) and b∈ [0,∞). By straightforward
induction, we obtain, for m≥ 1,

PmV ≤ λ
mV +b

m−1

∑
k=0

λ
k ≤ λ

mV +b(1−λ
m)/(1−λ ) .

This proves the first part. Conversely, if PmVm ≤ λmVm +bm, set

V =Vm +λ
−1/m
m PVm + · · ·+λ

−(m−1)/m
m Pm−1Vm .

Then,

PV = PVm +λ
−1/m
m P2Vm + · · ·+λ

−(m−1)/m
m PmVm

≤ PVm +λ
−1/m
m P2Vm + · · ·+λ

−(m−2)/m
m Pm−1Vm +λ

−(m−1)/m
m (λmVm +bm) ,

= λ
1/m
m V +λ

−(m−1)/m
m bm .

2

Remark 14.1.9. Since V ≥ 1 (provided that it is not identically equal to infinity),
letting m tend to infinity in (14.1.16) yields 1≤ b/(1−λ ), i.e. λ and b must always
satisfy λ +b≥ 1. N

Lemma 14.1.10 Let P be Markov kernel on X×X . Assume that P satisfies the
drift condition Dg(V,λ ,b). If P admits an invariant probability measure π such that
π({V = ∞}) = 0, then π(V )< ∞.

Proof. By Proposition 14.1.8, for all positive integers m,

PmV ≤ λ
mV +

b
1−λ

.

The concavity of the function x 7→ x∧ c yields for all n ∈ N and c > 0,
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π(V ∧ c) = πPn(V ∧ c)≤ π({PnV}∧ c)≤ π({λ nV +b/(1−λ )}∧ c) .

Letting n and then c tend to infinity yields π(V )≤ b/(1−λ ). 2

14.2 f -geometric regularity

Definition 14.2.1 ( f -Geometrically regular sets and measures) Let P be an irre-
ducible kernel on X×X and f : X→ [1,∞) be a measurable function.

(i) A set A ∈X is said to be f -geometrically regular if for every B ∈X +
P there

exists δ > 1 (possibly depending on A and B) such that

sup
x∈A
Ex

[
σB−1

∑
k=0

δ
k f (Xk)

]
< ∞ .

(ii) A probability measure ξ ∈M1(X ) is said to be f -geometrically regular if for
every B ∈X +

P there exists δ > 1 (possibly depending on ξ and B) such that

Eξ

[
σB−1

∑
k=0

δ
k f (Xk)

]
< ∞ .

(iii) A point x ∈ X is f -geometrically regular if δx is f -geometrically regular.
(iv) The Markov kernel P is said to be f -geometrically regular if there exists an

accessible f -geometrically regular set.

When f ≡ 1 in the preceding definition, we will simply say geometrically regular
instead of 1-geometrically regular. If A is geometrically regular, then any probability
measure ξ such that ξ (A) = 1 is geometrically regular.

Recall that a set C is ( f ,δ )-geometrically recurrent if there exists δ > 1 such that

sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
< ∞ . (14.2.1)

It is therefore straightforward to see that a f -geometrically regular accessible set
is f -geometrically recurrent. At first sight, regularity seems to be a much stronger
requirement than recurrence. In particular the intersection and the union of two f -
geometrically regular sets is still an f -geometrically regular set whereas the inter-
section of two f -geometrically recurrent sets is not necessarily f -geometrically re-
current.
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We preface the proof by a technical lemma. Recall the set S̄ from Defini-
tion 13.1.1.

Lemma 14.2.2 Let r ∈ S̄ be such that κ = supx∈AEx[r(σA)] < ∞. Then, for every
n≥ 1 and h ∈ F+(X), we get

sup
x∈A
Ex

σ
(n)
A −1

∑
k=0

r(k)h(Xk)

≤(n−1

∑
k=0

κ
k

)
sup
x∈A
Ex

[
σA−1

∑
k=0

r(k)h(Xk)

]
.

Proof. Without loss of generality, we assume that r∈S . Set Sn =∑
σ
(n)
A −1

k=0 r(k)h(Xk).
Then, using r(n+m)≤ r(n)r(m), we get

Sn =
σA−1

∑
k=0

r(k)h(Xk)+

σA+σ
(n−1)
A ◦θσA

∑
k=σA

r(k)h(Xk)≤ S1 + r(σA)Sn−1 ◦θσA ,

on the set {σ (n−1)
A < ∞} which implies that Ex[Sn] ≤ Ex[S1] + κ supx∈AEx[Sn−1].

Setting for n ≥ 1 Bn = supx∈AEx[Sn], we obtain the recursion Bn ≤ B1 + κBn−1
which yields Bn ≤ B1(1+κ + · · ·+κn−1). 2

Theorem 14.2.3. Let P be a Markov kernel on X×X and A,B ∈X . Assume that

(i) there exists q ∈ N∗ such that infx∈APx(σB ≤ q)> 0.
(ii) supx∈AEx[δ

σA ]< ∞ for some δ > 1.

Then there exist β ∈ (1,δ ) and ς < ∞ such that for all h ∈ F+(X),

sup
x∈A
Ex

[
σB−1

∑
k=0

β
kh(Xk)

]
≤ ς sup

x∈A
Ex

[
σA−1

∑
k=0

δ
kh(Xk)

]
.

Proof. We apply Theorem 11.4.1 with τ =σ
(q)
A and ρ =σB. It is easily seen that ρ =

σB satisfies (11.4.1). Since q ≤ τ , we get 0 < infx∈APx(σB ≤ q) ≤ infx∈APx(σB ≤
τ). Moreover, since Px(σA < ∞) = 1 for all x ∈ A, Proposition 4.2.5-(ii) implies
Px(σ

(q)
A < ∞) = 1 and thus,

Px(τ < ∞, Xτ ∈ A) = Px(τ < ∞) = 1 ,

showing that (11.4.2) is satisfied. The proof follows from Lemma 14.2.2. 2
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Theorem 14.2.4. Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and C ∈X be a set. The following conditions are equiv-
alent.

(i) The set C is accessible and f -geometrically regular.
(ii) The set C is petite and f -geometrically recurrent.

Proof. (i)⇒ (ii) Assume that the set C is accessible and f -geometrically regu-
lar. Then, by definition, there exists δ > 1 such that C is f -geometrically recurrent.
Let D be an accessible petite set. The definition of geometric regularity implies that
supx∈CEx[σD]<∞; therefore the set D is uniformly accessible from C which implies
that C is petite by Lemma 9.4.8.

(ii)⇒ (i) Assume that C is an f -geometrically recurrent petite set. Then C is
accessible by Corollary 9.2.14. Let A be an accessible set. By Proposition 9.4.9,
there exists q ∈ N∗ and γ > 0 such that infx∈CPx(σA ≤ q)≥ γ . By Theorem 14.2.3,
there exists β > 1 such that

sup
x∈C
Ex

[
σA−1

∑
k=0

β
k f (Xk)

]
< ∞ .

This proves that C is f -geometrically regular.
2

We have seen in Lemma 9.4.3 that a set which leads uniformly to a petite set is
itself petite. There exists a similar criterion for geometric regularity.

Lemma 14.2.5 Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞) be
a measurable function and C be an accessible f -geometrically regular set. Then,

(i) for any B ∈X +
P and δ ∈ (1,∞), there exist constants (β ,ς) ∈ (1,δ )×R such

that for all x ∈ X,

Ex

[
σB−1

∑
k=0

β
k f (Xk)

]
≤ ςEx

[
σC−1

∑
k=0

δ
k f (Xk)

]
,

(ii) any set A ∈X satisfying supx∈AEx

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞ for some δ > 1 is

f -geometrically regular,
(iii) any probability measure ξ ∈M1(X ) satisfying Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞ for

some δ > 1 is f -geometrically regular.

Proof. First note that (ii) and (iii) are immediate from (i). We now prove (i). Since
C is f -geometrically regular, for any B ∈X +

P , there exists β > 1 such that

sup
x∈C
Ex

[
σB−1

∑
k=0

β
k f (Xk)

]
< ∞ .
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Replacing β by a smaller value if necessary, we may assume that β ∈ (1,δ ). Since
σB ≤ σC1{σC = ∞}+(σC +σB ◦θσC)1{σC < ∞}, we have for all x ∈ X,

Ex

[
σB−1

∑
k=0

β
k f (Xk)

]

≤ Ex

[
σC−1

∑
k=0

β
k f (Xk)

]
+Ex

[
1{σC<∞}β

σC

{
σB−1

∑
k=0

β
k f (Xk)

}
◦θσC

]

≤ Ex

[
σC−1

∑
k=0

β
k f (Xk)

]
+Ex[β

σC ]sup
x∈C
Ex

[
σB−1

∑
k=0

β
k f (Xk)

]
.

The result follows since Ex[β
σC ]≤ (β −1)Ex

[
∑

σC−1
k=0 β k f (Xk)

]
+1 and β < δ . 2

Theorem 14.2.6. Let P be an irreducible Markov kernel on X×X and f : X→
[1,∞) be a measurable function. The Markov kernel P is f -geometrically regular if
and only if it satisfies one of the following equivalent conditions:

(i) There exists a f -geometrically recurrent petite set.
(ii) There exist a function V : X→ [0,∞] such that {V < ∞} 6= /0, a non-empty petite

set C, λ ∈ [0,1) and b < ∞ such that

PV + f ≤ λV +b1C .

(iii) There exists an accessible f -geometrically regular set.
(iv) There exists a full and absorbing set S which can be covered by a countable

number of accessible f -geometrically regular sets.

If any of these conditions holds, the Markov kernel P satisfies the following proper-
ties, with V as in (ii).

(a) A probability measure ξ ∈ M1(X ) is f -geometrically regular if and only
if there exists a f -geometrically recurrent petite set C and δ > 1 such that
Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞.

(b) For every A ∈X +
P , there exist constants ς < ∞ and β > 1 such that for all

x ∈ X,

Ex

[
σA−1

∑
k=0

β
k f (Xk)

]
≤ ς{V (x)+1} . (14.2.2)

(c) Every probability measure ξ ∈M1(X ) such that ξ (V )< ∞ is f -geometrically
regular.

(d) The set SP( f ) of f -geometrically regular points is full and absorbing and con-
tains the full and absorbing set {V < ∞}.
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Proof. (i)⇒ (ii) This is immediate from Proposition 14.1.3 applied to the f -
geometrically recurrent petite set C (and since supC V < ∞ implies in particular that
{V < ∞} 6= /0).

(ii)⇒ (iii) By Theorem 14.1.4, there exists a petite and accessible level set C =
{V ≤ d} such that (14.1.7) holds. Together with Proposition 14.1.3, this implies that
C is f -geometrically recurrent set. Since C is in addition petite, Theorem 14.2.4 then
shows that C is an accessible f -geometrically regular set.

(iii)⇒ (iv) Let C be an accessible f -geometrically regular set. Using Theo-
rem 14.2.4, the set C is ( f ,δ )-geometrically recurrent. Since by Proposition 14.1.3,
the function V =W f ,δ

C defined in (14.1.2) satisfies PV + f ≤ δ−1V +b1C, Proposi-
tion 9.2.13 with V0 = V1 = W f ,δ

C shows that the non-empty set {W f ,δ
C < ∞} is full

and absorbing and that there exists n0 such that for all n ≥ n0, the sets {W f ,δ
C ≤ n}

are accessible. Moreover, Lemma 14.2.5-(ii) shows that the sets {W f ,δ
C ≤ n} are

f -geometrically regular. Since their union covers {W f ,δ
C < ∞}, the proof follows.

(iv)⇒ (i) Obvious by Theorem 14.2.4.

(a) By Lemma 14.2.5-(iii), any ξ ∈M1(X ) satisfying Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
<∞

for some petite set C and δ > 1 is f -geometrically regular. This proves that the
condition is sufficient.
Conversely, assume that ξ is f -geometrically regular. Since P is f -geometrically
regular, there exists a f -geometrically regular and accessible set C. Since ξ is f -
geometrically regular, Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞. By Theorem 14.2.4, the set C is

also f -geometrically recurrent and petite. This proves the necessary part.
(b) Under (ii), Theorem 14.1.4 shows that for some petite set D = {V ≤ d} and

some constant b < ∞, the inequality PV + f ≤ λV + b1{V≤d} holds. Moreover, by
Proposition 14.1.3, D is ( f ,λ−1)-geometrically recurrent. Finally, D is petite and
( f ,λ−1)-geometrically recurrent and Lemma 14.2.5-(i) shows that there exists finite
constants β > 1 and ς ∈

(
1,λ−1

]
such that

Ex

[
σA−1

∑
k=0

β
k f (Xk)

]
≤ ςEx

[
σD−1

∑
k=0

λ
−k f (Xk)

]
. (14.2.3)

Since PV + f ≤ λV + b1{V≤d}, (14.1.4) in Proposition 14.1.2 shows that for all

x ∈ X, Ex

[
∑

σD−1
k=0 λ−k f (Xk)

]
≤ λV (x)+b1D(x). Plugging this bound into (14.2.3)

yields (14.2.2).
(c) follows by integrating (14.2.2) with respect to ξ ∈M1(X ).
(d) By (b), if V (x) < ∞, ξ = δx is f -geometrically regular and thus SP( f ) con-

tains {V < ∞}. Now, under (i), there exists a f -geometrically regular and accessible
set C. Define W f ,δ

C as in (14.1.2) and note that

SP( f ) =
⋃

δ∈Q∩[1,∞]

{W f ,δ
C < ∞} .
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Since by Proposition 14.1.3, the function V =W f ,δ
C satisfies PV + f ≤ δ−1V +b1C,

Proposition 9.2.13 (applied with V0 = V1 = W f ,δ
C ) shows that the non-empty set

{W f ,δ
C < ∞} is full and absorbing. Thus, SP( f ) is full and absorbing as a countable

union of full absorbing sets.

2

We conclude this section with conditions under which the invariant measure is f -
geometrically regular.

Theorem 14.2.7. Let P be an irreducible Markov kernel on X×X and f : X→
[1,∞) be a measurable function. If P is f -geometrically regular, then P has a unique
invariant probability measure π . In addition, π is f -geometrically regular.

Proof. Since P is f -geometrically regular, Theorem 14.2.6 shows that there exist a
f -geometrically recurrent petite set C, i.e. supx∈CEx

[
∑

σC−1
k=0 β k f (Xk)

]
<∞ for some

β > 1. By Theorem 14.2.4, the set C is accessible and f -geometrically regular. Since
f ≥ 1, C satisfies supx∈CEx[σC]< ∞, Corollary 11.2.9 implies that P is positive (and
recurrent) and admits a unique invariant probability measure π .

We will now establish that the invariant probability π is f -geometrically regu-
lar. By Theorem 14.2.6-(a), it suffices to show that Eπ

[
∑

σC−1
n=0 β n f (Xn)

]
< ∞. Set

g(x) = Ex

[
∑

σC−1
n=0 β n f (Xn)

]
and h(x) = Ex

[
∑

σC−1
k=0 g(Xk)

]
. Since C is accessible,

Theorem 11.2.5 yields

Eπ

[
σC−1

∑
n=0

β
n f (Xn)

]
= π(g) =

∫
C

π(dx)h(x) . (14.2.4)

Setting Z = ∑
∞
n=01{n<σC}β

n f (Xn), we have g(x) = Ex[Z] and

h(x) =
∞

∑
k=0
Ex[1{k<σC}Z ◦θk] =

∞

∑
k=0

∞

∑
n=0
Ex[1{n+k<σC}β

n f (Xn+k)]

=
∞

∑
j=0

j

∑
`=0

β
`Ex[1{ j<σC} f (X j)]≤

β

β −1
Ex

[
σC−1

∑
j=0

β
j f (X j)

]
.

Since C is f -geometrically recurrent, we have

Eπ

[
σC−1

∑
n=0

β
n f (Xn)

]
≤ β

β −1
π(C)sup

x∈C
Ex

[
σC−1

∑
k=0

β
k f (Xk)

]
< ∞ . (14.2.5)

2
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14.3 f -geometric regularity of the skeletons

A natural issue is to relate the f -geometric regularity of the Markov kernel P and
its skeletons. We will show below that, if P is irreducible and aperiodic, then P
is f -geometrically regular if and only if for any m ∈ N∗ its skeleton Pm is f (m)-
geometrically regular where

f (m) =
m−1

∑
i=0

Pi f . (14.3.1)

Before we proceed with the proof, we need to obtain preparatory technical results.
For any integer m ∈ N∗ and C ∈X , define by σC,m the first return time to the set C
for the m-skeleton chain:

σC,m = inf{k ≥ 1 : Xkm ∈C} . (14.3.2)

Set for i ∈ {0, . . . ,m−1},

ϑC,m,i = inf{n≥ 1 : n≡ i [m], Xn ∈C} (14.3.3)

and define
ϑC,m = max

0≤i<m
ϑC,m,i . (14.3.4)

The following lemma summarizes the properties of ϑC,m that we will systematically
exploit in the sequel.

Lemma 14.3.1 Let P be an irreducible and aperiodic Markov kernel on X×X ,
m≥ 1 be an integer and C be a (r,εν) small set such that ν(C)> 0 for some integer
r. Then.

(i) ϑC,m is a stopping time and for all n ∈ N, ϑC,m ≤ n+ϑC,m ◦θn.
(ii) there exists q > 0 such that

inf
x∈C
Px(ϑC,m ≤ q)> 0 . (14.3.5)

(iii) Assume that C is Harris-recurrent, i.e. for any x∈C, Px(σC <∞) = 1. Then,
for any ξ ∈ M1(X ) such that Pξ (σC < ∞) = 1, Pξ (ϑC,m < ∞) = 1. Moreover,
Pξ (σC,m < ∞) = 1 and C is Harris-recurrent for Pm.

Proof. (i) Obvious.
(ii) By Lemma 9.3.3, there exist n0 such that n0 ≡ 0 [m] and a sequence of con-

stants εn > 0 such that infx∈C Pn(x, ·) ≥ εnν for all n ≥ n0. Define the events Ai,
i = 0, . . . ,m−1, by

Ai = {Xn0 ∈C, X2n0+1 ∈C, . . . , X(i+1)n0+i ∈C} .

By the Markov property, we have, for all x ∈C and i ∈ {1, . . . ,m−1},
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Px(Ai) = Ex[1Ai−1
Pn0+1(Xin0+i−1,C)]≥ εn0+1ν(C)Px(Ai−1) .

By induction, we get for all x ∈ C, Px(Am−1) ≥ γ where γ = ε
m−1
n0+1εn0νm(C) > 0.

Set q = mn0 +m− 1. Since (i+ 1)n0 + i ≡ i [m] for i ∈ {0, . . . ,m− 1}, we have by
construction Am−1 ⊂ {ϑC,m ≤ q}. Therefore, we get

inf
x∈C
Px(ϑC,m ≤ q)≥ inf

x∈C
Px(Am−1)≥ γ > 0 .

(iii) We will apply Theorem 11.4.1-(i) with ρ = ϑC,m and τ = σ
(q)
C . Since C is

Harris recurrent, for all x ∈C, Px(σ
(q)
C < ∞,X

σ
(q)
C
∈C) = 1 and Px(ϑC,m ≤ σ

(q)
C ) ≥

infx∈CPx(ϑC,m ≤ q)> 0. Hence, for all x ∈C, Px(ϑC,m < ∞) = 1.
Since {σC < ∞,ϑC,m ◦ θσC < ∞} ⊂ {ϑC,m < ∞}, the strong Markov property then
implies

Pξ (σC < ∞) = Eξ

[
1{σC<∞}PXσC

(ϑC,m < ∞)
]
≤ Pξ (ϑC,m < ∞) .

Hence, since by assumption Pξ (σC < ∞) = 1, we obtain Pξ (ϑC,m < ∞) = 1. Using
now {σC < ∞,ϑC,m ◦ θσC < ∞} ⊂ {σC,m < ∞}, the strong Markov property then
implies for all ξ ′ ∈M1(X ),

Pξ ′(σC < ∞) = Eξ ′

[
1{σC<∞}PXσC

(ϑC,m < ∞)
]
≤ Pξ ′(σC,m < ∞) .

Taking ξ ′ = δx for all x ∈C then shows that the set C being Harris-recurrent for P,
it is also Harris-recurrent for Pm. Taking now ξ ′ = ξ yields Pξ (σC,m < ∞) = 1 since
Pξ (σC < ∞) = 1.

2

Proposition 14.3.2 Let P be an irreducible aperiodic Markov kernel on X×
X , f : X→ [1,∞) be a measurable function and m be an integer.

(i) Let C be ( f ,δ )-geometrically recurrent petite set. Then there exist β ∈
(1,δ ) and ς < ∞ such that for any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
,

where σC,m and f (m) are defined in (14.3.2) and (14.3.1). Moreover, the set
C is f (m)-geometrically recurrent for Pm.

(ii) For any C ∈X , δ > 1 and ξ ∈M1(X ),

Eξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
≤ δ

mEξ

[
σC,m−1

∑
k=0

δ
mk f (m)(Xmk)

]
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If the set C is f (m)-geometrically recurrent for Pm, then C is f -
geometrically recurrent.

Proof. (i) For every initial distribution ξ ∈M1(X ) and β > 1, we have

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
≤

m−1

∑
i=0

∞

∑
k=0

β
mk+iEξ [ f (Xmk+i)1{mk < mσC,m}]

= Eξ

[
mσC,m−1

∑
k=0

β
k f (Xk)

]
. (14.3.6)

Since by construction mσC,m ≤ ϑC,m (see (14.3.4)), (14.3.6) yields

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
≤ Eξ

[
ϑC,m−1

∑
k=0

β
k f (Xk)

]
. (14.3.7)

Since the set C is petite and P is aperiodic, Theorem 9.4.10 implies that C is also
(r,εν)-small. By Lemma 9.1.6, without loss of generality, we may assume that
ν(C)> 0. By Lemma 14.3.1, there exists q > 0 such that

inf
x∈C
Px(ϑC,m ≤ q)> 0 . (14.3.8)

We use Theorem 11.4.1 with ρ = ϑC,m and τ = σ
(q)
C . Lemma 14.3.1-(i) implies

the condition (11.4.1). Since C is f -geometrically recurrent, we have for all x ∈C,
Px(σ

(q)
C <∞) = 1 which implies Px(τ <∞, Xτ ∈C) =Px(τ <∞) = 1. Moreover, us-

ing σ
(q)
C ≥ q and (14.3.8), infx∈CPx(ϑC,m ≤ σ

(q)
C )≥ infx∈CPx(ϑC,m ≤ q)> 0, show-

ing (11.4.2). Theorem 11.4.1 shows that there exist ς1 < ∞ and β ∈ (1,δ ) such that

sup
x∈C
Ex

[
ϑC,m−1

∑
k=0

β
k f (Xk)

]
≤ ς1 sup

x∈C
Ex

σ
(q)
C −1

∑
k=0

δ
k f (Xk)

 .

Moreover, by Lemma 14.2.2, there exists ς2 < ∞ such that

sup
x∈C
Ex

σ
(q)
C −1

∑
k=0

δ
k f (Xk)

≤ ς2 sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

Finally, there exist ς3 < ∞ and β ∈ (1,δ ) such that,

sup
x∈C
Ex

[
ϑC,m−1

∑
k=0

β
k f (Xk)

]
≤ ς3 sup

x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
. (14.3.9)
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Combining it with (14.3.7) where ξ = δx and taking the supremum on C, we get

sup
x∈C
Ex

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
≤ ς3 sup

x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
< ∞ . (14.3.10)

Thus, C is f (m)-geometrically recurrent for Pm. Moreover, the strong Markov prop-
erty, together with ϑC,m ≤ σC +1{σC<∞}ϑC,m ◦θσC yield

Eξ

[
ϑC,m−1

∑
k=0

β
k f (Xk)

]

≤ Eξ

[
σC−1

∑
k=0

β
k f (Xk)

]
+Eξ

[
1{σC<∞}β

σC

{
ϑC,m−1

∑
k=0

β
k f (Xk)

}
◦θσC

]

≤ Eξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
+Eξ [δ

σC ]sup
x∈C
Ex

[
ϑC,m−1

∑
k=0

β
k f (Xk)

]
.

Combining it with (14.3.9), there exists a constant ς < ∞ such that for any ξ ∈
M1(X ),

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

(ii) By the Markov property, using that mσC,m is a stopping time, we get

Eξ

[
σC,m−1

∑
k=0

δ
mk f (m)(Xmk)

]
=

∞

∑
k=0
Eξ

[
1{mk<mσC,m}δ

mk
m−1

∑
j=0

P j f (Xmk)

]

=
∞

∑
k=0
Eξ

[
1{mk<mσC,m}δ

mk
m−1

∑
j=0

f (Xmk+ j)

]

Since δ mk ≤ δ−mδ mk+ j for j ∈ {0, . . . ,m−1}, we obtain

Eξ

[
σC,m−1

∑
k=0

δ
mk f (m)(Xmk)

]

≥ δ
−m

∞

∑
k=0
Eξ

[
1{mk<mσC,m}

m−1

∑
j=0

δ
mk+ j f (Xmk+ j)

]

= δ
−mEξ

[
mσC,m−1

∑
k=0

δ
k f (Xk)

]
≥ δ

−mEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

Taking ξ = δx and summing over x ∈ X shows that if C is f (m)-geometrically recur-
rent for Pm, then it is f -geometrically recurrent.

2
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Theorem 14.3.3. Let P be an irreducible aperiodic Markov kernel on X×X , f :
X→ [1,∞) be a measurable function and m≥ 2.

(i) A set C is accessible and f -geometrically regular if and only if C is accessible
and f (m)-geometrically regular for Pm;

(ii) The Markov kernel P is f -geometrically regular if and only if Pm is f (m)-
geometrically regular;

(iii) A probability measure ξ is f -geometrically regular for P if and only if ξ is
f (m)-geometrically regular for Pm.

Proof. (i) Assume first that C is an accessible f -geometrically regular set. By
Theorem 14.2.4, the set C is petite (and hence small by Theorem 9.4.10 since P is
aperiodic) and f -geometrically recurrent, i.e. supx∈CEx

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞ for

some δ > 1. By Theorem 9.3.11-(iii), the set C is accessible and small for Pm. By
Proposition 14.3.2, there exist β ∈ (1,δ ) and ς < ∞ such that, for any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

β
k f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

Setting ξ = δx and taking the supremum over x ∈C,

sup
x∈C
Ex

[
σC,m−1

∑
k=0

β
k f (m)(Xmk)

]
< ∞ .

Thus C is accessible, small and f (m)-geometrically recurrent for the kernel Pm. It is
thus accessible and f (m)-geometrically regular by Theorem 14.2.4.
Conversely, assume that the C is accessible and f (m)-geometrically regular set for
Pm. By Theorem 14.2.4, C is a nonempty petite, hence small, f (m)-geometrically
recurrent set for Pm. Applying Proposition 14.3.2-(ii), the set C is f -geometrically
recurrent for P. Since C is small for Pm it is also small for P and Theorem 14.2.4
shows that C is accessible and f -geometrically regular.

(ii) The Markov kernel P is f -geometrically regular if and only if there exist
an accessible f -geometrically regular set C for P. Such a set is also accessible and
f (m)-geometrically regular for Pm. The proof follows from (i).

(iii) Let ξ ∈M1(X ) be f -geometrically regular. By Theorem 14.2.6-(a), there
exist a non-empty f -geometrically recurrent petite set C and δ > 1 such that
Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞. Proposition 14.3.2-(i) shows that there exists β > 1 such

that

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
< ∞ ,
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and C is f (m)-geometrically recurrent for Pm. Applying again Theorem 14.2.6-(a),
ξ is f (m)-geometrically regular for Pm.
Conversely, if ξ is f (m)-geometrically regular for Pm, there exist, by Theorem 14.2.6-
(a), a non-empty f (m)-recurrent petite set C for Pm and β > 1 such that

Eξ

[
σC,m−1

∑
k=0

β
mk f (m)(Xmk)

]
< ∞ .

Then, Proposition 14.3.2-(ii) shows that C is f -geometrically regular for P and

Eξ

[
σC−1

∑
k=0

β
k f (Xk)

]
< ∞ .

Applying again Theorem 14.2.6-(a), we conclude that ξ is f -geometrically regular.
2

14.4 f -geometric regularity of the split kernel

Proposition 14.4.1 Let P be an irreducible Markov kernel on X×X . Let C be
a (1,2εν)-small set with ν(C) = 1 and infx∈C P(x,C) ≥ 2ε . Set P̌ = P̌ε,ν . Let
f : X→ [1,∞) be a measurable function and r be a positive sequence.

(i) If C is f -geometrically regular for the kernel P, then C× {0,1} is f̄ -
geometrically regular for the kernel P̌, where f̄ (x,d) = f (x) for all x ∈ X
and d ∈ (0,1).

(ii) If the split chain P̌ is f̄ -geometrically regular and f bounded on C, then P
is f -geometrically regular.

Proof. (i) Let A ∈X +
P . Since ∑

σA×{0,1}−1
k=0 r(k) f (Xk) ∈F X

∞ , Proposition 11.1.2
shows that

Ěδx⊗bε

σA×{0,1}−1

∑
k=0

δ
k f (Xk)

= Ex

[
σA−1

∑
k=0

δ
k f (Xk)

]
.

Since δx⊗bε = (1− ε)δ(x,0)+ εδ(x,1) for all x ∈ X, this implies
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sup
(x,d)∈C×{0,1}

Ě(x,d)

σA×{0,1}−1

∑
k=0

δ
k f̄ (Xk,Dk)


≤max(ε−1,(1− ε)−1)sup

x∈C
Ex

[
σA−1

∑
k=0

δ
k f (Xk)

]
< ∞ .

The proof follows easily.
(ii) If P̌ is f̄ -geometrically regular, then P̌ admits an invariant probability mea-

sure (see Theorem 14.2.6. By Proposition 11.1.3, this invariant probability is of
the form π ⊗ bε where π is an invariant probability for P. By Theorem 9.2.15,
π ⊗ bε is a maximal irreducibility measure for P̌ and π is a maximal irreducibility
measure for P. Moreover, by Theorem 14.2.6, there exists an increasing sequence
{Ďn, n ∈ N} of f̄ -geometrically regular sets for P̌ such that

⋃
∞
n=0 Ďn is full and

absorbing.
We will now establish that there exists D⊂C such that D is accessible (i.e. π(D)>
0) and f -geometrically regular. Define F̌n = Ďn∩ (C×{0,1}). For every n ∈ N, the
set F̌n is f̄ -geometrically regular for P̌. Furthermore, the sequence {F̌n, n ∈ N} is
increasing and

π⊗bε

(
(C×{0,1})\

∞⋃
n=0

F̌n

)
= π⊗bε

(
(C×{0,1})∩

{
∞⋃

n=0

Ďn

}c)
= 0 ,

(14.4.1)
where we have used that

⋃
∞
n=0 Ďn is full and π ⊗ bε is a maximal irreducibility

measure. For i ∈ {0,1} and every n ∈ N, define

Fn,i×{i}= F̌n∩ (X×{i})⊂C×{i} .

Obviously, we have F̌n =(Fn,0×{0})∪(Fn,1×{1}). Moreover, {Fn,i,n∈N}, i= 0,1
are two increasing sequences of sets in X and (14.4.1) shows that

lim
n→∞

π(C \Fn,0) = lim
n→∞

π(C \Fn,1) = 0

which implies that limn→∞ π(C \ (Fn,0∩Fn,1)) = 0.
Choose n large enough so that the set Fn,0∩Fn,1 is accessible and put D = Fn,0∩Fn,1.
By construction, π(D) > 0 and therefore D×{0,1} is accessible for P̌. Moreover
D×{0,1} is f̄ -geometrically regular for P̌ (as a subset of a regular set). If A ∈X +

P
then A×{0,1} is accessible for P̌ and thus, for all x ∈ D, using Proposition 11.1.2,

Ex

[
σA−1

∑
k=0

δ
k f (Xk)

]
= Ěδx⊗bε

σA×{0,1}−1

∑
k=0

δ
k f (Xk)


≤ sup

(x,d)∈D×{0,1}
Ě(x,d)

σA×{0,1}−1

∑
k=0

δ
k f (Xk)

< ∞ .
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This proves that D is f -geometrically regular for P.
2

14.5 Exercises

14.1. Assume that Dg(V,λ ,b) holds. Then Condition Dg(V,λ + b/d,b,C) holds
with C = {V ≤ d} if λ +b/d < 1.

14.2. Let P be an irreducible Markov kernel on X×X . Let C be a ( f ,δ )-regular
petite set. Show that the set {W f ,δ

C < ∞} is full and absorbing and for any d ≥ 0 the
sets {W f ,δ

C ≤ d} are accessible for d large enough and petite.

14.3. Assume that there exists a measurable function V : X→ [1,∞), a set C ∈X
such that

PV ≤ λV +b1C , for some constants λ ∈ [0,1) and b < ∞ (14.5.1)

Show that

1. For all x ∈ X such that V (x)< ∞, Px(σC < ∞) = 1 and

Ex[λ
−σC ]≤ Ex

[
λ
−σCV (XσC)

]
≤V (x)+bλ

−1
1C(x) . (14.5.2)

2. For all δ ∈ (1,1/λ ) and x ∈ X,

Ex[VσC(XσC)1{σC < ∞}]+ (1−δλ )Ex

[
σC−1

∑
k=0

δ
kV (Xk)

]
≤V (x)+bδ1C(x) . (14.5.3)

3. If π is an invariant measure such that π({V = ∞}) = 0, then Eπ [λ
−σC ]< ∞.

14.4. An INAR (INteger AutoRegressive) process is a Galton Walton process with
immigration, defined by the recursion X0 = 1 and

Xn+1 =
Xn

∑
j=1

ξ
(n+1)
j +Yn+1 , (14.5.4)

where {ξ (n)
j , j,n ∈ N∗} are i.i.d. integer-valued random variables and {Yn, n ∈ N∗}

is a sequence of i.i.d. integer-valued random variables, independent of {ξ (n)
j }. The

random variable Yn+1 represents the immigrants, that is the part of the (n+ 1)-th
generation which does not descend from the n-th generation.

Let ν be the distribution of ξ 1
1 and µ be the distribution of Y1.
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1. Show that P the transition kernel of this Markov chain is given by

P( j,k) = µ ∗ν
∗ j(k) .

Set for x ∈ N, V (x) = x.

2. Find λ < 1 and a finite set C such that PV (x)≤ λV (x)+b1C(x).
3. Show that supx∈CEx[λ

−σC ]< ∞.

14.5. Consider a functional autoregressive model, Xk+1 = h(Xk)+ Zk+1 where h :
R→ R is a measurable function, {Zk, k ∈ N∗} is an i.i.d. sequence of integrable
random variables, independent of X0. We denote m = E [|Z1|] and assume

(i) There exist ` > 0 and M < ∞ such that |h(x)| ≤ |x|− ` for all |x| ≥M;
(ii) There exist β > 0 and K < ∞, such that K =E

[
eβ |Z1|

]
< ∞ and Ke−β` = λ < 1;

(iii) sup|x|≤M |h(x)|< ∞.

Set W (x) = eβ |x| and C = [−M,+M].

1. Show that PW (x)≤ Keβ |h(x)|.
2. Show that for x 6∈C, PW (x)≤ Ke−β`W (x) = λW (x).
3. Show that for supx∈C PW (x)< ∞.
4. Show that for all x ∈ R, Ex[λ

−σC ]< ∞ and supx∈CEx[λ
−σC ]< ∞.

14.6 (ARCH(1) model). Consider the Markov chain defined on R by

Xk =
√

α0 +α1X2
k−1Zk , α0 > 0,α1 > 0,

where {Zk, k ∈N} is an independent sequence of real-valued random variables hav-
ing a density with respect to the Lebesgue measure denoted g. Assume that there
exists s ∈ (0,1] such that α

−s
1 > E

[
Z2s

0
]
.

1. Write the Markov kernel P of this Markov chain.
2. Show that, for all s ∈ (0,1] and α ≥ 0 we have (1+α)s ≤ 1+αs. Deduce that

for all x,y > 0, (x+ y)s ≤ xs + ys.
3. Obtain a geometric drift condition using the function V (x) = 1+ x2s.

14.7 (Random walk Metropolis algorithm on R). In the random walk Metropolis
algorithm onR (see Example 2.3.2), a candidate is drawn from the transition density
q(x,y) = q̄(y−x), where q̄ is a symmetric density q̄(y) = q̄(−y) and is accepted with
probability α(x,y) given by

α(x,y) =
π(y)
π(x)

∧1

where π is the target density, which is assumed to be positive. Assume in addition
that π is symmetric and log-concave in the tails, i.e. there exist β > 0 and some
x0 > 0 such that,
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logπ(x)− logπ(y)≥ β (y− x) , y≥ x≥ x0 ,

logπ(x)− logπ(y)≥ β (x− y) , y≤ x≤−x0 .

1. Show that the Markov kernel P associated to the Metropolis algorithm is given,
for x ∈ R and A ∈B(R), by

P(x,A) =
∫

A
q(x,y)α(x,y)dy+1A(x)

∫
R

q(x,y) [1−α(x,y)]dy

2. Set V (x) = es|x| for any s ∈ (0,β ). Show that there exists a compact set C ∈
B(R) and constants λ ∈ [0,1) and b < ∞ such that for PV ≤ λV +b1C.

3. Show that there exists a constant δ > 1 such that supx∈CEx

[
∑

σC−1
k=0 δ kV (Xk)

]
<

∞.
4. Show that there exists constants δ > 1 and ς < ∞ such that, for all x ∈ R,
Ex

[
∑

σC−1
k=0 δ kV (Xk)

]
≤ κV (x).

14.8. Let P be a Markov kernel on X×X . Let C ∈X be a nonempty set, b∈ [0,∞),
f ,V : X→ [1,∞] such that for all x ∈ X,

f (x)PV (x)≤V (x)+b1C(x) . (14.5.5)

(i) Prove that

Ex

[
σC−1

∏
i=0

f (Xi)

]
≤V (x)+b1C(x) . (14.5.6)

Hint: π−1 = 1, πn = ∏
n
i=0 f (Xi) and Vn = V (Xn) for n ≥ 0. Prove by induction us-

ing (14.5.5) that for all n≥ 0,

Ex[πn∧σC−1Vn∧σC ]≤V (x)+b1C(x) .

(ii) Conversely, assume that supx∈CEx[∏
σC−1
i=0 f (Xi)]< ∞ and set set

V (x) = Ex[
τC−1

∏
i=0

f (Xi)] .

Prove that there exists b such that (14.5.5) holds.

14.9. Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞) be a mea-
surable function and m ≥ 1. Assume that there exist a function V : X → [0,∞]
such that {V < ∞} 6= /0, a non-empty petite set C, λ ∈ [0,1) and b < ∞ such that
PV + f ≤ λV +b1C.

1. Show that

PmV +
m−1

∑
k=0

λ
m−1−kPk f ≤ λ

mV +b(1−λ
m)/(1−λ ) . (14.5.7)
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2. Show that, if P is aperiodic, there exists a petite set D and λ (m) ∈ [0,1) and
b(m) < ∞ such that

PmV (m)+ f (m) ≤ λ
(m)V (m)+b(m)

1D , (14.5.8)

where f (m) is defined in (14.3.1) and V (m) = λ−(m−1)V .
3. Using the drift condition (14.5.8), show that if P is f -regular, then Pm is f (m)-

regular.

14.6 Bibliographical notes

The use of drift conditions to control the return times to a set was introduced,
for Markov chains over discrete state-spaces by Foster (1953, 1952a). Early refer-
ences evidencing the links between geometric drift conditions and regularity for dis-
crete state-space Markov chains include Kendall (1960), Vere-Jones (1962), Miller
(1965/1966), Popov (1977) and Popov (1979). Extensions of these results to gen-
eral state-space was carried out in Nummelin and Tweedie (1976) and Nummelin
and Tweedie (1978). The theory of geometric recurrence and geometric regularity is
fully developed in the books of Nummelin (1984) and Meyn and Tweedie (1993b).





Chapter 15
Geometric rates of convergence

We have seen in Chapter 11 that a positive recurrent irreducible kernel P on X×
X admits a unique invariant probability measure, say π . If the kernel is moreover
aperiodic then the iterates of the kernel Pn(x, ·) converge to π in total variation
distance for π-almost all x∈X. Using the characterizations of Chapter 14, we will in
this Chapter establish conditions under which the rate of convergence is geometric in
f -norm, i.e. limn→∞ δ n ‖Pn(x, ·)−π‖ f = 0 for some δ > 1 and positive measurable
function f . We will also consider the related problems of finding non-asymptotic
bounds of convergence, i.e. functions M : X→ R+ such that for all n ∈ N and x ∈
X , δ n ‖Pn(x, ·)−π‖ f ≤M(x). We will provide different expressions for the bound
M(x) either in terms of ( f ,δ )-modulated moment of the return time to a small set
Ex

[
∑

σC−1
k=0 δ k f (Xk)

]
or in terms of appropriately defined drift functions. We will

also see the possible interplays between these different expressions of the bounds.

15.1 Geometric ergodicity

Definition 15.1.1 ( f -geometric ergodicity) Let P be a Markov kernel on X×X
and f : X → [1,∞) be a measurable function. The kernel P is said to be f -
geometrically ergodic if it is irreducible, positive with invariant probability π and if
there exist

(i) a measurable function M : X→ [0,∞] such that π({M < ∞}) = 1
(ii) a measurable function β : X→ [1,∞) such that π({β > 1}) = 1

satisfying for all n ∈ N and x ∈ X,

β
n(x)‖Pn(x, ·)−π‖ f ≤M(x) .

If f ≡ 1, then P is simply said to be geometrically ergodic.

339



340 15 Geometric rates of convergence

In Chapter 13, we have considered atomic kernels and obtained rates of convergence
of the iterates of the kernel to the invariant probability. In this section, we will extend
these results to aperiodic irreducible kernels by means of the splitting construction.
We use the same notations as in Section 11.1, in particular for the split kernel P̌,
which can also be written P̌ε,ν whenever there is an ambiguity.

Lemma 15.1.2 Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and C be a (1,2εν)-small set with ν(C) = 1. Set P̌ = P̌ε,ν

and α̌ =C×{1}. Assume that, for some δ > 1,

sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
< ∞ . (15.1.1)

Then, there exist β ∈ (1,δ ) and ς < ∞ such that

sup
(x,d)∈C×{0,1}

Ě(x,d)

[
σα̌

∑
k=0

β
k f (Xk)

]
≤ ς sup

x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
, (15.1.2)

and for any ξ ∈M1(X ),

Ěξ⊗bε

[
σα̌

∑
k=0

β
k f (Xk)

]
≤ ςEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
. (15.1.3)

Proof. The condition (15.1.1) implies that M = supx∈C f (x)<∞ and infx∈CPx(σC <
∞) = 1 so that C is Harris-recurrent for P. We denote by Č = C×{0,1}. Proposi-
tion 11.1.4 implies that for all (x,d)∈ Č, P̌(x,d)(σČ <∞)= 1 and P̌(x,d)(σα̌ <∞)= 1.
For (x,d) ∈ X̌ such that P̌(x,d)(σα̌ < ∞) = 1 and for all β ∈ (0,1), we have

Ě(x,d)[β
σα̌ f (Xσα̌

)]≤Mβ Ě(x,d)[β
σα̌−1]≤Mβ Ě(x,d)

[
σα̌−1

∑
k=0

β
k f (Xk)

]

which implies that

Ě(x,d)

[
σα̌

∑
k=0

β
k f (Xk)

]
≤ (1+Mβ )Ě(x,d)

[
σα̌−1

∑
k=0

β
k f (Xk)

]
. (15.1.4)

On the other hand, for every x ∈C, we have by Proposition 11.1.2,

Ěδx⊗bε

[
σČ−1

∑
k=0

δ
k f (Xk)

]
= Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
. (15.1.5)

Note also that for any positive random variable Y ,
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sup
(x,D)∈Č

Ě(x,d)[Y ]≤ ςε sup
x∈C
Ěδx⊗bε

[Y ] ,

with ςε = ε−1∨(1−ε)−1. Applying this bound to (15.1.5) and then using that f ≥ 1
implies that sup(x,d)∈Č Ě(x,d)[δ

σČ ]< ∞.

By Proposition 11.1.4-(vi) we get inf(x,d)∈Č P̌(x,d)(X1 ∈ α̌)> 0.
We may therefore apply Theorem 14.2.3 with A = Č, B = α̌ and q = 1, which

shows there exist β ∈ (1,δ ) and a finite constant ς0 such that

sup
(x,d)∈Č

Ě(x,d)

[
σα̌−1

∑
k=0

β
k f (Xk)

]
≤ ς0 sup

(x,d)∈Č
Ě(x,d)

[
σČ−1

∑
k=0

δ
k f (Xk)

]

≤ ς0ςε sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

Combining with (15.1.4) yields (15.1.2). Noting that σα̌ ≤ σČ +σα̌ ◦ θσČ
on the

event {σČ < ∞}, we get

Ěξ⊗bε

[
σα̌

∑
k=0

δ
k f (Xk)

]
≤ Ěξ⊗bε

[
σČ−1

∑
k=0

δ
k f (Xk)

]
+ Ěξ⊗bε

σα̌◦θσČ

∑
k=σČ

δ
k f (Xk)


≤ Ěξ⊗bε

[
σČ−1

∑
k=0

δ
k f (Xk)

]
+ Ěξ⊗bε

[δ σČ ] sup
(x,d)∈Č

Ě(x,d)

[
σα̌

∑
k=0

δ
k f (Xk)

]

= Eξ

[
σC−1

∑
k=0

δ
k f (Xk)

]{
1+δ sup

(x,d)∈Č
Ě(x,d)

[
σα̌

∑
k=0

δ
k f (Xk)

]}
. (15.1.6)

which proves (15.1.3). 2

We first provide sufficient conditions upon which the Markov kernel P is f -
geometrically ergodic.

Theorem 15.1.3. Let P be an irreducible aperiodic Markov kernel on X×X and
f : X→ [1,∞) be a measurable function. Assume that P is f -geometrically regular,
that is, one of the following equivalent conditions is satisfied (see Theorem 14.2.6):

(i) There exists a f -geometrically recurrent petite set C, i.e. for some δ > 1,

sup
x∈C
Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
< ∞ . (15.1.7)

(ii) There exist a function V : X→ [0,∞] such that {V < ∞} 6= /0, a non empty petite
set C, λ ∈ [0,1) and b < ∞ such that
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PV + f ≤ λV +b1C ;

Then, denoting by π the invariant probability measure, the following properties
hold.

(a) There exist a set S ∈X such that π(S) = 1, {V < ∞} ⊂ S, with V as in (ii) and
β > 1 such that for all x ∈ S,

∞

∑
n=0

β
n ‖Pn(x, ·)−π‖ f < ∞ . (15.1.8)

(b) For every f -geometrically regular distribution ξ ∈M1(X ), there exists γ > 1
such that

∞

∑
n=0

γ
n ‖ξ Pn−π‖ f < ∞ . (15.1.9)

(c) There exist constants ϑ < ∞ and β > 1 such that for all initial distributions
ξ ∈M1(X ),

∞

∑
n=0

β
n ‖ξ Pn−π‖ f ≤ ϑM(ξ ) (15.1.10)

with M(ξ ) = Eξ

[
∑

σC−1
k=0 δ k f (Xk)

]
and δ as in (15.1.7) or M(ξ ) = ξ (V ) + 1

with V as in (ii).

Proof. Since C is small and supx∈CEx[σC]< ∞ the existence and uniqueness of the
invariant probability π follows from Corollary 11.2.9.

We assume (i) and will prove that there exist β ∈ (1,δ ) and a finite constant
ς < ∞ such that for every ξ ∈M1(X ),

∞

∑
n=0

β
n ‖ξ Pn−π‖ f ≤ ςEξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
. (15.1.11)

This is the central part of the proof. The other assertions follow almost immediately.
The proof proceeds in two steps. We will first establish the result for a strongly
aperiodic kernel and use for that purpose the splitting construction introduced in
Chapter 11. We then extend the result to the general case by using the m-skeleton.

(I) We first assume that P admits a f -geometrically recurrent and (1,µ)-small set
C with µ(C)> 0. Since C is petite and f -geometrically recurrent, it is also accessi-
ble by Theorem 14.2.4. By Proposition 11.1.4, the set α̌ =C×{1} is an accessible,
aperiodic and positive atom for the split kernel P̌ = P̌ε,ν defined in (11.1.7). Using
(15.1.2) in Lemma 15.1.2, the condition (15.1.7) implies that there exist γ ∈ (1,δ )
such that Ěα̌

[
∑

σα̌

k=0 γk f (Xk)
]
< ∞. By Proposition 11.1.3, P̌ admits a unique invari-

ant probability measure which may be expressed as π⊗bε where we recall that π is
the unique invariant probability measure for P. In addition, Lemma 11.1.1 implies
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∥∥∥
f
≤
∥∥∥(ξ ⊗bε)P̌k−π⊗bε

∥∥∥
f⊗1

. (15.1.12)

Combining with Theorem 13.4.3 and (15.1.3) in Lemma 15.1.2, we obtain that there
exist β ∈ (1,γ) and ς1, ς2 < ∞ such that

∞

∑
k=1

β
k
∥∥∥ξ Pk−π

∥∥∥
f
≤

∞

∑
k=1

β
k
∥∥∥(ξ ⊗bε)P̌k−π⊗bε

∥∥∥
f̄

≤ ς1Ěξ⊗bε

[
σα̌

∑
k=1

γ
k f (Xk)

]
≤ ς1ς2Eξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
.

(II) Assume now that P admits a f -geometrically recurrent petite set C. Apply-
ing Theorem 14.2.4, the set C is accessible. Moreover, since P is irreducible and
aperiodic, the set C is also small by Theorem 9.4.10. Then, by Lemma 9.1.6 we
may assume without loss of generality that C is (m,µ)-small with µ(C) > 0 and
hence, C is an accessible (1,µ)-small set with µ(C) > 0 for the kernel Pm. To ap-
ply (I), it remains to show that C is f (m)-geometrically recurrent for the kernel Pm,
where f (m) = ∑

m−1
i=0 Pi f . By Proposition 14.3.2, there exists γ ∈ (1,δ ) and ς1 < ∞

such that, for any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

γ
mk f (m)(Xmk)

]
≤ ς1Eξ

[
σC−1

∑
k=0

δ
k f (Xk)

]
. (15.1.13)

Using (15.1.7), this implies that supx∈CEx

[
∑

σC,m−1
k=0 γmk f (m)(Xmk)

]
< ∞. We may

therefore apply (I) to the kernel Pm to show that there exist β ∈ (1,δ ) and ς2 < ∞

such that for all ξ ∈M1(X ),

∞

∑
k=1

β
k
∥∥∥ξ Pmk−π

∥∥∥
f (m)
≤ ς2Eξ

[
σC,m−1

∑
k=0

γ
mk f (m)(Xmk)

]
. (15.1.14)

To conclude, we need to relate ∑
∞
k=1 δ k

∥∥ξ Pk−π
∥∥

f and ∑
∞
k=1 β k

∥∥ξ Pmk−π
∥∥

f (m) .
This is not a difficult task. Note first that if |g| ≤ f , then for i ∈ {0, . . . ,m− 1},
|Pig| ≤ f (m) which implies∥∥∥ξ Pmk+i−π

∥∥∥
f
= sup
|g|≤ f
|ξ Pmk+ig−π(g)| ≤

∥∥∥ξ Pmk−π

∥∥∥
f (m)

.

Therefore, we get

∞

∑
k=0

β
k/m
∥∥∥ξ Pk−π

∥∥∥
f
≤

m−1

∑
i=0

∞

∑
`=0

β
(`m+i)/m

∥∥∥ξ Pmk−π

∥∥∥
f (m)

≤ mβ

∞

∑
`=0

δ
`
∥∥∥ξ Pmk−π

∥∥∥
f (m)

.
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The bound (15.1.11) then follows from (15.1.13) and (15.1.14).

The rest of the proof is elementary, given all the previous results.

(a) The set Sδ ,C :=
{

x ∈ X : Ex

[
∑

σC−1
k=0 δ k f (Xk)

]
< ∞

}
is full and absorbing by

Corollary 9.2.14. Since π is a maximal irreducibility measure, π(Sδ ,C) = 1. For any
x ∈ S0, (15.1.8) follows from (15.1.11) with ξ = δx. If (ii) is satisfied, then we may
choose the petite set C and the function V such that supC V <∞. By Theorem 14.2.6-
(b), there exists a constant ς < ∞ and δ > 1 such that

Ex

[
σC−1

∑
k=0

δ
k f (Xk)

]
≤ ς{V (x)+1} . (15.1.15)

Therefore, we get {V < ∞} ⊂ Sδ ,C which concludes the proof of (a)

(b) If ξ is f -geometrically regular, then Eξ

[
∑

σC−1
k=0 κk f (Xk)

]
< ∞ for some κ >

1 and (15.1.9) follows from (15.1.11).
(c) If (i) is satisfied, then (15.1.11) shows the desired result. If (ii) is satisfied,

the conclusion follows from (15.1.11) and (15.1.15).

2

Specializing Theorem 15.1.3 to the case f ≡ 1, we extend Theorem 8.2.9 to
irreducible and aperiodic Markov chain.

Corollary 15.1.4 Let P be an irreducible and aperiodic Markov kernel on
X×X . Assume that there exists a geometrically recurrent small set C, i.e.
supx∈CEx[δ

σC ] < ∞ for some δ > 1. Then, P is geometrically ergodic with in-
variant probability π . In addition,

(a) There exist S ∈X with π(S) = 1 and β > 1 such that for all x ∈ S,

∞

∑
k=1

β
k
∥∥∥Pk(x, ·)−π

∥∥∥
TV

< ∞ .

(b) There exist β > 1 and ς < ∞ such that for every initial distribution ξ ∈
M1(X ),

∞

∑
k=1

β
k
∥∥∥ξ Pk−π

∥∥∥
TV
≤ ςEξ [δ

σC ] .

Proof. This follows directly from Theorem 15.1.3 upon setting f ≡ 1. By Corol-
lary 9.2.14, the set {x ∈ X : Ex[δ

σC ]< ∞} is full and absorbing, which establishes
the second assertion. 2

If we set f ≡ 1, the sufficient conditions for a Markov kernel P to be f -
geometrically ergodic of Theorem 15.1.3 may be shown to be also necessary.
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Theorem 15.1.5. Let P be an irreducible, aperiodic and positive Markov kernel on
X×X with invariant probability measure π . The following assertions are equiva-
lent.

(i) P is geometrically ergodic.
(ii) There exist a small set C and constants ς < ∞ and 0 < ρ < 1 such that, for all

n ∈ N,
sup
x∈C
|Pn(x,C)−π(C)| ≤ ςρ

n . (15.1.16)

(iii) There exist an (m,εν)-accessible small set C such that ν(C)> 0 and constants
ς < ∞, ρ ∈ [0,1) satisfying∣∣∣∣∫C

ν(dx){Pn(x,C)−π(C)}
∣∣∣∣≤ ςρ

n ,

(iv) There exist an accessible small set C and β > 1 such that supx∈CEx[β
σC ]< ∞.

(v) There exist ρ < 1 and a measurable function M : X→ [0,∞] such that π(M)<∞

and for all x ∈ X and n ∈ N,

‖Pn(x, ·)−π‖TV ≤M(x)ρn .

Proof. (i)⇒ (ii) If P is geometrically ergodic, there exist measurable functions
M : X→ [0,∞] and ρ : X→ [0,1] satisfying π({M < ∞}) = π({ρ < 1}) = 1 such
that for all x ∈ X and n ∈ N,

‖δxPn−π‖TV ≤M(x)ρn(x) . (15.1.17)

Since P is irreducible it admits an accessible small set D. By Theorem 9.2.15, the
invariant probability π is a maximal irreducibility measure: hence π(D) > 0. For
m > 0 and r ∈ [0,1), define the set

C(m,r) := D∩{x ∈ X : M(x)≤ m}∩{x ∈ X : ρ(x)≤ r}

For every m > 0 and r ∈ [0,1), the set C(m,r) is a small set as a subset of a small
set. Moreover, the set

{x ∈ X : M(x)< ∞}∩{x ∈ X : ρ(x)< 1}

being full, m and r may be chosen large enough so that π(C(m,r)) > 0. Then, by
(15.1.17), for all x ∈C(m,r), we have

|Pn(x,C(m,r))−π(C(m,r))| ≤ ‖δxPn−π‖TV ≤ mrn .

(ii)⇒ (iii) Assume that C is an accessible (`,µ)-small set satisfying (15.1.16).
By Lemma 9.1.6, we may choose m and ν such that C is a (m,εν)-small set with
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ε > 0 and ν(C)> 0. Moreover, we get∣∣∣∣∫C
ν(dx){Pn(x,C)−π(C)}

∣∣∣∣≤ ν(C)sup
x∈C
|Pn(x,C)−π(C)| ≤ ν(C)ςρ

n .

(iii)⇒ (iv) The proof is in two steps. We first assume the existence of a strongly
aperiodic small set. We will then extend the result to general aperiodic kernel by
considering a skeleton.

(I) Assume first that there exist a (1,εν) small set C satisfying ν(C)> 0 and con-
stants ς < ∞ and ρ ∈ [0,1) such that |νPn(C)− π(C)| ≤ ςρn. Consider the
split kernel P̌ introduced in Section 11.1. Denote α̌ = C×{1}. By Proposi-
tion 11.1.4-(ii), α̌ is an accessible atom for P̌. By Proposition 11.1.4-(iv), we
have for all n ≥ 1, P̌n(α̌, α̌) = ενPn−1(C). Therefore, for any z ∈ C such that
|z| ≤ ρ−1, the series

∞

∑
n=1
{P̌n(α̌, α̌)− επ(C)}zn = ε

∞

∑
n=1
{νPn−1(C)−π(C)}zn < ∞ (15.1.18)

is absolutely convergent. Kendall’s Theorem 8.1.9 shows that (15.1.18) is equiv-
alent to the existence of an exponential moment for the return time to the atom
α̌ , i.e. there exists δ > 1 such that

Ěα̌ [δ σα̌ ]< ∞ .

Since by Proposition 11.1.4 the set α̌ is accessible for P̌, the kernel P̌ is geo-
metrically regular by Theorem 14.2.6. The kernel P is therefore geometrically
regular by Proposition 14.4.1-(ii). Hence the kernel P admits an accessible ge-
ometrically regular set D (see Definition 14.2.1). By Theorem 14.2.4, the set D
is petite and geometrically recurrent, i.e. supx∈DEx[β

σD ] < ∞ for some β > 1,
hence accessible by Theorem 14.2.4. Furthermore, since P is aperiodic, every
petite set is small by Theorem 9.4.10.

(II) Assume now that C is an accessible (m,εν) small set for some m > 1 and
ν(C)> 0. Without loss of generality, we may assume that ν ∈M1(X ), ν(C) =
1 and infx∈C Pm(x,C)≥ 2ε . Applying (I), there exists an accessible small set D
such that supx∈DEx [δ

σD,m ]< ∞ for some δ > 1, where σD,m be the return time
to C for the skeleton chain Pm. The set D is also small for the kernel P and since
σD ≤ mσD,m, supx∈DEx

[
δ σD/m

]
≤ supx∈DEx [δ

σD,m ] < ∞ . Hence, the Markov
kernel P admits a small accessible geometrically recurrent set.

The rest of the proof is immediate. [(iv)⇒ (v)] follows from Corollary 15.1.4
upon choosing M(x) = Ex[δ

τC ] for an appropriate δ > 1. [(v)⇒ (i)] is obvious.
2
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Theorem 15.1.6. Let P be an irreducible and positive Markov kernel on X×X with
invariant probability measure π . Assume that P is geometrically ergodic. Then, for
every p ≥ 1, there exist a function V : X→ [1,∞] κ ∈ [1,∞) and ς < ∞ such that
π(V p)< ∞ and for all n ∈ N and x ∈ X,

‖Pn(x, ·)−π‖TV ≤ ‖P
n(x, ·)−π‖V ≤ ςV (x)κ−n .

Proof. By Lemma 9.3.9, the Markov kernel P is aperiodic. By Theorem 15.1.5-(iv),
there exists an accessible small set C and β > 1 such that supx∈CEx[β

σC ] < ∞. For
δ ∈ (1,β ] and x ∈ X we set Vδ (x) = Ex[δ

τC ]. We have PVδ (x) = δ−1Ex[δ
σC ] and

therefore

PVδ (x)≤ δ
−1Vδ (x)+bδ1C(x) where bδ = δ

−1 sup
x∈C
Ex[δ

σC ]. (15.1.19)

By Corollary 9.2.14, the set {x ∈ X : Ex[β
σC ]< ∞} is full and absorbing. Since π

is a maximal irreducibility measure, π({Vβ = ∞}) = 0 and, thanks to (15.1.19), by
Lemma 14.1.10, π(Vβ ) < ∞. Set δ = β 1/p. Applying Jensen inequality, we get for
p≥ 1,

π(V p
δ
) =

∫
{Ex[δ

τC ]}p
π(dx)≤

∫
Ex[δ

pτC ]π(dx) = π(Vβ )< ∞ .

Let α > δ and set γ−1 = δ−1−α−1. V =Vδ1{Vδ<∞}+1{Vδ=∞} and Wδ = γVδ . Note
that V ≥ 1 and Wδ ≤ γV π-a.e.. We get, using (15.1.19), for all ∈ X,

PWδ (x)+V (x)≤ α
−1Wδ (x)+ γbδ1C(x) .

We apply Theorem 15.1.3-(c) (with f ←V , V ←Wδ ), there exist κ > 1 and ς1 < ∞

such that

‖Pn(x, ·)−π‖V ≤ ς1κ
−n{Wδ (x)+1} ≤ ς2κ

−nV (x) π−a.e.

2

Theorem 15.1.5 may be used to establish that some innocuously looking Markov
kernels P may fail to be geometrically ergodic.

Example 15.1.7. Let P be a positive Markov kernel on X×X with invariant proba-
bility π . Assume that the invariant probability π is not concentrated at a single point
and that the essential supremum of the function x 7→ P(x,{x}) with respect to π is
equal to 1.

esssupπ (P) = inf{δ > 0 : π ({x ∈ X : P(x,{x})≥ δ}) = 0}= 1 .

We will prove by contradiction that the Markov kernel P cannot be geometrically
ergodic. Assume that the Markov kernel P is geometrically ergodic. From Theo-
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rem 15.1.5-(iv), there exist a (m,εν)-small set C and β > 1 such that

sup
x∈C
Ex [β

σC ]< ∞ . (15.1.20)

Because the stationary distribution is not concentrated at a point and P is irreducible,

for all x ∈ X, P(x,{x})< 1 . (15.1.21)

(Recall that π is a maximal irreducibility measure; hence, if there exists x ∈ X
such that P(x,{x}) = 1, then the set {x} is absorbing and hence full). Because C
is (m,εν)-small, we may write for any x ∈C,

Pm(x, ·) = εν +(1− ε)R(x, ·) , R(x, ·) = (1− ε)−1 {Pm(x, ·)− εν}

Hence, for all x,x′ ∈ C, we have Pm(x, ·)− Pm(x′, ·) = (1− ε){R(x, ·)− R(x′, ·)}
which implies ∥∥Pm(x, ·)−Pm(x′, ·)

∥∥
TV ≤ 2(1− ε) . (15.1.22)

For j ≥ 1, denote by A j the set A j :=
{

x ∈ X : P(x,{x})≥ 1− j−1
}

; under the
stated assumption, π(A j)> 0 for all j ≥ 1. We will show that

sup
x∈C

P(x,{x})< 1 (15.1.23)

which implies that for large enough j ≥ 1 we must have have A j ∩C = /0.
The proof of (15.1.23) is also by contradiction. Assume that supx∈C P(x,{x})= 1.

Since P(x,{x})< 1 (see (15.1.21)), there must be two distinct points x0 and x1 ∈C
satisfying P(xi, {xi}) > (1− ε/2)1/m or equivalently Pm(xi,{xi}) > (1− ε/2), i =
0,1. By Proposition D.2.3, we have

‖Pm(x0, ·)−Pm(x1, ·)‖TV = sup
I

∑
i=0
|Pm(x0,Bi)−Pm(x1,Bi)| ,

where the supremum is taken over all finite measurable partitions {Bi}I
i=0. Taking

B0 = {x0}, B1 = {x1} and B2 = X\ (B0∪B1), we therefore have

‖Pm(x0, ·)−Pm(x1, ·)‖TV

≥ |Pm(x0,{x0})−Pm(x1,{x0})|+ |Pm(x0,{x1})−Pm(x1,{x1})| ≥ 2(1− ε) ,

where we have used Pm(xi,{xi}) > (1− ε/2), i = 0,1 and Pm(xi,{x j}) < ε/2, i 6=
j ∈ {0,1}. This gives a contradiction to (15.1.22). Hence, supx∈C P(x, {x})< 1 and
A j ∩C = /0 for large enough j.

Choose j large enough so that 1− j−1 > β−1 where β is defined in (15.1.20)
and A j ∩C = /0. By Theorem 9.2.15, π is a maximal irreducibility measure. Since
π(A j) > 0, then A j is accessible. Let x ∈ C: there exists an integer n such that
Pn(x,A j)> 0. By the last exit decomposition from C (see Section 3.4), we get that
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Pn(x,A j) = Ex[1A j
(Xn)1{σC ≥ n}]

+
n−1

∑
i=1

∫
C

Pi(x,dx′)Ex′ [1A j
(Xn−i)1{σC ≥ n− i}]> 0 .

Therefore, there exist x0 ∈C and ` ∈ {1, . . . ,n} such that Ex0 [1A j
(X`)1{σC ≥ `}]>

0. For all k ≥ 0, we have, using that A j ∩C = /0,

Px0(σC ≥ `+ k)≥ Ex0 [1A j
(X`)1{σC ≥ `}](1− j−1)k ,

giving the contradiction that Ex0 [β
σC ] = ∞. Therefore P cannot be geometrically

ergodic.

15.2 V -uniform geometric ergodicity

Definition 15.2.1 (V -uniform geometric ergodicity) Let V : X→ [1,∞) be a mea-
surable function and P be a Markov kernel on X×X .

(i) The Markov kernel P is said to be V -uniformly ergodic if P admits an invari-
ant probability measure π such that π(V ) < ∞ and there exists a nonnegative
sequence {ςn, n ∈ N} such that limn→∞ ςn = 0 and for all x ∈ X,

‖Pn(x, ·)−π‖V ≤ ςnV (x) . (15.2.1)

(ii) The Markov kernel P is said to be V -uniformly geometrically ergodic if P is
V -uniformly ergodic and there exist constants ς < ∞ and β > 1 such that for all
n ∈ N, ςn ≤ ςβ−n.

(iii) If V ≡ 1, the Markov kernel P is said to be uniformly (geometrically) ergodic.

Lemma 15.2.2 Let V : X → [1,∞) be a measurable function. Let P be a posi-
tive Markov kernel on X×X with stationary distribution π satisfying π(V ) <
∞. Assume that there exists a sequence {ζk, k ∈ N} such that, for all x ∈ X,∥∥Pk(x, ·)−π

∥∥
V ≤ ζkV (x). Then, for all n,m ∈ N and x ∈ X, ‖Pn+m(x, ·)−π‖V ≤

ζnζmV (x).

Proof. Since P is V -uniformly ergodic, then for all k ∈N, x∈X and any measurable
function satisfying supy∈X | f (y)|/V (y)< ∞ and x ∈ X, we get

|δxPk( f )−π( f )| ≤ {sup
y∈X
| f (y)|/V (y)}ζkV (x) .

For all n,m ∈ N we have
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Pn+m−1⊗π = (Pn−1⊗π)(Pm−1⊗π) .

Furthermore, it also holds that |Pm f (y)− π( f )| ≤ ζmV (y) for all y ∈ X. Thus we
get, for all f ∈ F(X) such that supy∈X | f (y)|/V (y)≤ 1 and all x ∈ X,

δxPn+m( f )−π( f ) = δx[Pn−1⊗π][(Pm−1⊗π)( f )]≤ ζnζmV (x)

2

Proposition 15.2.3 Let V : X→ [1,∞) be a measurable function. Let P be an
irreducible Markov kernel on X×X . The Markov kernel P is V -uniformly
ergodic if and only if P is V -uniformly geometrically ergodic.

Proof. Assume that P is V -uniformly ergodic. Denote by π the invariant probabil-
ity. There exists a sequence {ςn, n ∈ N} such that limn→∞ ςn = 0 and for all x ∈ X,
‖δxPn−π‖V ≤ ςnV (x). Let β > 1 and choose m ∈ N such that ςm = β−1 < 1. Ap-
plying Lemma 15.2.2 with ζkm = β−k, we get that

∥∥δxPkm−π
∥∥

V ≤ β−kV (x) for all
x ∈ X. Let n ∈N. We have n = km+ r, r < m. Then, using again Lemma 15.2.2 and
setting ς = max1≤ j<m ς j, we get for all x ∈ X,

‖δxPn−π‖V =
∥∥∥δxPmk+r−π

∥∥∥
V
≤ ςβ

−kV (x)≤ ςββ
−n/mV (x) ,

showing that P is V -uniformly geometrically ergodic. The converse implication is
obvious. 2

We now make state equivalences which parallel the results of Chapter 14.

Theorem 15.2.4. Let V : X→ [1,∞) be a measurable function. Let P be an irre-
ducible Markov kernel on X×X . Then the following conditions are equivalent:

(i) P is V -uniformly geometrically ergodic.
(ii) P is positive, aperiodic and there exist ς < ∞, β > 1 and a petite set C such that

supx∈C V (x)< ∞ and for all x ∈ X,

Ex

[
σC−1

∑
k=0

β
kV (Xk)

]
≤ ςV (x) .

Moreover, the following properties hold

(a) If P is aperiodic and Condition Dg(V,λ ,b,C) holds for some petite set C, then
P is V -uniformly geometrically ergodic.
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(b) If P is V -uniformly geometrically ergodic then P is positive, aperiodic and con-
dition Dg(V0,λ ,b,C) is satisfied for some petite set C and some function V0
verifying V ≤V0 ≤ ςV and constants ς < ∞, b < ∞, λ ∈ [0,1).

Proof. (I) Assume that P is aperiodic and that the condition Dg(V,λ ,b,C) holds
for some petite set C. We will first prove that (ii) is satisfied. By Corollary 14.1.6,
we may assume without loss of generality that V is bounded on C. We may choose
ε > 0 and λ̃ ∈ [0,1) such that

PV + εV ≤ λ̃V +b1C .

By Proposition 14.1.3, the set C is (V, λ̃−1)-geometrically recurrent. By Proposi-
tion 14.1.2, for all x ∈ X,

Ex

[
σC−1

∑
k=0

λ̃
−kV (Xk)

]
≤ ε

−1
{

sup
C

V +bλ̃
−1
}
1C(x)+ ε

−1V (x)1Cc(x)

≤
{

ε
−1
{

sup
C

V +bλ̃
−1
}
+ ε
−1
}

ςV (x) .

Therefore, the condition (ii) is satisfied.
(II) We will now establish (b). Since P is V -uniformly geometrically ergodic, P

admits an invariant probability measure π satisfying π(V )< ∞ and there exist ρ < 1
and M < ∞ such that for all n ∈N and x ∈ X, ‖Pn(x, ·)−π‖V ≤MρnV (x). Then, for
all A ∈X and x ∈ X we get

|Pn(x,A)−π(A)| ≤ ‖Pn(x, ·)−π‖TV ≤ ‖P
n(x, ·)−π‖V ≤Mρ

nV (x) . (15.2.2)

For any A ∈X and x ∈ X we therefore have

Pn(x,A)≥ π(A)−Mρ
nV (x). (15.2.3)

If π(A)> 0, we may therefore choose n large enough so that Pn(x,A)> 0, showing
that P is irreducible and π is an irreducibility measure. Since π is invariant for P,
Theorem 9.2.15 shows that π is a maximal irreducibility measure.
Let C be an accessible small set. Since π is a maximal irreducibility measure,
π(C) > 0 and for any d, for any x ∈ X satisfying V (x) ≤ d, we may choose n large
enough so that,

Pn(x,C)≥ π(C)−Mρ
nd ≥ 1/2π(C) .

Therefore, infx∈{V≤d}Pn(x,C)> 0 and since C is a small set, {V ≤ d} is also a small
set by Lemma 9.1.7.
Since X = {V < ∞} and π(X) = 1, we may choose d0 large enough so that π({V ≤
d})> 0 for all d ≥ d0. Since π is a maximal irreducibility measure, for any d ≥ d0,
{V ≤ d} is an accessible small set. Applying (15.2.3) with D = {V ≤ d}, we may



352 15 Geometric rates of convergence

find n large enough so that infx∈D Pm(x,D)≥ π(D)/2> 0 for all m> n. This implies
that the period of D is equal to 1 and hence that P is aperiodic.
Equation (15.2.2) also implies that for all x ∈ X and k ∈ N,

PkV (x)≤Mρ
kV (x)+π(V ) . (15.2.4)

We may therefore choose m large enough so that Mρm ≤ λ < 1, so that Pm satisfies
the condition Dg(V,λ ,π(V )). Hence,by Proposition 14.1.8, P satisfies the condition
Dg(V0,λ

1/m,λ−(m−1)/mπ(V )) where

V0 =
m−1

∑
k=0

λ
−k/mPkV .

Clearly, for all x ∈ X, V (x)≤V0(x). On the other hand, by (15.2.4), for all x ∈ X, we
get

V0(x)≤

{
M

m−1

∑
k=0

λ
−k/m

ρ
k

}
V (x)+

m−1

∑
k=0

π(V )λ−k/m

showing that V0(x) ≤ ςV (x), with ς = M ∑
m−1
k=0 λ−k/m{ρk + π(V )}. For all d > 0,

the set {V ≤ d} is petite, therefore {V0 ≤ d} is also petite for all d. We conclude by
applying Corollary 14.1.6.

(III) We will show that: (i)⇒ (ii) Assume that P is V -uniformly geometrically
ergodic. Then, (II) shows that (b) is satisfied, i.e. P is positive, aperiodic and the
drift condition Dg(V0,λ ,b,C) is satisfied for some petite set C and some function
V ≤V0 ≤ ςV and supx∈C V (x)< ∞. The condition (iii) follows from (I).

(IV) We will show that: (ii)⇒ (i) Since supC V < ∞, the set C is petite and V -
geometrically recurrent. Since P is aperiodic, we may apply Theorem 15.1.3, which
shows that there exist constants ρ ∈ (1,β ) and M < ∞ such that

ρ
k
∥∥∥Pk(x, ·)−π

∥∥∥
V
≤MEx

[
σC−1

∑
k=0

β
kV (Xk)

]
≤MςV (x) ,

showing that P is V -uniformly geometrically ergodic.
(V) We will finally prove (a). By (I), we already have that (iii) is satisfied. Since

(ii) ⇒ (i), shows that the Markov kernel P is V -uniformly geometrically ergodic,
which is (a).

2

Example 15.2.5 (Example 11.4.3 (continued)). We consider in this example the
first-order functional autoregressive model studied in Example 11.4.3. We recall
briefly the results obtained in Example 11.4.3. The first-order functional autoregres-
sive model on Rd is defined iteratively by Xk = m(Xk−1)+Zk, where {Zk, k ∈ N}
is an i.i.d. sequence of random vectors independent of X0 and m : Rd → Rd is a
locally bounded measurable function satisfying limsup|x|→∞ |m(x)|/|x|< 1. We as-
sume that the distribution of Z0 has a density q with respect to Lebesgue measure on
Rd which is bounded away from zero on every compact sets and that E [|Z0|] < ∞.
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Under the assumptions, we have shown that any compact set is (1,εν)-small and
thus strongly aperiodic. In addition, we have shown, setting V (x) = 1 + |x| that
PV (x) ≤ λV (x)+ b, for any λ ∈

(
limsup|x|→∞ |m(x)|/|x|,1

)
. Hence, by applying

Theorem 15.2.4, the Markov kernel P is V -uniformly geometrically ergodic, i.e.
there exists a unique stationary distribution π , β > 1 and ς < ∞, such that for all
x ∈ Rd

β
n ‖Pn(x, ·)−π‖V ≤ κV (x) .

Example 15.2.6 (Random walk Metropolis algorithm). We again consider the
random walk Metropolis algorithm over the real line. We briefly summarize the
models and the main results obtained so far. Let hπ be a positive and continuous
density function over R, which is log-concave in the tails (see (14.1.12),(14.1.13)).
Let q̄ be a continuous, positive and symmetric density on R. We denote by P the
Markov kernel associated to the Random Walk Metropolis (RWM) algorithm (see
Example 2.3.2) with increment distribution q̄. We have established that P is irre-
ducible, that every compact set C ⊂ R such that Leb(C) > 0 is (1,εν)-small. We
have also established that Dg(V,λ ,b,C) holds with V (x) = es|x| and C = [−x∗,x∗].
Hence, by applying Theorem 15.2.4, the random walk Metropolis-Hastings kernel
P is V -uniformly geometrically ergodic, i.e. there exist β > 1 and ς < ∞, such that
for all x ∈ Rd

β
n ‖Pn(x, ·)−π‖V ≤ κV (x) ,

where π is the target distribution. J

15.3 Uniform ergodicity

We now specialize the results above to the case where the Markov kernel P is uni-
formly geometrically ergodic. Recall that P is uniformly geometrically ergodic if
it admits an invariant probability π and if there exist β ∈ (1,∞] and a ς < ∞ such
that supx∈X ‖Pn(x, ·)−π‖TV ≤ ςβ−n for all n ∈N . We already know from Proposi-
tion 15.2.3 that uniform geometric ergodicity is equivalent to the apparently weaker
uniform ergodicity which states that limn→∞ supx∈X ‖Pn(x, ·)−π‖TV = 0.

Most of the results that we obtained immediately translate to this case by simply
setting V ≡ 1. Nevertheless, uniform ergodicity remains a remarkable property. This
is linked to the fact that the convergence of the iterates of the Markov kernel to the
stationary distribution π does not depend on the initial distribution.

When a Markov kernel is uniformly ergodic, there are many properties which
hold uniformly over the whole space. It turns out that these properties are in fact
equivalent to uniform ergodicity. This provides many criteria for checking uniform
ergodicity, which we will use to give conditions for uniform ergodicity of a Markov
kernel and to give conditions for non-uniform ergodicity.
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Theorem 15.3.1. Let P be a Markov kernel on X×X with invariant probability π .
The following statements are equivalent:

(i) P is uniformly geometrically ergodic.
(ii) P is a positive, aperiodic Markov kernel and there exist a small set C and

β > 1 such that
sup
x∈X
Ex[β

σC ]< ∞ ,

(iii) The state space X is small.
(iv) P is a positive, aperiodic Markov kernel and there exist a bounded function

V : X→ [1,∞), a petite set C and constants λ ∈ [0,1), b < ∞ such that the condition
Dg(V,λ ,b,C) is satisfied.

Proof. (i)⇒ (ii) Follows for Theorem 15.2.4-(ii) with V ≡ 1.
(ii) ⇒ (iii) Lemma 9.4.8 shows that the set {x ∈ X : Ex[β

τC ]≤ d} is petite.
Since supx∈XEx[β

τC ] < ∞, the state space X is petite and hence small, since P is
aperiodic.

(iii)⇒ (i) Assume that the state-space X is (m,εν)-small, i.e. for all x ∈ X and
A ∈X , Pm(x,A)≥ εν(A). Hence, for any A ∈X such that ν(A)> 0, it holds that
Pm(x,A) > 0, which shows that P is irreducible and ν is an irreducibility measure.
Since X is an accessible small set and σX = 1 Px −a.s. for all x∈X, Theorem 10.1.2
shows that P is recurrent. By applying Theorem 11.2.5, P admits a unique (up to a
multiplication by a positive constant) measure µ . This measure satisfies µ(C) < ∞

for any petite set C; since X is small, this implies that µ(X)< ∞, showing that P is
positive. Denote by π the unique invariant probability.
It remains to prove that P is aperiodic. The proof is by contradiction. Assume
that P is an irreducible Markov kernel with period d. There exists a sequence
C0, . . . ,Cd−1 of pairwise disjoint accessible sets such that for all i = 0, . . . ,d − 1
and x ∈Ci, P(x,Ci+1 [d]) = 0. Note that

⋃d−1
i=0 Ci is absorbing and hence there exists

i0 ∈ {0, . . . ,d− 1} such that ν(Ci0) > 0. Therefore, we should have, for all x ∈ X,
Pm(x,Ci0)> 0 which contradicts Pm(x,Ci0) = 0 for x 6∈Ci, for i 6= (i0−m) [d].
P being irreducible, positive and aperiodic, we may conclude the proof by applying
Theorem 15.2.4-(ii) with V ≡ 1 and C = X.

(i)⇒ (iv) Follows from Theorem 15.2.4-(a) and (iv)⇒ (i) from Theorem 15.2.4-
(b).

2

Example 15.3.2 (Compact state space). Let (X,d) be a compact metric space and
P be a Markov kernel with transition density. Assume that there exists a function
t : X×X→ R+ with respect to a σ -finite reference measure ν such that

(i) for all x ∈ X and A ∈X , P(x,A)≥ T (x,A) :=
∫

A t(x,y)ν(dy)
(ii) for all y ∈ X, x 7→ t(x,y) is continuous;
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(iii) t(x,y)> 0 for all x,y ∈ X.

Since the space X is compact, infx∈X t(x,y) = minx∈X t(x,y)≥ g(y)> 0 for all y∈X:
hence for all x ∈ X and A ∈X , we get that

P(x,A)≥
∫

A
t(x,y)ν(dy)≥

∫
A

g(y)ν(dy)

showing that the space is (1,εϕ)-small with ϕ(A) =
∫

A g(y)ν(dy)/
∫

X g(y)ν(dy) and
ε =

∫
X g(y)ν(dy) .

In the case of the Metropolis-Hastings algorithm, such conditions hold if, for
example, the proposal density q(x, y) is continuous in x for all y, is positive for all
x,y and if the target probability has a density π which is continuous and positive
everywhere with

t(x,y) = q(x,y)1∧ π(y)q(y,x)
π(x)q(x,y)

J

Example 15.3.3 (Independent Metropolis-Hastings sampler). We consider again
the Independent Metropolis-Hastings algorithm (see Section 2.3.1, Example 2.3.3).
Let µ be a σ -finite measure on (X,X ). Let h be the density with respect to
µ of the target distribution π . Denote by q the proposal density. Assume that
supx∈X h(x)/q(x) < ∞. For k ≥ 1, given Xk−1 a proposal Yk is drawn from the dis-
tribution q, independently of the past. Then, set Xk = Yk with probability α(Xk,Yk)
where

α(x,y) =
h(y)q(x)
h(x)q(y)

∧1 .

Otherwise, set Xk+1 = Xk. The transition kernel P of the Markov chain is defined,
for (x,A) ∈ X×X , by

P(x,A) =
∫

A
q(y)α(x,y)µ(dy)+

[
1−

∫
q(y)α(x,y)µ(dy)

]
δx(A) .

As shown in Proposition 2.3.1, π is reversible with respect to P. Hence, π is a
stationary distribution for P. Assume now that there exists ε > 0 such that

inf
x∈X

q(x)
h(x)

≥ ε . (15.3.1)

Then, for all x ∈ X and A ∈X , we have

P(x,A)≥
∫

A

(
h(y)q(x)
h(x)q(y)

∧1
)

q(y)µ(dy)

=
∫

A

(
q(x)
h(x)
∧ q(y)

h(y)

)
h(y)µ(dy)≥ επ(A) . (15.3.2)
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Thus X is a small set holds and the kernel P is uniformly geometrically ergodic by
Theorem 15.3.1-(iii).

Consider the situation in which X = R and the target density is a zero-mean
standard gaussian π = N(0,1). Assume that the proposal density is chosen to be the
density of the N(1,1) distribution. The acceptance ratio is given by

α(x,y) = 1∧ h(y)
h(x)

q(x)
q(y)

= 1∧ ex−y .

This choice implies that moves to the right may be rejected, but moves to the left are
always accepted. Condition (15.3.1) is not satisfied in this case. It is easily shown
that the algorithm does not converge at a geometrical rate to the target distribution
(see Exercise 15.10).

If on the other hand the mean is known but the variance (which is equal to 1) is
unknown, then we may take the proposal density q to be N(0,σ2) for some known
σ2 > 1. Then q(x)/h(x) ≥ σ−1 and (15.3.1) holds. This shows that the state space
is small and hence that the Markov kernel P is uniformly geometrically ergodic. J

15.4 Exercises

15.1. Consider the Markov chain in R+ defined by Xk+1 = (Xk + Zk+1)
+ where

{Zk, k ∈ N} is a sequence of random variables such that E [Z1]< ∞ and for M < ∞

and β > 0, P(Z1 > y)≤Me−βy for all y ∈ R+. Show that Dg(V,λ ,b,C) is satisfied
with V (x) = etx +1 for some positive t and C chosen as [0,c] for some c > 0.

15.2. Consider the Metropolis-Hastings kernel P defined in (2.3.4). Let ᾱ(x) =∫
X{1− α(x,y)}q(x,y)ν(dy) be the rejection probability from each point x ∈ X.

Show that if esssupπ (ᾱ) = 1 and π({x}) < 1 for any x ∈ X, then the Metropolis-
Hastings kernel is not geometrically ergodic.

15.3. Consider the functional autoregressive model Xk = f (Xk−1) + σ(Xk−1)Zk,
where {Zk, k ∈ N} are i.i.d. standard Gaussian random variables, f and σ are
bounded measurable functions and there exist a,b > 0 such that a ≤ σ2(x) ≤ b
for all x ∈ R. Show that the associated kernel is uniformly geometrically ergodic.

15.4. We use the notations of Section 2.3. Consider the independent sampler intro-
duced in Example 2.3.3.

(i) Assume that q̄(x)/h(x)≥ c, π-a.e. Show that the Markov kernel P is uniformly
ergodic.

(ii) Assume that sup{c > 0 : π({x ∈ X : q̄(x)/h(x)≤ c}) = 0}= 0. Show that the
Markov kernel P is not geometrically ergodic.

15.5. Let P and Q be two Markov kernels on X×X . Assume that P is uniformly
ergodic. Let α ∈ (0,1). Show that αP+(1−α)Q is uniformly ergodic.
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15.6. Show that a Markov kernel on a finite state space for which all the states are
accessible and which is aperiodic is always uniformly geometrically ergodic.

15.7. Let Xk = (α0 +α1X2
k−1)

1/2Zk, where {Zk, k ∈ N} is an i.i.d. sequence be an
ARCH(1) sequence. Assume that α0 > 0, α1 > 0 and that the random variable Z1 has
a density g which is bounded away from zero on a neighborhood of 0, i.e. g(z) ≥
gmin1[−a,a](z) for some a > 0. Assume also that there exists s ∈ (0,1] such that
µ2s = E

[
Z2s

0
]
< ∞. Set V (x) = 1+ x2s.

1. Assume αs
1µ2s < 1. Show that PV (x)≤ λV (x)+b for some λ ∈ (0,1] and b<∞.

2. Show that any interval [−c,c] with c > 0 is small.

15.8. Consider the INAR (or Galton-Watson process with immigration) {Xn, n∈N}
introduced in 14.4, defined by X0 and

Xn+1 =
Xn

∑
i=1

ξ
(n+1)
n,i +Yn+1 .

Set m =E
[
ξ
(1)
1

]
. Assume that m < 1. Show that this Markov chain is geometrically

ergodic.

15.9. Let P be a Markov kernel on X×X . Assume that P is uniformly er-
godic. Shows that, for any accessible set A there exist δA ∈ (1,∞) such that
supx∈XEx[δ

σA
A ]< ∞.

15.10. Consider an independent Metropolis-Hastings sampler on X = R. Assume
that the target density is a zero-mean standard gaussian π =N(0,1) and the proposal
density is N(1,1) distribution. Show that the state-space is not small.

15.11. Let P be a random walk Metropolis algorithm on Rd with target distribution
π = hπ ·Leb and proposal density q(x,y) = q̄(|y−x|) where q̄ is a bounded function.
If esssupπ (hπ) = ∞, then P is not geometrically ergodic.[Hint: use Example 15.1.7]

15.12. Consider the following count model:

Xk = β + γ(Nk−1− eXk−1)e−Xk−1 , (15.4.1)

where, conditionally on (X0, . . . ,Xk), Nk has a Poisson distribution with intensity
eXk . Show that the chain is geometrically uniformly ergodic.

15.13. We want to sample the distribution on R2 with density with respect to the
Lebesgue measure proportional to

π(µ,θ) ∝ θ
−(m+1)/2 exp

(
− 1

2θ

m

∑
j=1

(y j−µ)2

)
(15.4.2)

where {y j}m
j=1 are constants. This might be seen as the posterior distribution in

Bayesian analysis of the parameters in a model where Y1, . . . ,Ym are i.i.d. N(µ,θ)
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and the prior (µ,θ) ∈ θ−1/2
1R+

(θ) (this prior is improper but the posterior distri-
bution is proper as long as m≥ 3). We use a two-stage Gibbs sampler (section 2.3.3)
to make draws from (15.4.2) which amounts to draw

• µk+1 ∼ R(θk, ·) with

R(θ ,A) =
∫

A

1√
2πθ/m

exp
(
− m

2θ
(µ− ȳ)2

)
dµ , with ȳ = m−1

m

∑
i=1

yi .

• θk+1 ∼ S(µk+1, ·) with

C(µ,A) =
∫

g
(

m−1
2

,
s2 +m(ȳ−µ)2

2
;θ

)
dθ

where for (α,β ) ∈ R+×R+,

g(α,β ;θ) ∝ θ
−(α+1)e−β/θ

1R+
(θ) .

and s2 = ∑
m
i=1(yi− ȳ)2.

Denote by P the transition kernel associated to this Markov chain. Assume that
m≥ 5. Define V (µ, θ) = (µ− y)2.

1. Show that

E [V (µk+1,θk+1)|µk,θk] = E [V (µk+1,θk+1)|µk]

= E [E [V (µk+1,θk+1)|θk+1]|µk] .

2. Show that E [V (µk+1, θk+1)|θk+1] =
θk+1

m .
3. Show that

E [V (µk+1, θk+1) |µk, θk] =
1

m−3
V (µk, θk)+

s2

m(m−3)

4. Show the following drift condition

PV (µ ′, θ
′)≤ γV (µ ′, θ

′)+L

where γ ∈ (1/(m−3), 1) et L = s2/(m(m−3)).

15.5 Bibliographical notes

Uniform ergodicity dates back to the earliest works on Markov chains on general
state-space by Doeblin (1938) and Doob (1953).
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Geometric ergodicity of nonlinear time series models were studied by many
authors (see Tjostheim (1990), Tong (1990), Tjøstheim (1994) and the references
therein). It is difficult to give proper credit to all these research efforts.

Geometric ergodicity of functional autoregressive processes was studied, among
many references, by Doukhan and Ghindès (1983), Bhattacharya and Lee (1995),
An and Chen (1997) The stability of the self-exciting threshold autoregression
(SETAR) model of order 1 was completely characterized Petruccelli and Wool-
ford (1984), Chan et al (1985), Guo and Petruccelli (1991)). Cline and Pu (1999)
(see also Cline and Pu (2002, 2004) develop general conditions upon which non-
linear time series with state dependent errors (Xk = α(Xk−1)+ γ(Xk−1;Zk) where
{Zk, k ∈ N} is an i.i.d. sequence) are geometrically ergodic (extending the condi-
tions given in Example 15.2.5).

Similarly, numerous works were devoted to find conditions upon which MCMC
algorithms are geometrically ergodic. It is clearly impossible to cite all these works
here. The uniform geometric ergodicity of the independence sampler (see Exam-
ple 15.3.3) was established in Tierney (1994) and Mengersen and Tweedie (1996).
The geometric ergodicity of the random walk Metropolis (Example 15.2.6) is dis-
cussed in Roberts and Tweedie (1996), Jarner and Hansen (2000) and Saksman and
Vihola (2010). Geometric ergodicity of hybrid Monte Carlo methods (including the
Gibbs sampler; see Exercise 15.13) is studied in Roberts and Rosenthal (1997),
Hobert and Geyer (1998)Roberts and Rosenthal (1998). Many results can be found
in Rosenthal (1995a), Rosenthal (2001), Roberts and Rosenthal (2004) and Rosen-
thal (2009). Example 15.1.7 is borrowed from Roberts and Tweedie (1996).

Explicit bounds using the splitting construction and regenerations are discussed
in Meyn and Tweedie (1994) and Baxendale (2005). Hobert et al (2002) discusses a
way to use regeneration techniques as a simulation method.





Chapter 16
( f ,r)-recurrence and regularity

In Chapter 14, we have introduced the notions of f -geometric recurrence and f -
geometric regularity. We have shown that these two conditions coincided for petite
sets. We have also established a drift condition and have shown that it is, under
mild condition, equivalent to f -geometric recurrence and regularity. In this chapter
we will establish parallel results for subgeometric rates of convergence. In Sec-
tion 16.1, we will define ( f ,r)-recurrence. The main difference with geometric re-
currence is that ( f ,r)-recurrence is equivalent to an infinite sequence of drift con-
ditions, rather than a single one. Howover, we will introduced the sufficient condi-
tion Dsg(V,φ ,b,C) which is in practice more convenient to obtain than the afore-
mentioned sequence of drift conditions. Following the path of Chapter 14, we will
then introduce ( f ,r)-regularity and establish its relation to ( f ,r)-recurrence in Sec-
tion 16.2. The regularity of the skeletons and split kernel will be investigated sec-
tions 16.3 and 16.4.

16.1 ( f ,r)-recurrence and drift conditions

We now introduce the notion of ( f ,r)-recurrence where the rate function r is not
necessarily geometric. This generalizes the ( f ,δ )-geometric recurrence defined in
Definition 14.1.1.

Definition 16.1.1 (( f ,r)-recurrence) Let f : X→ [1,∞) be a measurable function
and r = {r(n), n ∈ N} be a sequence such that r(n)≥ 1 for all n ∈ N. A set C ∈X
is said to be ( f ,r)-recurrent if

sup
x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
< ∞ . (16.1.1)

361
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The definition of the ( f ,r)-recurrence implies that the function f ≥ 1 and r ≥ 1.
This implies supx∈CEx[σC]< ∞, which in turn yields Px(σC < ∞) = 1 for all x ∈C.
An ( f ,r)-recurrent set is therefore necessarily Harris-recurrent and recurrent (see
Definitions 10.1.1 and 10.2.1). The ( f ,r)-recurrence property will be used (with
further conditions on the set C) to prove the existence of an invariant probability
measure, to control moments of this invariant probability and to obtain rates of con-
vergence of the iterates of the Markov kernel to its stationary distribution (when
such distribution exists and is unique).

Again, the ( f ,r) recurrence property will be shown to be equivalent to drift con-
ditions. We first introduce the following sequence of drift conditions.

Definition 16.1.2 (Condition Dsg({Vn}, f ,r,b,C)) Let P be a Markov kernel on
X×X . The Markov kernel P is said to satisfy the Condition Dsg({Vn}, f ,r,b,C)
if Vn : X→ [0,∞], n ∈ N, are measurable functions, f : X→ [1,∞) is a measurable

function, {r(n), n ∈ N} is a sequence such that infn∈N r(n)≥ 1, b > 0, C ∈X and
for all n ∈ N,

PVn+1 + r(n) f ≤Vn +br(n)1C , (16.1.2)

Remark 16.1.3. For simplicity, we have taken the convention infx∈X f (x) ≥ 1. In
fact, it is enough to assume that infx∈X f (x) > 0. It suffices to rescale the drift con-
dition (16.1.2). N

Let f : X→ [1,∞) be a measurable function, C ∈X be a set and r = {r(n), n ∈
N} be a nonnegative sequence. Define

W f ,r
n,C (x) = Ex

[
τC−1

∑
k=0

r(n+ k) f (Xk)

]
, (16.1.3)

with the convention ∑
−1
0 = 0 so that W f ,r

n,C (x)= 0 for x∈C. The set of log-subbaditive
sequences S̄ and related sequences are defined in Section 13.1.

Proposition 16.1.4 Let P be a Markov kernel on X×X . Let C ∈X , f : X→
[1,∞) be a measurable function and {r(n), n ∈ N} ∈ S̄ . The following condi-
tions are equivalent.

(i) The set C is ( f ,r)-recurrent.
(ii) Condition Dsg({Vn}, f ,r,b,C) holds and supx∈C V0(x)< ∞.

Moreover, if the set C is ( f ,r)-recurrent, then Condition Dsg({Vn}, f ,r,b,C) is

satisfied with Vn = W f ,r
n,C and b = supx∈CEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
. In addition if

Condition Dsg({Vn}, f ,r,b,C) is satisfied, then
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Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤V0(x)+br(0)1C(x) . (16.1.4)

Proof. We can assume without loss of generality that r ∈S .

(i)⇒ (ii) Assume that C is ( f ,r)-recurrent. For all x ∈ X, we get

PW f ,r
1,C (x)+ r(0) f (x) = Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
.

Hence, PW f ,r
1,C +r(0) f ≤W f ,r

0,C +b1C with b= supx∈CEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
showing

that Condition Dsg({Vn}, f ,r,b,C) holds with Vn = W f ,r
n,C (see (16.1.3)). Moreover,

in that case, supx∈C V0(x) = 0 < ∞.
(ii)⇒ (i) Assume that Dsg({Vn}, f ,r,b,C) holds. For every x ∈ X we get

Ex
[
VσC(XσC)1{σC<∞}

]
+Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤V0(x)+br(0)1C(x) , (16.1.5)

which implies (16.1.4). If in addition, supx∈C V0(x) < ∞, then (16.1.5) ensures that
C is ( f ,r)-recurrent.

2

Example 16.1.5. If r≡ 1, Proposition 16.1.4 shows that the set C is ( f ,1)-recurrent
if and only if there exists a function V such that PV + f ≤V +b1C and supC V < ∞.
Indeed, if the latter condition holds, then Condition Dsg({Vn}, f ,r,b,C) holds with
Vn =V for all n.

Example 16.1.6 (Random walk on the half-line). Let P be the Markov transition
kernel for the random walk on [0,∞) given for all n ∈ N by

Xn+1 = (Xn +Wn+1)
+ , (16.1.6)

where {Wn, n∈N} is a sequence of i.i.d. real-valued random variables with common
distribution ν . We assume that E [W1]< 0 and that there exists an integer m≥ 2 such
that

E
[
{W+

1 }
m]< ∞ . (16.1.7)

It is easily shown that the Markov kernel chain is δ0-irreducible, aperiodic and pos-
itive and all compact sets are petite. We first assume that the support of the distribu-
tion ν in included in [−x0,∞) for some x0 ∈ R+. Choose a > 0 in such a way that
c :=−(m/2)E [W +a]> 0. We define for x ∈ R+ and n ∈ N,

Vn(x) = (x+an)m .
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For all x > x0 we get

PVn+1(x) =
∫

∞

−x0

(x+an+a+ y)m
ν(dy)

≤Vn(x)−2b(x+an)−1 +(x+an)m−2
ς(m)

where ς(m) < ∞. We may now choose z0 ≥ 1 large enough so that, for x 6∈ C :=
[0,z0],

PVn+1(x)≤Vn(x)− c(x+an)−1 ≤Vn(x)− rk(n) fk(x) .

where rk(n) = nm−k and fk(x) = c
(m

k

)
am−kxk ∨ 1, for any k ∈ {0, . . . ,m− 1}. Note

inf fk(x)> 0 (see Remark 16.1.3). The set C is petite for P and supC V0(x)< ∞ and
supx∈C(x+an)m−2 < ∞.

To handle the general case, we may truncate the distribution ν at −x0 so that the
truncated distribution still has a negative mean. The Markov kernel P̃ satisfies the
condition above. Therefore, we have

sup
x∈C
EP̃

x

[
σC−1

∑
n=0

rk(n) fk(Xn)

]
< ∞ ,

where for Q a Markov kernel on (X,X ) and ξ ∈M1(X ), PQ
ξ

and EQ
ξ

denotes the
distribution (resp. expectation) of a Markov chain started at x with transition kernel
Q. By a stochastic domination argument ( which is in this case a straightforward
application of coupling; see Chapter 19) it may be shown that

EP
x

[
σC−1

∑
n=0

rk(n) fk(Xn)

]
≤ EP̃

x

[
σC−1

∑
n=0

rk(n) fk(Xn)

]
.

The proof follows. J

In practice, it may be relatively hard to find a sequence of functions {Vn}, a
function f and a sequence r ∈ S̄ such that Condition Dsg({Vn}, f ,r,b,C) holds. We
now introduce another drift condition, which may appear a bit more restrictive, but
in practice it provides most usual subgeometric rates.

Definition 16.1.7 (Condition Dsg(V,φ ,b,C)) Let P be a Markov kernel on X×
X . The Markov kernel P is said to satisfy the subgeometric drift condition
Dsg(V,φ ,b,C) if V : X → [1,∞) is a measurable function, φ : [1,∞) → (0,∞)
is a concave, increasing function, continuously differentiable on (0,∞) such that
limv→∞ φ ′(v) = 0, b > 0, C ∈X and

PV +φ ◦V ≤V +b1C . (16.1.8)

If C = X, we simply write Dsg(V,φ ,b).
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Remark 16.1.8. Recall that in the condition Dsg(V,φ ,b,C) it is assumed that φ is
concave, continuously differentiable and limv→∞ φ ′(v) = 0. Since φ ′ is non increas-
ing, if we do not assume that limv→∞ φ ′(v) = 0, then there exists c ∈ (0,1) such that
limv→∞ φ ′(v) = c > 0. This yields v−φ(v) ≤ (1− c)v+ c−φ(1) and in this case,
condition Dsg(V,φ ,b,C) implies the Dg(V,1−c,b′) for some suitable constant b′. N

Theorem 16.1.9. Let P be an irreducible Markov kernel on X×X , V : X→ [1,∞)
be a measurable function, φ : [1,∞)→ (0,∞) be a concave, increasing function,
continuously differentiable on (0,∞) such that limv→∞ φ(v) =∞ and limv→∞ φ ′(v) =
0. The following conditions are equivalent.

(i) There exists b ∈ [0,∞) such that

PV +φ ◦V ≤V +b . (16.1.9)

Moreover, for all d > 0, the sets {V ≤ d} are petite and there exists d0 such that
for all d ≥ d0, {V ≤ d} is accessible.

(ii) There exist b,d1 ∈ [0,∞) such that

PV +φ ◦V ≤V +b1{V≤d1} , (16.1.10)

and for all d ≥ d1, the set {V ≤ d} is petite and accessible.
(iii) There exist a petite set C and b ∈ [0,∞) such that

PV +φ ◦V ≤V +b1C . (16.1.11)

Proof. (i)⇒ (ii) We only need to show (16.1.9). Choose d such that φ(d)≥ 2b.
The level set C = {V ≤ d} is petite by assumption. For x ∈ C, PV (x)+ (1/2)φ ◦
V (x)≤V (x)+b. For x 6∈C,

PV (x)+(1/2)φ ◦V (x)≤ PV (x)+φ ◦V (x)− (1/2)φ(d)
≤V (x)+b− (1/2)φ(d)≤V (x) .

(ii)⇒ (iii) We obtain (16.1.11) from (16.1.10) by taking C = {V ≤ d}.
(iii)⇒ (i) Since φ is non decreasing and V ≥ 1, we have PV +φ(1)≤ PV +φ ◦

V ≤V +b1C. By applying Proposition 4.3.2 with f ≡ φ(1), we get

φ(1)Ex[σC]≤V (x)+b1C(x) ,

showing that {x ∈ X : V (x)≤ d} ⊂ {x ∈ X : φ(1)Ex[σC]≤ d +b}. Since the set
C is petite, {x ∈ X : φ(1)Ex[σC]≤ d +b} is petite by Lemma 9.4.8 and therefore
{V ≤ d} is petite. Using (16.1.11), Proposition 9.2.13 applies with V =V0 =V1 and
the non-empty set {V < ∞} is full and absorbing and that there exists d0 such that
{V ≤ d0} is accessible, which implies that for all d ≥ d0, {V ≤ d} is accessible.
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2

We now introduce a subclass of subgeometric rate functions indexed by concave
functions, related to Dsg(V,φ ,b,C).

Let ψ : [1,∞)→ (0,∞) be a concave increasing differentiable function. Let Hψ

be the primitive of 1/ψ which cancels at 1, i.e.

Hψ(v) =
∫ v

1

dx
ψ(x)

. (16.1.12)

Then Hψ is an increasing concave differentiable function on [1,∞). Moreover, since
ψ is concave, ψ ′ is decreasing. Hence ψ(v) ≤ ψ(1)+ψ ′(1)(v− 1) for all v ≥ 1,
which implies that Hψ increases to infinity.

We can thus define its inverse H−1
ψ : [0,∞)→ [1,∞), which is also an increas-

ing and differentiable function, with derivative (H−1
ψ )′(v) = ψ ◦H−1

ψ (v). Define the
function rψ on [0,∞) by

rψ(t) = (H−1
ψ )′(t) = ψ ◦H−1

ψ (t) . (16.1.13)

For simplicity, whenever useful, we still denote by rψ the restriction of the function
rψ on N (depending on the context, rψ is either a function or a sequence).

Lemma 16.1.10 Let ψ : [1,∞)→ (0,∞) be a concave increasing function, continu-
ously differentiable on [1,∞) and such that limv→∞ ψ ′(v) = 0. Then

(i) the sequence {n−1 logrψ(n),n ∈ N} is decreasing to zero;
(ii) for all n,m, rψ(n+m)≤ rψ(n)rψ(m)/rψ(0),

(iii) rψ ∈ Λ̄1 where Λ̄1 is defined in Definition 13.1.2.

Proof. By definition of rψ , for all t ≥ 0,

(logrψ)
′(t) =

r′ψ(t)
rψ(t)

=
(H−1

ψ )′(t)ψ ′ ◦H−1
ψ )(t)

(H−1
ψ )′(t)

= ψ
′ ◦H−1

ψ (t) .

Thus, the function (logrψ)
′ decreases to 0 since H−1

ψ increases to infinity and ψ ′

decreases to 0.

(i) Note that

logrψ(n)
n

=
logrψ(0)

n
+

1
n

∫ n

0
(logrψ)

′(s)ds .

This implies that the sequence {logrψ(n)/n,n ∈ N} decreases to 0.
(ii) The concavity of logrψ implies that for all n,m≥ 0,

logrψ(n+m)− logrψ(n)≤ logrψ(m)− logrψ(0) .
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(iii) The sequence {r̃n, n ∈ N} where r̃ψ(n) = (rψ(0)∨ 1)−1rψ(n) belongs to
S and limn→∞ log r̃ψ(n)/n = 0. Hence r̃ψ ∈ Λ0 (where Λ0 is defined in Defini-
tion 13.1.2) and the proof follows by Lemma 13.1.3 which shows that Λ0 ⊂Λ1.

2

Of course, only the behavior of ψ at infinity is of interest. If ψ : [1,∞)→ (0,∞] is
a concave increasing function, continuously differentiable on [1,∞) and such that
limv→∞ ψ ′(v) = 0, we can always find a concave increasing function, continuously
differentiable on [1,∞) and taking values in [1,∞) which coincides with ψ on [v1,∞)
for some sufficiently large v1 (see Exercise 16.3). Examples of subgeometric rates
are given in Exercise 16.4.

We now prove that the subgeometric drift condition Dsg(V,φ ,b,C) implies that
there exists a sequence {Vn, n∈N} and a constant b′ such that Dsg({Vn},1,rφ ,b′,C)
holds. For this purpose, we define, for k ∈ N the function Hk on [1,∞) and Vk on X
by

Hk = H−1
φ

(k+Hφ )−H−1
φ

(k) , Vk = Hk ◦V . (16.1.14)

Since rφ is the derivative of H−1
φ

, this yields

Hk(v) =
∫ Hφ (v)

0
rφ (z+ k)dz .

For k = 0 this yields H0(v) = v−1 and V0 =V −1. Since rφ is increasing this also
yields that the sequence {Hk} is increasing and Hk(v)≥ v for all v≥ 1.

Proposition 16.1.11 The subgeometric drift condition Dsg(V,φ ,b,C) implies
Dsg({Vn},1,rφ ,brφ (1)/r2

φ
(0),C).

Proof. The function rφ being increasing and log-concave, this implies that Hk is
concave for all k ≥ 0 and

H ′k(v) =
rφ (Hφ (v)+ k)

φ(v)
=

rφ (Hφ (v)+ k)
rφ (Hφ (v))

. (16.1.15)

This yields

Hk+1(v)−Hk(v) =
∫ Hφ (v)

0
{rφ (z+ k+1)− rφ (z+ k)}dz

=
∫ Hφ (v)

0

∫ 1

0
r′φ (z+ k+ s)dsdz

=
∫ 1

0
{rφ (Hφ (v)+ k+ s)− rφ (k+ s)}ds

≤ rφ (Hφ (v)+ k+1)− rφ (k) = φ(v)H ′k+1(v)− rφ (k) .
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Composing with V , we obtain

Vk+1−φ ◦V ×H ′k+1 ◦V ≤Vk− rφ (k) . (16.1.16)

Let g be a concave differentiable function on [1,∞). Since g′ is decreasing, for all
v≥ 1 and x ∈ R such that v+ x≥ 1, it holds that

g(v+ x)≤ g(v)+ xg′(v) . (16.1.17)

Using the concavity of Hk+1, the drift condition Dsg(V,φ ,b,C), (16.1.17) and
(16.1.16), we obtain, for all k ≥ 0 and x ∈ X,

PVk+1 ≤ Hk+1(PV )≤ Hk+1 (V −φ ◦V +b1C)

≤ Hk+1 ◦V +(−φ ◦V +b1C)H ′k+1 ◦V

≤Vk+1−φ ◦V ×H ′k+1 ◦V +bH ′k+1(1)1C

≤Vk− rφ (k)+bH ′k+1(1)1C .

Applying (16.1.15), we obtain that H ′k+1(1) = rφ (k+1)/rφ (0)≤ rφ (k)rφ (1)/r2
φ
(0)

which proves our claim. 2

Theorem 16.1.12. Let P be an irreducible kernel on X × X . Assume that
Dsg(V,φ ,b,C) holds. Then, for any x ∈ X,

Ex

[
σC−1

∑
k=0

φ ◦V (Xk)

]
≤V (x)+b1C(x) , (16.1.18)

Ex

[
σC−1

∑
k=0

rφ (k)

]
≤V (x)+b

rφ (1)
rφ (0)

1C(x) . (16.1.19)

If moreover π is an invariant probability measure, then π(φ ◦V )< ∞.

Proof. The bound (16.1.18) follows from Proposition 4.3.2. By Proposition 16.1.11,
condition Dsg(V,φ ,b,C) implies Dsg({Vn},1,rφ ,brφ (1)/r2

φ
(0),C), where Vn is de-

fined in (16.1.14). Thus we can apply Proposition 16.1.4-(16.1.4) to obtain the
bound (16.1.19). The last statement follows from Proposition 4.3.2. 2

Example 16.1.13 (Random walk on [0,∞); Example 16.1.6 (continued).). We
will follow a different method here. Instead of checking Dsg({Vn}, f ,r,b,C), we
will rather use Dsg(V,φ ,b,C). As we will see, this approach has several distinctive
advantages over the first method. More precisely, we will show that there exist a
finite interval C = [0,z0] and constants 0 < c, b < ∞ such that, for all x ∈ R+,

PV (x)≤V (x)− cV α(x)+b1C(x) , (16.1.20)
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where we have set V (x) = (x+1)m for x ∈ R+ and α = (m−1)/m.
Take x0 > 0 so large that

∫
∞

−x0
yν(dy) < 0. For x > x0 we bound PV (x) by con-

sidering jumps smaller than −x0 and jumps larger than −x0 separately,

PV (x)≤V (x− x0)ν((−∞,−x0))+
∫

∞

−x0

V (x+ y)ν(dy) . (16.1.21)

First, we bound V (x− x0) in terms of V (x) and (V (x))α ,

V (x)−V (x− x0) =
∫ x

x−x0

m(y+1)m−1dy≥ x0m(x− x0 +1)m−1

≥ x0m
(

x− x0 +1
x+1

)m−1

(x+1)m−1 ≥ c1(x+1)m−1 ,

where c1 = x0m(1/(x0 + 1))m−1. We now bound the second term in the right-hand
side of (16.1.21). First note that, for x≥ 0 and y≥ 0, we get

(x+ y+1)m−2 ≤ (x+1)m−2(y+1)m−2 , (16.1.22)

since

log(x+ y+1)− log(x+1) =
∫ x+1+y

x+1

1
z

dz≤
∫ 1+y

1

1
z

dz = log(y+1) .

For y > 0 we then get

V (x+ y)≤V (x)+m(x+1)m−1y+
1
2

m(m−1)(x+ y+1)m−2y2

≤V (x)+m(x+1)m−1y+
1
2

m(m−1)(x+1)m−2(y+1)m,

and for −x0 ≤ y≤ 0 we get

V (x+ y)≤V (x)+m(x+1)m−1y+
1
2

m(m−1)(x+1)m−2x2
0.

Plugging these bounds into (16.1.21) and using the assumption (16.1.7), we find, for
x > x0,

PV (x)≤V (x)− c2(x+1)m−1 + c3(x+1)m−2

for some constants 0 < c2, c3 < ∞ which can be explicitly computed. Hence, there
exist a positive constant c and a real number z0 ≥ x0 such that, for x > z0, PV (x)≤
V (x)− c(x+1)m−1. Finally, since PV (x) and (x+1)m−1 are both bounded on C =
[0,z0], there exists a constant b such that (16.1.20) holds.

For comparison, we note that when E
[
esW1

]
< ∞ for some s > 0 the chain is

geometrically ergodic and there is a solution to the drift equation PV ≤ λV +b with
λ ∈ [0,1) and Lyapunov function V (x) = etx for t < s. J
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16.2 ( f ,r)-regularity

Definition 16.2.1 (( f ,r)-regular sets and measures) Let P be an irreducible
Markov kernel on X×X , f : X→ [1,∞) be a measurable function and {r(n), n ∈
N} be a sequence such that infn∈N r(n)≥ 1.

(i) A set A ∈X is said to be ( f ,r)-regular if for all B ∈X +
P ,

sup
x∈A
Ex

[
σB−1

∑
k=0

r(k) f (Xk)

]
< ∞ .

(ii) A probability measure ξ ∈M1(X ) is said to be ( f ,r)-regular if, for all B ∈
X +

P ,

Eξ

[
σB−1

∑
k=0

r(k) f (Xk)

]
< ∞ .

(iii) A point x ∈ X is said to be ( f ,r)-regular if {x} (or δx) is ( f ,r)-regular. The set
of ( f ,r)-regular points for P is denoted by SP( f ,r).

(iv) The Markov kernel P is said to be ( f ,r)-regular if there exists an accessible
( f ,r)-regular set.

When f ≡ 1 and r≡ 1, we will simply say regular instead of (1,1)-regular. There is
an important difference between the definitions of ( f ,r)-regularity and f -geometric
regularity. In the former, the sequence r is fixed and the same for all accessible sets.
In the latter, the geometric rate may depend on the set.

Before going further, it is required to extend to the subgeometric case Theo-
rem 11.4.1.

Theorem 16.2.2. Let P be a Markov kernel on X×X , C ∈ X and ρ,τ be two
stopping times with τ ≥ 1. Assume that for all n ∈ N,

ρ ≤ n+ρ ◦θn , on {ρ > n} . (16.2.1)

Moreover, assume that there exists γ > 0 such that, for all x ∈C,

Px(τ < ∞, Xτ ∈C) = 1 , Px(ρ ≤ τ)≥ γ . (16.2.2)

Then

(i) For all x ∈C, Px(ρ < ∞) = 1.
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(ii) If supx∈CEx[r0(τ)]< ∞ (where r0(n) = ∑
n
k=0 r(k)) for a sequence r ∈ Λ̄2, then,

there exists ς < ∞ such that, for all h ∈ F+(X),

sup
x∈C
Ex

[
ρ−1

∑
k=0

r(k)h(Xk)

]
≤ ς sup

x∈C
Ex

[
τ−1

∑
k=0

r(k)h(Xk)

]
. (16.2.3)

Proof. The proof of (i) is identical to Theorem 11.4.1-(i). Define τ(0) = 0, τ(1) = τ

and for n≥ 1, τ(n) = τ(n−1)+ τ ◦θ
τ(n−1) . Set

M(h,r) = sup
x∈C
Ex

[
τ−1

∑
k=0

r(k)h(Xk)

]
. (16.2.4)

For r ∈S (see Definition 13.1.1), the strong Markov property implies

Ex

[
ρ−1

∑
k=0

r(k)h(Xk)

]
≤

∞

∑
k=0
Ex

1{ρ > τ
(k)
} τ(k+1)−1

∑
j=τ(k)

r( j)h(X j)


≤

∞

∑
k=0
Ex

[
1

{
ρ > τ

(k)
}

r(τ(k))EX
τ(k)

[
τ−1

∑
j=0

r( j)h(X j)

]]

≤M(h,r)
∞

∑
k=0
Ex

[
1

{
ρ > τ

(k)
}

r(τ(k))
]
. (16.2.5)

Note this inequality remains valid even if M(h,r) = ∞.
Without loss of generality, we assume that r ∈Λ2. Set

M1 = sup
x∈C
Ex
[
r0(τ)

]
< ∞ (16.2.6)

which is finite by assumption. We prove by induction that, for all p ∈ N∗,

sup
x∈C
Ex[r0(τ(p))] = Mp < ∞ . (16.2.7)

Let p≥ 2 and assume that Mp−1 < ∞. Note that, on the event {τ(p−1) < ∞},

r0(τ(p))≤ r0(τ(p−1))+ r(τ(p−1))r0(τ)◦θ
τ(p−1) . (16.2.8)

The strong Markov property implies that, for all x ∈C,

Ex[r0(τ(p))]≤ Ex[r0(τ(p−1))]+Ex

[
r(τ(p−1))EX

τ(p−1)

[
r0(τ)

]]
≤Mp−1 +M1 Mp−1 < ∞ .
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Set uk(x) = Ex

[
1{ρ>τ(k)}r

0(τ(k))
]
. Using (16.2.8), the strong Markov property, we

obtain uk(x)≤ ak(x)+bk(x) with

ak(x)≤ Ex

[
1

{
ρ > τ

(k−1)
}

r0(τ(k−1))PX
τ(k−1) (ρ > τ)

]
bk(x)≤ Ex

[
1

{
ρ > τ

(k−1)
}

r(τ(k−1))EX
τ(k−1) [r

0(τ)]
]
.

Applying (16.2.2), we obtain using (11.4.4),

ak(x)≤ (1− γ)Ex

[
1

{
ρ > τ

(k−1)
}

r0(τ(k−1))
]
. (16.2.9)

Since r ∈ Λ2, we have limk→∞ r(k)/r0(k) = 0 and there exists k0 such that, for all
k ≥ k0, M1r(k) ≤ (γ/2)r0(k), where M1 is defined in (16.2.6). Thus, for all x ∈ C
and k ≥ k0,

bk(x)≤M1 Ex

[
1

{
ρ > τ

(k−1)
}

r(τ(k−1))
]

≤ (γ/2)Ex

[
1

{
ρ > τ

(k−1)
}

r0(τ(k−1))
]
. (16.2.10)

Combining (16.2.9) and (16.2.10), we obtain that uk(x) ≤ (1− γ/2)uk−1(x) for all
x ∈ C and k ≥ k0. Since supx∈C uk(x) ≤ Mk0 for k ≤ k0, we get that, for all k ∈ N,
uk(x)≤ (1− γ/2)k−k0Mk0 which yields

sup
x∈C

∞

∑
k=0
Ex

[
1

{
ρ > τ

(k)
}

r(τ(k))
]
≤ r(1)Mk0

∞

∑
k=0

(1− γ/2)k−k0 < ∞ .

This proves (16.2.3) with ς = 2γ−1r(1)Mk0(1− γ/2)−k0 . 2

We also need to extend Theorem 14.2.3.

Theorem 16.2.3. Let P be a Markov kernel on X×X and A,B ∈X . Assume that

(i) There exists q ∈ N∗ such that infx∈APx(σB ≤ q)> 0.
(ii) supx∈AEx[r0(σA)]< ∞ for r ∈ Λ̄2 (where r0(n) = ∑

n
k=0 r(k) and Λ̄2 is defined

in Definition 13.1.2).

Then there exists ς < ∞ such that for all h ∈ F+(X),

sup
x∈A
Ex

[
σB−1

∑
k=0

r(k)h(Xk)

]
≤ ς sup

x∈A
Ex

[
σA−1

∑
k=0

r(k)h(Xk)

]
.

Proof. The proof is along the same lines than Theorem 14.2.3 (using Theorem 16.2.2
instead of Theorem 11.4.1). 2
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Theorem 16.2.4. Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and {r(n), n ∈ N} ∈ Λ̄2 (see Definition 13.1.2). The fol-
lowing conditions are equivalent.

(i) The set C is accessible and ( f ,r)-regular.
(ii) The set C is petite and ( f ,r)-recurrent.

Proof. We can assume without loss of generality that r ∈Λ2.

(i)⇒ (ii) Assume that C is accessible and ( f ,r)-regular. Then C is (1,1)-
regular. Let A be an accessible petite set. Then supx∈CEx[σA] < ∞ by definition
and Lemma 9.4.8 implies that C is petite.

(ii)⇒ (i) First, the set C is accessible by Corollary 9.2.14. Moreover, since f ≥
1, supx∈CEx[r0(σC−1)]< ∞ where r0(n) = ∑

n
k=0 r(k). Therefore, since r ∈S ,

sup
x∈C
Ex[r0(σC)]< r(0)+ r(1)sup

x∈C
Ex[r0(σC−1)]< ∞ .

Let A be an accessible set. By Proposition 9.4.9 A is uniformly accessible from C
and Theorem 16.2.3 implies that C is then ( f ,r)-regular.

Note that the assumption r ∈ Λ̄2 was implicitly used to invoke Theorem 16.2.3. 2

Similarly to Lemma 14.2.5, we now prove that a set which leads to an accessible
( f ,r)-regular set is also ( f ,r)-regular.

Lemma 16.2.5 Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞) be
a measurable function and r ∈ Λ̄2 (see Definition 13.1.2). Assume that there exists
an accessible ( f ,r)-regular set C. Then,

(i) for any B ∈X +
P , there exists a constant ς < ∞ such that for all x ∈ X,

Ex

[
σB−1

∑
k=0

r(k) f (Xk)

]
≤ ςEx

[
σC−1

∑
k=0

r(k) f (Xk)

]
,

(ii) any set A ∈X satisfying supx∈AEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞ is ( f ,r)-regular,

(iii) any probability measure ξ ∈M1(X ) satisfying Eξ

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞ is

( f ,r)-regular.

Proof. Without loss of generality, we assume that r ∈Λ2. First note that (ii) and (iii)
are immediate from (i). Since C is ( f ,r)-regular, for any B ∈X +

P , we get

sup
x∈C
Ex

[
σB−1

∑
k=0

r(k) f (Xk)

]
< ∞ .



374 16 ( f ,r)-recurrence and regularity

Since σB ≤ σC1{σC = ∞}+(σC +σB ◦θσC)1{σC < ∞}, the strong Markov prop-
erty shows that, for all x ∈ X,

Ex

[
σB−1

∑
k=0

r(k) f (Xk)

]

≤ Ex

[
τC−1

∑
k=0

r(k) f (Xk)

]
+Ex

[
1{σC<∞}

{
σB−1

∑
k=0

r(k) f (Xk)

}
◦θσC

]

≤ Ex

[
τC−1

∑
k=0

r(k) f (Xk)

]
+Ex[r(σC)]sup

x∈C
Ex

[
σB−1

∑
k=0

r(k) f (Xk)

]
.

The result follows since Ex[r(σC)]≤ r(1)Ex

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞. 2

Theorem 16.2.6. Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and r ∈ Λ̄2. The Markov kernel P is ( f ,r)-regular if and
only if it satisfies one of the following equivalent conditions:

(i) There exists a non-empty ( f ,r)-recurrent petite set;
(ii) The condition Dsg({Vn}, f ,r,b,C) holds for a non empty petite set C and func-

tions {Vn, n ∈ N} such that supx∈C V0(x)< ∞;
(iii) There exists an accessible ( f ,r)-regular set;
(iv) There exists an absorbing full set S which can be covered by a countable number

of accessible ( f ,r)-regular sets.

If any of these conditions holds, the Markov kernel P satisfies the following proper-
ties, with the sequence {Vn, n ∈ N} as in (ii):

(a) A probability measure ξ ∈M1(X ) is ( f ,r)-regular if and only if there exists a

( f ,r)-recurrent petite set C such that Eξ

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞.

(b) For every A ∈X +
P , there exists a constant ς < ∞ such that for all x ∈ X,

Ex

[
σA−1

∑
k=0

r(k) f (Xk)

]
≤ ς{V0(x)+1} . (16.2.11)

(c) Every probability measure ξ ∈M1(X ) such that ξ (V0)< ∞ is ( f ,r)-regular.
(d) The set SP( f ,r) of ( f ,r)-regular points is full and absorbing and is equal to
{V0 < ∞}.

Proof. Without loss of generality, we assume that r ∈Λ2.

(i)⇒ (ii) Let C be a non-empty ( f ,r)-recurrent petite set. By Proposition 16.1.4,
the condition Dsg({Vn}, f ,r,b,C) is satisfied with Vn =W f ,r

n,C (see (16.1.3)) and b =
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supx∈CEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞. By construction, W f ,r

0,C (x) = 0 for x ∈ C so that
supx∈C V0(x)< ∞.

(ii)⇒ (iii) By Proposition 16.1.4, if Dsg({Vn}, f ,r,b,C) holds for a non-empty
petite set C, supC V0 < ∞, then the C is ( f ,r)-recurrent. Since C is petite, Theo-
rem 16.2.4 shows thatC is an accessible ( f ,r)-regular set.

(iii)⇒ (iv) Let C be an accessible ( f ,r)-regular set. By Theorem 16.2.4, C is
also an ( f ,r)-recurrent petite set. For d > 0, set Cd =

{
x ∈ X : W f ,r

0,C (x)≤ d
}

. Since

{W f ,r
0,C = ∞} ⊂ {W f ,r

1,C = ∞} and {W f ,r
0,C < ∞} ⊂ {PW f ,r

1,C < ∞}, Proposition 9.2.13

shows that the set {W f ,r
0,C < ∞} is full and absorbing (since C ⊂ {W f ,r

0,C < ∞}, this

set is not empty) and the sets
{

x ∈ X : W f ,r
0,C (x)≤ n

}
for n ≥ n0 are accessible.

Lemma 16.2.5 show that the sets
{

x ∈ X : W f ,r
0,C (x)≤ n

}
are ( f ,r)-regular.

(iv)⇒ (i) Obvious by Theorem 16.2.4.

(a) By Lemma 16.2.5-(iii), any ξ ∈M1(X ) satisfying Eξ

[
∑

σC−1
k=0 r(k) f (Xk)

]
<

∞ where C is a petite set is ( f ,r)-regular. Hence the condition is sufficient.
Conversely, assume that ξ is ( f ,r)-regular. Since P is ( f ,r)-regular, there exists an
accessible ( f ,r)-regular set C. Since ξ is ( f ,r)-regular, Eξ

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞.

By Theorem 16.2.4, the set C is also ( f ,r)-recurrent and petite. This proves the
necessary part.

(b) Assume that condition Dsg({Vn}, f ,r,b,C) holds for a non-empty petite set
C and supx∈C V0(x)< ∞. By (16.1.4), we get

Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤V0(x)+br(0)1C(x) . (16.2.12)

By Proposition 16.1.4, the set C is ( f ,r)-recurrent and since it is also petite, we get
that C is also accessible and ( f ,r)-regular. Then, Lemma 16.2.5-(i) shows that, for
any A ∈X +

P , there exists ς < ∞ such that

Ex

[
σA−1

∑
k=0

r(k) f (Xk)

]
≤ ςEx

[
σC−1

∑
k=0

r(k) f (Xk)

]
. (16.2.13)

The proof of (16.2.11) follows by combining (16.2.12) and (16.2.13).
(c) follows by integrating (16.2.11) with respect to ξ ∈M1(X ).
(d) Since P is ( f ,r)-regular, there exists an accessible ( f ,r)-regular set C. Define{

x ∈ X : W f ,r
0,C (x)< ∞

}
. By Lemma 16.2.5, the sets {W f ,r

0,C ≤ n} are ( f ,r)-regular

for all n≥ 0. Hence {W f ,r
0,C ≤ n}⊂ SP( f ,r) for all n∈N and therefore {W f ,r

0,C < ∞}=⋃
∞
n=1{W

f ,r
0,C ≤ n} ⊂ SP( f ,r).

Conversely, if x 6∈ {W f ,r
0,C < ∞} then x 6∈C and Ex

[
∑

σC−1
k=0 r(k) f (Xk)

]
= ∞. Since C

is accessible, this implies that x 6∈ SP( f ,r). Hence {W f ,r
0,C = ∞} ⊂ Sc

P( f ,r).
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2

We conclude this section by studying the subgeometric regularity of the invariant
probability measure.

Theorem 16.2.7. Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and r = {r(n), n∈N} be a sequence such that r(n)≥ 1 for
all n ∈N. Assume that P is ( f ,r)-regular. Then P has a unique invariant probability
measure π . In addition, if r ∈ Λ̄2 (see Definition 13.1.2) is an increasing sequence,
then for any A ∈X +

P , Eπ

[
∑

σA−1
k=0 ∆r(k) f (Xk)

]
< ∞.

Remark 16.2.8. It would be tempting to say that π is ( f ,∆r)-regular. We nev-
ertheless refrain from doing this because the assumption infn≥0 ∆r(n) > 0 is not
necessarily fulfilled. For example, setting r(k) = (k + 1)1/2, we have r ∈ Λ̄2 but
infn≥0 ∆r(n) = 0. N

Proof. The existence and uniqueness of the invariant probability π follows from
Corollary 11.2.9 along the same lines as in Theorem 14.2.7. We now assume with-
out loss of generality that r ∈ Λ2 and prove that for every accessible set A, we
have Eπ

[
∑

σA−1
k=0 ∆r(k) f (Xk)

]
< ∞. The ideas are similar to the ones used in The-

orem 14.2.7 with some additional technical difficulties.
Let A ∈X +

P . By Theorem 16.2.6 there exists an accessible full set S which is
covered by a countable number of accessible ( f ,r)-regular sets, S =

⋃
∞
n=1 Sn. Since

π is a (maximal) irreducibility measure, 0 < π(A) = π(A∩ S) and therefore there
exists n0 such that π(A∩Sn0)> 0. Set B = A∩Sn0 . Then, B is a subset of A which is
accessible (since π(B)> 0), ( f ,r)-regular (as a subset of the ( f ,r)-regular set Sn0 ).
Moreover, since σA ≤ σB, we have,

Eπ

[
σA−1

∑
n=0

∆r(n) f (Xn)

]
≤ Eπ

[
σB−1

∑
n=0

∆r(n) f (Xn)

]
.

As above, consider the following functions g(x) = Ex

[
∑

σB−1
n=0 ∆r(n) f (Xn)

]
and

h(x) = Ex

[
∑

σB−1
n=0 g(Xn)

]
. Since B is accessible, Theorem 11.2.5 yields

Eπ

[
σB−1

∑
n=0

∆r(n) f (Xn)

]
= π(g) =

∫
B

π(dx)h(x) . (16.2.14)

Setting Z = ∑
∞
n=01{n<σB}∆r(n) f (Xn), we have g(x) = Ex[Z] and
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h(x) = Ex

[
∞

∑
k=0

1{k<σB}EXk [Z]

]
=

∞

∑
k=0
Ex[1{k<σB}Z ◦θk]

=
∞

∑
k=0

∞

∑
n=0
Ex[1{n+k<σB}∆r(n) f (Xn+k)] =

∞

∑
j=0

j

∑
`=0
Ex[1{ j<σB}∆r(`) f (X j)] .

Hence, we get

h(x) =
∞

∑
j=0
Ex[1{ j<σB} r( j) f (X j)] = Ex

[
σB−1

∑
j=0

r( j) f (X j)

]
.

Therefore, using (16.2.14), we get

Eπ

[
σB−1

∑
n=0

∆r(n) f (Xn)

]
=
∫

B
π(dx)Ex

[
σB−1

∑
n=0

r(n) f (Xn)

]

≤ π(B)sup
x∈B
Ex

[
σB−1

∑
n=0

r(n) f (Xn)

]
< ∞ ,

since B is also ( f ,r)-recurrent (as an accessible ( f ,r)-regular set). Finally, for all
A ∈X +

P ,

Eπ

[
σA−1

∑
n=0

∆r(n) f (Xn)

]
< ∞ .

2

16.3 ( f ,r)-regularity of the skeletons

We now to relate the ( f ,r)-regularity of the Markov kernel P and of its skeletons
Pm, m ∈ N∗. We will show below that, if P is irreducible and aperiodic, then P is
( f ,r)-regular if and only if each of its skeleton Pm is ( f ,r)-regular. We preface the
proof by the following key technical result.

Proposition 16.3.1 Let P be an irreducible aperiodic Markov kernel on X×
X , f : X→ [1,∞) be a measurable function, r ∈ Λ̄1 and m≥ 2.

(i) Let C be a ( f ,r)-recurrent petite set for P. Then, there exists a constant
ς < ∞ such that for any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
,
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where f (m) is defined in (14.3.1) and r(m)(n) = r(mn). The set C is
( f (m),r(m))-recurrent for Pm.

(ii) There exist ς < ∞ such that for any C ∈X and ξ ∈M1(X ),

Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤ ςEξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]

If the set C is ( f (m),r(m))-recurrent for Pm, then C is ( f ,r)-recurrent.

Proof. Without loss of generality, we assume that r ∈Λ1.

(i) For every initial distribution ξ ∈M1(X ), using that mσC,m is a stopping time
and the strong Markov property, we obtain

Eξ

[
σC,m−1

∑
k=0

r(mk) f (m)(Xmk)

]
≤

m−1

∑
i=0

∞

∑
k=0

r(mk+ i)Eξ [ f (Xmk+i)1{mk < mσC,m}]

= Eξ

[
mσC,m−1

∑
k=0

r(k) f (Xk)

]
. (16.3.1)

Since by construction mσC,m ≤ ϑC,m (see (14.3.4)) , (16.3.1) yields

Eξ

[
σC,m−1

∑
k=0

r(mk) f (m)(Xmk)

]
≤ Eξ

[
ϑC,m−1

∑
k=0

r(k) f (Xk)

]
. (16.3.2)

The set C being petite and P aperiodic, C is (r,εν)-small by Theorem 9.4.10.
Without loss of generality, we may assume that ν(C) > 0 (see Lemma 9.1.6). By
Lemma 14.3.1, there exists q > 0 such that

inf
x∈C
Px(ϑC,m ≤ q)> 0 . (16.3.3)

We apply Theorem 16.2.2 with ρ = ϑC,m and τ = σ
(q)
C . Lemma 14.3.1-(i) implies

(16.2.1). Since C is a ( f ,r)-recurrent set, we get for all x ∈C, Px(σ
(q)
C < ∞) = 1 and

thus Px(τ < ∞, Xτ ∈C) = Px(τ < ∞) = 1. Moreover, using τ ≥ q and by (16.3.3),
we obtain infx∈CPx(ϑC,m ≤ τ)≥ infx∈CPx(ϑC,m ≤ q)> 0, showing (16.2.2). Theo-
rem 16.2.2 shows that there exist constants ς1,ς2 < ∞ such that
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sup
x∈C
Ex

[
ϑC,m−1

∑
k=0

r(k) f (Xk)

]
≤ ς1 sup

x∈C
Ex

σ
(q)
C −1

∑
k=0

r(k) f (Xk)


≤ ς2 sup

x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]

where the last inequality follows from Lemma 14.2.2. Using (16.3.2) with ξ = δx
and taking the supremum on C, we get

sup
x∈C
Ex

[
σC,m−1

∑
k=0

r(mk) f (m)(Xmk)

]
≤ sup

x∈C
Ex

[
ϑC,m−1

∑
k=0

r(k) f (Xk)

]

≤ ς2 sup
x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
< ∞ . (16.3.4)

Therefore, the set C is ( f (m),r(m))-recurrent for Pm. Note that by the strong Markov
property and by ϑC,m ≤ σC +1{σC<∞}ϑC,m ◦θσC ,

Eξ

[
ϑC,m−1

∑
k=0

r(k) f (Xk)

]

≤ Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
+Eξ

[
1{σC<∞}r(σC)

{
ϑC,m−1

∑
k=0

r(k) f (Xk)

}
◦θσC

]

≤ Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
+Eξ [r(σC)]sup

x∈C
Ex

[
ϑC,m−1

∑
k=0

r(k) f (Xk)

]
.

Combining with (16.3.4) and (16.3.2), there exists a constant ς < ∞ such that for
any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
.

(ii) By the Markov property, using that mσC,m is a stopping time, we get

Eξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
=

∞

∑
k=0
Eξ

[
1{km < mσC,m}r(km)

m−1

∑
j=0

P j f (Xkm)

]

=
∞

∑
k=0
Eξ

[
1{km < mσC,m}r(km)

m−1

∑
j=0

f (Xkm+ j)

]

Using that, for j ∈ {0, . . . ,m−1}, r−1(m)r(km+ j)≤ r(km), we get
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Eξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]

≥ r−1(m)
∞

∑
k=0
Eξ

[
1{km < mσC,m}

m−1

∑
j=0

r(km+ j) f (Xkm+ j)

]

= r−1(m)Eξ

[
mσC,m−1

∑
k=0

r(k) f (Xk)

]
≥ r−1(m)Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
.

2

Theorem 16.3.2. Let P be an irreducible aperiodic Markov kernel on X×X , f :
X→ [1,∞) be a measurable function, r ∈ Λ̄1 and m≥ 2.

(i) A set C is accessible and ( f ,r)-regular if and only if C is accessible and
( f (m),r(m))-regular for Pm;

(ii) The Markov kernel P is ( f ,r)-regular if and only if Pm is ( f (m),r(m))- regular;
(iii) A probability measure ξ is ( f ,r)-regular for P if and only if ξ is ( f (m),r(m))-

regular for Pm.

Proof. (i) Assume first that C is an accessible ( f ,r)-regular set. By Theo-
rem 16.2.4, the set C is petite (and hence small since P is aperiodic) and ( f ,r)-
recurrent, i.e. supx∈CEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞. By Theorem 9.3.11-(iii), the set C

is accessible and small for Pm. By Proposition 16.3.1, there exist ς < ∞ such that,
for any ξ ∈M1(X ),

Eξ

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
≤ ςEξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
.

Setting ξ = δx and taking the supremum over x ∈C, we get that

sup
x∈C
Ex

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
< ∞ .

Thus C is accessible, small and ( f (m),r(m))-recurrent. It is thus accessible and
( f (m),r(m))-regular by Theorem 16.2.4.
Conversely, assume that the set C is accessible and ( f (m),r(m))-regular for Pm. By
Theorem 16.2.4, C is a nonempty petite and hence small ( f (m),r(m))-recurrent set
for Pm, i.e.

sup
x∈C
Ex

[
σC,m−1

∑
k=0

r(m)(k) f (m)(Xmk)

]
< ∞ .
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Obviously, the set C is an accessible small set for P. The set C is ( f ,r)-recurrent for
P by Proposition 16.3.1-(ii). Hence, the set C is small ( f ,r)-recurrent. It is ( f ,r)-
regular by Theorem 16.2.4.

(ii) The Markov kernel P is ( f ,r)- regular if and only if there exist an accessible
( f ,r)-regular set C for P. Such a set is also accessible and ( f (m),r(m))-regular for
Pm. The proof follows from (i).

(iii) By Theorem 16.2.6-(a), a probability measure ξ is ( f ,r)-regular if and
only if there exists a non empty petite set C such that Eξ

[
∑

σC−1
k=0 r(k) f (Xk)

]
< ∞.

Proposition 16.3.1-(i) shows that Eξ

[
∑

σC,m−1
k=0 r(m)(k) f (Xmk)

]
< ∞. Thus by Theo-

rem 16.2.6-(a), ξ is ( f (m),r(m))- regular.
Conversely, if ξ is ( f (m),r(m))-regular for Pm, there exists a non empty petite set C

for Pm such that Eξ

[
∑

σC,m−1
k=0 r(m)(k) f (m)(Xmk)

]
< ∞. Clearly C is petite for P and

by Proposition 16.3.1-(ii), C is f -regular. By Theorem 16.2.6-(a), ξ is ( f ,r)-regular.
2

16.4 ( f ,r)-regularity of the split kernel

Proposition 16.4.1 Let P be an irreducible Markov kernel on X×X . Let C be
a (1,2εν)-small set with ν(C) = 1 and infx∈C P(x,C) ≥ 2ε . Set P̌ = P̌ε,ν . Let
f : X→ [1,∞) be a measurable function and r be a positive sequence.

(i) If C is ( f ,r)-regular for the kernel P, then C×{0,1} is ( f̄ ,r)-regular for
the kernel P̌, where f̄ (x,d) = f (x) for all x ∈ X and d ∈ (0,1).

(ii) If the split chain P̌ is ( f̄ ,r)-regular and f bounded on C, then P is ( f ,r)-
regular.

Proof. The proof is along the same lines as Proposition 14.4.1 (replacing Theo-
rem 14.2.6 by Theorem 16.2.6). 2

Theorem 16.4.2. Let P be an irreducible recurrent kernel on X×X . The following
conditions are equivalent.

(i) P is regular .
(ii) P is positive.

Proof. By Corollary 11.2.9, the existence of a petite and positive set is a sufficient
condition for P to be positive. We now show that it is a necessary condition.
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(I) Assume first that P is positive and that there exists an accessible strongly ape-
riodic small set C (hence, P is strongly aperiodic). Set P̌ = P̌ε,ν . Let π be the unique
invariant probability of P. By Proposition 11.1.4-(ii) and Proposition 11.1.3-(i), the
split chain P̌ is positive with invariant probability π ⊗ bε . By Proposition 11.1.4,
α̌ =C×{1} is an accessible atom. Applying Proposition 6.2.8-(ii), α̌ is recurrent.
Then, Ěα̌ [σα̌ ] < ∞ by Theorem 6.4.2-(iv). Since α̌ is small and (1,1)-recurrent,
this implies that P̌ is regular and this in turn implies that P is regular by Proposi-
tion 16.4.1.

(II) Assume now that P is positive and aperiodic. Denote by π the unique invari-
ant probability measure. Let C ∈X +

P be a small set for P. By Theorem 9.3.11, we
can actually choose m such that C is an accessible (1,εν)-small set for Pm. By (I),
Pm is regular and hence, P is regular by Theorem 16.3.2.

(III) Assume now that P is d-periodic and positive. By Theorem 9.3.6, there
exists a sequence C0,C1, . . . ,Cd−1 of pairwise disjoint accessible sets such that for
i = 0, . . . ,d− 1 and x ∈ Ci, P(x,Ci+1) = 1 with Cd = C0. The restriction Pd |C0 of
the kernel Pd to C0 is positive and aperiodic. Applying (II), Pd |C0 is regular. There-
fore, there exists a small set C ⊂C0 for Pd |C0 such that supx∈CEx[σC,d ]< ∞ where
σC,d = inf{n ∈ N : Xdn ∈C} (see (14.3.2)). Then C is also a small set for P and
supx∈CEx[σC]≤ supx∈CEx[σC,d ] showing that P is regular.

2

16.5 Exercises

16.1. Consider a functional autoregressive model, Xk+1 = h(Xk)+ Zk+1 where h :
R→ R is a measurable function, {Zk, k ∈ N∗} is a sequence of i.i.d. integrable
random variables, independent of X0. We denote m = E [|Z1|] and assume that

(i) There exist ` > m and M < ∞ such that, for |x| ≥M, |h(x)| ≤ |x|− `;
(ii) sup|x|≤M |h(x)|< ∞.

Set W (x) = |x| and C = [−M,+M].

1. Show that for x 6∈C, PW (x)≤ |h(x)|+m≤ |x|− (`−m).
2. Show that for x ∈C, PW (x)≤ |x|− (`−m)+ sup|x|≤M{|h(x)|− |x|+ `}.
3. Set V (x) =W (x)/(`−m). Show that PV (x)≤V (x)−1+b1C(x), with b < ∞.
4. Show that for all x ∈ X, Ex[σC]< ∞ and that supx∈CEx[σC]< ∞.

16.2. Let P be an irreducible Markov kernel on X×X . Let f : X→ [1,∞) be a
measurable function and {r(n), n ∈ N} ∈ S̄ be a log-subadditive sequence (see
Definition 13.1.1). Let C be a non empty ( f ,r)-recurrent petite set. Show that,

1. the set {W f ,r
0,C < ∞} is full and absorbing;

2. there exists d0 > 0 such that the sets {W f ,r
0,C ≤ d} are accessible and petite for all

d ≥ d0.
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16.3. Let v0 ≥ 1 and ψ : [v0,∞]→ (0,∞] be a concave increasing function, con-
tinuously differentiable function on [v0,∞) such that limv→∞ ψ ′(v) = 0. Then, there
exists v1 ∈ [v0,∞) such that ψ(v1)−v1ψ ′(v1)> 0. Consider the function φ : [1,∞)→
[1,∞) given, for v ∈ [1,v1) by

φ(v) = 1+{2ψ
′(v1)(v1−1)−ψ(v1)}

v−1
v1−1

+2{ψ(v1)− (v1−1)ψ ′(v1)}
(

v−1
v1−1

)1/2

(16.5.1)

and φ(v) = ψ(v) for v ≥ v1. The function φ is a concave increasing function, con-
tinuously differentiable on [1,∞), φ(1) = 1. Moreover, the two sequences rφ and rψ

are equivalent, i.e. limn→∞ rφ (n)/rψ(n) = 1.

16.4. 1. Compute rφ for φ(v) = vα with 0 < α < 1.
2. Let φ0(v) = v log−δ (v) where δ > 0. Show that there exists a constant v0 such

that φ0 is concave on [v0,∞). Set φ(v) = φ0(v+ v0) and give the expression of
rφ .

16.5. Let r : [0,∞)→ (0,∞) be a continuous increasing log-concave function. Define
h(x) = 1+

∫ x
0 r(t)dt and let h−1 : [1,∞)→ [0,∞) be its inverse. Define the function

φ on [1,∞) by

φ(v) =
1

(h−1)′(v)
= r ◦h−1(v) .

1. Show that r = rφ , φ is concave

lim
v→∞

φ
′(v) = 0⇔ lim

x→∞

r′(x)
r(x)

= 0 .

2. Compute φ to obtain a polynomial rate r(t) = (1+ ct)γ , c,γ > 0.
3. Compute φ to obtain a subexponential rate r(t) = (1+ t)β−1ec{(1+t)β−1}, β ∈

(0,1), c > 0.

16.6. Let P be a strongly irreducible recurrent irreducible kernel on a discrete state
space X. Show that if there exists s > 0 and x ∈ X such that Ex[σ

s∨1
x ]< ∞, then, for

all y,z ∈ X, Ey[σ
s∨1
z ]< ∞ and limn→∞ nsdTV(P

n(x, ·),Pn(y, ·)) = 0.

16.6 Bibliographical notes

The ( f ,r)-regularity results for subgeometric sequence are borrowed from the works
of Nummelin and Tuominen (1982), Nummelin and Tuominen (1983) and Tuomi-
nen and Tweedie (1994).
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The drift condition for ( f ,r)-recurrence Dsg(V,φ ,b,C) was introduced in Douc
et al (2004a), building on earlier results in Fort and Moulines (2000), Fort (2001),
Jarner and Roberts (2002) and Fort and Moulines (2003b).



Chapter 17
Subgeometric rates of convergence

We have seen in Chapter 11 that a recurrent irreducible kernel P on X×X admits a
unique invariant measure which is a probability measure π if the kernel is positive.
If the kernel is moreover aperiodic then the iterates of the kernel Pn(x, ·) converge to
π in f -norm for π-almost all x∈X, where f is a measurable function. We will in this
Chapter establish convergence rates, which amounts to find increasing sequences
r such that limn→∞ r(n)‖Pn(x, ·)−π‖ f = 0. We will also consider the related prob-
lems of finding non-asymptotic bounds of convergence, i.e. functions M : X→ R+

such that for all n∈N and x∈X , r(n)‖Pn(x, ·)−π‖ f ≤M(x). We will provide dif-
ferent expressions for the bound M(x) either in terms of ( f ,r)-modulated moment of
the return time to a small set Ex

[
∑

σC−1
k=0 r(k) f (Xk)

]
or in terms of appropriately de-

fined drift functions. We will also see the possible interplays between these different
expressions of the bounds.

17.1 ( f ,r)-ergodicity

We now consider subgeometric rates of convergence to the stationary distribution.
The different classes of subgeometric rate sequences are defined in Section 13.1.

Definition 17.1.1 (( f ,r)-ergodicity) Let P be a Markov kernel on X×X , f : X→
[1,∞) be a measurable function and r = {r(n), n ∈ N} ∈ Λ1. The Markov kernel P
is said to be ( f ,r)-ergodic if P is irreducible, positive with invariant probability π

and if there exists a full and absorbing set S( f ,r) ∈X satisfying

lim
n→∞

r(n)‖Pn(x, ·)−π‖ f = 0 , for all x ∈ S( f ,r) .

385
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In this Section, we will derive sufficient conditions upon which a Markov ker-
nel P is ( f ,r)-ergodic. More precisely, we will show that if the Markov kernel
P is ( f ,r)-regular, then P also is ( f ,r)-ergodic. The path to establish these re-
sults parallel the one used for geometric ergodicity. It is based on the renewal ap-
proach for atomic Markov chain and the splitting construction. We preface the proof
of the main result by a preparatory Lemma, which is a subgeometric version of
Lemma 15.1.2. In all this Section, we use the notations introduced in Chapter 11.

Lemma 17.1.2 Let P be an irreducible Markov kernel on X×X , f : X→ [1,∞)
be a measurable function and C be a (1,εν)-small set satisfying ν(C) = 1 and
infx∈C P(x,C)≥ 2ε . Set α̌ =C×{1}. Let r ∈ Λ̄1 be a sequence. Assume that

sup
x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
< ∞ . (17.1.1)

Then, there exists ς < ∞ such that

sup
(x,d)∈Č

Ě(x,d)

[
σα̌

∑
k=0

r(k) f (Xk)

]
≤ ς sup

x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
, (17.1.2)

and for any ξ ∈M1(X ),

Ěξ⊗bε

[
σα̌

∑
k=0

r(k) f (Xk)

]
≤ ςEξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
. (17.1.3)

Proof. Without loss of generality, we assume that r ∈Λ1. Condition (17.1.1) implies
that M = supx∈C f (x) < ∞ and infx∈CPx(σC < ∞) = 1. Proposition 11.1.4 implies
that Pα̌(σα̌ < ∞) = 1 and for all (x,d) ∈ Č, P̌(x,d)(σČ < ∞) = 1 and P̌(x,d)(σα̌ <

∞) = 1. For (x,d) ∈ X̌ such that P̌(x,d)(σα̌ < ∞) = 1, we get

Ě(x,d)[r(σα̌) f (Xσα̌
)]≤Mr(1)Ě(x,d)[r(σα̌ −1)]≤Mr(1)Ě(x,d)

[
σα̌−1

∑
k=0

r(k) f (Xk)

]

which implies that

Ě(x,d)

[
σα̌

∑
k=0

r(k) f (Xk)

]
≤ (1+Mr(1))Ě(x,d)

[
σα̌−1

∑
k=0

r(k) f (Xk)

]
. (17.1.4)

On the other hand, for every x ∈C, Proposition 11.1.2 shows that

Ěδx⊗bε

[
σČ−1

∑
k=0

r(k) f (Xk)

]
= Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
(17.1.5)
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Note also that for any nonnegative random variable Y , we get sup(x,d)∈Č Ě(x,d)[Y ]≤
ςε supx∈C Ěδx⊗bε

[Y ] with ςε = ε−1∨ (1− ε)−1. Applying this bound to (17.1.5) and
then using that f ≥ 1 shows that sup(x,d)∈Č Ě(x,d)[r0(σČ)]< ∞.

By Proposition 11.1.4-(vi) we get inf(x,d)∈Č P̌(x,d)(X1 ∈ α̌)> 0.
We may therefore apply Theorem 16.2.3 with A = Č, B = α̌ and q = 1 to show

that there exists a finite constant ς0 satisfying

sup
(x,d)∈Č

Ě(x,d)

[
σα̌−1

∑
k=0

r(k) f (Xk)

]
≤ ς0 sup

(x,d)∈Č
Ě(x,d)

[
σČ−1

∑
k=0

r(k) f (Xk)

]

≤ ς0ςε sup
x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
,

Equation (17.1.2) results from (17.1.4). Noting that σα̌ ≤ σČ +σα̌ ◦θσČ
on {σČ <

∞} and using

Ěξ⊗bε

[
σα̌

∑
k=0

r(k) f (Xk)

]
≤ Ěξ⊗bε

[
σČ−1

∑
k=0

r(k) f (Xk)

]
+ Ěξ⊗bε

σα̌◦θσČ

∑
k=σČ

r(k) f (Xk)


≤ Ěξ⊗bε

[
σČ−1

∑
k=0

r(k) f (Xk)

]
+ Ěξ⊗bε

[
r(σČ)

]
sup

(x,d)∈Č
Ě(x,d)

[
σα̌

∑
k=0

r(k) f (Xk)

]

= Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]{
1+ r(1) sup

(x,d)∈Č
Ě(x,d)

[
σα̌

∑
k=0

r(k) f (Xk)

]}
. (17.1.6)

we obtain (17.1.3). 2

Theorem 17.1.3. Let P be an irreducible and aperiodic Markov kernel on X×X ,
f : X→ [1,∞) be a measurable function and r∈ Λ̄1. Assume that one of the following
equivalent conditions of Theorem 16.2.6 is satisfied:

(i) There exists a non-empty ( f ,r)-recurrent small set,

sup
x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
< ∞ . (17.1.7)

(ii) The condition Dsg({Vn}, f ,r,b,C) holds for a non empty petite set C and
functions {Vn, n ∈ N} which satisfy: supC V0 < ∞, {V0 = ∞} ⊂ {V1 = ∞}.
Then, P is ( f ,r)-ergodic with unique invariant probability measure π . In addition,
setting

M(ξ ) = Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
, (17.1.8)
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the following properties hold.

(a) There exists a full and absorbing set S( f ,r), containing the set {V0 < ∞} (with
V0 as in (ii)) such that, for all x ∈ S( f , r)

lim
n→∞

r(n)‖Pn(x, ·)−π‖ f = 0 . (17.1.9)

(b) For any ( f ,r)-regular initial distribution ξ ,

lim
n→∞

r(n)‖ξ Pn−π‖ f = 0 . (17.1.10)

(c) There exists a constant ς < ∞ such that for all initial distributions ξ ,ξ ′ ∈
M1(X ),

∞

∑
n=1

r(n)
∥∥ξ Pn−ξ

′Pn∥∥
f ≤ ς{M(ξ )+M(ξ ′)} . (17.1.11)

(d) There exists ς < ∞ such that for any initial distribution ξ and all n ∈ N,

r(n)‖ξ Pn−π‖ f ≤ ςM(ξ ) . (17.1.12)

(e) If ∆r ∈ Λ̄1, then there exists ς < ∞ such that for any ξ ∈M1(X ),

∞

∑
k=1

∆r(k)
∥∥∥ξ Pk−π

∥∥∥
f
≤ ςEξ

[
σC−1

∑
k=0

∆r(k) f (Xk)

]
. (17.1.13)

Equations (17.1.11) and (17.1.12) also hold with M(ξ ) = ξ (V0)+1.

Proof. Without loss of generality, we assume that r ∈ Λ1. Since C is small and
supx∈CEx[σC] < ∞ the existence and uniqueness of the invariant probability π fol-
lows from Corollary 11.2.9.

(I) Assume first that the Markov kernel P admits a (1,µ)-small set P. By Propo-
sition 11.1.4, the set α̌ =C×{1} is an aperiodic atom for the split kernel P̌.
Using Lemma 17.1.2 ((17.1.2) and (17.1.3)), condition (17.1.7) implies that there
exists ς1 < ∞ such that Ěα̌

[
∑

σα̌

k=0 r(k) f (Xk)
]
< ∞ and, for any ξ ∈M1(X ), M̌(ξ )≤

ς1M(ξ ), where

M(ξ ) = Eξ

[
σC−1

∑
k=0

r(k) f (Xk)

]
and M̌(ξ ) = Ěξ⊗bε

[
σα̌

∑
k=1

r(k) f (Xk)

]
.

By Proposition 11.1.3, P̌ admits a unique invariant probability measure which may
be expressed as π ⊗ bε where π is the unique invariant probability measure for P.
Then, by Lemma 17.1.2, we have M̌(ξ ) ≤ ς1M(ξ ) and, applying Theorem 13.4.4-
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(13.4.6), we obtain

∞

∑
k=1

r(k)
∥∥∥(ξ ⊗bε)P̌k− (ξ ′⊗bε)P̌k

∥∥∥
f⊗1
≤ ς1ς2{M(ξ )+M(ξ ′)} .

The proof of (17.1.11) follows from Lemma 11.1.1 which implies∥∥∥ξ Pk−ξ
′Pk
∥∥∥

f
≤
∥∥∥[ξ ⊗bε ]P̌k− [ξ ′⊗bε ]P̌k

∥∥∥
f⊗1

. (17.1.14)

The bound (17.1.12) and the limit (17.1.10) are obtained similarly using Theo-
rem 13.4.4-(Equations (13.4.7) and (13.4.8) by applying (17.1.14) and Proposi-
tion 11.1.3.
The bound (17.1.13) is a consequence of Theorem 13.4.4-(iv).

(II) The method to extend the result from the strongly aperiodic case to the gen-
eral aperiodic case is exactly along the same lines as in Theorem 15.1.3; Using
Proposition 16.3.1 instead of Proposition 14.3.2 in the derivations, we get that there
exists a constant ς < ∞ such that for any ξ ,ξ ′ ∈M1(X ),

∞

∑
k=1

r(mk)
∥∥∥ξ Pmk−ξ

′Pmk
∥∥∥

f (m)
≤ ς{M(ξ )+M(ξ ′)} , (17.1.15)

where f (m) = ∑
m−1
i=0 Pi f . For i ∈ {0, . . . ,m− 1} and |g| ≤ f , we have |Pig| ≤ f (m),

hence, for k ≥ 0,

sup
|g|≤ f
|ξ Pmk+ig−ξ

′Pmk+ig| ≤ sup
|h|≤ f (m)

|ξ Pmkh−ξ
′Pmkh| .

This yields
∥∥ξ Pmk+i−ξ ′Pmk+i

∥∥
f ≤

∥∥ξ Pmk−ξ ′Pmk
∥∥

f (m) . Since the sequence r is
increasing and log-subadditive, we obtain

∞

∑
k=1

r(k)
∥∥∥ξ Pk−ξ

′Pk
∥∥∥

f
≤

m−1

∑
i=0

∞

∑
k=0

r(mk+ i)
∥∥∥ξ Pmk+i−ξ

′Pmk+i
∥∥∥

f

≤ mr(m)
∞

∑
k=0

r(mk)
∥∥∥ξ Pmk−ξ

′Pmk
∥∥∥

f (m)
,

which concludes the proof.

It remains to prove (a). Let C be a ( f ,r)-recurrent small set. Denote by SP( f ,r)
the set of ( f ,r)-regular points. For all x ∈ SP( f ,r), δx is ( f ,r)-regular and hence
(17.1.10) implies that limn→∞ r(n)‖Pn(x, ·)−π‖ f = 0. Theorem 16.2.6 shows that
the set SP( f ,r) is full and absorbing and contains the set {V0 < ∞}, where V0 is as
in (ii). 2

We now specialize these results to total variation convergence and extend the results
introduced in Theorem 13.3.3 to aperiodic (1,r)-regular kernels.
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Corollary 17.1.4 Let P be an irreducible and aperiodic Markov kernel on X×
X . Assume that there exist a sequence r ∈ Λ̄1 and a small set C such that

sup
x∈C
Ex
[
r0(σC)

]
< ∞ , where r0(n) =

n

∑
k=0

r(k).

Then, the kernel P admits a unique invariant probability π . Moreover,

(i) If ∆r ∈ Λ̄1 and either limn→∞ ↑ r(n) = ∞ and Eξ [r(σC)] < ∞ or
limn→∞ r(n)< ∞ and Pξ (σC < ∞) = 1, then

lim
n→∞

r(n)‖ξ Pn−π‖TV = 0 . (17.1.16)

Moreover, there exists a set S ∈X such that π(S) = 1 and for all x ∈ S,

lim
n→∞

r(n)‖Pn(x, ·)−π‖TV = 0 . (17.1.17)

(ii) If ∆r ∈ Λ̄1, then there exists ς < ∞ such that for any initial distribution
ξ and all n ∈ N,

r(n)‖ξ Pn−π‖TV ≤ ςEξ [r(σC)] . (17.1.18)

(iii) There exists ς < ∞ such that for any initial distributions ξ ,ξ ′ ∈
M1(X ),

∞

∑
k=1

r(k)
∥∥∥ξ Pk−ξ

′Pk
∥∥∥

TV
≤ ς

{
Eξ

[
r0(σC)

]
+Eξ ′

[
r0(σC)

]}
. (17.1.19)

(iv) If ∆r ∈ Λ̄1, then there exists ς < ∞ such that for any ξ ∈M1(X ),

∞

∑
k=1

∆r(k)
∥∥∥ξ Pk−π

∥∥∥
TV
≤ ςEξ [r(σC)] . (17.1.20)

Proof. (a) Equation (17.1.19) and (17.1.20) follows from (17.1.11) and (17.1.13)
with f ≡ 1.

(b) The proof of (17.1.16) and (17.1.18) requires more attention. Indeed, setting
f ≡ 1 in (17.1.12), shows that there exists ς < ∞ such that r(n)‖ξ Pn−π‖TV ≤
ςEξ [r0(σC)], which is not the desired result. To obtain (17.1.18), we will use Theo-
rem 13.3.3 instead of Theorem 13.4.4. Assume first that P admits a (1,µ)-small set
P. By Proposition 11.1.4, the set α̌ =C×{1} is an aperiodic atom for the split ker-
nel P̌. Applying Lemma 17.1.2-(17.1.2) with f ≡ 1 implies that Ěα̌

[
r0(σα̌)

]
< ∞;

applying Lemma 15.1.2-(17.1.3) with f ≡ 1 and the sequence ∆r shows that, there
exists ς < ∞ such that, for any ξ ∈ M1(X ), Ěξ⊗bε

[r(σα̌)] ≤ ςE [r(σC)]. Equa-
tions (17.1.16) and (17.1.18) follow from Theorem 13.3.3-(ii) and (iii).
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Assume now that the Markov kernel admits a (m,εν)-small set C. By Lemma 9.1.6,
without loss of generality that ν(C) = 1. Theorem 9.3.11 shows that C is an acces-
sible strongly aperiodic small set for the kernel Pm. Applying the result above to the
kernel Pm shows that there exists ς1 < ∞ such that for any ξ ∈M1(X ) and k ∈ N,
r(m)(k)

∥∥ξ Pmk−π
∥∥

TV ≤ ς1Eξ [r(σC,m)]. Since ‖ξ P−ξ ′P‖TV ≤ ‖ξ −ξ ′‖TV and for
n = mk+q, q ∈ {0, . . . ,m−1}, r(n)≤ r(m)(k)r(m−1), we get that

r(n)‖ξ Pn−π‖TV ≤ r(m−1)ς1Eξ [r(σC,m)] .

By applying Proposition 16.3.1 to the sequence ∆r and f ≡ 1, there exists ς2 < ∞

such that for all ξ ∈M1(X ), Eξ [r(σC,m)] ≤ ς2Eξ [r(σC)]. The proof of (17.1.18)
follows. The proof of (17.1.16) is along the same lines.

When limn→∞ r(n) = ∞, (17.1.17) follows from (17.1.16) by Corollary 9.2.14
which shows that the set S := {x ∈ X : Ex[r(σC)]< ∞} is full and absorbing. Since
by Theorem 9.2.15 an invariant probability measure is a maximal irreducibility mea-
sure, π(S) = 1. When limsupr(n)< ∞, we set S = {x ∈ X : Px(σC < ∞) = 1}. The-
orem 10.1.10 shows that this set is full and absorbing and hence π(S) = 1. 2

Example 17.1.5 (Backward recurrence time chain). Let {pn, n ∈ N} be a se-
quence of positive real numbers such that p0 = 1, pn ∈ (0,1) for all n ≥ 1 and
limn→∞ ∏

n
i=1 pi = 0. Consider the backward recurrence time chain with transition

kernel P defined as P(n,n+1) = 1−P(n,0) = pn, for all n≥ 0. The Markov kernel
P is irreducible and strongly aperiodic and {0} is an atom. Let σ0 be the return time
to {0}. We have for all n≥ 1

P0(σ0 = n+1) = (1− pn)
n−1

∏
j=0

p j and P0(σ0 > n) =
n−1

∏
j=0

p j,

By Theorem 7.2.1, the Markov kernel P is positive recurrent if and only if E0[σ0]<
∞, i.e.

∞

∑
n=1

n

∏
j=1

p j < ∞,

and the stationary distribution π is given, by π(0) = π(1) = 1/E0[σ0] and for j≥ 2,

π( j) =
E0
[
∑

σ0
k=11{Xk= j}

]
E0[σ0]

=
P0(σ0 ≥ j)
E0[σ0]

=
p0 . . . p j−2

∑
∞
n=1 p1 . . . pn

.

Because the distribution of the return time to the atom {0} has such a simple ex-
pression in terms of the transition probability {pn, n∈N}, we are able to exhibit the
largest possible rate function r such that the (1,r) modulated moment of the return
time E0

[
∑

σ0−1
k=0 r(k)

]
is finite. We will also prove that the drift condition Dsg(V,φ ,b)

holds for appropriately chosen functions V and φ and yields the optimal rate of con-
vergence. Note also that for any function h, it holds that
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E0

[
σ0−1

∑
k=0

h(Xk)

]
= E0

[
σ0−1

∑
k=0

h(k)

]
.

Therefore there is no loss of generality to consider only (1,r) modulated moments
of the return time to zero.

If supn≥1 pn ≤ λ < 1, then, for all λ < µ < 1, E0[µ
−σ0 ] < ∞ and {0} is thus

a geometrically recurrent atom. Subgeometric rates of convergence in total varia-
tion norm are obtained when limsupn→∞ pn = 1. Depending on the rate at which
the sequence {pn, n ∈N} approaches 1, different behaviors can be obtained, cover-
ing essentially the three typical rates (polynomial, logarithmic and subexponential)
discussed above.

Polynomial rates: Assume that for θ > 0 and large n, pn = 1− (1+θ)n−1. Then

∏
n
i=1 pi � n−1−θ . Thus, E0

[
∑

σ0−1
k=0 r(k)

]
< ∞ if and only if ∑

∞
k=1 r(k)k−1−θ < ∞.

For instance, r(n) = nβ with 0≤ β < θ is suitable.
Subgeometric rates: If for large n, pn = 1− θβnβ−1 for θ > 0 and β ∈ (0,1),

then ∏
n
i=1 pi � e−θnβ

. Thus, E0[∑
σ0−1
k=0 eakβ

]< ∞ if a < θ and E0[∑
σ0−1
k=0 eakβ

] = ∞ if
a≥ θ .

Logarithmic rates: If for θ > 0 and large n, pn = 1− 1/n− (1+θ)/(n log(n)),
then ∏

n
j=1 p j � n−1 log−1−θ (n), which is a summable series. Hence if r is non de-

creasing and ∑
∞
k=1 r(k)∏

n
j=1 p j < ∞, then r(k) = o(logθ (k)). In particular r(k) =

logβ (k) is suitable for all 0≤ β < θ .

J

17.2 Drift conditions

We will now translate this result in terms of the drift condition Dsg(V,φ ,b,C) where
φ : [1,∞) → (0,∞) is concave increasing differentiable function. Recall that Hφ

denotes the primitive of 1/φ which cancels at 1, Hφ (v) =
∫ v

1 dx/φ(x) (see Equa-
tion (16.1.12)). Hφ is an increasing concave differentiable function on [1,∞) and
limx→∞ ↑Hφ (x) = ∞. The inverse H−1

φ
: [0,∞)→ [1,∞) is also an increasing and dif-

ferentiable function. Finally, we denote rφ (t) = (H−1
φ

)′(t) = φ ◦H−1
φ

(t). (see Equa-
tion (16.1.13)).

Theorem 17.2.1. Let P be an irreducible and aperiodic Markov kernel on X×X .
Assume that Dsg(V,φ ,b,C) holds for some small set C satisfying supC V < ∞. Then
P has a unique invariant probability measure π and for all x ∈ X,

lim
n→∞

rφ (n)‖Pn(x, ·)−π‖TV = 0 , lim
n→∞
‖Pn(x, ·)−π‖

φ◦V = 0 . (17.2.1)
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There exists a constant ς < ∞ such that for all initial conditions ξ ,ξ ′ ∈M!(X ),

∞

∑
n=0

rφ (n)
∥∥ξ Pn−ξ

′Pn∥∥
TV ≤ ς

{
ξ (V )+ξ

′(V )+2brφ (1)/rφ (0)
}

(17.2.2)

∞

∑
n=0

∥∥ξ Pn−ξ
′Pn∥∥

φ◦V ≤ ς
{

ξ (V )+ξ
′(V )+2b

}
. (17.2.3)

Proof. By Proposition 16.1.11, Dsg(V,φ ,b,C) implies that Dsg({Vn},1,rφ ,b′,C)

holds with Vn = Hn ◦V , Hn = H−1
φ

(n+Hφ )−H−1
φ

(n) and b′ = brφ (1)/r2
φ
(0). More-

over, Dsg(V,φ ,b,C) also implies that Dsg({Vn},1,φ ◦V,b,C) holds with Vn = V
for all n ∈ N. The result then follows from Theorem 17.1.3 combined with The-
orem 16.1.12. 2

Example 17.2.2 (Backward recurrence time chain; Example 17.1.5 (contin-
ued)). We consider again the backward recurrence time chain, but this time we
will use Dsg(V,φ ,b,C). For γ ∈ (0,1) and x ∈ N∗, define V (0) := 1 and V (x) :=
∏

x−1
j=0 p−γ

j . Then, for all x≥ 0, we have:

PV (x) = pxV (x+1)+(1− px)V (0) = p1−γ
x V (x)+1− px

≤V (x)− (1− p1−γ
x )V (x)+1− px

Thus, for 0 < δ < 1− γ and large enough x, it holds that

PV (x)≤V (x)−δ (1− px)V (x). (17.2.4)

Polynomial rates: Assume that pn = 1−(1+θ)n−1 for some θ > 0. Then V (x)�
xγ(1+θ) and (1− px)V (x)�V (x)1−1/(γ(1+θ)). Thus condition Dsg(V,φ ,b) holds with
φ(v) = cvα for α = 1−1/(γ(1+θ)) for any γ ∈ (0,1). Theorem 17.2.1 yields the
rate of convergence in total variation distance nα/(1−α) = nγ(1+θ)−1, i.e.nβ for any
0≤ β < θ .

Subgeometric rates: Assume that pn = 1− θβnβ−1 for some θ > 0 and β ∈
(0,1). Then, for large enough x, (17.2.4) yields:

PV (x)≤V (x)−θβδxβ−1V (x)≤ cV (x){log(V (x))}1−1/β ,

for c < θ 1/β βδ . Defining α := 1/β − 1, Theorem 17.2.1 yields the following rate
of convergence in total variation distance:

n−α/(1+α) exp
(
{c(1+α)n}1/(1+α)

)
= nβ−1 exp

(
θδ

β nβ

)
.

Since δ is arbitrarily close to 1, we recover the fact that E0[∑
σ0−1
k=0 eakβ

]< ∞ for any
a < θ .
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Logarithmic rates: Assume finally that pn = 1− n−1− (1+ θ)n−1 log−1(n) for
some θ > 0. Choose V (x) :=

(
∏

x−1
j=0 p j

)
/ logε(x) for ε > 0 arbitrarily small. Then,

for constants c < c′ < c′′ < 1 and large x, we obtain:

PV (x) =
logε(x)

logε(x+1)
V (x)+1− px =V (x)− c′′ε

V (x)
x log(x)

+1− px

≤V (x)− c′ε logθ−ε(x)≤V (x)− cε logθ−ε(V (x)).

Here again Theorem 17.2.1 yields the optimal rate of convergence.

J

Example 17.2.3 (Independent Metropolis-Hastings sampler). Suppose that π ∈
M1(X ) and let Q ∈M1(X ) be another probability measure such that π is abso-
lutely continuous with respect to Q with Radon-Nikodym derivative

dπ

dQ
(x) =

1
q(x)

for x ∈ X. (17.2.5)

If the chain is currently at x∈X, a move is proposed to y drawn from Q and accepted
with probability

α(x,y) =
q(x)
q(y)
∧1 . (17.2.6)

If the proposed move is not accepted, the chain remains at x. Denote by P the
Markov kernel associated to the independence sampler. It can easily be verified that
the chain is irreducible and has unique stationary measure π . If π and Q both have
densities denoted π and q, respectively, with respect to some common reference
measure and if there exists β > 0 such that

q(x)
π(x)

≥ ε , for all x ∈ X (17.2.7)

then the independence sampler is uniformly ergodic (see Example 15.3.3) and if
(17.2.7) does not hold π-almost surely then the independence sampler is not geo-
metrically ergodic. However, it is still possible to obtain subgeometric rate of con-
vergence when (17.2.7) is violated.

First consider the case where π is the uniform distribution on [0,1] and Q has
density q with respect to Lebesgue measure on [0,1] of the form

q(x) = (r+1)xr , for some r > 0 . (17.2.8)

For each x ∈ [0,1] define the regions of acceptance and possible rejection by

Ax = {y ∈ [0,1] : q(y)≤ q(x)} , Rx = {y ∈ [0,1] : q(y)> q(x)} .

We will show that for each r < s < r+1, the independence sampler P satisfies
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PV ≤V − cV α +b1C , where V (x) = 1/xs, α = 1− r/s and C is a petite set.
(17.2.9)

The acceptance and rejection regions are Ax = [0,x] and Rx = (x,1]. Furthermore,
all sets of the form [y,1] are petite. Using straightforward algebra, we get

PV (x) =
∫ x

0
V (y)q(y)dy+

∫ 1

x
V (y)α(x,y)q(y)dy

+V (x)
∫ 1

x
(1−α(x,y))q(y)dy

=
∫ x

0
(r+1)yr−sdy+

∫ 1

x

1
ys (r+1)xrdy+

1
xs

∫ 1

x
(r+1)(yr− xr)dy

=
r+1

r− s+1
xr−s+1 +

r+1
−s+1

xr− r+1
−s+1

xr−s+1 +
1
xs − xr−s+1

− (r+1)xr−s(1− x)

=V (x)− (r+1)V (x)1−r/s(1− x)+ c1xr−s+1 + c2xr

Since r− s+1 and r are both positive, xr−s+1 and xr tend to 0 as x tends to 0, while
V (x)1−r/s = xr−s tends to ∞ as x tends to 0. Thus (17.2.9) is satisfied with C = [x0,1]
for x0 sufficiently small and some constants b and c.

The choice of s leading to the best rate of convergence is r+ 1− ε which gives
α ≈ 1− r/(r+1) . Hence, the independence sampler converges in total variation at
a polynomial rate of order 1/r.

We consider the general case. For simplicity, we assume that the two probabilities
π and Q are equivalent which is no restriction. We assume that for some r > 0

π(Aε) =ε→0 O(ε1/r) where Aε = {x ∈ X : q(x)≤ ε}. (17.2.10)

We will show that for each r < s < r+1 the independence sampler P satisfies

PV ≤V − cV α +b1C , where V (x) = (1/q(x))s/r,α = 1− r/s (17.2.11)

and C is a petite set. Note that Ax = Aq(x) and that all the sets A c
ε are petite.

PV (x) =
∫

Aq(x)

V (y)q(y)π(dy)+
∫

A c
q(x)

V (y)α(x,y)q(y)π(dy)

+V (x)
∫

A c
q(x)

(1−α(x,y))q(y)π(dy)

=
∫

Aq(x)

q(y)1−s/r
π(dy)+

∫
A c

q(x)

q(x)q(y)−s/r
π(dy)

+V (x)
∫

A c
q(x)

(q(y)−q(x))π(dy)

Therefore, denoting F the cumulative distribution function of q under π , we get
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PV (x)≤
∫

Aq(x)

q(y)1−s/r
π(dy)+

∫
A c

q(x)

q(x)q(y)−s/r
π(dy)−V (x)α

π(A c
q(x))+V (x)

=
∫
[0,q(x)]

y1−s/rF(dy)+
∫
(q(x),∞)

q(x)y−s/rF(dy)−V (x)α
π(A c

q(x))+V (x)

where the inequality stems from
∫
A c

q(x)
q(y)π(dy) = Q(A c

q(x))≤ 1. Under (17.2.11),

there exist positive K and y0 such that F(y) ≤ Ky1/r for y ≤ y0. Since Ky1/r is the
cumulative distribution function for the measure with density K1y1/r−1 with respect
to Lebesgue measure and since y1−s/r and y−s/r are decreasing functions, we get,
for all q(x)≤ y0,∫

[0,q(x)]
y1−s/rF(dy)≤ K1

∫
[0,q(x)]

y1−s/ry1/r−1dy,∫
(q(x),∞)

q(x)y−s/rF(dy)≤ K1

∫
(q(x),y0]

q(x)y−s/ry1/r−1dy+
∫
(y0,∞)

q(x)y−s/rF(dy).

Therefore, the two integrals in (17.2.12) both tend to 0 as q(x) tends to 0 Since
V (x)α tends to ∞ and π(Ac

q(x)) tends to 1 as q(x) tends to 0, (17.2.11) is satisfied
with C = A c

ε for ε sufficiently small. J

A pair of strictly increasing continuous functions (ϒ ,Ψ) defined on R+ is called a
pair of inverse Young functions if for all x,y≥ 0,

ϒ (x)Ψ(y)≤ x+ y . (17.2.12)

A typical example is ϒ (x) = (px)1/p and Ψ(y) = (qy)1/q where p,q > 0, 1/p+
1/q = 1. Indeed, the concavity of the logarithm yields, for x,y > 0,

(px)1/p(qy)1/q = exp{p−1 log(px)+q−1 log(qx)}
≤ explog{px/p+qy/q}= x+ y .

Inverse Young functions allows to obtain a tradeoff between rates and f -norm using
the following interpolation lemma.

Lemma 17.2.4 Let (ϒ ,Φ) be a pair of inverse Young functions, r be a sequence
of nonnegative real numbers and f ∈ F+(X). Then, for all ξ ,ξ ′ ∈M1(X ) and all
k ∈ N,

ϒ (r(k))
∥∥ξ −ξ

′∥∥
Ψ( f ) ≤ r(k)

∥∥ξ −ξ
′∥∥

TV +
∥∥ξ −ξ

′∥∥
f .

Proof. The proof follows from

ϒ (r(k))
∥∥ξ −ξ

′∥∥
Ψ( f ) =

∫
|ξ −ξ

′|(dx) [ϒ ◦ r(k)Ψ ◦ f (x)]

≤
∫
|ξ −ξ

′|(dx) [r(k)+ f (x)] = r(k)
∥∥ξ −ξ

′∥∥
TV +

∥∥ξ −ξ
′∥∥

f .

2
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We now extend the previous results to weighted total variation distances by interpo-
lation using Young functions.

Theorem 17.2.5. Let P be an irreducible and aperiodic Markov kernel on X×X .
Assume that Dsg(V,φ ,b,C) holds for some small set C satisfying supC V < ∞. Let
(ϒ ,Ψ) be a pair of inverse Young functions. Then there exists an invariant proba-
bility measure π and for all x ∈ X,

lim
n→∞

ϒ (rφ (n)) ‖Pn(x, ·)−π‖
Ψ(φ◦V ) = 0. (17.2.13)

There exists a constant ς < ∞ such that for all initial conditions ξ ,ξ ′ ∈M!(X ),

∞

∑
n=0

ϒ (rφ (n))
∥∥ξ Pn−ξ

′Pn∥∥
Ψ(φ◦V )

≤ ς
(
ξ (V )+ξ

′(V )+2b{1+ rφ (1)/rφ (0)}
)
.

(17.2.14)

Proof. Lemma 17.2.4 shows that for any x ∈ X and k ∈ N,

ϒ (r(k))‖Pn(x, ·)−π‖
Ψ(φ◦V ) ≤ r(k)‖ξ Pn(x, ·)−π‖TV +‖Pn(x, ·)−φ‖

φ◦V .

The proof of (17.2.13) follows from Theorem 17.2.1-(17.2.1). Equation (17.2.14)
follows similarly from Theorem 17.2.1-((17.2.2), (17.2.3)). 2

We provide below some examples of rates of convergence obtained using The-
orem 17.2.5. We assume in this discussion that P be an irreducible and aperiodic
Markov kernel on X×X and that Dsg(V,φ ,b,C) holds for some small set C satis-
fying supC V < ∞.

Polynomial rates of convergence are associated to the functions φ(v) = cvα for
some α ∈ [0,1) and c ∈ (0,1]. The rate of convergence in total variation distance
is rφ (n) ∝ nα/(1−α). Set ϒ (x) = ((1− p)x)(1−p) and Ψ(x) = (px)p for some p, 0 <
p < 1. Theorem 17.2.5 yields, for any x ∈ {V < ∞},

lim
n→∞

n(1−p)α/(1−α) ‖Pn(x, ·)−π‖V α p = 0. (17.2.15)

This convergence remains valid for p = 0,1 by Theorem 17.2.1. Set κ = 1+(1−
p)α/(1−α) so that 1≤ κ ≤ 1/(1−α). With these notations (17.2.15) reads

lim
n→∞

nκ−1 ‖Pn(x, ·)−π‖V 1−κ(1−α) = 0. (17.2.16)

It is possible to extend this result by using more general interpolation functions. We
can for example obtain non polynomial rates of convergence with control functions
which are not simply power of the drift functions. To illustrate this point, set for
b > 0, ϒ (x) = (1∨ log(x))b and Ψ(x) = x(1∨ log(x))−b. It is not difficult to check
that we have
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sup
(x,y)∈[1,∞)×[1,∞)

(x+ y)−1
ϒ (x)Ψ(y)< ∞,

so that, for all x ∈ {V < ∞}, we have

lim
n→∞

logb(n) ‖Pn(x, ·)−π‖V α (1+log(V ))−b = 0, (17.2.17)

lim
n→∞

nα/(1−α) log−b(n) ‖Pn(x, ·)−π‖(1+log(V ))b = 0, (17.2.18)

and for all 0 < p < 1,

lim
n→∞

n(1−p)α/(1−α) logb n ‖Pn(x, ·)−π‖V α p(1+logV )−b = 0.

Logarithmic rates of convergence: Such rates are obtained when the function φ

that increases to infinity slower than polynomially. We only consider here the case
φ(v) = c(1+ log(v))α for some α ≥ 0 and c ∈ (0,1]. A straightforward calculation
shows that rφ (n)�n→∞ logα(n).

Applying Theorem 17.2.5, intermediate rates can be obtained along the same
lines as above. Choosing for instance ϒ (x) = ((1− p)x)1−p and Ψ(x) = (px)p for
0≤ p≤ 1, then for all x ∈ {V < ∞},

lim
n→∞

(1+ log(n))(1−p)α ‖Pn(x, ·)−π‖(1+log(V ))pα = 0 .

Subexponential rates of convergence: It is also of interest to consider rate func-
tions which increase faster than polynomially, e.g. rate of functions of the form

r(n){1+ log(n)}α(n+1)β ecnγ

, α,β ∈ R, γ ∈ (0,1) and c > 0. (17.2.19)

Such rates are obtained when the function φ is such that v/φ(v) goes to infinity
slower than polynomially. More precisely, assume that φ is concave and differen-
tiable on [1,+∞) and that for large v, φ(v) = cv/ logα(v) for some α > 0 and c > 0.
A simple calculation yields

rφ (n)�n→∞ n−α/(1+α) exp
(
{c(1+α)n}1/(1+α)

)
,

Applying Theorem 17.2.5 with ϒ (x) = x1−p(1 ∨ log(x))−b and Ψ(x) = xp(1 ∨
log(x))b for p ∈ (0,1) and b ∈R; p = 0 and b > 0; or p = 1 and b <−α yields, for
all x ∈ {V < ∞},

lim
n→∞

n−(α+b)/(1+α) exp
(
(1− p){c(1+α)n}1/(1+α)

)
‖Pn(x, ·)−π‖V p(1+logV )b = 0.

(17.2.20)
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17.3 Bibliographical notes

Polynomial and subgeometric ergodicity of Markov chains were systematically
studied in Tuominen and Tweedie (1994) from which we have borrowed the for-
mulation of Theorem 17.1.3.

Several practical drift conditions to derive polynomial rates of convergence were
proposed in the works of Veretennikov (1997, 1999), Fort and Moulines (2000),
Tanikawa (2001), Jarner and Roberts (2002) and Fort and Moulines (2003a). Rates
of convergence using the drift condition Dsg(V,φ ,b,C) are discussed in Douc et al
(2004a). Further connections between these two drift conditions can be found in
Andrieu and Vihola (2015) and Andrieu et al (2015).

Subexponential rates of convergence were studied by means of coupling tech-
niques under different conditions by Klokov and Veretennikov (2004b) (see also
Malyshkin (2000), Klokov and Veretennikov (2004a) and Veretennikov and Klokov
(2004)).

Subgeometric drift conditions have also been obtained through state-dependent
drift conditions, which are not introduced in this book. These drift conditions are
investigated for example in Connor and Kendall (2007) and Connor and Fort (2009).

17.A Young functions

We briefly recall in this appendix the Young’s inequality and Young functions.

Lemma 17.A.1 Let α : [0,M]→R be a strictly increasing continuous function such
that α(0) = 0 . Denote by β its inverse. For all 0≤ x≤M, 0≤ y≤ α(M),

xy≤ A(x)+B(y) , A(x) =
∫ x

0
α(u)du and B(y) =

∫ y

0
β (u)du , (17.A.1)

with equality if y = α(x).

Proof. It is easily shown that for z ∈ [0,M],∫ z

0
α(u)du+

∫
α(z)

0
β (u)du = zα(z) . (17.A.2)

Indeed, the graph of α divides the rectangle with diagonal (0,0)− (x,α(x)) into
lower and upper parts and the integrals correspond to the respective areas. As α is
strictly increasing, A is strictly convex. Hence, for every 0 < z 6= x≤M we have∫ x

0
α(u)du≥

∫ z

0
α(u)du+α(z)(x− z) .

In particular, if z = β (y) we obtain
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0
α(u)du≥

∫
β (y)

0
α(u)du+ xy− yβ (y) .

The proof is concluded by applying (17.A.2) which shows that∫
β (y)

0
α(u)du = yβ (y)−

∫ y

0
β (u)du .

2

The pair (A,B) defined in (17.A.1) is called a pair of Young functions.

Lemma 17.A.2 Let α : [0,∞)→ [0,∞) be a strictly increasing continuous function
such that α(0) = 0 and limt→∞ α(t) = ∞. Denote by β the inverse of α , A and B the
primitives of α and β which vanish at zero and ϒ = A−1 and Ψ = B−1. Then (ϒ ,Ψ)
is a pair of inverse Young function, i.e. for all x,y ∈ R+, ϒ (x)Ψ(y)≤ x+ y.

Proof. For a fixed v > 0, define the function hv(u) = uv−A(u) where u ≥ 0. Then
h′v(u) = v−α(u) vanishes for u = β (v) and h′v is decreasing since α is increasing.
Thus hv is concave and attains its maximum value at β (v). Therefore, for all u,v≥ 0,

uv≤ A(u)+hv(β (v)) .

Since hv ◦β (0) = hv(0) =−A(0) = 0= B(0) and since hv ◦β (v) = vβ (v)−A◦β (v),

(hv ◦β )′(v) = β (v)+ vβ
′(v)−A′(β (v))β ′(v) = β (v)+ vβ

′(v)−α ◦β (v)β ′(v)

= β (v)+ vβ
′(v)− vβ

′(v) = β (v) = B′(v) ,

we conclude that hv ◦β = B. 2



Chapter 18
Uniform and V -geometric ergodicity by operator
methods

In this chapter, we will obtain new characterizations and proofs of the uniform er-
godicity properties established in Chapter 15. We will consider a Markov kernel P
as a linear operator on a set of probability measures endowed with a certain metric.
An invariant probability measure is a fixed point of this operator, therefore a natural
idea is to use a fixed point theorem to prove convergence of the iterates of the kernel
to the invariant distribution. To do so, in Section 18.1, we will first state and prove a
version of the fixed point theorem which suits our purposes. As appears in the fixed
point theorem, the main restriction of this method is that it can only provide geo-
metric rates of convergence. These techniques will be again applied in Chapter 20
where we will be dealing with other metrics on the space of probability measures.

In order to apply this fixed point theorem, we must prove that P is a contraction
with respect to the chosen distance, or in other words a Lipschitz map with Lipschitz
coefficient stricly less than one. The Lipschitz coefficient of the Markov kernel P
with respect to the total variation distance is called its Dobrushin coefficient. The
fixed point theorem and the Dobrushin coefficient will be used in Section 18.2 to
obtain uniform ergodicity. In Section 18.3 we will consider the V -norm introduced
in Section 13.4 (see also Appendix D.3) which induces the V -Dobrushin coefficient
which will be used in Section 18.4 to obtain geometric rates of convergence in the
V -norm.

As a by-product of Theorem 18.2.4, we will give in Section 18.5 a new proof of
Theorem 11.2.5 (which states the existence and uniqueness of the invariant measure
of a recurrent irreducible Markov kernel) which does not use the splitting construc-
tion.

18.1 The fixed-point theorem

The set of probability measures M1(X ) endowed with the total variation distance
is a complete metric space (see Appendix D). A Markov kernel is an operator on
this space and an invariant probability measure is a fixed point of this operator. It

401
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is thus natural to use the classical fixed point theorem in order to find conditions
for the existence of an invariant measure and to identify the convergence rate of the
sequence of iterates of the kernel to the invariant probability measure. Therefore, we
restate here the fixed point theorem for a Markov kernel P, in a general framework
where we consider P as an operator on a subset F ofM1(X ), endowed with a metric
ρ which can possibly be different from the total variation distance.

Theorem 18.1.1. Let P be a Markov kernel on X×X , F be a subspace ofM1(X )
and ρ be a metric on F such that (F,ρ) is complete. Suppose in addition that δx ∈ F
for all x ∈ X and that F is stable by P. Assume that there exist an integer m > 0 and
constants Ar > 0, r ∈ {1, . . . ,m−1} and α ∈ [0,1) such that, for all ξ ,ξ ′ ∈ F,

ρ(ξ Pr,ξ ′Pr)≤ Arρ(ξ ,ξ
′) , r ∈ {1, . . . ,m−1} , (18.1.1)

ρ(ξ Pm,ξ ′Pm)≤ αρ(ξ ,ξ ′) . (18.1.2)

Then there exists a unique invariant probability measure π ∈ F and for all ξ ∈ F
and n ∈ N,

ρ(ξ Pn,π)≤
(

1∨ max
1≤r<m

Ar

)
ρ(ξ ,π)αbn/mc . (18.1.3)

Assume that one of the following conditions is satisfied:

(i) the convergence of a sequence of probability measures in (F,ρ) implies the
setwise convergence;

(ii) the set X is a metric space endowed with its Borel σ -field X and the conver-
gence of a sequence of probability measures in (F,ρ) implies its weak conver-
gence.

Then π is the unique P-invariant probability measure inM1(X ).

Proof. Let us first prove the uniqueness. If π and π ′ are such that πP = π and
π ′P = π , then πPm = π and π ′Pm = π thus

ρ(π,π ′) = ρ(πPm,π ′Pm)≤ αρ(π,π ′)< ρ(π,π ′) ,

the last inequality being a consequence of α ∈ (0,1). This proves that π = π ′. To
prove the existence, consider ξ ,ξ ′ ∈ F and an integer n. Write n = km+ r with
r ∈ {0, . . . ,m−1} and k ∈ N. Then

ρ(ξ Pn,ξ ′Pn) = ρ(ξ Pkm+r,ξ ′Pkm+r)≤ α
k
ρ(ξ Pr,ξ ′Pr) .

Taking ξ ′ = ξ P, we obtain



18.2 Dobrushin coefficient and uniform ergodicity 403

ρ(ξ Pn,ξ Pn+1)≤ α
k
ρ(ξ Pr,ξ Pr+1) = α

bn/mc
ρ(ξ Pr,ξ Pr+1)

≤ α
bn/mc max

0≤r<m
ρ(ξ Pr,ξ Pr+1) .

This implies that {ξ Pn} is a Cauchy sequence and since (F,ρ) is complete it con-
verges to a limit π ∈ F. Assumption (18.1.2) (if m = 1) or (18.1.1) (if m > 1) imply
that P is continuous, thus π = πP is a fixed point. Therefore,

ρ(ξ Pn,π) = ρ(ξ Pn,πPn)≤ α
bn/mc max

0≤r<m
ρ(ξ Pr,πPr)

≤ α
bn/mc

(
1∨ max

1≤r≤m−1
Ar

)
ρ(ξ ,π) .

This proves (18.1.3). We now prove the last part of the theorem. Let π ∈ F be the
unique invariant probability in F and let π̃ be an invariant probability in M1(X ).
Then, for all f ∈ Fb(X) (or f ∈ Cb(X)) we have

π̃( f ) = π̃Pn( f ) =
∫

Pn f (x)π̃(dx) .

By the first part of the Theorem, the sequence {δxPn, n ∈ N} converges with re-
spect to the distance ρ , hence either setwise or weakly to the probability π . Thus
limn→∞ Pn f (x) = π( f ) for all x ∈ X and all f ∈ Fb(X) (or f ∈ Cb(X)). Since, in
addition, |Pn f (x)| ≤ | f |∞ Lebesgue’s dominated convergence theorem implies that
limn→∞

∫
Pn f (x)π̃(dx) = π( f ), which yields π̃( f ) = π( f ). Therefore, π̃ = π , which

concludes the proof. 2

The second part of the theorem means that if convergence with respect to ρ implies
either setwise or weak convergence (i.e. the topology induced by ρ is finer than the
topology of weak convergence), then the invariant probability is not only unique in
F, but also in M1(X ). If F =M1(X ), then this condition is superfluous to obtain
the uniqueness of the invariant probability inM1(X ).

18.2 Dobrushin coefficient and uniform ergodicity

We have already introduced in Theorem 15.3.1 a set of conditions which are equiv-
alent to uniform geometric ergodicity, the most striking of which is without doubt
that the whole state space must be small. In this section we will introduce another
necessary and sufficient condition, which is directly related to the strong contrac-
tion of the iterates in the total variation distance. For this purpose, we introduce
the Dobrushin coefficient, which is the modulus of continuity of a Markov kernel P
on X×X , considered as an operator on M1(X ) endowed with the total variation
distance.
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Definition 18.2.1 (Dobrushin coefficient) Let P be a Markov kernel on X×X .
The Dobrushin coefficient ∆(P) is the Lipschitz coefficient of P with respect to the
total variation distance, i.e.

∆(P) = sup
ξ 6=ξ ′∈M1(X )

dTV(ξ P,ξ ′P)
dTV(ξ ,ξ

′)
= sup

ξ 6=ξ ′∈M1(X )

‖ξ P−ξ ′P‖TV
‖ξ −ξ ′‖TV

. (18.2.1)

The kernel P can also be considered as a linear operator on the linear space
M0(X ) of bounded signed measures µ satisfying µ(X) = 0. Endowed with the total
variation norm,M0(X ) is a Banach space. In this setting, the Dobrushin coefficient
∆(P) is the operator norm of P. This yields straightforwardly that if P and Q are
two Markov kernels on X×X , then

∆(PQ)≤∆ (P)∆ (Q) . (18.2.2)

We now prove that the Dobrushin coefficient is always less than 1 and while so
doing, we provide a more convenient expression for it.

Lemma 18.2.2 Let P be a Markov kernel on X×X . Then

∆(P) = sup
(x,x′)∈X×X

dTV(P(x, ·),P(x′, ·))≤ 1 . (18.2.3)

Proof. By definition, the right-hand side of (18.2.3) is less than or equal to ∆(P).
We now prove the converse inequality. Applying the definition of the total variation
distance and homogeneity, it holds that

∆(P) = sup{‖ξ P‖TV : ξ ∈M0(X ), ‖ξ‖TV ≤ 1} . (18.2.4)

Using Proposition D.2.4 and the bound (D.2.4), we have, for ξ ∈M0(X ), since
ξ P ∈M0(X ),

‖ξ P‖TV = 2 sup
osc( f )≤1

|(ξ P)( f )|= 2 sup
osc( f )≤1

|ξ (P f )| ≤ ‖ξ‖TV sup
osc( f )≤1

osc (P f ) .

Note now that

sup
osc( f )≤1

osc (P f ) = sup
osc( f )≤1

sup
x,x′
|P f (x)−P f (x′)|

= sup
x,x′

sup
osc( f )≤1

∣∣{P(x, ·)−P(x′, ·)} f
∣∣

=
1
2

sup
x,x′

∥∥P(x, ·)−P(x′, ·)
∥∥

TV = sup
x,x′

dTV(P(x, ·),P(x′, ·)) .

Thus, for ξ ∈M0(X ) such that ‖ξ‖TV ≤ 1, we obtain
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‖ξ P‖TV ≤ sup
x,x′

dTV(P(x, ·),P(x′, ·)) .

Recalling (18.2.4), this proves the converse inequality. 2

Lemma 18.2.2 and Corollary D.2.5 yield the following bound, for all f ∈ Fb(X) and
x,y ∈ X,

|P f (x)−P f (y)| ≤∆ (P)osc ( f ) . (18.2.5)

Lemma 18.2.3 For any ξ ,ξ ′ ∈M1(X ), the sequence {dTV(ξ Pn,ξ ′Pn), n ∈ N} is
decreasing and

dTV(ξ Pn,ξ ′Pn)≤ {∆(P)}ndTV(ξ ,ξ
′) . (18.2.6)

If π is an invariant probability measure, then for every ξ ∈M1(X ) the sequence
{dTV(ξ Pn,π), n ∈ N} is decreasing and dTV(ξ Pn,π)≤ {∆(P)}ndTV(ξ ,π).

Proof. By definition of the Dobrushin coefficient, we have

dTV(ξ Pn+1,ξ ′Pn+1)≤∆(P)dTV(ξ Pn,ξ ′Pn) .

This proves that the sequence is decreasing since ∆(P) ≤ 1 (see Lemma 18.2.2)
and (18.2.6) follows by induction. If π is an invariant probability measure, then
πPn = π and the second part of the Lemma is obtained by replacing ξ ′ and ξ ′Pn

by π . 2

Of crucial importance are the situations where the kernel P or one of its iterate is
a strict contraction, i.e. there exists an integer m ≥ 1 such that ∆(Pm) < 1. In this
case, Lemma 18.2.3 implies that the initial distributions ξ and ξ ′ ∈M1(X ) will be
forgotten exponentially fast.

Theorem 18.2.4. Let P be a Markov kernel on X×X satisfying ∆ (Pm) ≤ 1− ε .
Then, P admits a unique invariant probability measure π . In addition, for all ξ ∈
M1(X ),

‖ξ Pn−π‖TV ≤ ‖ξ −π‖TV (1− ε)bn/mc . (18.2.7)

Proof. By Theorem D.2.7, (M1(X ),dTV) is a complete metric space. Thus we can
apply Theorem 18.1.1 which proves that there exists a unique invariant probability
measure π and

‖ξ Pn−π‖TV ≤ (1∨ max
1≤r<m

∆ (Pr))‖ξ −π‖TV (1− ε)bn/mc

≤ ‖ξ −π‖TV (1− ε)bn/mc ,
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where the last inequality follows from ∆ (Pr)≤ 1 for all r. 2

Since the total variation distance of two probability measures is always less than 1,
we have

dTV(ξ Pn,π)≤ (1− ε)bn/mc (18.2.8)

This means that the convergence is uniform with respect to the initial distribution
and holds at a geometric rate.

We already know from Theorem 15.3.1-(iii) that the Markov kernel P is uni-
formly (geometrically) ergodic if and only if the state space X is m-small. We can
now add another equivalent condition.

Theorem 18.2.5. Let P be a Markov kernel on X×X . The following statements
are equivalent.

(i) P is uniformly geometrically ergodic.
(ii) ∆ (Pm)< 1 for some m ∈ N.

Proof. We already know that (ii)⇒(i). Assume that P is uniformly geometrically
ergodic. By definition, P admits an invariant probability π and there exist constant
ς < ∞ and ρ < 1 such that, supx∈X ‖Pn(x, ·)−π‖TV ≤ ςρn. By the triangle inequal-
ity, this implies

1
2

sup
(x,x′)∈X×X

∥∥Pn(x, ·)−Pn(x′, ·)
∥∥

TV ≤ sup
x∈X
‖Pn(x, ·)−π‖TV ≤ ςρ

n .

By Lemma 18.2.2, this means that ∆(Pn)< 1 for n sufficiently large. Thus (i)⇒ (ii).
2

We will now state sufficient conditions upon which the Dobrushin coefficient of the
Markov kernel P or one of its iterate Pm is strictly less than 1.

Definition 18.2.6 (Doeblin set and uniform Doeblin condition) Let P be a
Markov kernel on X×X , m ≥ 1 be an integer and ε > 0. A set C ∈ X is a
(m,ε)-Doeblin set if for every (x,x′) ∈C×C,

dTV(P
m(x, ·),Pm(x′, ·))≤ 1− ε . (18.2.9)

If the state space X is a Doeblin set, we say that Pm satisfies the uniform Doeblin
condition.

If P is uniformly ergodic, then it satisfies the uniform Doeblin condition. Doeblin
sets and small sets are closely related as shown below.
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Lemma 18.2.7 (i) If C is an (m,εν) small set, then C is an (m,ε)-Doeblin set.
(ii) If P is irreducible and aperiodic, then any Doeblin set is small.

Proof. (i) Set Q(x, ·) = (1− ε)−1(Pm(x, ·)− εν) for x ∈C. Note that Q(x, ·) is a
probabiity measure for every x ∈C and for all x ∈C,

Pm(x, ·) = (1− ε)Q(x, ·)+ εν .

Therefore, for x,x′ ∈C, since the total variation distance is bounded by 1, we have

dTV(P
m(x, ·),Pm(x′, ·)) = (1− ε)dTV(Q(x, ·),Q(x′, ·))≤ 1− ε .

(ii) Let C be an (m,ε)-Doeblin set i.e. dTV(P
m(x, ·),Pm(x′, ·)) ≤ 1− ε for all

x,x′ ∈ C. Choose one arbitrary point x0 ∈ C. By Proposition 9.4.11, X is an in-
creasing union of small sets, thus there exists an (n,µ)-small set S ⊂ X such that
Pm(x0,S)≥ 1− ε/2. By Corollary D.2.5, we then have, for all x ∈C,

Pm(x,S)≥ Pm(x0,S)−dTV(P
m(x, ·),Pm(x0, ·))≥ 1− ε/2−1+ ε = ε/2 .

Therefore, for every x ∈C and A ∈X ,

Pn+m(x,A)≥
∫

S
Pm(x,dy)Pn(y,A)≥ ε

2
µ(A) .

This proves that C is a small set.
2

Example 18.2.8. If X is finite or countable, we get

dTV(P
m(x, ·),Pm(x′, ·)) = 1−∑

z∈X

Pm(x,z)∧Pm(x′,z) .

The set C is a (m,ε)-Doeblin set if minx,x′∈C ∑z∈X Pm(x,z) ∧ Pm(x′,z) ≥ ε . Set
ηm =∑y∈X infx∈C Pm(x,y). If ηm > 0, then C is an (m,ηmνm)-small set with νm(z) =
η−1

m infx∈C Pm(x,z). It always holds that ηm ≤ εm. J

Example 18.2.9. We will show on a simple example that the results obtained in
Theorem 18.2.4 cannot be improved in general. We consider the independent
Metropolis-Hasting sampler on a discrete state space X = {1, . . . ,m} for some fi-
nite m. We denote by π the target distribution and q the proposal distribution. To
simplify the notation we set π(x) = πx and q(x) = qx. We assume that πx > 0 and
qx > 0 for any x∈X and we denote by wx = πx/qx the importance weight associated
with state x ∈ X.

Without loss of generality, we assume that the states are sorted according to the
magnitudes of their importance ratio, i.e. the elements are labelled so that {w1 ≥
w2 ≥ ·· · ≥ wm}. The acceptance probability of a move from x to y is given by

α(x,y) = 1∧
πyqx

πxqy
= 1∧

wy

wx
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and the ordering of the states therefore implies that α(x,y) = 1 for y ≤ x and
α(x,y) = wy/wx for y > x. Define η0 = 1, ηm = 0 and for x ∈ {1, . . . ,m−1}

ηx = ∑
y>x

(qy−πy/wx) = ∑
y>x

qy
wx−wy

wx
,

which is the probability of being rejected in the next step if the chain is at state
x. The transition matrix P of the independent Metropolis-Hastings sampler can be
written in the form:

P(x,y) =


qy y < x,
wyqy/wx x < y,
qx +ηx x = y.

(18.2.10)

In words, if the chain is a state x, all the moves to states y < x are accepted. The
moves to states y> x are accepted with probability wy/wx. The probability of staying
at x is the sum of the probability of proposing x and the probability of rejecting a
move outside x.

Denote by L2(π) the set of functions g : X→ R satisfying ∑x∈X π(x)g2(x) < ∞.
We equip this space with the scalar product 〈g,h〉L2(π) = ∑x∈X g(x)h(x)π(x). The
probability measure π is reversible with respect to Markov transition P, which im-
plies that P is self-adjoint, 〈Pg,h〉L2(π) = 〈g,Ph〉L2(π). The spectral theorem says
that there is an orthonormal basis of eigenvectors. It can be shown by direct calcu-
lation that {η0, η1, . . . ,ηm−1} are the eigenvalues of P in decreasing order and the
corresponding eigenvectors are

ψ0 = (1, 1, . . . , 1)T ,

ψi = (0,0, . . . , 0, Si+1, −πi, . . . , −πi)
T , 1≤ i≤ m−1,

where Si+1 = ∑
m
k=i+1 πi is the i-th component of the vector ψi. By elementary ma-

nipulations, for all x,y ∈ X×X,

P(x,y) = πy

m−1

∑
i=0

ηiψi(x)ψi(y) , Pn(x,y) = πy

m−1

∑
i=0

η
n
i ψi(x)ψi(y) (18.2.11)

When applied to the Markov kernel Pn, these formula yield, for all x,y ∈ X×X,

Pn(x,y) =


πy
(
1+∑

x−1
k=1(η

n
k πk)/(SkSk+1)−ηn

x /Sx
)

x < y
πy
(
1+∑

x−1
k=1(η

n
k πk)/(SkSk+1)−ηn

x /Sx
)
+ηn

y x = y

πy

(
1+∑

y−1
k=1(η

n
k πk)/(SkSk+1)−ηn

x /Sx

)
x > y

Using the Cauchy-Schwarz inequality, we have
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‖Pn(x, ·)−π‖TV = ∑
y∈X

|Pn(x,y)−π(y)|

≤ ∑
y∈X

{Pn(x,y)−π(y)}2

π(y)
= ∑

y∈X

{Pn(x,y)}2

π(y)
−1 .

Since P is self-adjoint in L2(π), Pn is also self-adjoint in L2(π) which implies, for
all x,y ∈ X and n ∈ N, π(x)Pn(x,y) = π(y)Pn(y,x). Hence,

∑
y∈X

{Pn(x,y)}2

π(y)
= ∑

y∈X

Pn(x,y)π(x)Pn(x,y)
π(x)π(y)

= ∑
y∈X

Pn(x,y)Pn(y,x)
π(x)

=
P2n(x,x)

π(x)
.

Using (18.2.11) we therefore obtain,

‖Pn(x, ·)−π‖TV ≤
m

∑
i=1

η
n
i ψ

2
i (x) . (18.2.12)

Using this eigenexpansion, we see that the exact rate of convergence of this algo-
rithm is given by the second eigenvalue, namely

η1 = ∑
k>1

(qk−πk/w1) = (1−q1)− (1−π1)/w1

= 1−q1/π1 = 1−min
x∈X

(qx/πx) ,

if we recall the ordering on this chain. Applying the bound Equation (15.3.2) ob-
tained in Example 15.3.3, we know that P(x,A) ≥ επ(A) for all A ∈X and x ∈ X
with ε = minx∈X qx/πx. Thus ηn

1 is exactly the rate of convergence ensured by The-
orem 18.2.4

18.3 V -Dobrushin coefficient

To prove non uniform convergence, we must replace the total variation distance on
M1(X ) by the V -distance and the Dobrushin coefficient by the V -Dobrushin coef-
ficient. Before going further, some additional notations and definitions are required.
Let V ∈ F(X) with values in [1,∞). The V -norm | f |V of a function f ∈ F(X) is
defined by

| f |V = sup
x∈X

| f (x)|
V (x)

.

The V -norm of a bounded signed measure ξ ∈Ms(X ) is defined by
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‖ξ‖V = |ξ |(V ) .

The space of finite signed measures ξ such that ‖ξ‖V < ∞ is denoted by MV (X ).
The V -oscillation semi-norm of the function f ∈ Fb(X) is defined by:

oscV ( f ) = sup
(x,x′)∈X×X

| f (x)− f (x′)|
V (x)+V (x′)

. (18.3.1)

Finally, we define the spaces of measures

M0,V (X ) = {ξ ∈M0(X ) : ξ (V )< ∞} , (18.3.2)

M1,V (X ) = {ξ ∈M1(X ) : ξ (V )< ∞} , (18.3.3)

Theorem D.3.2 shows that for ξ ∈M0,V (X ),

‖ξ‖V = sup{ξ ( f ) : oscV ( f )≤ 1} . (18.3.4)

The V -norm induces onM1,V (X ) a distance dV defined for ξ ,ξ ′ ∈M1,V (X ) by

dV (ξ ,ξ
′) =

1
2

∥∥ξ −ξ
′∥∥

V . (18.3.5)

The set M1,V (X ) equipped with the distance dV is a complete metric space; see
Corollary D.3.4. If X is a metric space endowed with its Borel σ -field, then conver-
gence with respect to the distance dV implies weak convergence. Further properties
of the V -norm and the associated V -distance are given in Appendix D.3. We will
only need the following property.

Lemma 18.3.1 Let ξ ,ξ ′ ∈M1(X ) and ε ∈ (0,1). If dTV(ξ ,ξ
′)≤ 1− ε , then∥∥ξ −ξ

′∥∥
V ≤ ξ (V )+ξ

′(V )−2ε . (18.3.6)

Proof. Set ν = ξ +ξ ′−|ξ −ξ ′|. Then∥∥ξ −ξ
′∥∥

TV = |ξ −ξ
′|(X) = 2−ν(X)

Thus dTV(ξ ,ξ
′)≤ 1− ε if and only if ν(X)≥ 2ε . Since V ≥ 1, we have∥∥ξ −ξ

′∥∥
V = |ξ −ξ

′|(V ) = ξ (V )+ξ
′(V )−ν(V )

≤ ξ (V )+ξ
′(V )−ν(X)≤ ξ (V )+ξ

′(V )−2ε .

2

Definition 18.3.2 (V -Dobrushin Coefficient) Let V : X→ [1,∞) be a measurable
function. Let P be a Markov kernel on X×X such that, for every ξ ∈M1,V (X ),
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ξ P ∈ M1,V (X ). The V -Dobrushin coefficient of the Markov kernel P, denoted
∆V (P), is defined by

∆V (P) = sup
ξ 6=ξ ′∈M1,V (X )

dV (ξ P,ξ ′P)
dV (ξ ,ξ ′)

= sup
ξ 6=ξ ′∈M1,V (X )

‖ξ P−ξ ′P‖V
‖ξ −ξ ′‖V

(18.3.7)

If the function V is not bounded, then contrary to the Dobrushin coefficient, the
V -Dobrushin coefficient is not necessarily finite. When ∆V (P) < ∞, then P can be
seen as a bounded linear operator on the spaceM0,V (X ) and ∆V (P) is its operator
norm i.e.

∆V (P) = sup
ξ∈M0,V (X )

ξ 6=0

‖ξ P‖V
‖ξ‖V

= sup
ξ∈M0,V (X )

‖ξ‖V≤1

‖ξ P‖V . (18.3.8)

This yields in particular the submultiplicativity of the Dobrushin coefficient, i.e. if
P,Q are Markov kernels on X×X , then,

∆V (PQ)≤∆V (P)∆V (Q) . (18.3.9)

An equivalent expression of the V -Dobrushin coefficient in terms of the V -oscillation
semi-norm extending (18.2.3) is available.

Lemma 18.3.3 Let P be a Markov kernel on X×X . Then,

∆V (P) = sup
oscV ( f )≤1

oscV (P f ) = sup
(x,x′)∈X×X

‖P(x, ·)−P(x′, ·)‖V
V (x)+V (x′)

. (18.3.10)

Proof. Since ‖δx−δx′‖V =V (x)+V (x′) for x 6= x′, the right-hand side of (18.3.10)
is obviously less than or equal to ∆V (P). By Theorem D.3.2 and (D.3.5), we have,
for all ξ , ξ ′ ∈M1(X ),∥∥ξ P−ξ

′P
∥∥

V = sup
oscV ( f )≤1

|ξ P( f )−ξ
′P( f )|

= sup
oscV ( f )≤1

|ξ (P f )−ξ
′(P f )| ≤

∥∥ξ −ξ
′∥∥

V sup
oscV ( f )≤1

oscV (P f ) .

To conclude, we apply again Theorem D.3.2 to obtain

sup
oscV ( f )≤1

oscV (P f ) = sup
oscV ( f )≤1

sup
x,x′

|P f (x)−P f (x′)|
V (x)+V (x′)

= sup
x,x′

sup
oscV ( f )≤1

|[P(x, ·)−P(x′, ·)] f |
V (x)+V (x′)

= sup
x,x′

‖P(x, ·)−P(x′, ·)‖V
V (x)+V (x′)

.

2
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It is important to have a condition which ensures that the V -Dobrushin coefficient is
finite.

Lemma 18.3.4 Assume that P satisfies the Dg(V,λ ,b) drift condition. Then, for
all r ∈ N∗,

∆V (Pr)≤ λ
r +b

1−λ r

1−λ
. (18.3.11)

Proof. For all x,x′ ∈ X, we have

‖Pr(x, ·)−Pr(x′, ·)‖V
V (x)+V (x′)

≤ PrV (x)+PrV (x′)
V (x)+V (x′)

≤ λ
r +

2b(1−λ r)

(1−λ ){V (x)+V (x′)}
.

The bound (18.3.11) follows from Lemma 18.3.3 using V (x)+V (x′)≥ 2. 2

18.4 V -uniformly geometrically ergodic Markov kernel

We now state and prove the equivalent of Theorem 18.2.5 for V -uniformly geomet-
rically ergodic Markov kernel.

Theorem 18.4.1. Let P be a Markov kernel on X×X . The following statements
are equivalent.

(i) P is V -uniformly geometrically ergodic.
(ii) There exists m ∈ N∗ and ε > 0 such that

∆V (Pm)≤ 1− ε , (18.4.1)

and ∆V (Pr)< ∞ for all r ∈ {0, . . . ,m−1}.

Proof. We first show that (i) ⇒ (ii). By (15.2.1), there exist ρ ∈ [0,1) and ς < ∞

such that for all measurable function f satisfying | f |V ≤ 1, x,x′ ∈ X and n ∈ N,

|Pn f (x)−Pn f (x′)| ≤ ς(V (x)+V (x′))ρn ,

which implies ∆V (Pn) ≤ ςρn for all n ∈ N. For any ε ∈ (0,1), we may therefore
choose m large enough so that ∆V (Pm)≤ 1− ε .

Conversely, (ii)⇒ (i) follows directly from Theorem 18.1.1. 2

In this section we will establish that the drift condition Dg(V,λ ,b) implies the
V -uniform geometric ergodicity property, providing a different proof of Theo-
rem 15.2.4. We will first prove that under Condition Dg(V,λ ,b), we can bound the
Dobrushin coefficient related to a modification of the function V . For β > 0, define



18.4 V -uniformly geometrically ergodic Markov kernel 413

Vβ = 1+β (V −1) . (18.4.2)

We first give conditions that ensure that ∆Vβ
(P) < 1. Recall that if Condition

Dg(V,λ ,b) holds then λ +b≥ 1, cf. Remark 14.1.9.

Lemma 18.4.2 Let P be a Markov kernel on X×X satisfying the geometric drift
condition Dg(V,λ ,b) . Then

∆Vβ
(P)≤ 1+β (b+λ −1) . (18.4.3)

Assume moreover that there exists d such that the level set {V ≤ d} is a (1,ε)-
Doeblin set and

λ +2b/(1+d)< 1 . (18.4.4)

Then, for all β ∈
(
0,ε(b+λ −1)−1∧1

)
,

∆Vβ
(P)≤ γ1(β ,b,λ ,ε)∨ γ2(β ,b,λ )< 1 , (18.4.5)

with

γ1(β ,b,λ ,ε) = 1− ε +β (b+λ −1) , (18.4.6)

γ2(β ,b,λ ) = 1−β
(1−λ )(1+d)−2b
2(1−β )+β (1+d)

. (18.4.7)

Proof. Since P satisfies Condition Dg(V,λ ,b) , we have

PVβ = 1−β +βPV ≤ 1−β +βλV +βb = λVβ +bβ (18.4.8)

with bβ = (1−λ )(1−β )+ bβ . Thus P also satisfies Condition Dg(Vβ ,λ ,bβ ) and
applying Lemma 18.3.4 with r = 1 yields (18.4.3).

Set C = {V ≤ d}. Since C is a (1,ε)-Doeblin set, for all x,x′ ∈ X,

dTV(P(x, ·),P(x′, ·))≤ 1− ε1C×C(x,x
′) .

Since Vβ ≥ 1, we can apply Lemma 18.3.1 and the drift condition (18.4.8); we obtain∥∥P(x, ·)−P(x′, ·)
∥∥

Vβ

≤ PVβ (x)+PVβ (x
′)−2ε1C×C(x,x

′)

≤ λ{Vβ (x)+Vβ (x
′)}+2bβ −2ε1C×C(x,x

′) .

This yields

‖P(x, ·)−P(x′, ·)‖Vβ

Vβ (x)+Vβ (x′)
≤ λ +2

bβ − ε1C(x,x
′)

Vβ (x)+Vβ (x′)
. (18.4.9)

If (x,x′) /∈C×C, then V (x)+V (x′)≥ 1+d, hence, by (18.4.9),
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‖P(x, ·)−P(x′, ·)‖Vβ

Vβ (x)+Vβ (x′)
≤ λ +

2(1−λ )(1−β )+2bβ

2(1−β )+β (1+d)
= γ2(β ,b,λ ) .

The function β 7→ γ2(β ,b,λ ) is monotone and since γ2(0,b,λ ) = 1, γ2(1,b,λ ) =
λ +2b/(1+d)< 1 it is strictly decreasing showing that γ2(β ,b,λ )< 1 for all β ∈
(0,1]. If (x,x′) ∈C×C and (1−λ )(1−β )+bβ − ε < 0, then

‖P(x, ·)−P(x′, ·)‖Vβ

Vβ (x)+Vβ (x′)
≤ λ +2

(1−λ )(1−β )+bβ − ε

Vβ (x)+Vβ (x′)
≤ λ ≤ γ2(β ,b,λ ) .

If (x,x′) ∈C×C and (1−λ )(1−β )+bβ − ε > 0, we obtain, using Vβ ≥ 1,

‖P(x, ·)−P(x′, ·)‖Vβ

Vβ (x)+Vβ (x′)
≤ λ +(1−λ )(1−β )+bβ − ε

= 1+β (λ +b−1)− ε = γ1(β ,b,λ ,ε) ,

with γ1(β )< 1 for β ∈
(
0,ε(λ +b−1)−1∧1

)
. 2

Theorem 18.4.3. Let P be a Markov kernel on X×X satisfying the drift condition
Dg(V,λ ,b). Assume moreover that there exist d ≥ 1 and m ∈ N such that the level
set {V ≤ d} is an (m,ε)-Doeblin set and

λ +2b/(1+d)< 1 . (18.4.10)

Then ∆V (Pn)<∞ for all n≥ 1 and there exists an integer r≥ 1 such that ∆V (Pr)<
1. Consequently, there exists a unique invariant probability measure π and P is V -
uniformly geometrically ergodic. Moreover, for all β ∈

(
0,ε(bm +λ m−1)−1∧1

)
,

n ∈ N and ξ ∈M1,V (X ),

dV (ξ Pn,π)≤ β
−1(1+ ε)‖π−ξ‖V ρ

bn/mc ,

with

ρ = γ1(β ,bm,λ
m,ε)∨ γ2(β ,bm,λ

m)< 1 , (18.4.11)

bm = b(1−λ
m)(1−λ )−1 , (18.4.12)

γ1 and γ2 as in (18.4.6) and (18.4.7).

Proof. By Proposition 14.1.8, for m ≥ 1, Pm satisfies the geometric drift condition
Dg(V,λ m,bm) where bm is defined in (18.4.12). Note that bm/(1−λ m) = b/(1−λ ),
thus λ +2b/(1+d)< 1 if and only if λ m +2bm/(1+d)< 1. Moreover, as noted in
Remark 14.1.9, λ +b > 1, we have also λm +bm > 1. By Lemma 18.4.2, for every
q = 1, . . . ,m−1 and β ∈

(
0,ε(bm +λ m−1)−1∧1

)
,
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∆Vβ
(Pm)≤ γ1(β ,bm,λ

m,ε)∨ γ2(β ,bm,λ
m)< 1 ,

∆Vβ
(Pq)≤ 1+β (bq +λ

q−1) .

The condition b+λ > 1 implies that bq +λ q is increasing with respect to q and for
q = 1, . . . ,m−1,

∆Vβ
(Pq)≤ 1+β (bq +λ

q−1)≤ 1+ ε .

We now apply Theorem 18.1.1 to obtain that there exists a unique invariant proba-
bility π , π(Vβ )< ∞ and for every n ∈ N? and ξ ∈M1,Vβ

(X ), we have

‖ξ Pn−π‖Vβ
≤ (1+ ε)‖ξ −π‖Vβ

ρ
bn/mc .

Since ‖·‖Vβ
= (1−β )‖·‖TV +β ‖·‖V and ‖·‖TV ≤ ‖·‖V , we have

β ‖·‖V ≤ ‖·‖Vβ
≤ ‖·‖V . (18.4.13)

Thus,

‖ξ Pn−π‖V ≤ β
−1 ‖ξ Pn−π‖Vβ

≤ β
−1(1+ ε)‖ξ −π‖V ρ

bn/mc .

Using again (18.4.13), we get ∆V (Pn) ≤ β−1∆Vβ
(Pn). Thus, ∆V (Pn) < ∞ for all

n≥ 1 and there exists an integer r ≥ 1 such that ∆V (Pr)< 1. 2

18.5 Application of uniform ergodicity to the existence of an
invariant measure

In this section, we apply the result of the previous section to obtain a new proof
of the existence and uniqueness of the invariant measure of a recurrent irreducible
Markov kernel, Theorem 11.2.5 which does not use the splitting construction. We
restate it here for convenience.

Theorem 18.5.1. Let P be a recurrent irreducible Markov kernel. Then P admits a
non zero invariant measure µ , unique up to multiplication by a positive constant
and such that µ(C)> 0 for all petite set C. Moreover, µ is a maximal irreducibility
measure and for every accessible set A and all f ∈ F+(X),

µ( f ) =
∫

A
µ(dx)Ex

[
σA

∑
k=1

f (Xk)

]
=
∫

A
µ(dx)Ex

[
σA−1

∑
k=0

f (Xk)

]
. (18.5.1)
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Proof. We will only prove the existence and uniqueness up to scaling of a non zero
invariant measure. The proof is as usual in several steps, from the case where there
exists a Harris-recurrent acessible 1-small set to the general case.

(i) Assume first that P admits an accessible (1,εν)-small set C such that Px(σC <
∞) = 1 for all x ∈C. Then the induced kernel QC (see Definition 3.3.7) is a Markov
kernel on C×XC given by QC(x,B) = Px(XσC ∈ B) for x ∈C and B ∈XC. Define
the kernel PC on C by

PC(x,B) = Px(τC ∈ B) , x ∈C , B ∈XC .

Then, for x ∈ C and B ∈XC, using once again the identity σC = τC ◦ θ + 1, the
Markov property and the fact that C is a (1,εν)-small set, we obtain

QC(x,B) = Px(XσC ∈ B) = Px(XτC ◦θ ∈ B)

= Ex [PC(X1,B)] = PPC(x,B)≥ ενPC(B) .

This proves that QC satisfies the uniform Doeblin condition, i.e. C is small for QC.
Therefore, by Theorem 18.2.4, there exists a unique QC-invariant probability mea-
sure which we denote by πC. Applying Theorem 3.6.3, we obtain that the measure
µ defined by

µ(A) =
∫

C
πC(dx)Ex

[
σC

∑
k=1

1A(Xk)

]

is P-invariant and the restriction of µ to C, denoted by µ |C is equal to πC. This
proves the existence of an invariant measure for P and we now prove the unique-
ness up to scaling. Let µ̃ be another P-invariant measure. Then µ̃(C) < ∞ by
Lemma 9.4.12 and thus we can assume without loss of generality that µ̃(C) = 1.
Applying Theorem 3.6.5 yields that the restriction µ̃ |C of µ̃ to C is invariant for QC,
thus µ̃ |C= πC since we have just seen that QC admits a unique invariant probability
measure. Applying Theorem 3.6.3 yields µ = µ̃ .

(ii) Assume now that C is an accessible strongly aperiodic small set. Then the
set C∞ = {x ∈ X : Px(NC = ∞) = 1} is full and absorbing by Lemma 10.1.9. Define
C̃ =C∩C∞. Then, for x ∈ C̃, Px(σC < ∞) = 1 and since C∞ is absorbing, Px(σC =
σC̃) = 1 for x ∈ C̃. This yields that Px(σC̃ = 1) for x ∈ C̃ and we can apply the first
part of the proof. Then there exists a unique invariant probability measure πC̃ for QC̃
and the measure µ defined by

µ( f ) =
∫

C̃
πC̃(dx)Ex

[
σC̃

∑
k=1

f (Xk)

]

is a non zero invariant measure for P. The uniqueness of the invariant measure is
obtained as previously.

(iii) Let us now turn to the general case. If C is a recurrent accessible (m,µ)-
small set, we can assume without loss of generality that µ(C)> 0. By Lemma 11.2.2,
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C is then a recurrent strongly aperiodic accessible small set for the kernel Kaη
. The

previous step shows that Kaη
admits a unique non zero invariant measure up to scal-

ing. By Lemma 11.2.3 P also has a unique invariant measure up to scaling. (Note
that Lemmas 11.2.2 and 11.2.3 are independent of the splitting construction.)

2

18.6 Exercises

18.1. Let {Xn, n ∈ N} be a Markov chain with kernel P and initial distribution µ .
Let 1≤ ` < n and let Y be a bounded nonnegative σ(X j, j ≥ n)-measurable random
variable. Prove that ∣∣E [Y |F X

`

]
−Eµ [Y ]

∣∣≤∆
(

Pn−`
)
‖Y‖∞ .

[Hint: Write h(Xn) = E
[
Y |F X

n
]

and note that |h|∞ ≤ ‖Y‖∞. Write then

E
[
Y |F X

`

]
−Eµ [Y ] = E

[
h(Xn) |F X

`

]
−Eµ [h(Xn)]

= EX`
[h(Xn−`)]−

∫
X

µP`(dy)Ey[h(Xn−`)]

=
∫

X
µP`(dy){Pn−`h(X`)−Pn−`h(y)} .

Use then the bound (18.2.5) and the fact that the oscillation of a nonnegative func-
tion is at most equal to its sup-norm.]

18.2. This exercise provides an example of Markov chain for which the state space
X is (1,ε)-Doeblin but for which X is not 1-small. Consider the Markov chain on
X = {1,2,3} and with transition probabilities given by

P =

1/2 1/2 0
0 1/2 1/2
1/2 0 1/2


1. Show that the stationary distribution is π = [1/3,1/3,1/3].
2. Show that X is a (1,1/2)-Doeblin set but is not 1-small.
3. Show that for all n ∈ N, supx∈X dTV(P

n(x, ·),π)≤ (1/2)n.
4. Show that X is (2,3/4π)-small and that ∆(P2) = 1/4 and compute a bound for

dTV(P
n(x, ·),π).

18.3. Let P be a Markov kernel on X×X . Assume that there exist an integer m ∈
N∗, µ ∈M+(X ), a measurable function pm on X2 and C ∈X such that, for all
x ∈C and A ∈X ,

Pm(x,A)≥
∫

A
pm(x,y)µ(dy) . (18.6.1)



418 18 Uniform and V -geometric ergodicity by operator methods

1. Assume that

ε = inf
(x,x′)∈C×C

∫
X

pm(x,y)∧ pm(x′,y)µ(dy)> 0 , (18.6.2)

Show that C is a Doeblin set.
2. Assume that there exists a nonnegative measurable function gm such that

gm(y)≤ infx∈C pm(x,y) for µ-almost all y∈X and ε̂ =
∫

X gm(y)µ(dy)> 0. Show
that C is an m-small set.

18.4 (Slice Sampler). Consider the Slice Sampler as described in Example 2.3.7 in
the particular situation where k = 1 and f0 = 1, f1 = π .

1. Show that the Markov kernel P of {Xn, n ∈ N} may thus be written as: for all
(x,B) ∈ X×X ,

P(x,B) =
1

π(x)

∫
π(x)

0

Leb(B∩L(y))
Leb(L(y))

dy , (18.6.3)

where L(y) := {x′ ∈ X : π(x′)≥ y}.
2. Assume that π is bounded and that the topological support Sπ of π is such

that Leb(Sπ)< ∞. Under these assumptions, we will show that P is uniformly
ergodic.

18.5. Let P be a Markov kernel on X×X admitting an invariant probability π .
Let {εn, n ∈ N} be a sequence satisfying limn→∞ εn = 0. Assume that for all x ∈ X,
dTV(P

n(x, ·),π) ≤M(x)εn where M is a nonnegative function satisfying M(x) < ∞

for all x ∈ X. Then, P admits an (m,ε)-Doeblin set.

18.6. Let {Zk, k ∈ N} and {Uk, k ∈ N} be two independent sequences of i.i.d. ran-
dom variables on a probability space (Ω ,F ,P), the distribution of U1 being uniform
on [0,1]. Let r : R→ [0,1] be a cadlag nondecreasing function, X0 be a real-valued
random variable and define recursively the sequence {Xk, k ∈ N} by

Xk =

{
Xk−1 +Zk if Uk ≤ r(Xk−1) ,

Zk otherwise .
(18.6.4)

We assume that νZ , the distribution of Zk, has a continuous positive density fZ with
respect to the Lebesgue measure.

1. Show that for all ε ∈ (0,1], the set {r ≤ 1− ε} is a (1,ενZ)-small set.
2. Assume that supx∈R r(x)< 1. Show that P is uniformly ergodic.
3. Assume that E [Z0] < 0 and E [exp(tZ0)] < ∞ for some t > 0. Show that there

exists s∈ (0, t) such that the Markov kernel P is Vs-geometrically ergodic where
Vs(x) = exp(sx)+1.
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18.7 Bibliographical notes

The Dobrushin contraction coefficient was introduced by R. Dobrushin in a series
of papers Dobrushin (1956c), Dobrushin (1956b) and Dobrushin (1956a). These
papers dealt with homogeneous and non-homogeneous Markov chains (on discrete
state-spaces), the motivation being to obtain limit theorems for additive function-
als. The use of Dobrushin contraction coefficients to study convergence of non-
homogeneous Markov chains on general state spaces was later undertaken by Mad-
sen (1971); Madsen and Isaacson (1973). Lipshitz contraction properties of Markov
kernels over general state spaces (equipped with entropy-like distances) is further
studied in Del Moral et al (2003) where generalizations of the Dobrushin coefficient
are introduced.

The analysis of the discrete state-space independent sampler Example 18.2.9 is
taken from Liu (1996) and uses results from Diaconis and Hanlon (1992) and Dia-
conis (2009).

The extension to V -norm follows closely the simple and very elegant ideas devel-
oped in Hairer and Mattingly (2011) from which we have borrowed Theorem 18.4.3.
The definition of V -Dobrushin coefficient is implicit in this work but this terminol-
ogy is, to the best of our knowledge, novel.





Chapter 19
Coupling for irreducible kernels

This chapter deals with coupling techniques for Markov chains. We will use these
technique to obtain bounds for

∆n( f ,ξ ,ξ ′) = |ξ Pn f −ξ
′Pn f | ,

where f belongs to an appropriate class of functions and ξ ,ξ ′ ∈ M1(X ). Us-
ing the canonical space (XN,X ⊗N) and the notation of Chapter 3, we can write
∆n( f ,ξ ,ξ ′) = |Eξ [ f (Xn)]−Eξ ′ [ f (Xn)]|. In this expression, two different probabil-
ity measures Pξ and Pξ ′ are used on the canonical space and the expectation of the
same function f (Xn) is considered under these two probability measures. In contrast,
when using coupling techniques, we construct a common probability measure, say
Pξ ,ξ ′ , on an extended state space and denoting by Eξ ,ξ ′ the associated expectation
operator, we show that

∆n( f ,ξ ,ξ ′) = |Eξ ,ξ ′ [ f (Xn)− f (X ′n)]| ,

where in this case two different random variables f (Xn) and f (X ′n) are involved un-
der a common probability space. The problem then boils down to evaluate on the
same probability space the closeness of the two random variables f (Xn) and f (X ′n)
in a sense to be defined. There are actually many variations around coupling tech-
niques and many different ways for constructing the common probability space. We
first introduce in Section 19.1 general results on the coupling of two probability
measures and then introduce the notion of kernel coupling, which will be essen-
tial for coupling Markov chains. In Section 19.2, we then state and prove the most
fundamental ingredient of this chapter, known as the coupling inequality. We then
introduce different variations around coupling and we conclude this chapter by ob-
taining bounds for geometric and subgeometric Markov kernels. The expressions
of the geometric bounds are of the same flavour as in Chapter 18 but there are here
obtained through coupling techniques instead of operator methods and are of a more
quantitative nature.

421
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19.1 Coupling

19.1.1 Coupling of probability measures

In this section, we introduce the basics of the coupling technique used to obtain
bounds for the total variation distance (or more generally for the V -total variation
distance) between two probability measures. For this purpose, it is convenient to
express the total variation distance of ξ ,ξ ′ ∈M+(X ) as a function of the total mass
of the infimum of measures, denoted by ξ ∧ξ ′. The infimum ξ ∧ξ ′ is characterized
as follows. If η is any measure satisfying η(A)≤ ξ (A)∧ξ (A) for qall A ∈X , then
η ≤ ξ ∧ξ ′. Moreover, the measures ξ−ξ ∧ξ ′ and ξ ′−ξ ∧ξ ′ are mutually singular.
These properties are established in Proposition D.2.8.

Lemma 19.1.1 For ξ ,ξ ′ ∈M1(X ),

dTV(ξ ,ξ
′) = 1− (ξ ∧ξ

′)(X) . (19.1.1)

Proof. Define ν = ξ −ξ ∧ξ ′ and ν ′ = ξ ′−ξ ∧ξ ′. Then ν and ν ′ are positive and
mutually singular measures and ν(X) = ν ′(X) = 1−ξ ∧ξ ′(X). Therefore,

dTV(ξ ,ξ
′) =

1
2
|ξ −ξ

′|(X) = 1
2
|ν−ν

′|(X) = ν(X)+ν ′(X)

2
= 1−ξ ∧ξ

′(X) .

2

We may interpret this expression of the total variation distance in terms of coupling
of probability measures, which we define now. Recall that the Hamming distance is
defined on any non empty set X by (x,y) 7→ 1{x 6= y}.

To avoid measurability issues, the following assumption will be in force through-
out the chapter.

H 19.1.2 The diagonal ∆ = {(x,x) : x ∈ X} is measurable in X×X, i.e. ∆ ∈X ⊗
X .

This assumption holds if X is a metric space endowed with its Borel σ -field.

Definition 19.1.3 (Coupling of probability measures)
• A coupling of two probability measures (ξ ,ξ ′) ∈M1(X )×M1(X ) is a prob-

ability measure γ on the product space (X×X,X ⊗X ) whose marginals are
ξ and ξ ′, i.e. γ(A×X) = ξ (A) and γ(X×A) = ξ ′(A) for all A ∈X .

• The set of all couplings of ξ and ξ ′ is denoted by C (ξ ,ξ ′).
• The measure ξ ⊗ξ ′ is called the independent coupling of ξ and ξ ′.
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• A coupling γ ∈ C (ξ ,ξ ′) is said to be optimal for the Hamming distance (or for
the total variation distance) if γ(∆ c) = dTV(ξ ,ξ

′).

It is often convenient to interpret a coupling of probability measures (ξ ,ξ ′) ∈
M1(X )×M1(X ) in terms of the joint distribution of two random variables. Let
(Ω ,F ,P) be a probability space and X ,X ′ : Ω → X be X-valued random variables
such that LP (X) = ξ and LP (X ′) = ξ ′. Then the joint distribution γ of (X ,X ′) is
a coupling of (ξ ,ξ ′). By a slight abuse of terminology, we will say that (X ,X ′) is a
coupling of (ξ ,ξ ′) and write (X ,X ′) ∈ C (ξ ,ξ ′).

Example 19.1.4. Let ξ = N(−1,1) and ξ ′ = N(1,1). Let X ∼ N(−1,1) and set
X ′ = X +2. Then, (X ,X ′) is a coupling of (ξ ,ξ ′) but it is not the optimal coupling
for the Hamming distance since P(X 6= X ′) = 1, whereas by Proposition D.2.8 and
Lemma 19.1.1,

dTV(ξ ,ξ
′) = 1−

∫
∞

−∞

φ(x+1)∧φ(x−1)dx = 1−2
∫

∞

1

e−u2/2
√

2π
du ,

where φ the density of the standard Gaussian distribution.

X X’

Fig. 1 An example of coupling of two probability measures.

Lemma 19.1.5 Assume H 19.1.2. If ξ ,ξ ′ ∈ M1(X ) are mutually singular, then
every γ ∈ C (ξ ,ξ ′) satisfies

γ(∆) = 1− γ(∆ c) = 1−dTV(ξ ,ξ
′) = 0 .

Equivalently, every coupling (X ,X ′) of (ξ ,ξ ′) defined on a probability space
(Ω ,F ,P) satisfies P(X = X ′) = 0.

Proof. Since ξ and ξ ′ are singular, there exists a set A ∈ X such that ξ (Ac) =
ξ ′(A) = 0. Thus

γ(∆) = γ({(x,x) : x ∈ Ac})+ γ({(x,x) : x ∈ A})
≤ γ(Ac×X)+ γ(X×A) = ξ (Ac)+ξ

′(A) = 0 .

Equivalently,
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P(X = X ′) = P(X = X ′,X ∈ Ac)+P(X = X ′,X ′ ∈ A)

≤ P(X ∈ Ac)+P(X ′ ∈ A) = ξ (Ac)+ξ
′(A) = 0 .

2

The next result will be used to get a bound for the total variation between two prob-
ability measures via coupling.

Theorem 19.1.6. Assume H 19.1.2 and let ξ ,ξ ′ ∈M1(X ). Then

dTV(ξ ,ξ
′) = inf

γ∈C (ξ ,ξ ′)
γ(∆ c) = inf

(X ,X ′)∈C (ξ ,ξ ′)
P(X 6= X ′) . (19.1.2)

The probability measures η and η ′ defined by

η =
ξ −ξ ∧ξ ′

1−ξ ∧ξ ′(X)
, η

′ =
ξ ′−ξ ∧ξ ′

1−ξ ∧ξ ′(X)
. (19.1.3)

are mutually singular. A measure γ ∈ C (ξ ,ξ ′) is an optimal coupling of (ξ ,ξ ′) for
the Hamming distance if and only if there exists β ∈ C (η ,η ′) such that

γ(B) = {1−ξ ∧ξ
′(X)}β (B)+

∫
B

ξ ∧ξ
′(dx)δx(dx′) , B ∈X ⊗2 . (19.1.4)

Proof. (a) Let (X ,X ′) be a coupling of (ξ ,ξ ′) defined on a probability space
(Ω ,F ,P). Let γ = LP (X ,X ′). For f ∈ Fb(X), we have

ξ ( f )−ξ
′( f ) = E

[
{ f (X)− f (X ′)}1{X 6=X ′}

]
≤ osc ( f )P(X 6= X ′) .

On the other hand, applying Proposition D.2.4 yields

dTV(ξ ,ξ
′) =

1
2

∥∥ξ −ξ
′∥∥

TV ≤ sup
{
(ξ −ξ

′)( f ) : f ∈ Fb(X) , osc ( f )≤ 1
}
,

Hence, for any coupling (X ,X ′) of (ξ ,ξ ′), we obtain

dTV(ξ ,ξ
′)≤ P(X 6= X ′) = γ(∆ c) . (19.1.5)

(b) The probability measures η and η ′ defined in (19.1.3) are mutually singular
by Proposition D.2.8-(ii).

(c) We now show that the lower-bound in (19.1.5) is achieved for any cou-
pling γ satisfying (19.1.4). Since η and η ′ are mutually singular and β ∈ C (η ,η ′),
Lemma 19.1.5 implies that β (∆ c) = 1. Then, by (19.1.4) and Lemma 19.1.1, we get

γ(∆ c) = {1−ξ ∧ξ
′(X)}β (∆ c)+

∫
∆ c

ξ ∧ξ
′(dx)δx(dx′) = dTV(ξ ,ξ

′) . (19.1.6)
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This shows that the coupling γ is optimal for the Hamming distance.
(d) We finally prove that if γ is an optimal coupling of (ξ ,ξ ′), then it can be

written as in (19.1.4). Define the measure µ on (X,X ) by

µ(A) = γ(∆ ∩ (A×X)) , A ∈X .

Since by (19.1.6) γ(∆ c) = dTV(ξ ,ξ
′), we get

µ(X) = γ(∆) = ξ ∧ξ
′(X) . (19.1.7)

Moreover,
µ(A) = γ(∆ ∩ (A×X))≤ γ(A×X) = ξ (A)

and similarly,

µ(A) = γ(∆ ∩ (A×X)) = γ(∆ ∩ (A×A)) = γ(∆ ∩ (X×A))≤ ξ
′(A) .

Thus µ ≤ ξ ∧ξ ′. Combining with (19.1.7), we obtain that µ = ξ ∧ξ ′. Then, γ can
be written as: for all B ∈X ⊗2,

γ(B) = γ(∆ c∩B)+ γ(∆ ∩B) = γ(∆ c)
γ(∆ c∩B)

γ(∆ c)
+
∫

B
ξ ∧ξ

′(dx)δx(dx′) . (19.1.8)

Plugging B = A×X into (19.1.8) and using (19.1.7) yield

γ(∆ c∩ (A×X))

γ(∆ c)
=

1
γ(∆ c)

(
γ(A×X)−

∫
A×X

ξ ∧ξ
′(dx)δx(dx′)

)
= η(A) ,

where η is defined in (19.1.3). Similarly,

γ(∆ c∩ (X×A))
γ(∆ c)

= η
′(A) .

Thus γ(∆ c∩·)/γ(∆ c) ∈ C (η ,η ′). The proof is completed.
2

The V -norm can also be characterized in terms of coupling.

Theorem 19.1.7. Let ξ ,ξ ′ ∈M1,V (X ) (see (18.3.3)). Then

∥∥ξ −ξ
′∥∥

V = inf
γ∈C (ξ ,ξ ′)

∫
X×X
{V (x)+V (y)}1{x 6= y}γ(dxdy) (19.1.9)

Moreover the infimum is achieved by any coupling γ ∈ C (ξ ,ξ ′) which is optimal
for the Hamming distance.
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Proof. Let S be a Jordan set for ξ−ξ ′ and set f =V1S−V1Sc . Then | f (x)|= |V (x)|
and | f (x)− f (y)| ≤ (V (x)+V (y))1{x 6= y}. Set ρV (x,y) = {V (x)+V (y)}1{x 6= y}.
Applying the definition of a Jordan set, we obtain, for any γ ∈ C (ξ ,ξ ′),∥∥ξ −ξ

′∥∥
V = |ξ −ξ

′|(V ) = (ξ −ξ
′)(V1S)− (ξ −ξ

′)(V1Sc) = (ξ −ξ
′)( f )

=
∫∫

X×X
{ f (x)− f (y)}γ(dxdy)≤

∫∫
X×X

ρV (x,y)γ(dxdy) .

Taking the infimum over γ ∈C (ξ ,ξ ′) yields that ‖ξ −ξ ′‖V is smaller than the right
hand side of (19.1.9). Conversely, let γ ∈ C (ξ ,ξ ′) be an optimal coupling for the
Hamming distance, i.e.

γ(B) = {1−ξ ∧ξ
′(X)}β (B)+

∫
B

ξ ∧ξ
′(dx)δx(dx′) , B ∈X ⊗2 , (19.1.10)

where β ∈ C (η ,η ′) and η and η ′ are defined by (19.1.3). Then by definition of ρV ,∫∫
X×X

ρV (x,y)γ(dxdy) = (ξ −ξ ∧ξ
′)(V )+(ξ ′−ξ ∧ξ

′)(V ) =
∥∥ξ −ξ

′∥∥
V .

This shows that the right hand side of (19.1.9) is smaller than and therefore equal to
‖ξ −ξ ′‖V . 2

19.1.2 Kernel coupling

We now extend the notion of coupling to Markov kernels. We must first define the
infimum of two kernels.

Definition 19.1.8 (Infimum of two kernels) Let P and Q be two kernels on X×X .
The infimum of the kernels P and Q, denoted P∧Q, is defined on X2×X by

P∧Q(x,x′;A) = [P(x, ·)∧Q(x′, ·)](A) , x,x′ ∈ X , A ∈X . (19.1.11)

We do not exclude the case P = Q, in which case attention must be paid to the
fact that P∧P is not equal to P, since these two kernels are not even defined on the
same space.

Proposition 19.1.9 Assume that X is countably generated. Then, P∧Q is a
kernel on (X×X)×X and the function (x,x′) 7→ dTV(P(x, ·),Q(x′, ·)) is mea-
surable.
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Proof. By Definition 1.2.1, we only have to prove that, for every A ∈X , the func-
tion (x,x′) 7→ (P∧Q)(x,x′;A) is measurable. Since X is countably generated, by
Lemma D.1.4, there exists a countable algebra A such that for all x,x′ ∈ X and
A ∈X ,

[P(x, ·)−Q(x′, ·)]+(A) = sup
B∈A

[P(x, ·)−Q(x′, ·)](A∩B) .

The supremum is taken over a countable set, so that the function (x,x′) 7→ [P(x, ·)−
Q(x′, ·)]+(A) is measurable. Similarly, (x,x′) 7→ [P(x, ·)−Q(x′, ·)]−(A) and (x,x′) 7→
|P(x, ·)−Q(x′, ·)|(A) are measurable. Since

P∧Q(x,x′, ·) = P(x, ·)+Q(x′, ·)−|P(x, ·)−Q(x′, ·)| ,

we obtain that P ∧ Q is a kernel. Moreover, ‖P(x, ·)−Q(x′, ·)‖TV = |P(x, ·)−
Q(x′, ·)|(X) and the function (x,x′) 7→ dTV(P(x, ·),Q(x′, ·)) is therefore measurable.
2

We now extend the coupling of measures to the coupling of kernels.

Definition 19.1.10 (Kernel coupling) Let P and Q be two Markov kernels on X×
X . A Markov kernel K on X2×X ⊗2 is said to be a kernel coupling of (P,Q) if, for
all x,x′ ∈ X and A ∈X ,

K(x,x′;A×X) = P(x,A) , K(x,x′;X×A) = Q(x′,A) . (19.1.12)

It is said to be an optimal kernel coupling of (P,Q) for the Hamming distance if for
all x,x′ ∈ X,

K(x,x′;∆
c) =

∫
X×X

1
{

y 6= y′
}

K(x,x′;dydy′) = dTV(P(x, ·),Q(x′, ·)) . (19.1.13)

A trivial example of kernel coupling is the independent coupling K(x,x′;C) =∫∫
P(x,dy)Q(x′,dy′)1C(y,y′). A kernel K on X2×X ⊗2 is an optimal kernel cou-

pling of (P,Q) if for all x,x′ ∈ X, the measure K(x,x′; ·) is an optimal coupling of
(P(x, ·),Q(x′, ·)).

We now construct an optimal coupling of kernels based on the optimal coupling
of measures given in Theorem 19.1.6. To this end, since the total variation distance
involves a supremum, we must carefully address the issue of measurability. Define,
for x,x′ ∈ X,

ε(x,x′) = 1−dTV(P(x, ·),Q(x′, ·)) = (P∧Q)(x,x′;X) .

Define the kernels R and R′ on X2×X by
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R(x,x′; ·) = {1− ε(x,x′)}−1{P(x, ·)− (P∧Q)(x,x′; ·)} ,
R′(x,x′; ·) = {1− ε(x,x′)}−1{Q(x, ·)− (P∧Q)(x,x′; ·)} ,

if ε(x,x′) < 1 and let R(x,x′; ·) and R′(x,x′; ·) be two arbitrary mutually singular
probability measures on X if ε(x,x′) = 1. Let R̃ be a kernel on X2×X ⊗2 such that

R̃(x,x′; ·) ∈ C (R(x,x′; ·),R′(x,x′; ·)) , (19.1.14)

for all (x,x′) ∈ X2. Note that R̃ is not a kernel coupling of R and R′ in the
sense of Definition 19.1.10. One possible choice is defined by R̃(x,x′;A× B) =
R(x,x′;A)R′(x,x′;B) for all A,B ∈X . By construction, the measures R(x,x′; ·) and
R(x,x′; ·) are mutually singular thus R̄(x,x′;∆) = 0 for all x,x′ ∈ X. Define finally
the kernel K on X2×X ⊗2 for x,x′ ∈ X and B ∈X ⊗2 by

K(x,x′;B) = {1− ε(x,x′)}R̃(x,x′;B)+
∫

B
(P∧Q)(x,x′;du)δu(dv) . (19.1.15)

Proposition 19.1.9 ensures that K is indeed a kernel.

Remark 19.1.11. If {(Xk,X ′k), k ∈ N} is a Markov chain with Markov kernel
K, then the transition may be described as follows. For k ≥ 0, conditionally on
(Xk,X ′k), draw conditionally independently random variables Uk+1,Yk+1,Y ′k+1,Zk+1
such that Uk+1, (Yk+1,Y ′k+1) and Zk+1 are independent; Uk+1 is a Bernoulli ran-
dom variable with mean ε(Xk,X ′k); (Yk+1,Y ′k+1) follows the distribution R̃(Xk,X ′k; ·)
if ε(Xk,X ′k)< 1 and has an arbitrary distribution otherwise; Zk+1 follows the distri-
bution P∧Q(Xk,X ′k; ·)/ε(Xk,X ′k) if ε(Xk,X ′k) > 0 and has an arbitrary distribution
otherwise. Then, set

Xk+1 = (1−Uk+1)Yk+1 +Uk+1Zk+1 , X ′k+1 = (1−Uk+1)Y ′k+1 +Uk+1Zk+1 .

N

We will now establish that the kernel K defined in (19.1.15) is indeed an optimal
kernel coupling of (P,Q) and that in the case P = Q, the diagonal is an absorbing
set. Thus, in the latter case, if {(Xk,X ′k), k ∈ N} is a bivariate Markov chain with
Markov kernel K and if for some k ≥ 0, Xk = X ′k, then the two components remain
forever equal.

Theorem 19.1.12. Let (X,X ) be a measurable space such that X is countably
generated and assume H 19.1.2. Let P and Q be Markov kernels on X×X and let
K be defined by (19.1.15).

(i) The kernel K is an optimal kernel coupling of (P,Q) for the Hamming distance.
(ii) If P = Q, the diagonal is an absorbing set for K, i.e. K(x,x;∆) = 1 for all x∈X.

(iii) If P = Q, a set C is a (1,ε)-Doeblin set if and only if K(x,x′;∆) ≥ ε for all
x,x′ ∈C.
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Proof. (i) By Theorem 19.1.6, K is an optimal kernel coupling of (P,Q)
(ii) If P = Q, then by (19.1.15), for all x ∈ X,

K(x,x;∆) =
∫

∆

(P∧P)(x,x;du)δu(dv) = P(x,X) = 1 .

(iii) By definition, dTV(P(x, ·),P(x′, ·)) = K(x,x′;∆), thus C is a (1,ε)-Doeblin
set if and only if K(x,x′;∆)≥ ε for all x ∈C.

2

We now state further properties of the iterates of a kernel coupling K, where the
kernel K is not necessarily of the form (19.1.15).

Proposition 19.1.13 Let P, Q be two Markov kernels on X×X and ξ , ξ ′ be
two probability measures on X. Let K be a kernel coupling of (P,Q). Then:

(i) for every n≥ 1, Kn is a kernel coupling of (Pn,Qn),
(ii) if γ ∈ C (ξ ,ξ ′) then for every n≥ 1, γKn is a coupling of ξ Pn and ξ ′Qn.

Proof. (i) The proof is by induction. The property is satisfied for n = 1. For
n≥ 1, we have

Kn+1(x,x′;A×X) =
∫

X×X
K(x,x′;dydy′)Kn(y,y′;A×X)

=
∫

X×X
K(x,x′;dydy′)Pn(y,A)

=
∫

X
P(x,dy)Pn(y,A) = Pn+1(x,A) .

We prove similarly that Kn+1(x,x′;X×A) = Qn+1(x′,A), which implies that Kn+1

is a kernel coupling of (Pn+1,Qn+1) and this concludes the induction.
(ii) Let us prove that the first marginal of γKn is ξ Pn. For A ∈X , we have

γKn(A×X) =
∫

X×X
γ(dxdx′)Kn(x,x′;A×X)

=
∫

X×X
γ(dxdx′)Pn(x,A) =

∫
X

ξ (dx)Pn(x,A) = ξ Pn(A) .

The proof that the second marginal of γKn is ξ ′Qn is similar.
2
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19.1.3 Examples of kernel coupling

The optimal kernel coupling defined in (19.1.15) is optimal for the Hamming dis-
tance but is not always easy to construct in practice. In the case where there exists
a (1,εν)-small set C, one may try define a kernel coupling in terms of a bivariate
chain {(Xn,X ′n), n ∈ N} which in particular has the following properties:

• {Xn, n ∈ N} and {X ′n, n ∈ N} are both Markov chains with kernel P;
• each time Xk and X ′k are simultaneously in C, there is a probability at least ε that

coupling occurs, i.e. Xk+1 = X ′k+1.

We now give examples of practical constructions.

Example 19.1.14 (Independent coupling). Both chains start independently with
kernel P until they reach C simultaneously. That is, if (Xk,X ′k) = (x,x′) /∈ C×C,
then Xk+1 and X ′k+1 are drawn independently of each other and from the past with
the distributions P(x, ·) and P(x′, ·), respectively. If (Xk,Xk) = (x,x′) ∈C×C, a coin
is tossed with probability of heads ε .

• If the coin comes up heads, then Xk+1 is sampled from the distribution ν and
we set X ′k+1 = Xk+1.
• If the coin comes up tails, then Xk+1 and X ′k+1 are sampled independently of

each other and from the past from the distributions (1− ε)−1(P(x, ·)− εν) and
(1− ε)−1(P(x′, ·)− εν), respectively.

The chains may remain coupled for a certain amount of time, but there is a pos-
itive probability that they will split and evolve again independently until the next
coupling.

Formally the kernel coupling K1 corresponding to this construction is defined as
follows. Set P̄(x, ·) = (1− ε)−1{P(x, ·)− εν}, C̄ =C×C and let ν̃ be the measure
on X×X, concentrated on the diagonal such that ν̃(B) =

∫
B ν(dx)δx(dx′). Then

K1(x,x′; ·) = P(x, ·)⊗P(x′, ·)1C̄c(x,x′)

+ εν̃1C̄(x,x
′)+(1− ε)P̄(x, ·)⊗ P̄(x′, ·)1C̄(x,x

′) .

Then, for x,x′ ∈ X and A ∈X ,

K1(x,x′;A×X) = P(x,A)1C̄c(x,x′)+{εν(A)+(1− ε)P̄(x,A)}1C̄(x,x
′) = P(x,A) ,

and similarly, K1(x,x′;X×A) = P(x′,A) so that K1 is a kernel coupling of (P,P).
Moreover K1(x,x′;∆)≥ ε for (x,x′) ∈C×C. J

Example 19.1.15 (Independent, then forever coupling). The previous construc-
tion is modified as follows. If (Xk,X ′k) = (x,x′), then

• if x = x′, then Xk+1 is sampled from the distribution P(x, ·), independently of
the past. Set then X ′k+1 = Xk+1;
• if x 6= x′, then proceed as previously in the independent coupling case.
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Formally the kernel K2 of the Markov chain {(Xn,X ′n), n ∈ N} is defined by

K2(x,x′; ·) = P̃(x, ·)1
{

x = x′
}
+K1(x,x′; ·)1

{
x 6= x′

}
,

where P̃ is the kernel on X×X ⊗2 defined by P̃(x,B) =
∫

B P(x,dx1)δx1(dx′1). Then,
we have, for all x,x′ ∈ X and A ∈X ,

K2(x,x′;A×X) = P(x,A)1
{

x = x′
}
+K1(x,x′;A×X)1

{
x 6= x′

}
= P(x,A) ,

and similarly, K2(x,x′;X×A) = P(x′,A), showing that K2 is again a kernel coupling
of (P,P). For (x,x′) ∈C×C,

K(x,x′;∆) = 1
{

x = x′
}
+K1(x,x′;∆)1

{
x 6= x′

}
≥ 1

{
x = x′

}
+ ε1

{
x 6= x′

}
≥ ε .

Moreover, the diagonal is absorbing, i.e. K2(x,x;∆) = 1. J

Example 19.1.16. Monotone coupling Let (X,�) be a totally ordered set. For a ∈
X, denote (−∞,a] = {x ∈ X : x � a} and [a,∞) = {x ∈ X : a � x}. Let X be a σ -
field which contains the intervals. A measurable real-valued function V on (X,X )
is called increasing if V (x) ≤ V (x′) for all pairs (x,x′) such that x � x′. A Markov
kernel P on X×X is called stochastically monotone if for every y ∈ X, the map
x 7→ P(x,(−∞,y]) is decreasing. This means that if x � x′, then a random variable
X with distribution P(x, ·) is stochastically dominated by a random variable Y with
distribution P(x′, ·). If P is a stochastically monotone Markov kernel, it is possible
to define a kernel coupling K in such a way that the two components {Xn, n ∈ N}
and {X ′n, n∈N} are pathwise ordered, i.e. their initial order is preserved at all times,
until they eventually merge after coupling.

Assume that C be a (1,ε)-Doeblin set and let K be the optimal kernel coupling
given in (19.1.15), that is

K(x,x′;B) = {1− ε(x,x′)}R̃(x,x′;B)+
∫

B
(P∧P)(x,x′;du)δu(dv) ,

for B ∈X ⊗2, where R̃ is a kernel on X2×X ⊗2 which satisfies (19.1.14). We pro-
vide a particular choice of R̃ which preserves the order of the initial conditions.
Since the Markov kernel P is stochastically monotone, if x� x′, then for all y ∈ X,

R(x,x′;(−∞,y])≥ R′(x,x′;(−∞,y]) = R(x′,x;(−∞,y]) , (19.1.16)

where the last equality follows from R′(x,x′; ·)=R(x′,x; ·). For x,x′ ∈X, let G(x,x′, ·)
be the quantile function of the distribution R(x,x′; ·). The monotonicity prop-
erty (19.1.16) implies that for all u ∈ (0,1) and x� x′,

G(x,x′;u)� G(x′,x;u) .

Let U be uniformly distributed on [0,1] and define the kernel R̃ on X2×X ⊗2 by

R̃(x,x′;A) = P((G(x,x′;U),G(x′,x;U)) ∈ A) .
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Then R̃ satisfies (19.1.14) and preserves the order. Consequently the associated op-
timal coupling kernel K also preserves the order of the initial conditions, that is,
if x� x′, then Xn � X ′n for all n≥ 0. J

19.2 The coupling inequality

We now have all the elements to state the coupling inequality which is a key tool in
Markov chain analysis. Let {(Xn,X ′n), n∈N} be the coordinate process on (X×X)N.
Denote by T the coupling time of {(Xn,X ′n), n ∈ N} defined by

T = inf
{

n≥ 1 : Xn = X ′n
}
= inf

{
n≥ 1 : (Xn,X ′n) ∈ ∆

}
. (19.2.1)

Let P be a Markov kernel on X×X and ξ ,ξ ′ ∈M1(X ). Let K be a kernel coupling
of (P,P) and γ ∈ C (ξ ,ξ ′). As usual, we denote by Pγ the probability measure on
the canonical space which makes {(Xn,X ′n), n ∈ N} a Markov chain with kernel K
and initial distribution γ . As usual, the dependence of Pγ on the choice of the kernel
coupling K is implicit.

Theorem 19.2.1. Let P be a Markov kernel on X×X and K be a kernel coupling
of (P,P). Let V : X→ [1,∞) be a measurable function on X. Then for all ξ ,ξ ′ ∈
M1(X ) and γ ∈ C (ξ ,ξ ′),∥∥ξ Pn−ξ

′Pn∥∥
V ≤ Eγ [{V (Xn)+V (X ′n)}1{T > n}] . (19.2.2)

Proof. Let f ∈ Fb(X) be such that | f | ≤V . For all 0≤ k ≤ n,

Eγ [1{T = k}( f (Xn)− f (X ′n))] = Eγ [1{T = k}E(Xk,X ′k)
[ f (Xn−k)− f (X ′n−k)]]

= Eγ [1{T = k}(Pn−k f (Xk)−Pn−k f (X ′k))] = 0 ,

where the last equality follows from Xk = X ′k on {T = k}. Thus, for all n ∈ N,

|ξ Pn( f )−ξ
′Pn( f )|= |Eγ [ f (Xn)− f (X ′n)]|= |Eγ [( f (Xn)− f (X ′n))1{T > n}]|

≤ Eγ [{V (Xn)+V (X ′n)}1{T > n}] .

The proof is completed by applying the characterization of the V -norm (18.3.4). 2

The coupling inequality will be used to obtain rates of convergence in the following
way. For a non negative sequence r and a measurable function W defined on X2 such
that V (x)+V (x′)≤W (x,x′), we have
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∞

∑
k=0

r(k)
∥∥ξ Pn−ξ

′Pn∥∥
V ≤

∞

∑
k=0

r(k)Eγ [{V (Xn)+V (X ′n)}1{T > n}]

≤ Eγ

[
T−1

∑
k=0

r(k){V (Xk)+V (X ′k)}

]

≤ Eγ

[
T−1

∑
k=0

r(k)W (Xk,X ′k)

]
.

For V ≡ 1, choosing W ≡ 2 yields

∞

∑
k=0

r(k)dTV(ξ Pn,ξ ′Pn)≤ Eγ

[
r0(T −1)

]
.

Bounds on the coupling time can be obtained if there exists a set C̄ ∈X ⊗2 such
that the coupling is successful after a visit of (Xn,X ′n) to C̄ with a probability greater
than ε; formally if

K(x,x′,∆)≥ ε , (x,x′) ∈ C̄ . (19.2.3)

Define the time of the n-th visit to C̄ by τn = τC̄ +σ
(n−1)
C̄ ◦θτC̄

, n≥ 1. At this point
we do not know if the return times to C̄ are finite. This will be guaranteed later
by drift conditions. Applying the strong Markov property, this yields on the event
{τn < ∞},

P(T = τn +1 |Fτn) = K(Xτn ,X
′
τn ,∆)1{T > τn} ≥ ε1{T > τn} ,

P(T > τn +1 |Fτn) = K(Xτn ,X
′
τn ,∆

c)1{T > τn} ≤ (1− ε)1{T > τn} .

Therefore, if Px,x′(τn < ∞) = 1, we have for every bounded and Fτn -measurable
random variable Hn,

Ex,x′ [Hn1{T > τn}]≤ ε
−1Ex,x′ [Hn1{T = τn +1}] , (19.2.4)

Ex,x′ [Hn1{T > τn +1}]≤ (1− ε)Ex,x′ [Hn1{T > τn}] . (19.2.5)

In particular, taking Hn = 1 yields

Px,x′(T > τn+1)≤ Px,x′(T > τn +1)≤ (1− ε)Px,x′(T > τn) .

This yields inductively

Px,x′(T > τn+1)≤ Px,x′(T > τn +1)≤ (1− ε)n . (19.2.6)

This further implies that if Px,x′(τn < ∞) = 1 for all n ≥ 1, then Px,x′(T < ∞) = 1
and the number of visits to C̄ before coupling occurs is stochastically dominated by
a geometric random variable with mean 1/ε .
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A change of measure formula

Set ε(x,x′) = K(x,x′;∆). There exists kernels Q and R such that Q(x,x′;∆) = 1 and

K(x,x′; ·) = ε(x,x′)Q(x,x′; ·)+(1− ε(x,x′))R(x,x′; ·) . (19.2.7)

The kernel Q must satisfy

Q(x,x′;A) =
K(x,x′;A∩∆)

K(x,x′;∆)

if K(x,x′;∆) 6= 0 and can be taken as an arbitrary measure on the diagonal if
ε(x,x′) = K(x,x′;∆) = 0. The kernel R is then defined by (19.2.7) if ε(x,x′) < 1
and can be taken as an arbitrary measure on X ⊗2 if ε(x,x′) = 1.

Let P̄x,x′ be the probability measure on the canonical space that makes the canon-
ical process {(Xn,X ′n), n ∈ N} a Markov chain with kernel R starting from (x,x′).

Lemma 19.2.2 Let n ≥ 0 and Hn be a bounded Fn-measurable random variable.
Then

Ex,x′ [Hn1{T > n}] = Ēx,x′

[
Hn

n−1

∏
i=0

(1− ε(Xi,X ′i ))

]
. (19.2.8)

Let C̄ be a set such that (19.2.3) holds and define ηn = ∑
n
i=01C̄(Xi,X ′i ), n ≥ 0 and

η−1 = 0. Then,

Ex,x′ [Hn1{T > n}]≤ Ēx,x′ [Hn(1− ε)ηn−1 ] . (19.2.9)

Proof. Let h be a bounded measurable function defined on X2 and let h̄(x,x′) =
h(x,x′)1{x 6= x′}. Then Qh̄≡ 0 and since R(x,x′;∆) = 0,

Kh̄(x,x′) = (1− ε(x,x′))Rh̄(x,x′) = (1− ε(x,x′))Rh(x,x′) .

By definition of the coupling time T , we then have for all n≥ 0

E
[

h(Xn+1,X ′n+1)1{T > n+1}
∣∣Fn

]
= E

[
h(Xn+1,X ′n+1)1

{
Xn+1 6= X ′n+1

}∣∣Fn
]
1{T > n}

= Kh̄(Xn,X ′n)1{T > n}= (1− ε(Xn,X ′n))Rh(Xn,X ′n)1{T > n} .

The desired property is true for n = 0. Assume that it is true for some n≥ 0. Let Hn
be Fn-measurable and h and h̄ be as above. Applying the previous identity and the
induction assumption, we obtain
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Ex,x′ [Hnh(Xn+1,X ′n+1)1{T > n+1}]
= Ex,x′ [HnRh(Xn,X ′n)1{T > n}]

= Ēx,x′

[
Hn(1− ε(Xn,X ′n))Rh(Xn,X ′n)

n−1

∏
i=0

(1− ε(Xi,X ′i ))

]

= Ēx,x′

[
Hnh(Xn+1,X ′n+1)

n

∏
i=0

(1− ε(Xi,X ′i ))

]
.

This conclude the induction. The bound (19.2.9) follows straightforwardly from
(19.2.8) since 1− ε(x,x′)≤ 1− ε1C̄(x,x

′). 2

19.3 Distributional, exact and maximal coupling

There are more general coupling techniques than the kernel coupling described in
Section 19.1.2. To be specific, we now introduce distributional and exact couplings
for two general stochastic processes (not only Markov chains), we next define cou-
pling times T , which are more general than in (19.2.1) and for which the classical
coupling inequality (19.2.1) still holds. Importantly, we show the existence of max-
imal distributional coupling times (in a sense given by Definition 19.3.5 below)
which therefore implies that the coupling inequalities can be made tight.

Let (X,X ) be a measurable space. In all this section, Q and Q′ denote two
probability measures on the canonical space (XN,X ⊗N).

Fix x∗ ∈ X. For any X-valued stochastic process Z = {Zn, n ∈ N} and any N̄-
valued random variable T , define the X-valued stochastic process θT Z by θT Z =
{ZT+k, k ∈ N} on {T < ∞} and θT Z = (x∗,x∗,x∗, . . .) on {T = ∞}.

Definition 19.3.1 (Distributional coupling.) Let Z = {Zn, n ∈ N}, Z′ = {Z′n, n ∈
N} be X-valued stochastic processes and T , T ′ be N̄-valued random variable de-
fined on the probability space (Ω ,F ,P).

We say that {(Ω ,F ,P,Z,T,Z′,T ′)} is a distributional coupling of (Q,Q′) if

• for all A ∈X ⊗N, P(Z ∈ A) =Q(A) and P(Z′ ∈ A) =Q′(A),
• (θT Z,T ) and (θT ′Z′,T ′) have the same law.

The random variables T and T ′ are called the coupling times. The distributional
coupling is said to be successful if P(T < ∞) = 1.

From the definition of the distributional coupling, the coupling times T and T ′

have the same law and in particular, P(T < ∞) = P(T ′ < ∞). Before stating the
classical coupling inequality, we need to introduce some additional notations. For
any measure µ on (XN,X ⊗N) and any σ -field G ⊂ X ⊗N, we denote by (µ)G
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the restriction of the measure µ to G . Moreover, for all n ∈ N, define the σ -field
Gn =

{
θ−1

n (A) : A ∈X ⊗N}.

Lemma 19.3.2 Let (Ω ,F ,P,Z,T, ,Z′,T ′) be a distributional coupling of (Q,Q′).
For all n ∈ N, ∥∥∥(Q)Gn

−
(
Q′
)
Gn

∥∥∥
TV
≤ 2P(T > n) . (19.3.1)

Proof. Using Definition 19.3.1, for all A ∈X ⊗N,

P(θnZ ∈ A,T ≤ n) =
n

∑
k=0
P(θk(θT Z) ∈ A,T = n− k)

=
n

∑
k=0
P(θk(θT ′Z

′) ∈ A,T ′ = n− k) = P(θnZ′ ∈ A,T ′ ≤ n) .

Then, noting that Q(θ−1
n (A)) = P(θnZ ∈ A),

Q(θ−1
n (A))−Q′(θ−1

n (A)) = P(θnZ ∈ A)−P(θnZ′ ∈ A)

= P(θnZ ∈ A,T > n)−P(θnZ′ ∈ A,T ′ > n)

≤ P(θnZ ∈ A,T > n)≤ P(T > n) .

Interchanging (Z,T ) and (Z′,T ′) in the previous inequality and noting that T and T ′

have the same law complete the proof. 2

Definition 19.3.3 (Exact coupling) We say that (Ω ,F ,P,Z,Z′,T ) is an exact cou-
pling of (Q,Q′) if

• for all A ∈X ⊗N, P(Z ∈ A) =Q(A) and P(Z′ ∈ A) =Q′(A),
• θT Z = θT Z′ , P − a.s.

An exact coupling (Z,Z′) of (Q,Q′) with coupling time T is also a distributional
coupling with coupling times (T,T ). We now examine the converse when X is a
Polish space.

Lemma 19.3.4 Let (X,X ) be a Polish space. Assume that there exists a successful
distributional coupling of (Q,Q′). Then, there exists a successful exact coupling of
(Q,Q′).

Proof. Let (Ω ,F ,P,Z,T,Z′,T ′) be a successful distributional coupling of (Q,Q′)
and denote U = (θT Z,T ) and U ′ = (θT ′Z′,T ′). Since the coupling is successful, we
can assume without loss of generality that U and U ′ take values on XN×N. Setting
µ1 = LP (Z), µ2 = LP (U) = LP (U ′) and µ3 = LP (Z′), we have

LP (Z,U) ∈ C (µ1,µ2) , LP
(
U ′,Z′

)
∈ C (µ2,µ3) .
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Since (X,X ) is a Polish space, µ1 and µ3 are probability measures on the Polish
space XN. We can therefore apply the gluing Lemma B.3.12 combined with Re-
mark B.3.13: there exist random variables (Z̄,Ū , Z̄′) taking values on XN× (XN×
N)×XN such that

LP̄ (Z̄,Ū) = LP (Z,U) , LP̄
(
Ū , Z̄′

)
= LP

(
U ′,Z′

)
. (19.3.2)

Using these two equalities and noting that Ū = (V̄ , T̄ ) is a XN×N-valued random
variables, we get:

P̄(θT̄ Z̄ = V̄ ) = 1 = P̄(θT̄ Z̄′ = V̄ ) ,

which implies θT̄ Z̄ = θT̄ Z̄′ P − a.s. Moreover, using again (19.3.2),

LP̄ (Z̄) = LP (Z) =Q , LP̄
(
Z̄′
)
= LP

(
Z′
)
=Q′ ,

which shows that (Z̄, Z̄′) is an exact successful coupling of (Q,Q′) with coupling
time T̄ . 2

Definition 19.3.5 A distributional coupling (Z,Z′) of (Q,Q′) with coupling times
(T,T ′) is maximal if for all n ∈ N,∥∥∥(Q)Gn

−
(
Q′
)
Gn

∥∥∥
TV

= 2P(T > n) .

In words, a distributional coupling is maximal if equality holds in (19.3.1) for all
n ∈ N. Note that∥∥∥(Q)Gn

−
(
Q′
)
Gn

∥∥∥
TV

= 2
(

1− (Q)Gn
∧
(
Q′
)
Gn
(XN)

)
,

and thus, a distributional coupling (Z,Z′) of (Q,Q′) with coupling times (T,T ′) is
maximal if and only if for all n ∈ N,

P(T ≤ n) = (Q)Gn
∧ (Q)Gn

(XN) . (19.3.3)

We now turn to the specific case of Markov chains. Let P be a Markov kernel
on X×X . Denote by {Xn, n ∈ N} the coordinate process and define as previously
Gn =

{
θ−1

n (A) : A ∈X ⊗N}.

Lemma 19.3.6 For all µ,ν ∈M1(X ),∥∥∥(Pµ

)
Gn
− (Pν)Gn

∥∥∥
TV

= ‖µPn−νPn‖TV

Proof. For all A ∈X ⊗N, by the Markov property,
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Pµ(θ
−1
n (A))−Pν(θ

−1
n (A)) = Eµ [1A ◦θn]−Eν [1A ◦θn]

= Eµ [EXn [1A]]−Eν [EXn [1A]]

Since the nonnegative function x 7→ Ex[1A] is upper-bounded by 1, the previous

inequality implies
∥∥∥(Pµ

)
Gn
− (Pν)Gn

∥∥∥
TV
≤‖µPn−νPn‖TV. Conversely, for all B∈

X , set A = B×XN
∗
. Then,

µPn(B)−νPn(B) = Eµ [1B(Xn)]−Eν [1B(Xn)]

= Eµ [1A ◦θn]−Eν [1A ◦θn] = Pµ(θ
−1
n (A))−Pν(θ

−1
n (A))

which implies ‖µPn−νPn‖TV ≤
∥∥∥(Pµ

)
Gn
− (Pν)Gn

∥∥∥
TV

. 2

The coupling theorem for Markov chains directly follows from Lemma 19.3.2.

Theorem 19.3.7. Let P be a Markov kernel on X×X and µ,ν ∈ M1(X ). If
(Ω ,F ,P,Z,T,Z′,T ′) is a distributional coupling of (Pµ ,Pν) then, for all n ∈ N,

‖µPn−νPn‖TV ≤ 2P(T > n) . (19.3.4)

We now turn to the question of maximal coupling for Markov chains.
Let P be a Markov kernel on X×X and µ,ν ∈M1(X ). Set γ

〈µ,ν〉
0 = µ ∧ν and

χ
〈µ,ν〉
0 = µ . We now define γ

〈µ,ν〉
n and χ

〈µ,ν〉
n for n≥ 1. Since for all n ∈ N∗,

(µPn−1∧νPn−1)P≤ µPn∧νPn ≤ µPn , (19.3.5)

we can define the (nonnegative) measures γ
〈µ,ν〉
n and χ

〈µ,ν〉
n on (X,X ) by

γ
〈µ,ν〉
n = µPn∧νPn− (µPn−1∧νPn−1)P ,

χ
〈µ,ν〉
n = µPn− (µPn−1∧νPn−1)P = (µPn−1−νPn−1)+P .

Above, we made use of the identity (λ−λ ′)+ = λ−λ ∧λ ′ valid for all pairs (λ ,λ ′)
of probability measures, see Proposition D.2.8 (v). We will make repeated use of
this identity. Using again (19.3.5), we have for all n≥ 0, γ

〈µ,ν〉
n ≤ χ

〈µ,ν〉
n and we can

therefore define the Radon–Nikodym derivative functions r〈µ,ν〉n by: for all n≥ 0,

r〈µ,ν〉n =
dγ
〈µ,ν〉
n

dχ
〈µ,ν〉
n

∈ [0,1] .

Set for all n ≥ 0, s〈µ,ν〉n = 1− r〈µ,ν〉n . Therefore, s〈µ,ν〉0 = 1− d(µ∧ν)
dµ

= d(µ−ν)+

dµ
and

for all n≥ 1,
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s〈µ,ν〉n = 1− dγ
〈µ,ν〉
n

dχ
〈µ,ν〉
n

=
d(χ〈µ,ν〉n − γ

〈µ,ν〉
n )

dχ
〈µ,ν〉
n

=
d(µPn−νPn)+

dχ
〈µ,ν〉
n

∈ [0,1] . (19.3.6)

Denote Y = X× [0,1] and Y = X ⊗B ([0,1]). Define the kernel Q on Y×Y as
follows: for any A ∈ Y ,

Q((x,u),A) =
∫

P(x,dx′)1A(x
′,u′)1[0,1](u

′)du′ .

In words, a transition according to Q may be described by moving the first compo-
nent according to the Markov kernel P and by drawing independently the second
component according to a uniform distribution on [0,1].

Let {Yn = (Xn,Un), n ∈N} be the coordinate process associated to the canonical
space (YN,Y ⊗N) equipped with a family of probability measures (P̄ξ ) induced by
the Markov kernel Q and initial distributions ξ on (Y,Y ). The notation Ēξ stands
for the associated expectation operator. Define the stopping times T and T ′ by

T = inf
{

i ∈ N : Ui ≤ r〈µ,ν〉i (Xi)
}
, T ′ = inf

{
i ∈ N : Ui ≤ r〈ν ,µ〉i (Xi)

}
.

Lemma 19.3.8 For all nonnegative or bounded measurable functions V on (X,X )
and all n≥ 0,

Ēµ⊗Unif(0,1)[V (Xn)1{T > n}] = (µPn−νPn)+(V ) . (19.3.7)

Proof. The proof is by induction on n. For n = 0,

Ēµ⊗Unif(0,1)[V (X0)1{T > 0}] = Ēµ⊗Unif(0,1)[V (X0)1
{

U0 > r〈µ,ν〉0 (X0)
}
]

= Ēµ⊗Unif(0,1)[V (X0){1− r〈µ,ν〉0 (X0)}]
= (µ−µ ∧ν)(V ) = (µ−ν)+(V ) .

Assume that (19.3.7) holds for n≥ 0. Then, applying successively the Markov prop-
erty, the induction assumption and the change of measures (19.3.6),

Ēµ⊗Unif(0,1)[V (Xn+1)1{T > n+1}]

= Ēµ⊗Unif(0,1)[V (Xn+1)1
{

Un+1 > r〈µ,ν〉n+1 (Xn+1)
}
1{T > n}]

= Ēµ⊗Unif(0,1)[V (Xn+1)s
〈µ,ν〉
n+1 (Xn+1)1{T > n}]

= Ēµ⊗Unif(0,1)[P(V s〈µ,ν〉n+1 )(Xn)1{T > n}]

= (µPn−µPn∧νPn)P(V s〈µ,ν〉n+1 ) (by the induction assumption)

= χ
〈µ,ν〉
n+1 (V s〈µ,ν〉n+1 ) (by definition of χ

〈µ,ν〉
n+1 )

= (µPn+1−νPn+1)+(V ) . (by definition of s〈µ,ν〉n+1 )
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This proves that (19.3.7) holds with n replaced by n+1. 2

Theorem 19.3.9. Let P be a Markov kernel on X×X and µ,ν ∈M1(X ). There
exists a maximal distributional coupling of (Pµ ,Pν). If (X,X ) is Polish, then, there
exists a maximal and exact coupling of (Pµ ,Pν).

Proof. By definition, P̄µ⊗Unif(0,1)(X ∈ ·) = Pµ and P̄ν⊗Unif(0,1)(X ∈ ·) = Pν . More-
over,

Ēµ⊗Unif(0,1)[V (X0)1{T = 0}] = µ(V r〈µ,ν〉0 ) = µ

(
V

dγ
〈µ,ν〉
0

dχ
〈µ,ν〉
0

)
= γ

〈µ,ν〉
0 (V ) .

Applying Lemma 19.3.8, we get for all bounded measurable functions V on (X,X ),

Ēµ⊗Unif(0,1)[V (Xn)1{T = n}]
= Ēµ⊗Unif(0,1)[V (Xn)1{T > n−1}]− Ēµ⊗Unif(0,1)[V (Xn)1{T > n}]
= (µPn−1−νPn−1)+(PV )− (µPn−νPn)+(V )

= µPnV − (µPn−1∧νPn−1)PV −µPnV +(µPn∧νPn)V = γ
〈µ,ν〉
n V .

Let A ∈X ⊗N and set V (x) = Ex[1A]. Applying the previous equality,

P̄µ⊗Unif(0,1)(θ
nX ∈ A,T = n) = Ēµ⊗Unif(0,1)[V (Xn)1{T = n}] = γ

〈µ,ν〉
n V .

Similarly,
P̄ν⊗Unif(0,1)(θ

nX ∈ A,T ′ = n) = γ
〈ν ,µ〉
n V .

Since γ
〈µ,ν〉
n = γ

〈ν ,µ〉
n , this shows that the laws of (X ,T ) under P̄µ⊗Unif(0,1) and

(X ,T ′) under P̄ν⊗Unif(0,1) are a distributional coupling of (Pµ ,Pν). Moreover, taking
V = 1X in (19.3.7),

2Ēµ⊗Unif(0,1)[1{T > n}] = 2(µPn−νPn)+(X) = ‖µPn−νPn‖TV ,

i.e. the distributional coupling is maximal. The last part of the Theorem follows
from Lemma 19.3.4. 2

Remark 19.3.10. Note that by Lemma 19.3.8, for all nonnegative measurable func-
tions V on (X,X ),

‖µPn−νPn‖V = (µPn−νPn)+V +(νPn−µPn)+V

= Ēµ⊗Unif(0,1)[V (Xn)1{T > n}]+ Ēν⊗Unif(0,1)[V (Xn)1
{

T ′ > n
}
] .

This implies
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∞

∑
n=0

r(n)‖µPn−νPn‖V

= Ēµ⊗Unif(0,1)

[
T−1

∑
n=0

r(n)V (Xn)

]
+ Ēν⊗Unif(0,1)

[
T ′−1

∑
n=0

r(n)V (Xn)

]
.

N

19.4 A coupling proof of V -geometric ergodicity

In this section, we use coupling techniques to give a new proof of Theorem 18.4.3
with more explicit constants.

Theorem 19.4.1. Let P be a Markov kernel satisfying the drift condition Dg(V,λ ,b).
Assume moreover that there exist an integer m ≥ 1, ε ∈ (0,1] and d > 0 such that
the level set {V ≤ d} is a (m,ε)-Doeblin set and λ +2b/(1+d)< 1. Then P admits
a unique invariant probability measure π , π(V )< ∞ and for all ξ ∈M1,V (X ) and
n≥ 1,

dV (ξ Pn,π)≤ cm{π(V )+ξ (V )}}ρbn/mc , (19.4.1)

with

logρ =
log(1− ε) log λ̄m

log(1− ε)+ log λ̄m− log b̄m
, (19.4.2a)

λ̄m = λ
m +2bm/(1+d) , (19.4.2b)

b̄m = λ
mbm +d , bm = b(1−λ

m)/(1−λ ) , (19.4.2c)

cm = {λ m +(1−λ
m)/(1−λ )}{1+ b̄m/[(1− ε)(1− λ̄m)]} . (19.4.2d)

By Lemma 18.3.4, ∆V (Pq)≤ λ m +b(1−λ m)/(1−λ ) for all q < m with bm as
in (19.4.2c). Thus, for n = mk+q, 0≤ q < m,

dV (Pn(x, ·),Pn(x′, ·))≤∆V (Pq)dV (Pkm(x, ·), pkm(x′, ·)) .

Moreover, by Proposition 14.1.8, PmV ≤ λ mV +bm. Thus it suffices to prove The-
orem 19.4.1 for m = 1. We will first obtain bounds for the kernel coupling un-
der a bivariate drift condition (Lemma 19.4.2) and then extend the drift condition
Dg(V,λ ,b) to the kernel coupling.

Lemma 19.4.2 Let P be a kernel on (X,X ), K be a kernel coupling of (P,P) and
C̄ ∈X ⊗2 be a set such that K(x,x′;∆) ≥ ε for all (x,x′) ∈ C̄. Assume that there
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exist a measurable function V̄ : X2→ [1,∞] and constants λ̄ ∈ (0,1) and b̄ > 0 such
that

KV̄ ≤ λ̄V̄1C̄c + b̄1C̄ . (19.4.3)

then, for all x,x′ ∈ X and n≥ 0,

P(x,x′)(T > n)≤
(
V̄ (x,x′)+1

)
ρ

n , (19.4.4a)

E(x,x′)[V̄ (Xn,X ′n)1{T > n}]≤
(
2V̄ (x,x′)+ b̄(1− λ̄ )−1)

ρ
n , (19.4.4b)

where T is the coupling time defined in (19.2.1) and

logρ =
log(1− ε) log λ̄

log(1− ε)+ log λ̄ − log b̄
. (19.4.5)

Proof. The drift condition (19.4.3) yields

(1− ε(x,x′))RV̄ (x,x′)≤ KV (x,x′)≤ λ̄
1C̄c (x,x′)b̄1C̄(x,x

′)V̄ (Xn,X ′n) .

Set H0 = 1, Hn = ∏
n−1
i=0 (1−ε(Xi,X ′i )), n≥ 1 and Zn = λ̄−n+ηn−1 b̄−ηn−1HnV̄ (Xn,X ′n),

n≥ 0. This yields

Ē [Zn+1 |Fn] = λ̄
−n−1+ηn b̄−ηnHn+1RV̄ (Xn,X ′n)

≤ λ̄
−n−1+ηn b̄−ηnHn+1

λ̄
1C̄c (Xn,X ′n)b̄1C̄(Xn,X ′n)

1− ε(Xn,X ′n)
V̄ (Xn,X ′n) = Zn .

Thus {Zn, n ∈ N} is a positive supermartingale under P̄. Let m > 0 (not necessarily
an integer). Then, applying the change of measure formula (19.2.8), we obtain

Ex,x′ [V̄ (Xn,X ′n)1{T > n}]
= Ēx,x′ [V̄ (Xn,X ′n)Hn]

= Ēx,x′ [V̄ (Xn,X ′n)Hn1{ηn−1 > m}]+ Ēx,x′ [V̄ (Xn,X ′n)Hn1{ηn−1 ≤ m}]
≤ (1− ε)mĒx,x′ [V̄ (Xn,X ′n)]+ λ̄

n−mb̄mĒ[Zn]

≤ (1− ε)m{λ̄ nV̄ (x,x′)+ b̄/(1− λ̄ )}+ λ̄
n−mb̄mĒ[Z0]

≤ (1− ε)m{λ̄ nV̄ (x,x′)+ b̄/(1− λ̄ )}+ λ̄
n−mb̄mV̄ (x,x′) .

Similarly, replacing V̄ by 1 in the left hand side and using 1≤ V̄ , we obtain

Px,x′(T > n) = Ēx,x′ [Hn]≤ Ēx,x′ [Hn1{ηn−1 ≥ m}]
+ Ēx,x′ [V̄ (Xn,X ′n)Hn1{ηn−1 < m}]
≤ (1− ε)m + λ̄

n−mb̄mV̄ (x,x′) .

We now choose m such that
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m
n
=

log λ̄

log(1− ε)+ log λ̄ − log b̄
.

Then (1−ε)m = b̄mλ̄ n−m = ρn with ρ as in (19.4.5) and the bounds (19.4.4) follow
from the previous ones. 2

We now have all the ingredients to prove Theorem 19.4.1]

Proof (of Theorem 19.4.1). Let K be the optimal kernel coupling of (Pm,Pm) de-
fined in (19.1.15). Set C = {V ≤ d} and C̄ =C×C. Then, for all x,x′ ∈C,

K(x,x′;∆) = (Pm∧Pm)(x,x′;X)≥ ε .

Define V̄ (x,x′) = {V (x)+V (x′)}/2. By Proposition 14.1.8, PmV ≤ λ mV +bm where
bm is defined in (19.4.2c). Since K is a kernel coupling of (Pm,Pm), we obtain that
for all x,x′ ∈ X,

KV̄ (x,x′) =
PmV (x)+PmV (x′)

2
≤ λ

mV̄ (x,x′)+bm

If (x,x′) 6∈C×C, then V̄ (x,x′)≥ (1+d)/2 and

KV̄ (x,x′)≤ λ
mV̄ (x,x′)+

2bm

1+d
V̄ (x,x′) = λ̄mV̄ (x,x′) . (19.4.6)

If (x,x′) ∈C×C, then V̄ (x,x′)≤ d and

KV̄ (x,x′)≤ λ
md +bm . (19.4.7)

Thus the drift condition (19.4.3) holds with λ̄ = λ̄m and b̄ = b̄m defined in (19.4.2c).
The assumptions of Lemma 19.4.2 hold and thus we can apply it. Combining with
Theorem 19.2.1, this yields, for all x,x′ ∈ X and all n≥ 1,

dV (Pnm(x, ·),Pnm(x′, ·))Ex,x′ [(V (Xn)+V (X ′n))1{T > n}]
≤
(
2V̄ (x,x′)+ b̄m{(1− ε)(1− λ̄m)}−1)

ρ
n ,

By Lemma 18.3.4, ∆V (Pq) ≤ λ m + b(1− λ m)/(1− λ ) for all q ≤ m. Thus, for
n = mk+q, 0≤ q < m, this yields

dV (Pn(x, ·),Pn(x′, ·))≤∆V (Pq)dV (Pkm(x, ·), pkm(x′, ·))

≤
(

λ
m +

b(1−λ m)

1−λ

)(
2V̄ (x,x′)+

b̄m

(1− ε)(1− λ̄m)

)
ρ
[n/m] .

(19.4.8)

Applying Theorem 18.1.1 yields the existence and uniqueness of the invariant mea-
sure π and π(V ) < ∞. Integrating (19.4.8) with respect to π and ξ yields (19.4.1).
2
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19.5 A coupling proof of subgeometric ergodicity

The main result of this section provides subgeometric rates of convergence under
the drift condition Dsg(V,φ ,b,C) introduced in Definition 16.1.7. Recall that if φ is
concave the subgeometric sequence rφ is defined in (16.1.13) by rφ (t) = φ ◦H−1

φ
(t)

where Hφ is the primitive of 1/φ which vanishes at 1. Rates slower than rφ will be
obtained by interpolation. Let Ψ1 and Ψ2 defined on [0,∞) be a pair of inverse Young
functions, that is, such that Ψ1(x)Ψ2(y) ≤ x+ y for all x,y ≥ 0. For simplicity, we
will only consider the case where C is a (1,ε)-Doeblin set.

Theorem 19.5.1. Let C be a (1,ε)-Doeblin set. Assume that Condition
Dsg(V,φ ,b,C) holds with supC V < ∞ and d = infCc φ ◦V > b. Let (Ψ1,Ψ2) be a
pair of inverse Young functions, let κ ∈ (0,1−b/d) and set r(n) =Ψ1(rφ (κn)) and
f =Ψ2(φ ◦V ).

(i) There exists a constant ϑ such that for every ξ ,ξ ′ ∈M1(X ),

∞

∑
n=0

r(n)d f (ξ Pn,ξ ′Pn)< ϑ{ξ (V )+ξ
′(V )} . (19.5.1)

(ii) There exists a unique invariant probability measure π , π(φ ◦V )< ∞ and there
exists ϑ such that for every ξ ∈M1(X ),

∞

∑
n=0

∆r(n)d f (ξ Pn,π)< ϑξ (V ) , (19.5.2)

Moreover, for every x ∈ X, limn→∞ rφ (κn)dTV(P
n(x, ·),π) = 0.

(iii) If π(V )< ∞, then there exists ϑ such that for all initial distribution ξ ,

∞

∑
n=0

r(n)d f (ξ Pn,π)< ϑξ (V ) . (19.5.3)

The proof of Theorem 19.5.1 follows the same path as the proof of Theo-
rem 19.4.1. Let W : X×X→ [1,∞] be a measurable function and define

W̄r(x,x′) = Ex,x′

[
τC̄

∑
k=0

r(k)W (Xk,X ′k)

]
, (19.5.4)

W̄ ∗r = sup
(x,x′)∈C̄

Ex,x′

[
σC̄

∑
k=1

r(k)W (Xk,X ′k)

]
. (19.5.5)

Lemma 19.5.2 Let K be a kernel coupling of (P,P) and C̄ be such that K(x,x′;∆)≥
ε for all (x,x′)∈ C̄. Assume moreover that r∈Λ2 and W̄ ∗r <∞. Then for all δ ∈ (0,1)
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there exists a finite constant Cδ such that for all x,x′ ∈ X,

Ex,x′

[
T−1

∑
k=0

r(k)W (Xk,X ′k)

]
≤ W̄r(x,x′)+Cδ

1−δ
. (19.5.6)

Proof. If W̄r(x,x′)=∞ there is nothing to prove so we can assume that W̄r(x,x′)<∞.
Since W̄ ∗r < ∞ by assumption, this implies that Px,x′(σ

(n)
C̄ < ∞) = 1 for all n≥ 1 by

Proposition 3.3.6. This further implies that Px,x′(T < ∞) = 1 (see (19.2.6) and the
comments thereafter). Applying successively the strong Markov property, (19.2.5)
and (19.2.4), we obtain

n

∑
k=0

r(k)Ex,x′ [W (Xk,X ′k)1{T > k}]

≤ W̄r(x,x′)+
∞

∑
i=1
Ex,x′

[
τi+1

∑
k=τi+1

r(k)W (Xk,X ′k)1{T > k}1{τi ≤ n}
]

≤ W̄r(x,x′)

+
∞

∑
i=1
Ex,x′

[
r(τi)1{T > τi +1}

(
σC̄

∑
k=1

r(k)W (Xk,X ′k)

)
◦θτi1{τi ≤ n}

]
.

Hence we get

n

∑
k=0

r(k)Ex,x′ [W (Xk,X ′k)1{T > k}]

≤ W̄r(x,x′)+W̄ ∗r
∞

∑
i=1
Ex,x′ [r(τi)1{T > τi +1}1{τi ≤ n}]

≤ W̄r(x,x′)+(1− ε)W̄ ∗r
∞

∑
i=1
Ex,x′ [r(τi)1{T > τi}1{τi ≤ n}]

≤ W̄r(x,x′)+ ε
−1(1− ε)W̄ ∗r

∞

∑
i=1
Ex,x′ [r(τi)1{T = τi +1}1{τi ≤ n}]

≤ W̄r(x,x′)+ ε
−1(1− ε)W̄ ∗r

n

∑
k=0

r(k)Px,x′(T = k+1) .

Since r ∈Λ2, for every δ > 0 there exists a finite constant Cδ such that

Cδ = sup
k≥0
{ε−1(1− ε)W̄ ∗r r(k)−δ r0(k)} ,

where r0(n) = ∑
n
k=0 r(k). Since W ≥ 1, this yields
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n

∑
k=0

r(k)Ex,x′ [W (Xk,X ′k)1{T > k}]

≤ W̄r(x,x′)+Cδ +δ

n

∑
k=0

r0(k)Px,x′(T = k+1)

≤ W̄r(x,x′)+Cδ +δ

n

∑
j=0

r( j)Ex,x′ [W (X j,X ′j)1{T > j}] .

This proves that

n

∑
k=0

r(k)Ex,x′ [W (Xk,X ′k)1{T > k}]≤ W̄r(x,x′)+Cδ

1−δ
.

Letting n tend to infinity yields (19.5.6). 2

We now prove that if C is a (1,ε)-Doeblin set and if Dsg(V,φ ,b,C) holds, the ker-
nel K satisfies condition Dsg(V̄ , φ̄ , b̄,C̄) with C̄ =C×C and for a suitable choice of
the functions φ̄ and V̄ and the constant b̄.

Lemma 19.5.3 Assume that the drift condition Dsg(V,φ ,b,C) holds with V bounded
on C. Set d = infx 6∈C φ ◦V (x) and C̄ =C×C. If d > b, then, for κ ∈ (0,1−b/d),

KV̄ + φ̄ ◦V̄ ≤ V̄ + b̄1C̄ (19.5.7)

with V̄ (x,x′) =V (x)+V (x′)−1, φ̄ = κφ and b̄ = 2b.

Proof. First consider the case (x,x′) 6∈ C̄. Then 1C(x)+1C(x′) ≤ 1 and since φ is
increasing and V̄ (x,x′)≥V (x)∨V (x′),

φ ◦V̄ (x,x′)≥ φ ◦V (x)∨φ ◦V (x′)≥ d ,

The choice of κ then implies that b ≤ (1− κ)d ≤ (1− κ)φ ◦ V̄ (x,x′) for (x,x′) 6∈
C×C. The function φ being concave, for all u,v≥ 1, it holds that

φ(u+ v−1)≤ φ(u)+φ(v)−φ(1)≤ φ(u)+φ(v) .

Since K is a coupling kernel of (P,P), we have, for (x,x′) /∈ C̄,

KV̄ (x,x′)+ φ̄ ◦V̄ (x,x′)≤ KV̄ (x,x′)+(κφ ◦V̄ (x,x′)+b)−b

≤ KV̄ (x,x′)+φ ◦V̄ (x)−b

≤ PV (x)+PV (x′)−1+φ ◦V (x)+φ ◦V (x′)−b

≤ V̄ (x,x′)+b
{
1C(x)+1C(x′)

}
−b≤ V̄ (x,x′) .

If (x,x′) ∈ C̄, we have using that φ̄ ≤ φ ,

KV̄ (x,x′)+ φ̄ ◦V̄ (x,x′)≤ PV (x)+PV (x′)−1+φ ◦V (x)+φ ◦V (x′)

≤ V̄ (x,x′)+2b .
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This proves that Dsg(V̄ , φ̄ , b̄,C̄) holds. 2

Lemma 19.5.4 (i) (Toeplitz Lemma) Let {an, n ∈ N} be a sequence of positive
numbers such that bn = ∑

n
i=1 ai→ ∞. Let {xn, n ∈ N} be a sequence such that

limn→∞ xn = x∞. Then limn→∞ b−1
n ∑

n
i=1 aixi = x∞.

(ii) (Kronecker Lemma) Let {xn, n ∈ N} be a sequence of numbers such that the
series ∑xn converges. Let {bn, n ∈ N} be an increasing sequence of positive
numbers such that limn→∞ bn = ∞. Then b−1

n ∑
n
i=1 bixi→ 0.

Proof. (Hall and Heyde, 1980, Section 2.6) 2

Proof (of Theorem 19.5.1).

(i) Let K an optimal kernel coupling of (P,P) as defined in (19.1.15). Set C̄ =
C×C. Then K(x,x′;∆) = (P∧P)(x,x′;X)≥ ε if x,x′ ∈C. Define V̄ (x,x′) =V (x)+
V (x′)− 1. Set f = Ψ2(φ ◦V ). Applying Theorem 19.2.1 and Lemma 19.5.2 with
r(n) =Ψ1(rφ (κn)) and W (x,x′) = f (x)+ f (x′) yields

∞

∑
k=0

r(k)d f (Pk(x, ·),Pk(x′, ·))≤
∞

∑
k=0

r(k)E(x,x′)[{ f (Xk)+ f (X ′k)}1{T > k}]

=
∞

∑
k=0

r(k)E(x,x′)[W (Xk,X ′k)1{T > k}]≤ ϑW̄r(x,x′) ,

(19.5.8)

where the function W̄r is defined in (19.5.4) and ϑ is a finite constant provided that
the quantity W̄ ∗r defined in (19.5.5) is finite. Since V̄ (x,x′) ≥ V (x)∨V (x′) and φ is
increasing, it also holds that

φ ◦V (x)+φ ◦V (x′)≤ 2φ ◦V̄ (x,x′) = 2κ
−1

φ̄ ◦V̄ (x,x′) .

Since (Ψ1,Ψ2) is a pair of inverse Young functions, this yields

W̄r(x,x′)≤ E(x,x′)

[
τC̄

∑
k=0

rφ (κk)

]
+E(x,x′)

[
τC̄

∑
k=0
{φ ◦V (Xk)+φ ◦V (X ′k)}

]

≤ E(x,x′)

[
τC̄

∑
k=0

rφ (κk)

]
+2κ

−1E(x,x′)

[
τC̄

∑
k=0

φ̄ ◦V̄ (Xk,X ′k)

]
.

Similarly,

W̄ ∗r ≤ sup
x,x′∈C

E(x,x′)

[
σC̄

∑
k=1

rφ (κk)

]
+2κ

−1 sup
x,x′∈C

E(x,x′)

[
σC̄

∑
k=1

φ̄ ◦V̄ (Xk,X ′k)

]
.

By Lemma 19.5.3 and Theorem 16.1.12 and since rφ ∈ Λ2 and rφ̄ (k) = κrφ (κk),
we have
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E(x,x′)

[
σC̄

∑
k=1

rφ (κk)

]
≤ rφ (κ)κ

−1E(x,x′)

[
σC̄−1

∑
k=0

κrφ (κk)

]

≤ rφ (κ)κ
−1V̄ (x,x′)+ b̄

κ−1r2
φ
(κ)

φ(1)
1C̄(x,x

′) ,

and

E(x,x′)

[
σC̄

∑
k=1

φ̄ ◦V̄ (Xk,X ′k)

]
≤ E(x,x′)

[
σC̄−1

∑
k=0

φ̄ ◦V̄ (Xk,X ′k)

]
+ sup

x,x′∈C
φ̄ ◦V̄ (x,x′)

≤ V̄ (x,x′)+ b̄1C̄(x,x
′)+2κ sup

x∈C
φ ◦V (x) .

Since V is bounded on C and V̄ ≥ 1, this yields W̄ ∗r < ∞ and there exists a constant
ϑ ′ such that

W̄r(x,x′)≤ ϑ
′V̄ (x,x′) .

Plugging this bound into (19.5.8) and integrating the resulting bound with respect
to the initial distributions yields (19.5.1).

(ii) Taking Ψ1(u) = u, Ψ2(v) = 1, ξ = δx and successively ξ ′ = δxP and ξ ′ = δx′ ,
we obtain, for all x,x′ ∈ X,

∞

∑
n=0

rφ (κn)dTV(δxPn,δxPn+1)< ∞ ,

∞

∑
n=0

rφ (κn)dTV(δxPn,δx′P
n)< ∞ .

This implies that for each x ∈ X, {Pn(x, ·), n≥ 0} is a Cauchy sequence inM1(X )
endowed with the total variation distance which is a complete metric space by The-
orem D.2.7. Therefore, there exists a probability measure π such that Pn(x, ·) con-
verges to π in total variation distance and π does not depend on the choice of x ∈ X.
Then for all A ∈ X and all x ∈ X, π(A) = limn→∞ Pn+1(x,A) = limn→∞ Pn(x,P1A) =
πP(A), showing that π is invariant. Moreover, if π̃ is an invariant probability mea-
sure, π̃(A) = π̃Pn(A) = limn→∞

∫
π̃(dx)Pn(x,A). Since Pn(x,A) is bounded and con-

verges to π(A) as n tends to infinity, Lebesgue’s dominated convergence theorem
shows that π̃(A) = π(A). Thus, the invariant probability measure is unique. Since
Dsg(V,φ ,b,C) holds and supx∈C V (x)<∞, Proposition 4.3.2 implies that π(φ ◦V )<
∞. Moreover, applying (19.5.1) with ξ ′ = ξ P (and noting that ξ PV ≤ ξ (V ) + b)
yields
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∞

∑
n=0

∆r(n)d f (ξ Pn,π)≤
∞

∑
n=0

∆r(n)
∞

∑
k=n

d f (ξ Pk,ξ Pk+1)

=
∞

∑
k=0

r(k)d f (ξ Pk,ξ Pk+1)< ϑξ (V ) ,

for some constant ϑ . This proves (19.5.2). Taking again Ψ1(u) = u and Ψ2(v) = 1,
we get

∞

∑
n=0

∆rφ (n)dTV(ξ Pn,π)< ∞ . (19.5.9)

Since n 7→ dTV(ξ Pn,π) is decreasing, Lemma 19.5.4 with xn = ∆rφ (n)dTV(ξ Pn,π)
and bn = dTV(ξ Pn,π)−1 implies that

lim
n→∞

b−1
n

n

∑
i=0

bixi = lim
n→∞

rφ (n)dTV(ξ Pn,π) = 0 .

(iii) Finally, if π(V )< ∞ then (19.5.3) follows from (19.5.1) with ξ ′ = π .

2

Remark 19.5.5. The pairs (r, f ) for which we can prove (19.5.1) or (19.5.3) are
obtained by interpolation between rφ and φ ◦V by means of pairs of inverse Young
functions. There is a noticeable trade-off between the rate of convergence to the
invariant probability and the size of functions which can be controlled at this rate:
the faster the rate, the flatter the function. This is in sharp contrast with the situation
where the kernel P is V -geometrically ergodic.

The assumption infCc φ ◦V > b is not restrictive if V is unbounded. Indeed,
if C ⊂ C′ then Dsg(V,φ ,b,C) implies Dsg(V,φ ,b,C′) and enlarging the set C in-
creases infCc φ ◦V . N

19.6 Exercises

19.1. Let α > β , ξ = Pn(α) and ξ ′= Pn(β ). Let (X ,Y ) be two independent random
variables such that X ∼ Pn(α) and Y ∼ Pn(β −α). Set X ′ = X +Y .

1. Show that (X ,X ′) is a coupling of (ξ ,ξ ′).
2. Show that this coupling is not optimal.

19.2. Let ε ∈ (0,1) and let ξ = Unif([0,1]), ξ ′ = Unif([ε,1+ ε]). Construct an op-
timal coupling of ξ and ξ ′.

19.3. Let ξ ,ξ ′ ∈M1(X ) be such that ξ ∧ξ ′(X) = ε ∈ (0,1). Let η ,η ′ be the prob-
ability measures defined in (19.1.3) and β ∈ C (η ,η ′). Let U be a Bernoulli random
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variables with mean ε , Z be a random variable independent of U with distribution
ε−1ξ ∧ξ ′ and (Y,Y ) be a random pair with distribution β , independent of U and Z.
Let (X ,X ′) be defined by

X = (1−U)Y +UZ , X ′ = (1−U)Y ′+UZ .

Show that (X ,X ′) is an optimal (for the Hamming distance) coupling of (ξ ,ξ ′).

19.4. Let ξ , ξ ′ be two probability measures on a measurable space (E,E ). Show
that for f ∈ Lp(ξ )∩Lp(ξ ′) we have

|ξ ( f )−ξ
′( f )| ≤ (‖ f‖Lp(ξ )+‖ f‖Lp(ξ ′))d

1/q
TV (ξ ,ξ ′) .

19.5. Let P be a Markov kernel on a X×X . Let ε ∈ (0,1). Show that ∆ (P)≤ 1−ε

if and only if there exists a kernel coupling K of (P,P) such that for all x,x′ ∈ X,

K(x,x′;∆)≥ ε . (19.6.1)

19.6. Let P be a Markov kernel on X×X . Assume that the state space X is an
(1,εν)-small set for P. Provide an alternative proof of Theorem 18.2.4 by coupling.

19.7. We consider Ehrenfest’s urn which was introduced in Exercise 1.11. Recall
that the chain {Xn, n ∈ N} counts the number of red balls in an urn containing red
and green balls. At each instant, a ball is randomly drawn and replaced by a ball of
the other color. It is a periodic chain with period 2. In order to simplify the discus-
sion, we will make it aperiodic by assuming that instead of always jumping from
one state to an adjacent one, it may remain at the same state with probability 1/2.

1. Write the associated Markov kernel P.
2. For simplicity, we only consider the case N even. Using Exercise 19.5, show

that ∆
(
PN/2

)
≤ 1− (2N)−N(N!/(N/2)!)2.

19.8. Consider the random scan Gibbs sampler for a positive distribution π on the
state space X = {0,1}d , i.e. the vertices of a d-dimensional hypercube (so that |X|=
2d). Given Xk = x = (x1, . . . ,xd), the next value Xk+1 = z = (z1, . . . ,zd) is obtained
by the following algorithm.

(a) Choose Ik+1 uniformly in {1,2, . . . ,d}, independently of the past;
(b) set zi = xi for i 6= Ik+1;
(c) for i = Ik+1, zk+1 is drawn independently of the past as a Bernoulli random

variable with success probability

πi,x(1) =
π(x1, . . . ,xi−1,1,xi+1, . . . ,xd)

π(x1, . . . ,xi−1,0,xi+1, . . . ,xd)+π(x1, . . . ,xi−1,1,xi+1, . . . ,xd)
.

Set πi,x(0) = 1−πi,x(1) and for i = 1, . . . ,d and ζ ∈ {0,1},

xζ

i = (x1, . . . ,xi−1,ζ ,xi+1, . . . ,xd) .
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The kernel P of this chain is given by P(x,xζ

i ) = d−1πi,x(ζ ) for i ∈ {1, . . . ,d} and
ζ ∈ {0,1} and P(x,z) = 0 if ∑

d
i=1 |xi− zi|> 1. Set

M =
minx∈X π(x)
maxx∈X π(x)

,

Assume for simplicity that d is even. We will prove that ∆
(
Pd/2

)
≤ 1− ε by a

coupling construction.

1. Show that for all x ∈ X, M/(1+M)≤ πi,x(ζ )≤ 1/(1+M).
2. Let {(Xk,X ′k), k ∈N} be two chains starting from x and x′. Update Xk into Xk+1

by the previous algorithm and if Ik+1 = i, then set I′k+1 = d− i+1 and proceed
with the update of X ′k. Give an expression of the kernel K of this Markov chain.

3. Compute a lower bound for the probability of coupling after d/2 moves.
4. Compute an upper bound of ∆

(
Pd/2

)
Let us now compare the bound of ∆

(
Pd/2

)
obtained by using the coupling construc-

tion and the bound that can be deduced from a uniform minoration of the Markov
kernel over the whole state space.

5. Show that X cannot be m-small if m < d.
6. Show that X is (d,Md−1d!d−dπ)-small.

19.9. Let (X,�) be a totally ordered set Assume that P is a stochastically monotone
Markov kernel on X×X and that there exists an increasing function V : X→ [1,∞)
such that the drift condition Dg(V,λ ,b) holds. Assume that there exists x0 ∈ X such
that (−∞,x0] is a (1,ε)-Doeblin set and λ +b/V (x0)< 1. Admit that P has an invari-
ant probability measure π such that π(V ) < ∞. Using the optimal kernel coupling
K described in Example 19.1.16 and the function V̄ defined by V̄ (x,x′) =V (x∨ x′),
show that for all ξ ∈M1,V (X ) and n≥ 1,

dV (ξ Pn,π)≤ {π(V )+ξ (V )+ b̄(1− λ̄ )−1
ρ

n (19.6.2)

with λ̄ = λ +b/V (x0), b̄ = λV (x0)+b and ρ as in (19.4.5).

19.7 Bibliographical notes

The use of coupling for Markov chain can be traced back to the early work of Doe-
blin (1938). The coupling methods has been then popularized to get rate of con-
vergence of Markov chains by Pitman (1974), Griffeath (1975), Griffeath (1978),
Lindvall (1979). The books Lindvall (1992) and Thorisson (2000) provide a very
complete account on coupling methods with many applications to Markov chains.

The coupling method to establish geometric ergodicity of general state space
Markov chains Theorem 19.4.1 is essentially taken from Rosenthal (1995b) with the
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minor improvement presented in Rosenthal (2002). The definition of the coupling
kernel and the change of measure formula Lemma 19.2.2 is taken from Douc et al
(2004b)). We have also borrowed some technical tricks that have appeared earlier in
Roberts and Tweedie (1999). The surveys Rosenthal (2001), Roberts and Rosenthal
(2004) contain a lot of examples on the use of coupling to assess the convergence of
MCMC algorithm.

The monotone coupling technique to study stochastically ordered Markov chain
using (Example 19.1.16) is inspired by the work of Lund and Tweedie (1996) (see
also Lund et al (1996) for extension to Markov processes). The details of the proofs
are nevertheless rather different.

Coupling construction has been used to establish subgeometric rate of conver-
gence in Douc et al (2006) and Douc et al (2007). Theorem 19.5.1 is adapted from
these two publications.

The paper Roberts and Rosenthal (2011) which presents a different coupling con-
struction adapted to the analysis of the independence sampler is also of great inter-
est.
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Chapter 20
Convergence in the Wasserstein distance

In the previous chapters, we obtained rates of convergence in the total variation
distance of the iterates Pn of an irreducible positive Markov kernel P to its unique
invariant measure π for π-almost every x ∈ X and for all x ∈ X if the kernel P is
irreducible, positive and Harris recurrent. Conversely, convergence in the total vari-
ation distance for all x∈X entails irreducibility and that π is a maximal irreducibility
measure.

Therefore, if P is not irreducible, convergence in the total variation distance can-
not hold and it is necessary to consider weaker distances on the space of probability
measures. For this purpose, as in Chapter 12, we will consider Markov kernels on
metric spaces and we will investigate the convergence of the iterates of the kernel
in the Wasserstein distances. We will start this chapter by a minimal introduction to
the Wasserstein distance in Section 20.1. The main tool will be the duality Theo-
rem 20.1.2 which requires the following assumption.

Throughout this chapter, unless otherwise indicated, (X,d) is a complete separable
metric space endowed with its Borel σ -field denoted X .

In Section 20.2, we will provide a criterion for the existence and uniqueness
of an invariant distribution which can be applied to certain non irreducible chains.
In the following sections, we will prove rates of convergence in the Wasserstein
distance. The geometric rates will be obtained in Sections 20.3 and 20.4 by methods
very similar to those used in Chapter 18. Subgeometric rates of convergence will be
obtained by a coupling method close to the one used in Section 19.5. In all these
results, small sets and Doeblin sets which irreducible chains do not possess are
replaced by sets in which the Markov kernel has appropriate contractivity properties
with respect to the Wasserstein distance. The drift conditions used in this chapter are
the same as those considered in Part III.

455
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20.1 The Wasserstein distance

Let c : X×X→R+ be a symmetric measurable function such that c(x,y) = 0 if and
only if x = y. Such a function c is called distance-like. Recall that C (ξ ,ξ ′) denotes
the set of couplings of two probability measures ξ and ξ ′ and define the possibly
infinite quantity Wc (ξ ,ξ

′) by

Wc

(
ξ ,ξ ′

)
= inf

γ∈C (ξ ,ξ ′)

∫
X×X

c(x,y)γ(dxdy) .

The quantity Wc (ξ ,ξ
′) wil be called the Wasserstein distance between ξ and ξ ′

associated to the cost function c. This is actually an abuse of terminology, since Wc

may not be a distance when the cost function c does not satisfy the triangular in-
equality. However, when c = d, we will see that Wd is actually a distance on an
appropriate subset ofM1(X ). The main examples of general cost functions are the
following:

• c(x,y) = dp(x,y) for p≥ 1.
• c(x,y) = d(x,y){V (x)+V (y)} where V is a measurable nonnegative function.

An important feature of the Wasserstein distance is that it is achieved by one partic-
ular coupling.

Theorem 20.1.1. Let c : X×X → R+ be a symmetric, nonnegative lower semi-
continuous function. Then there exists a probability measure γ ∈ C (ξ ,ξ ′) such that

Wc

(
ξ ,ξ ′

)
=
∫

X×X
c(x,y)γ(dxdy) . (20.1.1)

A coupling γ ∈ C (ξ ,ξ ′) which satisfies (20.1.1) is called optimal with respect
to Wc.

Proof (of Theorem 20.1.1). For n ≥ 1, define an = Wc (ξ ,ξ
′) + 1/n. Then there

exists γn ∈ C (ξ ,ξ ′) such that

Wc

(
ξ ,ξ ′

)
≤
∫

X×X
c(x,y)γn(dxdy)≤ an .

Since (X,d) is a complete separable metric space, the probability measures ξ and ξ ′

are tight by Prokhorov’s theorem C.2.2, i.e. for every ε > 0, there exist a compact
set K such that ξ (K)≥ 1− ε/2 and ξ ′(K)≥ 1− ε/2. Since γn ∈ C (ξ ,ξ ′) for each
n ∈ N, this yields

γn((K×K)c)≤ γn((Kc×X)∪ (X×Kc))≤ ξ (Kc)+ξ
′(Kc)≤ ε .
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This proves that the sequence {γn, n ∈ N∗} is tight hence relatively compact by
Theorem C.2.2. Since C (ξ ,ξ ′) is closed for the topology of weak convergence,
there exist ζ ∈ C (ξ ,ξ ′) and a subsequence {γnk} which converges weakly to ζ .
Since c is lower-semicontinuous and bounded from below (by 0), the Portmanteau
Lemma yields∫

X×X
c(x,y) ζ (dxdy)≤ liminf

k→∞

∫
X×X

c(x,y) γnk(dxdy)≤ lim inf
k→∞

ank = Wc

(
ξ ,ξ ′

)
.

Since the converse inequality holds by definition, this proves that the coupling ζ

achieves the Wasserstein distance. 2

Let ξ ,ξ ′ ∈M1(X ). By Theorem 19.1.6 and Proposition D.2.4, the total variation
distance satisfies

dTV(ξ ,ξ
′) = inf

γ∈C (ξ ,ξ ′)

∫
X×X

1{x 6=x′}γ(dxdx′) = sup
f∈Fb(X)

osc( f )≤1

|ξ ( f )−ξ
′( f )| . (20.1.2)

Since the total variation distance is the Wasserstein distance relatively to the Ham-
ming distance 1{x 6= y}, a natural question is whether a duality formula similar to
(20.1.2) continues to hold for Wc for more general cost functions c. The answer
is positive if the cost function c is lower semi-continuous. The following duality
theorem will not be proved and we refer to Section 20.7 for references.

Theorem 20.1.2. Let c : X×X → R+ be a symmetric, nonnegative lower semi-
continuous function. Then, for all probability measures on X, we have

Wc

(
ξ ,ξ ′

)
= sup

{
ξ ( f )+ξ

′(g) : f ,g ∈ Cb(X) , f (x)+g(x′)≤ c(x,x′)
}
.

(20.1.3)

In the case c = d, the duality formula (20.1.3) can be expressed in terms of
Lipschitz functions. Let Lipd(X) be the set of Lipschitz functions on X and for
f ∈ Lipd(X),

| f |Lip(d) = sup
x 6=x′

f (x)− f (x′)
d(x,x′)

.

Then,

Wd

(
ξ ,ξ ′

)
= sup

{
ξ ( f )−ξ

′( f ) : f bounded , | f |Lip(d) ≤ 1
}
. (20.1.4)

To see that (20.1.4) follows from (20.1.3), consider f ,g ∈ Cb(X) such that f (x)+
g(x′)≤ d(x,x′). We will show that there exists a bounded function ϕ ∈ Lipd(X) such
that
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f ≤ ϕ , g≤−ϕ . (20.1.5)

Indeed, define successively

f̃ (x) = inf
x′∈X

{
d(x,x′)−g(x′)

}
, (20.1.6)

g̃(x′) = inf
x∈X

{
d(x,x′)− f̃ (x)

}
, (20.1.7)

ϕ(x) =
[

f̃ (x)− g̃(x)
]
/2 . (20.1.8)

Since f (x)≤ d(x,x′)−g(x′) for all x′ ∈X by assumption, the definition of f̃ implies
that f ≤ f̃ ≤ −g. Since f and g are bounded, this implies that f̃ is bounded. By
definition, g(x′) ≤ d(x,x′)− f̃ (x) for all x,x′ ∈ X, thus g ≤ g̃ ≤ − f̃ . Thus g̃ is also
bounded.

It follows from (20.1.7) that for all x,x′ ∈ X,

f̃ (x)+ g̃(x′)≤ d(x,x′) .

Choosing x = x′, we get f̃ (x)+ g̃(x)≤ 0. By definition of ϕ , this implies f̃ ≤ ϕ and
g̃≤−ϕ .

Altogether, we have proved that f ≤ f̃ ≤ ϕ and g≤ g̃≤−ϕ thus (20.1.5) holds.
It remains to show that ϕ is a bounded function in Lipd(X). In view of the definition
(20.1.8) of ϕ , it suffices to show that f̃ , g̃ belong to Lipd(X). We will only prove
f̃ ∈ Lipd(X) since the same arguments for g̃ are simlilar. For all x0,x1,x ∈ X, the
triangular inequality yields

d(x0,x)−g(x)≤ d(x0,x1)+d(x1,x)−g(x) .

Taking the infimum with respect to x ∈ X on both sides of the inequality yields
f̃ (x0)≤ d(x0,x1)+ f̃ (x1). Since x0,x1 are arbitrary, this proves that f̃ ∈ Lipd(X).

For a general cost function c, Lipc(X) is the set of c-Lipschitz functions, i.e.
functions f for which there exists a finite constant ϑ such that for all x,x′ ∈ X,
| f (x)− f (x′)| ≤ ϑc(x,x′). The c-Lipschitz norm is then defined by

| f |Lip(c) = sup
x,x′∈X
x 6=x′

f (x)− f (x′)
c(x,x′)

.

Then the duality Theorem 20.1.2 yields

|ξ ( f )−ξ
′( f )| ≤ | f |Lip(c) Wc (ξ ,ξ )

′ . (20.1.9)

However, there is no characterization similar to (20.1.4) for general cost functions.
As shown in Theorem 19.1.12, there exists a kernel coupling of a Markov kernel

P with itself which is optimal for the total variation distance, that is a kernel coupling
K of (P,P) such that, for all (x,x′) ∈ X×X,
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dTV(P(x, ·),P(x′, ·)) =
∫

K(x,x′;dydy′)1
{

y 6= y′
}
.

We now investigate the existence of coupling kernel associated general cost func-
tions. As for Theorem 20.1.2, the following result will not be proved and we again
refer to Section 20.7 for references.

Theorem 20.1.3. Let c : X×X → R+ be a symmetric, nonnegative lower semi-
continuous function. There exists a kernel coupling K of (P,P) such that for all
(x,x′) ∈ X×X,

Wc

(
P(x, ·),P(x′, ·)

)
=
∫

X×X
c(y,y′)K(x,x′;dydy′) . (20.1.10)

Consequently, the application (x,x′) 7→Wc (P(x, ·),P(x′, ·)) is measurable.

A kernel coupling of (P,P) which satisfies (20.1.10) is said to be optimal with
respect to the cost function c.

The existence of an optimal kernel coupling (satisfying (20.1.10)) yields the fol-
lowing corollary.

Corollary 20.1.4 For all probability measures ξ ,ξ ′ and γ ∈ C (ξ ,ξ ′),

Wc

(
ξ P,ξ ′P

)
≤
∫

X×X
Wc

(
P(x, ·),P(x′, ·)

)
γ(dxdx′) . (20.1.11)

Moreover, if K is a kernel coupling of (P,P), then for all n ∈ N,

Wc

(
ξ Pn,ξ ′Pn)≤ ∫

X×X
Knc(x,x′)γ(dxdx′) . (20.1.12)

Proof. Let K be an optimal kernel coupling of (P,P) for Wc. Then, for γ ∈C (ξ ,ξ ′),
γK is a coupling of ξ P and ξ ′P and (20.1.11) follows from

Wc

(
ξ P,ξ ′P

)
≤
∫

X×X
c(u,v)γK(dudv) =

∫
X×X

γ(dxdx′)
∫

X×X
c(u,v)K(x,x′;dudv)

=
∫

X×X
Wc

(
P(x, ·),P(x′, ·)

)
γ(dxdx′) .

If K is a kernel coupling of (P,P), then for all n ∈ N, Kn is a kernel coupling of
(Pn,Pn) and γKn is a coupling of (ξ Pn,ξ ′Pn); (20.1.12) follows. 2

Throughout the rest of the chapter, the following assumption on the cost function
c will be in force.
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H 20.1.5 The function c : X×X→ R+ is symmetric, lower semi-continuous and
c(x,y) = 0 if and only if x = y. Moreover, there exists an integer p ≥ 1 such that
dp ≤ c.

If c is symmetric, lower semi-continuous and distance-like, the existence of an
optimal coupling yields that Wc is also distance-like i.e. Wc (ξ ,ξ

′) = 0 implies
ξ = ξ ′.

Before going further, we briefly recall the essential definitions and properties of
the Wasserstein distance associated to the particular cost functions c = dp.

Definition 20.1.6 For p≥ 1 and ξ ,ξ ′ ∈M1(X ), the Wasserstein distance of order
p between ξ and ξ ′ denoted by Wd,p(ξ ,ξ

′), is defined by

Wp
d,p

(
ξ ,ξ ′

)
= inf

γ∈C (ξ ,ξ ′)

∫
X×X

dp(x,y)γ(dxdy) , (20.1.13)

where C (ξ ,ξ ′) is the set of coupling of ξ and ξ ′. For p = 1, we simply write Wd.

The Wasserstein distance can be expressed in terms of random variables as:

Wd,p
(
ξ ,ξ ′

)
= inf

(X ,X ′)∈C (ξ ,ξ ′)

{
E
[
dp(X ,X ′)

]}1/p
,

where (X ,X ′) ∈ C (ξ ,ξ ′) means as in Section 19.1.1 that the distribution of the pair
(X ,X ′) is a coupling of ξ and ξ ′. By Hölder’s inequality, it obviously holds that if
p≤ q, then for all ξ ,ξ ′ ∈M1(X ),

Wd,p
(
ξ ,ξ ′

)
≤Wd,q

(
ξ ,ξ ′

)
. (20.1.14)

If d(x,y) = 1{x 6= y}, then Theorem 19.1.6 shows that Wd = dTV. Similarly, if we
choose the distance d(x,y) = {V (x)+V (y)}1{x 6= y}, Theorem 19.1.7 shows that
the associated distance is the distance associated to the V -norm. Hence, the Wasser-
stein distance can be seen as an extension of the total variation distance to more
general distances d.

It is easily seen that Wd,p (δx,δy) = d(x,y) for all x,y ∈ X and for ξ ∈M1(X ),

Wp
d,p (δx,ξ ) =

∫
X

dp(x,y)ξ (dy) ∈ [0,∞] . (20.1.15)

Thus, the distance Wd,p (ξ ,ξ
′) can be infinite.



20.1 The Wasserstein distance 461

Definition 20.1.7 (Wasserstein space) The Wasserstein space of order p is defined
by

Sp(X,d) =

{
ξ ∈M1(X ) :

∫
X

dp(x,y) ξ (dy)< ∞ for all x ∈ X

}
. (20.1.16)

For p = 1, we simply write S(X,d).

Of course, if d is bounded then Sd,p(X,d)=M1(X ). If d is not bounded, then the
distance d̃ = d∧m defines the same topology as d on X and (X, d̃) is still complete
and separable. Applying the Minkowski inequality, we have{∫

X
dp(x,y) ξ (dy)

}1/p

≤ d(x0,x)+
{∫

X
dp(x0,y) ξ (dy)

}1/p

< ∞ .

Therefore
∫

X dp(x,y) ξ (dy) is finite for one x ∈ X if and only if it is finite for all
x ∈ X. If ξ ,ξ ′ ∈M1(X ) and γ ∈ C (ξ ,ξ ′), then for all x0 ∈ X,{∫

X×X
dp(x,y)γ(dxdy)

}1/p

≤
{∫

X
dp(x0,x)ξ (dx)

}1/p

+

{∫
X

dp(x0,y)ξ ′(dy)
}1/p

.

This implies that for all ξ ,ξ ′ ∈ Sp(X,d),

Wd,p
(
ξ ,ξ ′

)
≤
{∫

X
dp(x0,x)ξ (dx)

}1/p

+

{∫
X

dp(x0,y)ξ ′(dy)
}1/p

< ∞ .

The Wasserstein space and distance have the following properties.

Theorem 20.1.8. (Sp(X,d),Wd,p) is a complete separable metric space and the dis-
tributions with finite support are dense in Sp(X,d). If {µn, n ∈ N} is a sequence of
probability measures in Sp(X,d), the following statements are equivalent:

(i) limn→∞ Wd,p (µn,µ0) = 0;

(ii) µn
w⇒ µ0 and limM→∞ limsupn→∞

∫
X dp(x0,x)1{d(x0,x)> M}µn(dx) = 0.

See Section 20.A for a proof. If d1,d2 are two distances on X such that d1 ≤ d2,
then it follows from the definition that Wd1,p ≤Wd2,p. In particular, if d ≤ 1, then
Wd ≤ dTV. An important consequence is that the topology induced by the Wasser-
stein distance is coarser than the topology of total variation when the distance d
is bounded. This means that more sequences will converge in the Wasserstein dis-
tance than in total variation. This suits our purpose to study non irreducible Markov
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kernels whose iterates may not converge in total variation to the invariant probabil-
ity. When the distance d is not bounded, neither convergence implies the other (see
Exercise 20.1).

20.2 Existence and uniqueness of the invariant probability
measure

In this section, we will provide a sufficient condition for the existence and unique-
ness of an invariant probability measure. We have already obtained such results
under the assumption that the kernel is irreducible. In the next results, we do not
assume irreducibility.

Theorem 20.2.1. Assume that H 20.1.5 and the following conditions hold.

(i) There exist a kernel coupling K of (P,P), a set C̄ ∈ X ⊗X , a measurable
function V̄ : X×X→ [0,∞) and constants (ε, b̄)∈ (0,1)×(0,∞) such that c≤ V̄
and

Kc≤ (1− ε1C̄)c , KV̄ +1≤ V̄ + b̄1C̄ . (20.2.1)

(ii) There exist x0 ∈ X, a non decreasing concave function ψ : [0,∞)→ [0,∞) such
that limv→∞ ψ(v) = ∞, a subsequence {nk, k ∈N} such that limk→∞ nk = ∞ and

sup
k∈N

Pnk(ψ ◦Vx0)(x0)< ∞ , PVx0(x0)< ∞ , (20.2.2)

where Vx0(x) = V̄ (x0,x).

Then P admits a unique invariant probability measure π and for all ξ ∈M1(X ),

lim
n→∞

Wc∧1 (ξ Pn,π) = 0 . (20.2.3)

Proof. Replacing if needed V̄ by V̄ +1 in (20.2.1), we assume that V̄ ≥ 1. For n∈N,
set Sn = V̄ +n. Then (20.2.1) implies

KSn+1 ≤ Sn + b̄1C̄ ≤ (1+ b̄1C̄)Sn .

Pick α ∈ (0,1) such that (1− ε1C̄)
1−α(1+ b̄1C̄)

α ≤ 1. Hölder’s inequality yields
for all n≥ 0,

K(c1−α Sα
n+1)≤ (Kc)1−α(KSn+1)

α ≤ c1−α Sα
n .

Applying the previous inequality repeatedly yields

nα Knc1−α ≤ Kn(c1−α Sα
n )≤ c1−α Sα

0 = c1−αV̄ α . (20.2.4)
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This implies that

lim
n→∞

[Kn(c∧1)](x,x′)≤ lim
n→∞

Knc1−α(x,x′) = 0 ,

for all x,x′ ∈ X. Since moreover Kn(c∧1)≤ 1, we obtain by Lebesgue’s dominated
convergence theorem that for all ξ ,ξ ′ ∈M1(X ) and γ ∈ C (ξ ,ξ ′),

lim
n→∞

∫
X×X

[Kn(c∧1)](x,x′)γ(dxdx′) = 0 .

Combining this limit with Corollary 20.1.4 yields

lim
n→∞

Wc∧1
(
ξ Pn,ξ ′Pn)= 0 . (20.2.5)

If π and π ′ are two invariant probability measures, (20.2.5) yields Wc∧1 (π,π
′) = 0

which implies that π = π ′ since c∧1 is lower semicontinuous and distance-like.
We now prove that P admits at least one invariant probability measure. To this

end, we will find a subsequence of {Pn(x0, ·), n ∈ N} which converges weakly to a
probability measure π and we will show that π = πP. For M > 0, set AM = {Vx0 ≤
M} and let γ ∈ C (δx0 ,δx0Pnk) where the sequence {nk} is defined in (ii). Applying
successively Corollary 20.1.4, the bound (20.2.4) combined with c≤ V̄ and Kn(c∧
1)≤ 1 yields

Wc∧1
(
Pn(x0, ·),Pn+nk(x0, ·)

)
≤
∫ (

1X×AM
(x,y)+1X×Ac

M
(x,y)

)
Kn(c∧1)(x,y)γ(dxdy)

≤ n−α
γ(V̄1X×AM

)+ γ(X×Ac
M)

= n−α Pnk(Vx01AM
)(x0)+Pnk(1Ac

M
)(x0) . (20.2.6)

Replacing ψ by ψ−ψ(0) if necessary, we may assume that ψ(0) = 0. In this case,
the function ψ being concave, u 7→ ψ(u)/u is non increasing, or equivalently, u 7→
u/ψ(u) is non decreasing. This implies Vx0 ≤ Mψ ◦Vx0/ψ(M) on AM = {Vx0 ≤
M}. In addition, Ac

M ⊂ {ψ ◦Vx0 > ψ(M)}. Therefore, writing Mψ = supk∈NPnk(ψ ◦
Vx0)(x0), which is finite by assumption (20.2.2), we obtain

Pnk(Vx01AM
)(x0)≤

MMψ

ψ(M)
, Pnk1Ac

M
(x0)≤

Pnk(ψ ◦Vx0)(x0)

ψ(M)
≤

Mψ

ψ(M)
.

Taking now M = nα and plugging these inequalities into (20.2.6) yield: for all n,k ∈
N,

Wc∧1
(
Pn(x0, ·),Pn+nk(x0, ·)

)
≤ 2Mψ/ψ(nα) .

Set u0 = 1, for k ≥ 1, uk = inf
{

n` : ψ(nα
` )> 2k

}
and mk = ∑

k
i=0 ui. Then,
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Wc∧1 (P
mk(x0, ·),Pmk+1(x0, ·))≤ 2Mψ/ψ(mα

k )≤ 2Mψ/ψ(uα
k )≤ 2−k+1Mψ .

Unfortunately, Wc∧1 is not a metric, but since (d∧1)p ≤ c∧1, the previous inequal-
ity shows that {Pmk(x0, ·), k ∈ N} is a Cauchy sequence of probability measures in
the complete metric space (M1(X ),Wd∧1,p); see Theorem 20.1.8. Therefore, there
exists a probability measure π such that limk→∞ Wd∧1,p (P

mk(x0, ·),π) = 0. It re-
mains to show that π = πP. First note that Corollary 20.1.4, Jensen’s inequality and
(20.2.1) imply for all ξ ,ξ ′ ∈M1(X ),

Wc∧1
(
ξ P,ξ ′P

)
≤ inf

γ∈C (ξ ,ξ ′)

∫
X×X

K(c∧1)(x,x′)γ(dxdx′)

≤ inf
γ∈C (ξ ,ξ ′)

∫
X×X

[Kc(x,x′)∧1]γ(dxdx′)

≤ inf
γ∈C (ξ ,ξ ′)

∫
X×X

[c(x,x′)∧1]γ(dxdx′) = Wc∧1
(
ξ ,ξ ′

)
.

Combining this inequality with Wd∧1,p (ξ ,ξ
′)≤ [Wc∧1 (ξ ,ξ

′)]1/p and the triangular
inequality for the metric Wd∧1,p yields

Wd∧1,p (π,πP)

≤Wd∧1,p (π,P
mk(x0, ·))+Wd∧1,p

(
Pmk+1(x0, ·),πP

)
+Wd∧1,p

(
Pmk(x0, ·),Pmk+1(x0, ·)

)
≤ 2 [Wc∧1 (π,P

mk(x0, ·))]1/p +
[
Wc∧1

(
Pmk(x0, ·),Pmk+1(x0, ·)

)]1/p
.

We have seen that the first term of the right-hand side converges to 0. The second
term also converges to 0 by applying (20.2.5) to ξ = δx0 and ξ ′ = δx0P. Finally,
Wd∧1,p (π,πP) = 0 which implies π = πP. The proof of (20.2.3) is then completed
by applying (20.2.5) with ξ ′ = π . 2

Remark 20.2.2. Let us give a sufficient condition for the condition (ii) of Theo-
rem 20.2.1. Assume there exist a measurable function W : X→ [0,∞) and a constant
b′such that

PW +ψ ◦Vx0 ≤W +b′ . (20.2.7)

Then, by Theorem 4.3.1,

n−1

∑
k=0

Pk
ψ ◦Vx0(x0)≤W (x0)+nb′

which yields after dividing by n,

sup
n≥1

n−1
n−1

∑
k=0

Pk
ψ ◦Vx0(x0)≤W (x0)+b′ .
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Therefore, there exists an infinite number of nk such that Pnk ψ ◦Vx0(x0)≤W (x0)+
b′+ 1 and (20.2.2) holds. In particular, if the function V̄ that appears in (20.2.1)
is of the form V̄ (x,x′) = V (x)+V (x′)− 1 and if V satisfies the subgeometric drift
condition PV +ψ ◦V ≤V + b̃1C̃, then (20.2.7) holds with W =V , b′ = ψ ◦V (x0)−
ψ(1)+ b̃. Indeed, by concavity of ψ , we have ψ(a+b−1)−ψ(a)≤ ψ(b)−ψ(1)
for a≥ 1 and b≥ 0. Then,

PW (x)+ψ ◦Vx0(x) = PV (x)+ψ(V (x)+V (x0)−1)
≤ PV (x)+ψ ◦V (x)+ψ ◦V (x0)−ψ(1)

≤V (x)+ b̃1C̃(x)+ψ ◦V (x0)−ψ(1)≤W (x)+b′ .

20.3 Uniform convergence in the Wasserstein distance

Theorem 20.2.1 provides sufficient conditions for the convergence of ξ Pn to the in-
variant probability measure π with respect to Wc∧1 but it does not give information
on the rate of convergence. We now turn to conditions that imply either geometric
or subgeometric decreasing bounds. We start by introducing the Dobrushin coeffi-
cient associated to a cost function c. This is a generalisation of the V -Dobrushin
coefficient seen in Definition 18.3.2.

Definition 20.3.1 (c-Dobrushin Coefficient) Let P be a Markov kernel on X×X .
The c-Dobrushin coefficient ∆c (P) of P is defined by

∆c (P) = sup
{

Wc (ξ P,ξ ′P)
Wc (ξ ,ξ

′)
: ξ ,ξ ′ ∈M1(X ) , Wc

(
ξ ,ξ ′

)
< ∞ , ξ 6= ξ

′
}

.

For p≥ 1, we write ∆d,p (P) =
[
∆dp (P)

]1/p. If ∆c (P)< 1, the Markov kernel P is
said to be Wc-uniformly ergodic.

Contrary to the Dobrushin coefficient relative to the total variation distance in-
troduced in Definition 18.2.1 which always satisfies ∆(P) ≤ 1, the c-Dobrushin
coefficient is not necessarily finite. From the definition, for all ξ ,ξ ′ ∈ M1(X ),
Wc (ξ P,ξ ′P) ≤∆c (P)Wc (ξ ,ξ

′) holds even if Wc (ξ ,ξ
′) = ∞ (using the conven-

tion 0×∞ = 0).
The measurability of the optimal kernel coupling (see Theorem 20.1.3) yields

the following expression for the c-Dobrushin coefficient. This result parallels Lem-
mas 18.2.2 and 18.3.3.

Lemma 20.3.2 Let P be a Markov kernel on X×X . Then,
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∆c (P) = sup
x 6=x′

Wc (P(x, ·),P(x′, ·))
c(x,x′)

. (20.3.1)

Proof. Let the right-hand side of (20.3.1) be denoted by ∆̃c (P). If ∆̃c (P) = 0,
then P(x, ·) = P(x′, ·) for all x 6= x′, which clearly implies ∆c (P) = 0 = ∆̃c (P).
We now assume ∆̃c (P) > 0. Since Wc (δx,δx′) = c(x,x′) for all x,x′ ∈ X, we have
∆̃c (P) ≤∆c (P). To prove the converse inequality, let ξ ,ξ ′ ∈M1(X ) and take an
arbitrary γ ∈ C (ξ ,ξ ′). Applying Corollary 20.1.4, we obtain

Wc

(
ξ P,ξ ′P

)
≤
∫

X×X
γ(dxdx′)Wc

(
P(x, ·),P(x′, ·)

)
≤ ∆̃c (P)

∫
X×X

c(x,x′)γ(dxdx′) .

This yields Wc (ξ P,ξ ′P) ≤ ∆̃c (P)Wc (ξ ,ξ
′). Since ξ and ξ ′ are arbitrary, this in

turn implies that ∆c (P)≤ ∆̃c (P). 2

If ∆c (P)< ∞ and f ∈ Lipc(X), then by (20.1.9) P f ∈ Lipc(X) and

|P f |Lip(c) ≤∆c (P) | f |Lip(c) . (20.3.2)

This implies

sup
{
|P f |Lip(c) : f ∈ Lipc(X), | f |Lip(c) ≤ 1

}
≤∆c (P) .

Equality holds in the above expression if c is a distance by the duality (20.1.4) but
is not true for a general cost function c.

Proposition 20.3.3 Let P and Q be two Markov kernels on (X,X ). Then
∆c (PQ)≤∆c (P)∆c (Q).

Proof. For ξ ,ξ ′ ∈M1(X ), we have, by definition

Wc

(
ξ PQ,ξ ′PQ

)
≤∆c (Q)Wc

(
ξ P,ξ ′P

)
≤∆c (Q)∆c (P)Wc

(
ξ ,ξ ′

)
.

2

If the Dobrushin coefficient of an iterate of the kernel P is strictly contracting then
we can adapt the Fixed Point Theorem 18.1.1 to obtain the existence and uniqueness
of the invariant probability measure and a uniform geometric rate of convergence.

Theorem 20.3.4. Let P be a Markov kernel on X×X , c be a cost function satisfying
H 20.1.5 and x0 ∈ X be such that

∫
c(x0,x)P(x0,dx) < ∞. Assume that there exist
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an integer m ≥ 1 and a constant ε ∈ [0,1) such that ∆c (P
m) ≤ 1− ε . Assume in

addition that ∆c (P)∨∆d,p (P)< ∞ for all p≥ 0 such that dp ≤ c.
Then P admits a unique invariant probability measure π . Moreover, π ∈ Sp(X,d)

and for all ξ ∈M1(X) and n ∈ N,

Wdp (ξ Pn,π)≤Wc (ξ Pn,π)≤ κ(1− ε)bn/mcWc (ξ ,π) , (20.3.3)

with κ = 1∨ sup1≤r<m ∆c (P
r).

Proof. The proof is adapted from Theorem 18.1.1, which cannot be directly ap-
plied since c is not necessarily a distance. For n ∈ N, write n = mbn/mc+ r where
r ∈ {0, . . . ,m− 1}. Using dp ≤ c and the submultiplicativity property of Proposi-
tion 20.3.3 yields

Wdp
(
ξ Pn,ξ ′Pn)≤Wc

(
ξ Pn,ξ ′Pn)≤∆c (P

n)Wc

(
ξ ,ξ ′

)
≤ κ [∆c (P

m)]bn/mcWc

(
ξ ,ξ ′

)
≤ κ(1− ε)bn/mcWc

(
ξ ,ξ ′

)
. (20.3.4)

Since Wc

(
δx0 ,δx0P

)
=
∫

c(x0,x)P(x0,dx) < ∞ by assumption, applying (20.3.4)
with (ξ ,ξ ′) = (δx0 ,δx0P), we obtain

Wdp
(
δx0Pn,δx0Pn+1)≤ κ(1− ε)bn/mc

∫
c(x0,x)P(x0,dx)< ∞ . (20.3.5)

Consequently, {Pn(x0, ·), n ∈ N} is a Cauchy sequence of probability measures in
the complete metric space (Sp(X,d),Wd,p). Therefore, there exists a probability
measure π ∈ Sp(X,d) such that limn→∞ Wd,p

(
δx0Pn,π

)
= 0. Now, for all n≥ 1,

Wd,p (πP,π)≤Wd,p
(
πP,δx0Pn+1)+Wd,p

(
δx0Pn+1,δx0Pn)+Wd,p

(
δx0Pn,π

)
≤
(
∆d,p (P)+1

)
Wd,p

(
π,δx0Pn)+Wd,p

(
δx0Pn+1,δx0Pn)→ 0

as n→ 0. This proves that π = πP. Applying (20.3.4) with ξ ′ = π yields (20.3.3).
To complete the proof, it remains to show the uniqueness of the invariant probability
measure. For all x ∈ X, taking ξ = δx0 and ξ ′ = δx in (20.3.4) and combining it with
limn→∞ Wd,p

(
δx0Pn,π

)
= 0 yields

lim
n→∞

Wd,p (δxPn,π) = 0 , for all x ∈ X .

This in turn implies that δxPn w⇒ π for all x ∈ X and consequently, for all bounded
continuous functions f and all x ∈ X, limn→∞ Pn f (x) = π( f ). By the dominated
convergence theorem, we have for all bounded continuous function f ,

π
′( f ) = π

′Pn( f ) =
∫

π
′(dx)Pn f (x)→ π( f ) ,
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as n→ ∞. Thus π = π ′ and the proof is completed. 2

In view of Theorem 20.1.3 and Lemma 20.3.2, the way to prove that ∆c (P) < 1
is to construct, for all x,x′ ∈ X, a pair of random variables (Xx

1 ,X
x′
1 ) on a probabil-

ity space (Ω ,F ,P) whose joint distribution is a coupling of P(x, ·) and P(x′, ·). If
there exists ε ∈ (0,1) such that E

[
c(Xx

1 ,X
x′
1 )
]
≤ (1−ε)c(x,x′) for all x,x′ ∈ X, then

∆c (P)≤ 1− ε . The following examples provide two different types of coupling.
We will apply Theorem 20.3.4 either to c = d or to c = dp.

Example 20.3.5. Let {Zn, n ∈ N∗} be a sequence of i.i.d. Bernoulli random vari-
ables with mean 1/2, independent of the random variable X0 with values in [0,1]
and define the Markov chain {Xn, n ∈ N} on [0,1] by

Xn+1 =
1
2
(Xn +Zn+1) ,n≥ 0 .

Let P be the Markov kernel of the chain {Xn}. For x,y ∈ [0,1] such that x− y is
not rational number then Pn(x, ·) and Pn(y, ·) are singular for every n ≥ 0, hence
dTV(P

n(x, ·),Pn(y, ·)) = 1 thus ∆ (P) = 1. For x,y ∈ [0,1],

Wd,p (P(x, ·),P(y, ·))≤ {E [|(x+Z1)/2− (y+Z1)/2|p]}1/p =
1
2
|x− y| .

This proves that ∆d,p (P) ≤ 1/2. Since Wd (P(x, ·),P(y, ·)) ≤Wd,p (P(x, ·),P(y, ·))
for all p ≥ 1, it suffices to prove that Wd (P(x, ·),P(y, ·))≥

1
2 |x− y|. By the duality

Theorem 20.1.2, a lower bound is given by P f (x)−P f (y) with f (x) = x, that is

Wd (P(x, ·),P(y, ·))≥ P f (x)−P f (y) =
x− y

2
.

Altogether, we have proved that Wd,p (P(x, ·),P(y, ·)) =Wd (P(x, ·),P(y, ·)) =
1
2 |x−

y|. Thus ∆d,p (P) = 1/2 for all p≥ 1. J

The coupling method used in the previous example consists in using the same
sequence {Zn} for the two chains starting from different points. This simple idea
may not always be successful as illustrated in Exercise 20.7.

We conclude this section by applying this result to the random iterative functions
introduced in Section 2.1 and defined on X by the recursion

Xk = f (Xk−1,Zk) , k ≥ 1 , (20.3.6)

where f : X×Z→ X is a measurable function, {Zk, k ∈ N} is an i.i.d. sequence of
random elements defined on a probability space (Ω ,F ,P) taking values in (Z,Z ),
independent of the initial condition X0. Hereafter, we denote

f (x,z) = fz(x) , for all (x,z) ∈ X×Z .

It is assumed that the map (z,x) 7→ fz(x) is measurable with respect to the product
sigma-field on Z ⊗X . Denote by µ the distribution of Z0. The process {Xk, k ∈N}
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is a Markov chain with Markov kernel P given for x ∈ X and h ∈ F+(X) by

Ph(x) = E
[
h( fZ0(x))

]
=
∫

Z
h( f (x,z))µ(dz) . (20.3.7)

For x ∈ X, define the forward chain {Xx
n , n ∈N} and the backward process {Y x

n , n ∈
N} starting from Xx

0 = Y x
0 = x by

Xx
k = fZk ◦ · · · ◦ fZ1(x0) , (20.3.8)

Y x
k = fZ1 ◦ · · · ◦ fZk(x0) . (20.3.9)

By varying the starting point x but using the same maps, we define a family of
Markov chains, one for each starting state, on the same probability space. We can
thus consider the joint behavior of the Markov chains started at x and y and the
distance d(Xx

n ,X
y
n ) between the chains after n-time steps. An important property is

that since {Zk, k ∈ N} is an i.i.d. sequence, Y x
k has the same distribution as Xx

k for
each k ∈ N. For any random variable Y , we write ‖Y‖p = {E [|Y |p]}1/p.

Theorem 20.3.6. Assume that there exists ε ∈ (0,1), p≥ 1 and x0 ∈ X such that for
all (x,y) ∈ X×X ∥∥d( fZ0(x), fZ0(y))

∥∥
p ≤ (1− ε)d(x,y) , (20.3.10)

Assume moreover that there exists x0 ∈ X such that∥∥d(x0, fZ0(x0))
∥∥

p < ∞ . (20.3.11)

Let P be the Markov kernel given by (20.3.7). Then, P(x, ·) ∈ S(X, p) for all x ∈ X,
∆d,p (P) ≤ 1− ε and the unique invariant probability π is in Sp(X,d). Moreover,
for all x ∈ X, the sequence { fZ1 ◦ · · · ◦ fZn(x),n ∈ N} converges almost surely as n
tends to infinity and in the p-th mean to a random variable Y∞ whose distribution
is π .

Proof. By the triangle inequality, the Minkowsky inequality and (20.3.10), we get
that ∥∥d(x, fZ0(x))

∥∥
p ≤ d(x,x0)+

∥∥d(x0, fZ0(x0))
∥∥

p +
∥∥d( fZ0(x), fZ0(x0))

∥∥
p

≤ (2− ε)d(x,x0)+
∥∥d(x0, fZ0(x0))

∥∥
p

By definition of the kernel P, (20.3.11) means that P(x0, ·) ∈ Sp(X,d).
Condition (20.3.10) implies that Wd,p (P(x, ·),P(y, ·))≤ (1−ε)d(x,y); hence, by

Lemma 20.3.2 we get that ∆d,p (P)≤ 1−ε . By 20.3.4, this proves the existence and
uniqueness of the invariant measure π ∈ Sp(X,d).
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We now establish the expression of the limiting distribution. From (20.3.10), we
get for all n≥ 1 and x,y ∈ X that

‖d(Y x
n ,Y

y
n )‖p

= {E [E [dp( fZ1 ◦ fZ2 ◦ · · · ◦ fZn(x), fZ1 ◦ fZ2 ◦ · · · ◦ fZn(y)) |Z2, . . . ,Zn]]}1/p

≤ (1− ε)‖d( fZ2 ◦ · · · ◦ fZn(x), fZ2 ◦ · · · ◦ fZn(y))‖p = (1− ε)
∥∥d(Y x

n−1,Y
y
n−1)

∥∥
p ,

where we have used that (Y x
n−1,Y

y
n−1) and ( fZ2 ◦ · · · ◦ fZn(x), fZ2 ◦ · · · ◦ fZn(y)) have

the same distributions. By iterating this inequality, we therefore obtain x,y ∈ X,

‖d(Y x
n ,Y

y
n )‖p ≤ (1− ε)nd(x,y) .

Since Zn+1 is independent of Y x
n , the latter inequality implies that for all n≥ 1,∥∥d(Y x

n ,Y
x
n+1)

∥∥
p =

{
E
[
E
[

dp( fZ1 ◦ · · · ◦ fZn(x), fZ1 ◦ . . . fZn( fZn+1(x)))
∣∣Zn+1

]]}1/p

≤ (1− ε)n∥∥d(x, fZn+1(x))
∥∥

p = (1− ε)n∥∥d(x, fZ0(x))
∥∥

p .

This proves that the series ∑n d(Y x
n ,Y

x
n+1) is convergent in p-th mean and almost

surely. Let this limit be denoted by Y x
∞. Since {Zn, n ∈ N} is an i.i.d. sequence, for

each n the distribution of Y x
n is Pn(x, ·). Since convergence in the Wasserstein dis-

tance implies weak convergence, we have Pn(x, ·) w⇒ π and therefore the distribution
of Y x

n is π for all x ∈ X. 2

Example 20.3.7. Consider the bilinear process defined by the recursion

Xk = aXk−1 +bXk−1Zk +Zk , (20.3.12)

where a and b are non zero real numbers and {Zk, k ∈ N} is a sequence of i.i.d.
random variables which are independent of X0 and such that E [|Z0|p]< ∞ for some
p≥ 1. Writing fz(x) = (a+bx)z, we have

Wd,p (P(x, ·),P(y·))≤
∥∥ fZ0(x)− fZ0(y)

∥∥
p = ‖a+bZ0‖p |x− y| .

Thus, ∆d,p (P) ≤ ‖a+bZ0‖p. If ‖a+bZ0‖p < 1 then (20.3.10) and (20.3.11) hold.
The invariant probability can be expressed as

Y∞ = Z0

∞

∑
k=0

k

∏
j=1

(a+bZ j) ,

the series being convergent almost surely and in the p-th mean. J
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20.4 Non uniform geometric convergence

We pursue here the parallel with Chapter 18. The results of Section 18.4 were
obtained under a geometric drift condition and the assumption that an (m,ε)-
Doeblin set exists. In the present context, Doeblin sets will be replaced by (c,m,ε)-
contracting sets on which the restriction of P has certain contractivity properties
with respect to the Wasserstein distance Wc.

Definition 20.4.1 ((c,m,ε)-contracting set) A set C̄ ⊂ X ⊗ X is called a
(c,m,ε)-contracting set if for all (x,y) ∈ C̄,

Wc (P
m(x, ·),Pm(y, ·))≤ (1− ε)c(x,y) .

Given the existence of such a set and a drift condition, we can prove the geometric
convergence in a Wasserstein distance of the iterates of the kernel to the invariant
probability. For simplicity we only consider the case m = 1; the extension to m≥ 1
is straightforward. The result is based on the following technical Proposition.

Proposition 20.4.2 Assume that there exist a kernel coupling K of (P,P), a
measurable function V̄ : X×X→ [1,∞), a set C̄ ∈X ⊗X , d̄ > 0 and ε ∈ (0,1)
such that

Kc≤ (1− ε1C̄)c , {V̄ ≤ d̄} ⊂ C̄ .

If K satisfies the geometric drift condition Dg(V̄ , λ̄ , b̄,C̄), then for all (α,β ) ∈
(0,1)× [0,∞), x,y ∈ X and n ∈ N,

Wc1−αV̄ α (Pn(x, ·),Pn(y, ·))≤ ρ
n
α,β c1−α(x,y) [V̄ (x,y)+β ]

α
, (20.4.1)

with

ρα,β =

[
(1− ε)1−α

(
λ̄ + b̄+β

1+β

)α
]
∨
(

λ̄ d̄ +β

d̄ +β

)α

. (20.4.2)

Moreover, for all β ≥ 0, there exist α ∈ (0,1) such that ρα,β < 1 and conversely,
for all α ∈ (0,1), there exists β ≥ 0 such that ρα,β < 1.

Remark 20.4.3. We actually prove that for each α ∈ (0,1), there exist β > 0 and
ρα,β ∈ (0,1) given by (20.4.2) such that Kcα,β ≤ ρα,β cα,β with cα,β = c1−α(V̄ +
β )α . Thus we can apply Theorem 20.3.4 and by Theorem 20.1.3, there exists a
coupling {(Xn,X ′n), n ∈ N} such that Ex,x′ [cα,β (Xn,X ′n)]≤ ρncα,β (x,x′). Moreover,
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if c≤ V̄ and V̄ (x,x′) = {V (x)+V (x′)}/2, this yields, for all n≥ 0,

Ex,x′ [c(Xn,X ′n)]≤ Ex,x′ [cα,β (Xn,X ′n)]≤ 1
2 (1+β )ρn(V (x)+V (x′)) . (20.4.3)

Proof (of Proposition 20.4.2). For β ≥ 0, set V̄β = V̄ +β and

ρ = sup
x,y∈X

[
(1− ε1C̄(x,y))

1−α

(
KV̄β (x,y)
V̄β (x,y)

)α
]
,

which is finite since K satisfies condition Dg(V̄ , λ̄ , b̄,C̄). Furthermore, Hölder’s in-
equality yields

K(c1−αV̄ α

β
)≤ (Kc)1−α(KV̄β )

α

≤
[
(1− ε1C̄)

1−α
(
KV̄β/V̄β

)α
]

c1−αV̄ α

β
≤ ρc1−αV̄ α

β
.

Using V̄ ≤ V̄β and a straightforward induction, we obtain

Kn(c1−αV̄ α)≤ Kn(c1−αV̄ α

β
)≤ ρ

nc1−αV̄ α

β
= ρ

nc1−α(V̄ +β )α . (20.4.4)

Moreover, Corollary 20.1.4-(20.1.12) yields, for all x,y ∈ X,

Wc1−αV̄ α (Pn(x, ·),Pn(y, ·))≤ Kn(c1−αV̄ α)(x,y) ,

Combining this bound with (20.4.4) shows (20.4.1) provided that ρ ≤ ρα,β where
ρα,β is defined in (20.4.2). We will now establish this inequality. Since the geometric
drift condition Dg(V̄ , λ̄ , b̄,C̄) holds for the Markov kernel K,

KV̄β

V̄β

≤ ϕ(V̄ ) , (20.4.5)

with

ϕ(v) =
λ̄v+ b̄1C̄ +β

v+β
.

The function ϕ is monotone, ϕ(0) ≥ 1 and limv→∞ ϕ(v) = λ̄ < 1. It is thus non
increasing and since V̄ ≥ 1C̄ + d̄1C̄c , we obtain

ϕ(V̄ )≤ ϕ(1C̄ + d̄1C̄c) =
λ̄ + b̄+β

1+β
1C̄ +

λ̄ d̄ +β

d̄ +β
1C̄c .

Combining with (20.4.5) yields
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(1− ε1C̄)
1−α

(
KV̄β/V̄β

)α

≤

[
(1− ε)1−α

(
λ̄ + b̄+β

1+β

)α
]
1C̄ +

(
λ̄ d̄ +β

d̄ +β

)α

1C̄c ≤ ρα,β .

Finally, since ρ is the supremum of the left-hand side over X×X, we obtain that
ρ ≤ ρα,β . The last part of the Theorem follows from Lemma 20.4.4 below. 2

The bound (20.4.1) in Proposition 20.4.2 is useful only if ρα,β < 1 for a suitable
choice of (α,β ) ∈ (0,1)× [0,∞). We may first fix β ≥ 0 and search for α?(β ) =
argminα∈(0,1) ρα,β . Optimizing (20.4.2), we obtain

α
?(β )

= [log(1− ε)]

[
log(1− ε)+ log

(
λ̄ d̄ +β

d̄ +β

)
− log

(
λ̄ + b̄+β

1+β

)]−1

. (20.4.6)

Consequently,

logρα?(β ),β

= inf
α∈(0,1)

logρα,β =
log(1− ε) log

(
λ̄ d̄+β

d̄+β

)
log(1− ε)+ log

(
λ̄ d̄+β

d̄+β

)
− log

(
λ̄+b̄+β

1+β

) < 0 , (20.4.7)

where the strict inequality follows from (ε, λ̄ ) ∈ (0,1)2 and λ̄ + b̄ ≥ 1. To get the
optimal rate, we take the infimum of (20.4.7) with respect to β , that is

logρα?(β ?),β ? = inf
β∈R

logρα?(β ),β ,

but unfortunately, the expression of logρα?(β ?),β ? is not explicit. Instead, we can
consider particular values of logρα?(β ),β since they are strictly negative for all β ≥
0. For example taking β = 0, we get

logρα?(0),0 = inf
α∈(0,1)

logρα,0 =
log(1− ε) log λ̄

log(1− ε)+ log λ̄ − log(λ̄ + b̄)
< 0 , (20.4.8)

which can be compared to the bounds obtained in Theorem 19.4.1. Still, the
bound in Proposition 20.4.2 is associated to the cost function c1−αV̄ α and in
some cases, it may be interesting to obtain a geometrically decreasing bound when
α is fixed and arbitrarily close to 1. The rationale for this is that for (x,y) ∈
X2, limα→1 c1−αV̄ α = 1{x 6= y}V̄ (x,y). While it is not possible under the as-
sumptions of Proposition 20.4.2 to obtain a bound for the cost function (x,y) 7→
1{x 6= y}V̄ (x,y), it is interesting instead to get a bound for any cost function
c1−αV̄ α where α is arbitrarily close to 1. Fix now any α ∈ (0,1) and let us show
that ρα,β can be made strictly less than one with a convenient choice of β . Note that
the function
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β 7→ ψ(β ) = (1− ε)1−α

(
λ̄ + b̄+β

1+β

)α

,

tends to (1− ε)1−α < 1 as β tends to infinity. This allows to take β = β0 large
enough such that ψ(β0)< 1. We then obtain

ρα,β0 = ψ(β0)∨
(

λ̄ d̄ +β0

d̄ +β0

)α

< 1 .

An optimal choice of β for a given α can theoretically be obtained by solving

ψ(β ) =
(

λ̄ d̄+β

d̄+β

)α

but once again, this equation does not admit any closed-form
solution in general. We summarize our findings in the following Lemma.

Lemma 20.4.4 For all β ≥ 0, there exist α ∈ (0,1) such that ρα,β < 1 and con-
versely, for all α ∈ (0,1), there exists β ≥ 0 such that ρα,β < 1.

We now state and prove the main result of this section. It provides geometric
rates of convergence in the Wasserstein distance and parallels the results of Theo-
rem 18.4.3 and Theorem 19.4.1, which were established for the V -norm.

Theorem 20.4.5. Let P be a Markov kernel satisfying the drift condition Dg(V,λ ,b)
and assume that the cost function c satisfies H 20.1.5 and for all x,y ∈ X,

Wc (P(x, ·),P(y, ·))≤ c(x,y) .

Assume moreover that there exist ε ∈ (0,1) and d > 0 such that λ +2b/(1+d)< 1
and that {V ≤ d}×{V ≤ d} is a (c,1,ε)-contracting set. Moreover, assume that
c(x,y)≤ V̄ (x,y) := {V (x)+V (y)}/2 for all x,y ∈ X, then

(i) P admits a unique invariant measure π and π(V )< ∞.
(ii) For every α ∈ (0,1), there exist ρ ∈ (0,1) and ϑ < ∞ such that for all initial

distributions ξ and all n ∈ N,

Wc (ξ Pn,π)≤Wc1−αV̄ α (ξ Pn,π)≤ ϑρ
n [ξ (V α)+π(V α)] . (20.4.9)

Remark 20.4.6. Theorem 20.4.5 could be proved by applying Theorem 20.3.4
with c replaced by c1−αV̄ α , since (20.4.1) implies that for any α in (0,1), there
exists a sufficiently large m such that Pm is Wc1−αV̄ α -uniformly ergodic. Indeed, for
a fixed α ∈ (0,1), choose β such that ρα,β < 1 (this can be done by Lemma 20.4.4).
Then, using (20.4.1) and V̄ ≥ 1,

Wc1−αV̄ α (Pm(x, ·),Pm(y, ·))≤ ρ
m
α,β c1−α(x,y) [V̄ (x,y)+β ]

α

≤
(

ρ
m
α,β (1+β )α

)(
c1−αV̄ α

)
(x,y) .
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Since ρα,β < 1, we can choose m sufficiently large so that ρm
α,β (1+β )α < 1. And

for such m, Pm is Wc1−αV̄ α -uniformly ergodic. However, we decide to prove Theo-
rem 20.4.5 along another path, which highlights how Theorem 20.2.1 can be used
to obtain the existence and uniqueness of the invariant probability measure.

Proof (of Theorem 20.4.5). Set C̄ = {V ≤ d} × {V ≤ d}. According to Theo-
rem 20.1.3, there exists a kernel coupling K of (P,P) such that

Kc≤ (1− ε1C̄)c .

(i) This kernel K being chosen, we have (as in the proof of Theorem 19.4.1),

KV̄ ≤ λ̄V̄ +b1C̄ ,

with λ̄ = λ +2b/(1+d). Thus K satisfies the drift condition Dg(V̄ , λ̄ ,b,C̄), whence

KV̄ +1− λ̄ ≤ V̄ + b̄1C̄ .

Thus Condition Theorem 20.2.1-(i) holds. By Proposition 14.1.8, supn≥0 PnV ≤V +
b/(1−λ ) so that Condition Theorem 20.2.1-(ii) also holds (with ψ(v) = v) . We can
therefore apply Theorem 20.2.1 to prove that P admits a unique invariant probability
π . Moreover, we know by Lemma 14.1.10 that π(V )< ∞.

(ii) Since c ≤ V̄ , we get c ≤ c1−αV̄ α ≤ V̄ α . By definition of C̄, if (x,x′) /∈ C̄,
then V̄ (x,x′) ≥ (d + 1)/2. Setting d̄ = (d + 1)/2, we have {V̄ < d̄} ⊂ C̄. We can
thus apply Proposition 20.4.2. Using Corollary 20.1.4 and (20.4.1) we get for any
γ ∈ C (ξ ,π),

Wc (ξ Pn,π)≤Wc1−αV̄ α (ξ Pn,π)≤
∫

X×X
Wc1−αV̄ α (Pn(x, ·),Pn(y, ·))γ(dxdy) ,

showing (20.4.9).

2

Corollary 20.4.7 Under the assumptions of Theorem 20.4.5, for all α ∈ (0,1),
there exists a finite constant ϑ and ρ ∈ (0,1) such that for all measurable
function f ∈ Lipc1−αV̄ α (X) and all n ∈ N,

|ξ Pn( f )−π( f )| ≤ ϑρ
n [ξ (V α)+π(V α)] | f |Lip(c1−αV̄ α ) . (20.4.10)

Proof. Fix x0 ∈ X. Since c1−αV̄ α ≤ V̄ , for all x ∈ X,

| f (x)| ≤ | f (x0)|+V̄ (x0,x) | f |Lip(c1−αV̄ α ) ,

and thus, f ∈ L1(π) since π(V ) < ∞. By (20.1.9) applied to the cost function
c1−αV̄ α ,
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|ξ Pn( f )−π( f )| ≤Wc1−αV̄ α (ξ Pn,π) | f |Lip(c1−αV̄ α ) .

Theorem 20.4.5 combined with Lemma 20.4.4 completes the proof. 2

20.5 Subgeometric rates of convergence for the Wasserstein
distance

In this section we establish subgeometric rates of convergence in the Wasserstein
distance under the drift condition Dsg(V,φ ,b,C). Recall that for an increasing con-
cave function φ , the subgeometric sequence rφ is defined in (16.1.13) by rφ (t) =
φ ◦H−1

φ
(t), where Hφ is the primitive of 1/φ which vanishes at 1. Set V̄ (x,y) =

V (x)+V (y)− 1 and recall that for a sequence r, we define r0(n) = ∑
n
j=0 r( j). Our

main result will be the consequence of the following technical lemma.

Lemma 20.5.1 Let P be a Markov kernel on X×X . Assume that H 20.1.5 and the
drift condition Dsg(V,φ ,b,C) hold with supC V < ∞, d = infCc φ ◦V > b. Assume
moreover that there exists a kernel coupling K of (P,P) such that

Kc≤ (1− ε1C×C)c . (20.5.1)

Let α ∈ (0,1), κ ∈ (0,1− b/d) and set φ̄ = κφ and c̃ = c1−α φ̄ α ◦ V̄ . Then there
exists a finite constant ϑ such that for all n ∈ N and x,y ∈ X,

Knc̃≤ ϑ c̃ , (20.5.2)

[r0
φ̄
(n)]α Knc1−α ≤ ϑc1−αV̄ α , (20.5.3)

rα

φ̄
(n)Knc1−α(x,y)≤ ϑc1−α(x,y){V α(x)+ φ̄

α ◦V (y)} . (20.5.4)

Proof. By Lemma 19.5.3, for κ ∈ (0,1− b/d), the drift condition Dsg(V̄ , φ̄ , b̄,C̄)
holds for the kernel K with φ̄ = κφ and b̄ = 2b. Fix α ∈ (0,1) and pick δ ∈ (0,1)
such that (1− ε1C̄)

1−α(1+δ1C̄)
α ≤ 1.

(i) Choose M ≥ 0 such that φ̄(b̄+1)− φ̄(1)≤Mδ . By concavity, for all v ≥ 1,
we have φ̄(v+ b̄)− φ̄(v)≤ φ̄(b̄+1)− φ̄(1) , whence

K(φ̄ ◦V̄ +M)≤ φ̄(KV̄ )+M ≤ φ̄(V̄ + b̄1C̄)+M

≤ φ̄ ◦V̄ +M+[φ̄(b̄+1)− φ̄(1)]1C̄ ≤ (1+δ1C̄)(φ̄ ◦V̄ +M) .

Combining this bound with (20.5.1) and Hölder’s inequality yields

K[c1−α(φ̄ ◦V̄ +M)α ]≤ (Kc)1−α [K(φ̄ ◦V̄ +M)]α ≤ c1−α(φ̄ ◦V̄ +M)α .

Applying repeatedly the previous inequality and since φ is bounded away from zero,
we obtain
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Knc̃≤ Kn[c1−α(φ̄ ◦V̄ +M)α ]≤ c1−α(φ̄ ◦V̄ +M)α ≤ ϑ c̃ ,

for a constant ϑ independent of n. This proves (20.5.2).
(ii) Since Dsg(V̄ , φ̄ , b̄,C̄) holds, we can apply Proposition 16.1.11: the sequence

of nonnegative functions {Vk, k ∈ N} on X×X defined by Vk = H−1
φ̄

(Hφ̄ ◦V̄ + k)−
H−1

φ̄
(k) satisfies

KVk+1 + rφ̄ (k)≤Vk +b′rφ̄ (k)1C̄ , (20.5.5)

with b′ = b̄rφ̄ (1)/r2
φ̄
(0). Set Mδ = supk∈N{δ−1b′rφ̄ (k)− r0

φ̄
(k− 1)} which is finite

since limn→∞ rφ̄ (n)/r0
φ̄
(n) = 0. Setting Sk = Vk + r0

φ̄
(k− 1)+Mδ , (20.5.5) can be

reexpressed as

KSk+1 ≤ Sk +b′rφ̄ (k)1C̄ =

(
1+

b′rφ̄ (k)

Sk
1C̄

)
Sk

≤

(
1+

b′rφ̄ (k)

r0
φ̄
(k−1)+Mδ

1C̄

)
Sk ≤ (1+δ1C̄)Sk . (20.5.6)

Combining (20.5.1) and (20.5.6) and applying Hölder’s inequality yields for all k≥
0,

K(c1−α Sα
k+1)≤ (Kc)1−α(KSk+1)

α ≤ c1−α Sα
k .

Applying repeatedly the previous inequality and r0
φ̄
(n−1)+Mδ ≤ Sn, we obtain

[r0
φ̄
(n−1)]α Kn(c1−α)≤ (r0

φ̄
(n−1)+Mδ )

α Kn(c1−α)≤ Kn(c1−α Sα
n )≤ c1−α Sα

0

≤ c1−α(V0 +Mδ )
α ≤ c1−α(V̄ +Mδ )

α ≤ (1+Mδ )
α c1−αV̄ α .

This proves (20.5.3).
(iii) In order to obtain (20.5.4), we use (20.5.1) if V (y) > M and (20.5.3) if

V (y)≤M which yields to

Kc1−α(x,y)≤ c1−α(x,y)1{V (y)>M}+ϑ [r0
φ̄
(n)]−α c1−α(x,y)V̄ α(x,y)1{V (y)≤M}

≤ c1−α(x,y)

[
φ̄ α ◦V (y)

φ̄ α(M)
+

ϑ

[r0
φ̄
(n)]α

V̄ α(x,y)1{V (y)≤M}

]
(20.5.7)

Recalling that V̄ (x,y) =V (x)+V (y)−1, we have

V̄ α(x,y)1{V (y)≤M} ≤ (V (y)−1)α
1{V (y)≤M}+V α(x) (20.5.8)

By concavity of φ̄ , we have for 1≤ v≤M,
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v−1≤ (M−1)
φ̄(v)− φ̄(1)
φ̄(M)− φ̄(1)

≤ (M−1)φ̄(v)
φ̄(M)− φ̄(1)

.

Replacing v by V (y) and plugging this bound into (20.5.8) yields

V̄ α(x,y)1{V (y)≤M} ≤
(
(M−1)φ̄ ◦V (y)

φ̄(M)− φ̄(1)

)α

+V α(x)

Combining with (20.5.7), we finally get

Kc1−α(x,y)

≤ c1−α(x,y)

[
φ̄ α ◦V (y)

φ̄ α(M)
+ϑ

(
M−1
r0

φ̄
(n)

)α

φ̄ α ◦V (y)[
φ̄(M)− φ̄(1)

]α +ϑ
V α(x)
[r0

φ̄
(n)]α

]
.

Now, choose M = H−1
φ̄

(n) and note that φ̄(M) = φ̄ ◦H−1
φ̄

(n) = rφ̄ (n)≤ r0
φ̄
(n). Since

M−1 = H−1
φ̄

(n)−1 = H−1
φ̄

(n)−H−1
φ̄

(0)

=
∫ n

0
φ̄ ◦H−1

φ̄
(t)dt ≤

n

∑
k=0

φ̄ ◦H−1
φ̄

(k) = r0
φ̄
(n)

we finally obtain for n≥ 1,

Kc1−α(x,y)

≤ c1−α(x,y)
rα

φ̄
(n)

φ̄
α ◦V (y)

1+
ϑ{

1− φ̄(1)/φ̄ ◦H−1
φ̄

(1)
}α

+ϑV α(x)

 .

This completes the proof.

2

Recall that V̄ (x,y) :=V (x)+V (y)−1.

Theorem 20.5.2. Let P be a Markov kernel on X×X . Assume that H 20.1.5 and the
subgeometric drift condition Dsg(V,φ ,b,C) hold with supC V < ∞, d = infCc φ ◦V >
b and c≤ V̄ . Assume moreover that C̄ =C×C is a (c,1,ε)-contracting set and for
all x,y ∈ X,

Wc (P(x, ·),P(y, ·))≤ c(x,y) .

Then, P admits a unique invariant probability measure π and π(φ ◦V )< ∞.
Let (Ψ1,Ψ2) be inverse Young functions, (α,κ) ∈ (0,1)× (0,1−b/d) and set
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φ̄ = κφ , r(n) =Ψ1

[
rα

φ̄
(n)
]
, f =Ψ2

[
φ̄

α ◦V̄
]
.

Then, there exists a constant ϑ such that for all n ∈ N and x ∈ X,

r(n)Wc1−α f (P
n(x, ·),π)≤ ϑ

∫
X

c1−α(x,y){V α(x)+φ
α ◦V (y)}π(dy) . (20.5.9)

Remark 20.5.3. The bound (20.5.9) is useless unless the integral is finite. This is the
case if c is bounded or more generally if c(x,y) ≤ φ ◦ V̄ (x,y) since π(φ ◦V ) < ∞.
The integral is also finite if π(V ) < ∞ (since by assumption, we already know that
c(x,y)≤ V̄ (x,y)). In all these cases, we obtain

r(n)Wc1−α f (P
n(x, ·),π)≤ ϑ

′V (x) . (20.5.10)

Proof (of Theorem 20.5.2).

(i) By Theorem 20.1.3, there exists a kernel coupling K of (P,P) such that
(20.1.10) holds and

Kc≤ (1− ε1C̄)c . (20.5.11)

Lemma 19.5.3 implies that for all κ ∈ (0,1−b/d), the drift condition Dsg(V̄ , φ̄ , b̄,C̄)
holds for the kernel K with φ̄ = κφ and b̄ = 2b. Thus,

KV̄ + φ̄(1)≤ KV̄ + φ̄ ◦V̄ ≤ V̄ + b̄1C̄ .

Finally, Condition (i) of Theorem 20.2.1 holds. By Remark 20.2.2, Condition (ii)
also holds thus we can apply Theorem 20.2.1 to obtain the existence and uniqueness
of an invariant probability measure π . Moreover, π(φ ◦V )< ∞ by Theorem 16.1.12.

(ii) Since (Ψ1,Ψ2) is a pair of inverse Young functions, we have r(n) f ≤ rα

φ̄
(n)+

φ̄ α ◦V̄ . This implies

r(n)Wc1−α f (P
n(x, ·),π)≤ r(n)

∫
X

Kn(c1−α f )(x,y)π(dy)

≤ rα

φ̄
(n)
∫

X
Knc1−α(x,y)π(dy)+

∫
X

Knc̃(x,y)π(dy) .

(20.5.12)

The first term of the right-hand side can be bounded by (20.5.4). To complete the
proof, we have to show the following bound for the second term of the right-hand
side ∫

X
Knc̃(x,y)π(dy)≤ ϑ

∫
X

c1−α(x,y){V α(x)+φ
α ◦V (y)}π(dy) ,

where ϑ is some constant which does not depend on n. Indeed, (20.5.2) shows that∫
X

Knc̃(x,y)π(dy)≤
∫

c̃(x,y)π(dy) .
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Now since φ̄ is concave, φ̄(a+b−1)≤ φ̄(a)+(b−1)φ̄ ′(a)≤ φ̄(a)+(b−1)φ̄ ′(1)
and thus, recalling that V̄ (x,y) =V (x)+V (y)−1 and φ̄ = κφ , there exists a constant
ϑ such that

c̃(x,y) = c1−α(x,y)φ̄ α ◦V̄ (x,y)≤ c1−α(x,y)
[
φ̄ ◦V (y)+(V (x)−1)φ̄ ′(1)

]α
≤ ϑc1−α(x,y) [V α(x)+φ

α ◦V (y)] .

This concludes the proof.

2

Remark 20.5.4. Assume that one of the conditions of Remark 20.5.3 holds and
choose ψ1(u) = u and ψ2 ≡ 1 in Theorem 20.5.2. Then for every α ∈ (0,1), there
exists a finite constant ϑ such that for all n ∈ N and x ∈ X,

rα

φ̄
(n)Wc1−α (Pn(x, ·),π)≤ ϑV (x) .

This rate of convergence can be improved when φ(u) = uα0 for some α0 ∈ (0,1). In

that case, we have π(V α0)<∞, rφ̄ (n) = φ ◦H−1
φ̄

(n) =
[
H−1

φ̄
(n)
]α0

=O(nα0/(1−α0)).
Thus, if c is bounded, (20.5.3) yields

W
c1−α0 (P

n(x, ·),π)≤ ϑV α0(x)n−α0/(1−α0) .

If c≤ V̄ and π(V )< ∞, (20.5.3) yields

W
c1−α0 (P

n(x, ·),π)≤ ϑV (x)n−α0/(1−α0) .

20.6 Exercices

20.1. Consider R equipped with the euclidean distance.

1. Consider the sequence {µn, n ∈ N} of probabilities on N such that µn({0}) =
1− n−1 = 1− µn({n}). Show that {µn, n ∈ N} converges to the point mass at
{0} in total variation, but not in the Wasserstein distance.

2. Consider the sequence {µn, n ∈ N} of probability distributions on [0,1] with
density 1+ sin(2πnx). Show that {νn, n ∈ N} converges to the uniform distri-
bution on [0,1] in the Wasserstein distance but not in total variation.

20.2. Let ξ1,ξ
′
1,ξ2,ξ

′
2 ∈M1(X ) and α ∈ (0,1). Show that

Wp
d,p

(
αξ1 +(1−α)ξ2,αξ

′
1 +(1−α)ξ ′2

)
≤ αWp

d,p

(
ξ1,ξ

′
1
)
+(1−α)Wp

d,p

(
ξ2,ξ

′
2
)
. (20.6.1)
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20.3. Let {µn, n∈N} and {νn, n∈N} be two sequences of probability measures in
Sp(X,d) such that limn→∞ Wd,p (µn,µ0) = limn→∞ Wd,p (νn,ν0) = 0. Let {γn, n ∈
N∗} be a sequence of optimal couplings of (µn,νn).

1. Prove that {γn, n ∈ N∗} is tight.
2. Prove that weak limits along subsequences are optimal couplings of (µ0,ν0).

20.4. Let H be the Hilbert space of square summable sequences:

H=
{

u ∈ RN : ∑
∞

n=0 u2
n < ∞

}
Let α ∈ (0,1) and Φ be the linear operator defined on H by

Φ(u0,u1, . . .) = (0,αu0,αu1, . . .)

Let {Zn, n ∈ N∗} be a sequence of i.i.d. real-valued random variables and define

Zn = (Zn,0,0 . . .)

that is Z is a random sequence whose first term is Zn and all other are equal to zero.
Define now the sequence {Xn, n ∈ N} by X0, independent of {Zn} and

Xn+1 = ΦXn +Zn+1 .

Let θ be the shift operator, i.e. θ(u0,u1, . . .) = (u1,u2, . . .).

1. Prove that Xn = ΦnX0 +∑
n
k=1 Φn−kZk and X0 = α−nθ nXn.

2. Prove that that the kernel is not irreducible.
3. Prove that ∆d,p (P)≤ α for all p≥ 1.

20.5. Consider the count model {Xk} introduced in Example 2.2.5 which satisfies
the iterative representation (2.2.10). Prove that (20.3.10) holds if |b|+ |c|< 1. Hint:
(prove and) use the inequality

E
[

log
(

1+N(ey)

1+N(ex)

)]
≤ y− x (20.6.2)

where N is a homogeneous Poisson process on R and x≤ y.

20.6. Consider the functional autoregressive process {Xn, n∈N} defined by X0 and
the recursion

Xn+1 = g(Xn)+Zn+1 ,

where {Zn, n ∈ N} is a sequence of i.i.d. random vectors in Rd , independent of X0
and g : Rd → Rd is a locally bounded measurable function. For x,y ∈ Rd , define
d(x,y) = |x− y|. Denote by P the Markov kernel associated to this Markov chain.
Assume that
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(a) There exists a > 0 and such that E
[
ea|Z0|

]
< ∞.

(b) For every compact set K of Rd , there exists εK > 0 such that |g(x)− g(y)| ≤
(1− εK)|x− y|.

(c) There exists a measurable function h :Rd→ [0,1] such that lim|x|→∞ |x|h(x) =∞

and |g(x)| ≤ |x|(1−h(x)) for large enough x.

1. Show that for all x,x′ ∈ Rd , Wd (P(x, ·),P(x′, ·))≤ d(x,x′).
2. Let K be a compact set. Show that K×K is a (d,1,ε)-contracting set.
3. Set V (x) = {a−1∨1}ea|x|. Show that there exists A > 0, λ < 1 and b < ∞ such

that for all |x| ≥ A, PV (x)≤ λV (x) and for all x ∈ Rd , PV (x)≤ λV (x)+b.

For δ > 0, define

C̄ =
{
(x,y) ∈ Rd : V (x)+V (y)≤ 2(b+δ )/(1−λ )

}
⊂ K×K .

4. Show that C̄ is a (d,1,ε)-contracting set
5. Show that the Markov kernel P has a unique stationary distribution and that

there exist ρ ∈ [0,1) such that, for every probability measure ξ , Wd (ξ Pn,π)≤
ρn{ξ (V )+π(V )}

20.7 (A lazy random walk on a discrete cube). For N ≥ 2, consider the Markov
kernel P defined on {0,1}N as follows. If X0 = x, then with probability 1/2, do
nothing, i.e. set X1 = x; with probability 1/2, choose one coordinate of x at random
and flip it. Formally, let {Bk, k ∈N∗} and {Ik, k ∈N∗} be independent sequences of
i.i.d. random variables such that Bk is Bernoulli random variable with mean 1/2 and
Ik is uniformly distributed on {1, . . . ,N}. Let ⊕ denote Boolean addition in {0,1}N ,
that is 1⊕ 0 = 0⊕ 1 = 1 and 0⊕ 0 = 1⊕ 1 = 0 if d = 1 and extend this operation
componentwise if d > 1. For i = 1, . . . ,n, let finally ei be the i-th basis vector with
a single component equal to 1 in i-th position and all other components equal to 0.
The sequence {Xn, n ∈ N} satisfies the recursion

Xn = F(Xn−1;Bn, In) , n≥ 1 , (20.6.3)

where F is defined on {0,1}N×{0,1}×{1, . . . ,N} by

F(x,ε, i) = x⊕ εei .

Let d be the Hamming distance on {0,1}N , that is d(x,y) is the number of different
coordinates in x and y, i.e. d(x,y) = ∑

N
i=11{x 6=y}.

1. Show that the function F is an isometry with respect to x.

Therefore, the simple coupling used in Example 20.3.5 fails here. Using a different
coupling, we can prove that the d-Dobrushin coefficient ∆d (P) is smaller than one.
For x,x′ ∈ {0,1}N , define

(X1,X ′1) =
(

x⊕B1eI1 ,x
′⊕B1eI11{xI1=x′I1

}+ x′⊕ (1−B1)eI11{xI1 6=x′I1
}

)
.



20.6 Exercices 483

2. Show that (X1,X ′1) is a coupling of P(x, )̇ and P(x′, ·).
3. Show that ∆d (P)≤ 1−1/N.

Hint: show that P(xI1 = x′I1) = 1−d(x,x′)/N.

In Exercises 20.8 to 20.10 we give an alternative proof of Theorem 20.4.5
which uses coupling and which is very close to the proof of Theorem 19.4.1. Let
P be a Markov kernel on a complete separable metric space (X,d). Assume that
Wd,p (P(x, ·),P(x′, ·)) ≤ d(x,x′) for all x,x′ ∈ X and that there exist a measurable
function V : X→ [1,∞), λ ∈ (0,1) and b > 0 such that Condition D(V,λ ,b) holds
and for all x,y ∈ X,

dp(x,y)≤V (x)+V (y) . (20.6.4)

Assume moreover that there exists δ > 0 such that

C̄ = {(x,y) ∈ X×X : V (x)+V (y)≤ 2(b+δ )/(1−λ )} (20.6.5)

is a (dp,1,ε)-contracting set. The assumptions and Theorem 20.1.3 imply that there
exists a kernel coupling K of (P,P) such that

Kdp(x,y)≤ {1− ε1C̄(x,y)}
pdp(x,y) . (20.6.6)

Let {(Xn,X ′n), n ∈ N} be the coordinate process on the canonical space (X×
X)N and let Pγ be the probability measure on the canonical space that makes the
coordinate process a Markov chain with kernel K and initial distribution γ . Set Fn =
σ(X0,X ′0, . . . ,Xn,X ′n).

20.8. 1. Define Zn = dp(Xn,X ′n). Show that {Zn, n ∈N} is a positive supermartin-
gale.

2. Set σ
(m)

C̄ = σm. Show that Eγ [Zσm ]≤ (1− ε)pmEγ [Z0].
3. Let ηn = ∑

n
i=01C̄(Xi,X ′i ) be the number of visits to the set C̄ before time n.

Show that, for any n≥ 0,

Eγ [Zn]≤ (1− ε)pmEγ [Z0]+Eγ [Zn1{ηn−1 < m}] . (20.6.7)

Define V̄ : X×X→ [1,∞] by V̄ (x,y) = {V (x)+V (y)}/2, so that we can write C̄ =
{V̄ ≤ (b+δ )/(1−λ )}.

20.9. 1. Show that KV̄ ≤ λ̄V̄1C̄c + b̄1C̄. where λ̄ = λ +b(1−λ )/(b+δ )< 1 and
b̄ = b+λ (b+δ )/(1−λ )≥ 1.

2. Define the sequence {Sn, n ∈ N} by S0 = V̄ (X0,X ′0) and for n≥ 1,

Sn = λ̄
−n+ηn−1 b̄−ηn−1V̄ (Xn,X ′n) , (20.6.8)

with the convention η−1 = 0. Show that {Sn, n ∈ N} is a positive supermartin-
gale.

3. Show that Eγ [Zn1{ηn−1<m}]≤ 2λ̄ n−mb̄mEγ [S0].
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4. Using (20.6.7), show that for all (x,x′) ∈ X×X and n ∈ N,

Ex,x′ [d
p(Xn,X ′n)]≤ 2{(1− ε)pm + b̄m

λ̄
n−m}V̄ (x,x′) . (20.6.9)

20.10. 1. Show that there exists τ ∈ (0,1) such that for all probability measures
ξ ,ξ ′ and γ ∈ C (ξ ,ξ ′),

Wd,p
(
ξ Pn,ξ ′Pn)≤ Eγ [d

p(Xn,X ′n)]≤ 2{ξ (V )+ξ
′(V )}τn . (20.6.10)

Hint: use (20.6.9) and optimize in m.
2. Show that there exists a unique invariant probability measure π and that π(V )<

∞.
3. Show that for every probability measure ξ , Wd,p (ξ Pn,π)≤ τn{ξ (V )+π(V )}.

20.11. Let {dn, n∈N} be a non decreasing sequence of metrics on X which are con-
tinuous with respect to the topology of X and such that limn→∞ dn(x,y) = 1{x 6= y}.
Prove that for all µ,ν ∈M1(X ), limn→∞ Wdn

(µ,ν) = dTV(µ,ν).

20.12 (Asymptotically ultra-Feller kernels). Let X be a complete separable met-
ric space. A Markov kernel P on X×X is said to be asymptotically ultra Feller
if there exists an increasing sequence {nk, k ∈ N} and a non decreasing sequence
of metrics {dn, n ∈ N}, continuous with respect to the topology of X such that
limn→∞ dn(x,y) = 1{x 6=y} and for all x∗ ∈ X,

inf
A∈Vx∗

limsup
k→∞

sup
x∈A

Wdk
(Pnk(x, ·),Pnk(x∗, ·)) = 0 . (20.6.11)

Let P be an asymptotically ultra-Feller Markov kernel on X×X admitting a
reachable point x∗. Assume that the Markov kernel P admits two distinct invariant
probability measures.

1. Show that without loss of generality, the two invariant probabilitys µ andn ν

may be chosen to be mutually singular.
2. Show that µ(A)> 0 and ν(A)> 0 for any A ∈ Vx∗ .
3. For any ε > 0, show that there exists a set A ∈ Vx∗ such that

lim
k→∞

sup
x,x′∈A

Wdk

(
Pnk(x, ·),Pnk(x′, ·)

)
≤ ε . (20.6.12)

Set α = µ(A) ∧ ν(A) ∈ (0,1]. Define the probability measures µA and νA by
µA(B) = [µ(A)]−1µ(A∩B), νA(B) = [ν(A)]−1ν(A∩B), B ∈X . Finally, define the
probability measures µ̄ and ν̄ by µ = (1−α)µ̄ +αµA and ν = (1−α)ν̄ +ανA (if
α = 1, then µ̄ and ν̄ may be chosen arbitrarily).

4. Show that [hint: use Exercise 20.2]

Wd (µ,ν)≤Wd (µPn,νPn)≤ 1−α +α sup
(x,y)∈A×A

Wd (P
n(x, ·),Pn(y, ·)) .

(20.6.13)
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5. Show that P admits at most one invariant probability [hint: use Exercise 20.11].

Remark 20.6.1. Asymptotically ultra-Feller kernel extends the notion of ultra-
Feller kernels. A kernel is ultra-Feller at x∗ if limx→x∗ ‖P(x, ·)−P(x∗, ·)‖TV = 0 .
If the kernel P is ultra-Feller, then, it is also asymptotically ultra-Feller. Indeed,
choose nk = 1 for all k ∈ N and dn(x,y) = 1{x 6=y} for all n ∈ N. Then, since P is
ultra-Feller, we have limx→x∗ ‖P(x, ·)−P(x∗, ·)‖TV = 0 so that

inf
A∈Vx∗

limsup
k→∞

sup
x∈A
‖Pnk(x, ·)−Pnk(x∗, ·)‖TV = 0 .

This implies that P satisfies (20.6.11) and P is thus asymptotically ultra-Feller.

20.7 Bibliographical notes

The Monge-Kantorovitch problem has undergone many recent developments and
its use in probability has been extremely successful. The monograph Rachev and
Rüschendorf (1998) is devoted to various types of Monge-Kantorovitch mass trans-
portation problems with applications. The classical theory of optimal mass trans-
portation is given in Ambrosio (2003) and Bogachev and Kolesnikov (2012) and
Ambrosio and Gigli (2013). Villani (2009) provide an impressive number of results
on optimal transport, the geometry of Wasserstein’s space and its applications in
probability.

Theorem 20.1.2 and Theorem 20.1.3 are established in (Villani, 2009, Theo-
rem 5.10 and Corollary 5.22). This statement can also be found in essentially the
same form in (Rachev and Rüschendorf, 1998, Chapter 3) and (Dudley, 2002, Chap-
ter 11).

Geometric convergence results are adapted from Hairer et al (2011). The cou-
pling proof introduced in Exercises 20.8 and 20.10 is adapted from the work of
Durmus and Moulines (2015). Earlier convergence results are reported in Gibbs
(2004) and Madras and Sezer (2010).

Subgeometric convergence in Wasserstein distance was studied in the works of
Butkovsky and Veretennikov (2013) and Butkovsky (2014); these results were later
improved by Durmus et al (2016).

This chapter only provides a very quick introduction to the numerous uses of op-
timal transport and Wasserstein’s spaces to Markov chain. There are many notable
omissions. Ollivier (2009) (see also Ollivier (2010)) define the Ricci curvature on
a metric space in terms of the Wasserstein distance with respect to the underlying
distance. This notion is closely connected to our definition of c-Dobrushin coeffi-
cient (Definition 20.3.1). Joulin and Ollivier (2010) presents a detailed analysis of
nonasymptotic error estimates using the coarse Ricci curvature. Ideas closely related
to the ones developed in this chapter were developed for continuous time Markov
processes; see for example Guillin et al (2009) and Cattiaux and Guillin (2014).
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20.A Complements on the Wasserstein distance

In this section, we complement and prove some results of Section 20.1.

Theorem 20.A.1. Wd,p is a distance on the Wasserstein space Sp(X,d).

Proof. If ξ = ξ ′, then Wd,p (ξ ,ξ
′) = 0 since we can choose the diagonal cou-

pling, that is γ is the distribution of (X ,X) where X has distribution ξ . Conversely,
if Wd,p (ξ ,ξ

′) = 0, then there exists a pair of random variables (X ,X ′) defined
on a probability space (Ω ,F ,P) with marginal distribution ξ and ξ ′ such that
E [dp(X ,X ′)] = 0, which implies X = X ′ P − a.s., hence ξ = ξ ′.

Since Wd,p (ξ ,ξ
′) = Wd,p (ξ

′,ξ ) obviously holds, the proof will be completed if
we prove the triangle inequality. Let ε > 0 and µ1,µ2,µ3 ∈ Sp(X,d). By definition,
there exist γ1 ∈ C (µ1,µ2) and γ2 ∈ C (µ2,µ3) such that{∫

X×X
dp(x,y)γ1(dxdy)

}1/p

≤Wd,p (µ1,µ2)+ ε ,{∫
X×X

dp(y,z)γ2(dydz)
}1/p

≤Wd,p (µ2,µ3)+ ε .

By the Gluing Lemma B.3.12 (which assumes that X is a Polish space), we can
choose (Z1,Z2,Z3) such that LP (Z1,Z2) = γ1 and LP (Z2,Z3) = γ2. This implies
that LP (Z1) = µ1 and LP (Z3) = µ3. Thus,

Wd,p (µ1,µ3)≤ (E [dp(Z1,Z3)])
1/p ≤ (E [dp(Z1,Z2)])

1/p +(E [dp(Z2,Z3)])
1/p

=

{∫
X×X

dp(x,y)γ1(dxdy)
}1/p

+

{∫
X×X

dp(y,z)γ2(dydz)
}1/p

≤Wd(µ1,µ2)+Wd(µ2,µ3)+2ε .

Since ε is arbitrary, the triangle inequality holds. 2

The following result relates the Wasserstein distance and the Prokhorov metric ρρρd
and shows that convergence in the Wasserstein distance implies weak convergence.

Proposition 20.A.2 Let µ , ν be two probability measures on X. Then,

ρρρ
2
d (µ,ν)≤Wd (µ,ν) (20.A.1)

Let {µn, n ∈ N} be a sequence of probability measures on X. For p ≥ 1, if
limn→∞ Wd,p (µn,µ) = 0 then {µn, n ∈ N} converges weakly to µ .
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Proof. Without loss of generality, we assume that Wd (µ,ν) < ∞ and set a =√
Wd (µ,ν). For A ∈ X , define fa(x) = (1− d(x,A)/a)+ and let Aa be the a-

enlargement of A. Then 1A ≤ fa ≤ 1Aa and | fa(x)− fa(y)| ≤ d(x,y)/a for all
(x,y) ∈ X×X. Let γ be the optimal coupling of µ and ν . This yields

ν(A)≤ ν( fa)≤ µ( fa)+
∫

X×X
| fa(x)− fa(y)|γ(dxdy)

≤ µ(Aa)+a−1Wd (µ,ν)≤ µ(Aa)+a .

By definition of the Prokhorov metric, this proves that ρρρd (µ,ν)≤ a hence (20.A.1)
by the choice of a. Since the Prokhorov metric metrizes weak convergence by The-
orem C.2.7 and Wd ≤Wd,p for all p ≥ 1 by (20.1.14), we obtain that convergence
with respect to the the Wasserstein distance implies weak convergence. 2

Proof (of Theorem 20.1.8). Let {µn, n ∈ N} be a Cauchy sequence for Wd,p. By
Proposition 20.A.2, it is also a Cauchy sequence for the Prokhorov metric and by
Theorem C.2.7, there exists a probability measure µ such that µn

w⇒ µ . We must
prove that µ ∈ Sp(X,d). Fix x0 ∈ X. For every M > 0, the function x 7→ d(x0,x)∧M
is continuous. Thus, there exists N such that∫

X
(dp(x0,x)∧M)µ(dx)≤

∫
X
(dp(x0,x)∧M)µN(dx)+1

≤
∫

X
dp(x0,x)µN(dx)+1 < ∞ .

By the monotone convergence theorem, this proves that µ ∈ Sp(X,d) and thus
(Sp(X,d),Wd,p) is complete.

We now prove the density of the distributions with finite support. Fix an arbi-
trary a0 ∈ X. For all n ≥ 1, by Lemma B.1.3, there exists a partition {An,k, k ≥ 1}
of X by Borel sets such that diam(An,k) ≤ 1/n for all k. Choose now for each
n,k≥ 1, a point an,k ∈ An,k. Set Bn,k =

⋃k
j=1 An, j. Then Bc

n,k is a decreasing sequence
of Borel sets and

⋂
k≥0 Bc

n,k = /0. Let µ ∈ Sp(X,d). Then, by dominated conver-
gence, limk→∞

∫
Bc

n,k
dp(a0,x)µ(dx) = 0. We may thus choose k0 large enough so that∫

Bc
n,k0

dp(a0,x)µ(dx)< 1/n. Let X be a random variable with distribution µ . Define

the random variable Yn by

Yn = a01Bc
n,k0

(X)+
k0

∑
j=1

an, j1An, j
(X)

Let νn be the distribution of Yn. Then,
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Wp
d,p (µ,νn)≤ E [dp(X ,Yn)]

=
k0

∑
j=1
E
[
dp(X ,Yn)1An, j

(X)
]
+E

[
dp(X ,Yn)1Bc

n,k0
(X)

]

≤ 1
np

k0

∑
j=1
P(X ∈ An, j)+

∫
Bc

k

dp(a0,x)µ(dx)≤ 2/n .

This proves that the set of probability measures which are finite convex combina-
tions of the Dirac measures δa0 and δan,k , n,k ≥ 1, is dense in Sp(X,d). Restricting
to combinations with rational weights proves that Sp(X,d) is separable.

Assume now that (i) holds. Then µn
w⇒ µ0 by Proposition 20.A.2. Apply-

ing (20.1.15) and the triangle inequality, we obtain

limsup
n→∞

∫
X

dp(x0,y)µn(dy) = limsup
n→∞

Wd,p
(
δx0 ,µn

)
≤Wd,p

(
δx0 ,µ0

)
+ lim

n→∞
Wd,p (µn,µ0)

=
∫

X
dp(x0,y)µ0(dy) .

Since µn
w⇒ µ0, it holds that

lim
n→∞

∫
X

dp(x0,y)1{d(x0,y)≤M}µn(dy) =
∫

X
dp(x0,y)1{d(x0,y)| ≤M}µn(dy)

for all M such that µ0({y ∈ X : d(x0,y) = M}) = 0. This proves (ii).
Conversely, if (ii) holds, then by Skorokhod’s representation Theorem B.3.18,

there exists a sequence {Xn, n ∈ N∗} of random elements defined on a common
probability space (Ω ,A ,P) such that the distribution of Xn is µn for all n ∈ N and
Xn→ X0 P − a.s. This yields by Lebesgue’s dominated convergence theorem,

limsup
n→∞

E [dp(Xn,X0)1{d(x0,Xn)≤M}] = 0 .

By (ii), we also have

lim
M→∞

limsup
n→∞

E1/p[dp(Xn,X0)1{d(x0,Xn)> M}]

≤ lim
M→∞

limsup
n→∞

E1/p[dp(Xn,x0)1{d(x0,Xn)> M}]

+ lim
M→∞

limsup
n→∞

E1/p[dp(x0,X0)1{d(x0,Xn)> M}] = 0 .

Altogether, we have shown that

lim
n→∞

Wp
d,p (µn,µ0)≤ lim

n→∞
E [dp(Xn,X0)] = 0 .
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This proves (i).
2





Chapter 21
Central limit theorems

Let P be a Markov kernel on X×X which admits an invariant probability mea-
sure π and let {Xn, n ∈ N} be the canonical Markov chain. Given a function
h ∈ L2

0(π) =
{

h ∈ L2(π) : π(h) = 0
}

, consider the partial sum

Sn(h) =
n−1

∑
k=0

h(Xk) .

For an initial distribution ξ ∈M1(X ), we say that the central limit theorem (CLT)
holds for h under Pξ if there exists a positive constant σ2(h) such that

n−1/2Sn(h)
Pξ

=⇒ N(0,σ2(h)) .

In this chapter, we will prove the CLT under several sets of conditions, both under
the stationary distribution Pπ and Pξ for certain initial distributions ξ . A fruitful ap-
proach to obtain a central limit theorem is to represent the sum Sn(h) as the sum of a
martingale and a reminder term and to apply a central limit theorem for martingales.
In the preliminary Section 21.1, we will prove a generalization of the martingale
CLT. This CLT is proved for stationary Markov chains. In Section 21.1.2, we will
give a condition under which the central limit holds when the chain does not start
under the invariant distribution.

A first method to obtain the martingale decomposition is to use the Poisson equa-
tion which will be introduced in Section 21.2. The Poisson equation plays an im-
portant role in many areas and its use is not limited to the CLT.

When the Poisson equation does not admit solution, other approaches must be
considered. We will discuss two possible approaches in the vast literature dedicated
to the central limit theorems for Markov chains (and more generally for dependent
sequences).

The first idea is to replace the Poisson equation by the resolvent equation which
always has a solution in L2(π). Based on the solution to the resolvent equation, we
will establish in Section 21.3 a CLT under a set of conditions which are close to
optimal.

491
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The second approach which will be developed in Section 21.4 is based on a
different martingale decomposition. This technique which was initially developed
for stationary weakly dependent sequences yields a CLT, Theorem 21.4.1, under a
single unprimitive sufficient condition. This condition in turn provides optimal con-
ditions for geometrically and polynomially ergodic irreducible chains. In the final
Section 21.4.2, we will apply Theorem 21.4.1 to non irreducible kernels for which
convergence holds in the Wasserstein distance. For these kernels, the functions h
considered must satisfy additional Lipschitz-type conditions.

21.1 Preliminaries

In this section, we establish a version of the martingale central limit theorem and
other results which will be used to prove the CLT for Markov chains.

21.1.1 Application of the martingale central limit theorem

We first state an auxiliary central limit theorem for martingales whose increments
are functions of a Markov chain. For m ≥ 1, let πm be the joint distribution of
(X0, . . . ,Xm) under Pπ , i.e. πm = π⊗P⊗m.

Lemma 21.1.1 Let P be a Markov kernel which admits a unique invariant proba-
bility measure π . Let G∈ L2(πm). Assume that E [G(X0, . . . ,Xm) |F0] = 0 Pπ −a.s.
Then,

n−1/2
n

∑
k=m

G(Xk−m, . . . ,Xk)
Pπ=⇒ N(0,s2)

with

s2 = Eπ

(m−1

∑
j=0
E
[

G(X j, . . . ,X j+m)
∣∣Fm

]
−E

[
G(X j, . . . ,X j+m)

∣∣Fm−1
])2


If s2 = 0, weak convergence simply means convergence in probability to 0.

Proof. We first express the sum Sn = ∑
n
k=m G(Xk−m, . . . ,Xk) as the sum of a mar-

tingale difference sequence and remainder terms. For k = m, . . . ,n and q = k−m+
1, . . . ,k write Yk = G(Xk−m, . . . ,Xk) and

ξ
(q)
k = E [G(Xk−m, . . . ,Xk) |Fq]−E

[
G(Xk−m, . . . ,Xk) |Fq−1

]
.

Write also Sn = Ym + · · ·+Yn. Then E [G(Xk−m, . . . ,Xk) |Fk−m] = 0 Pπ − a.s. for
all k ≥ m and we have
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Sn =
n

∑
k=m

k

∑
q=k−m+1

ξ
(q)
k =

n

∑
q=1

q+m−1

∑
k=q

ξ
(q)
k 1{m≤ k ≤ n}

=
n

∑
q=1

m−1

∑
j=0

ξ
(q)
q+ j1{m≤ q+ j ≤ n} .

If m ≤ q ≤ n−m+ 1, then the indicator is equal to 1 for all j = 0, . . . ,m− 1, i.e.
only the first and last m−1 terms are affected by the indicator. Write

ζq =
m−1

∑
j=0

ξ
(q)
q+ j , Mn =

n−m+1

∑
q=m

ζq .

Since G ∈ L2(πm), we may therefore write Sn = Mn +Rn and the sequence {Rn}
satisfies supn∈NEπ [R2

n]< ∞ since the random variables ξ
(q)
k are uniformly bounded

in L2(π) and Rn is a sum of at most 2m terms of this form. The sequence {ζq, q∈N}
is a stationary square integrable martingale difference sequence. Therefore, to prove
the central limit theorem for {Mn, n ∈ N}, we apply the central limit theorem for
stationary martingale difference sequences (see Corollary E.4.2). We must check the
following conditions: there exists s > 0 such that

n−1
n−m+1

∑
q=m

E
[

ζ
2
q
∣∣Fq−1

] Pπ −prob−→ s2 , (21.1.1)

and for all ε > 0,

n−1
n−m+1

∑
q=m

E
[

ζ
2
q1
{
|ζq|> ε

√
n
}∣∣Fq−1

] Pπ −prob−→ 0 , (21.1.2)

By stationarity, the expectation of the left hand side is Eπ

[
ζ 2

m1{|ζm|> ε
√

n}
]
. By

monotone convergence theorem since Eπ [ξ
2
m]< ∞, we obtain

lim
n→∞

Eπ

[
ζ

2
m1
{
|ζm|> ε

√
n
}]

= 0 .

This shows (21.1.2). Now, the left hand side of (21.1.1) might be expressed as
n−1

∑
n−m+1
q=m H(Xq−1) with

H(x) = Ex

(m−1

∑
j=0

ξ
(m)
m+ j

)2
 .

Since the invariant probability is unique, we can apply Theorems 5.2.6 and 5.2.9
which yield (21.1.1) since s2 = π(H). 2

Remark 21.1.2. For any g ∈ L2(π) set G(x0, . . . ,xm) = g(xm)− Pmg(x0). In that
case, the limiting variance takes the simpler form
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s2 = Eπ

{m−1

∑
j=0

P jg(X1)−P j+1g(X0)

}2
 . (21.1.3)

For m = 1, this simply yields s2 = Eπ [{g(X1)−Pg(X0)}2]. N

21.1.2 From the invariant to an arbitrary initial distribution

We will derive below conditions upon which the central limit theorems holds under
Pπ (when the Markov chain is started from its invariant distribution and is therefore
stationary), i.e. for some h ∈ L2

0(π),

n−1/2Sn(h)
Pπ=⇒ N(0,σπ(h)) . (21.1.4)

Assuming that (21.1.4) holds, it is natural to ask for which initial distributions ξ ∈
M1(X ) the CLT still holds. Perhaps surprisingly, these conditions are very different
from those which ensure the CLT under the stationary distribution. As we will see in

this Section, it is possible to deduce from (21.1.4) that n−1/2Sn(h)
Pξ

=⇒ N(0,σπ(h))
under quite weak conditions, at least when the Markov kernel P is irreducible. In
particular, if P is a positive irreducible Harris recurrent Markov kernel and if the
central limit holds under Pπ , then it holds under any initial distribution.

Proposition 21.1.3 Let P be a Markov kernel on X×X , h : X→R be a mea-
surable function and ξ ,ξ ′ ∈M1(X ). Assume that

lim
m→∞

∥∥(ξ −ξ
′)Pm∥∥

TV = 0 . (21.1.5)

Then if n−1/2Sn(h)
Pξ

=⇒ µ for some probability measure µ on (R,B(R)), then

n−1/2Sn(h)
P

ξ ′
=⇒ µ .

Proof. For n > m, we get

Eξ [exp(itn−1/2Sn(h))] = Eξ [exp(itn−1/2Sn−m(h)◦θm)]+ rm,n(ξ )

= Eξ [EXm [exp(itn−1/2Sn−m(h))]]+ rm,n(ξ )

= ξ Pmum,n + rm,n(ξ )

with um,n(x) =Ex[exp(itn−1/2Sn−m(h))] and rm,n(ξ )≤Eξ [|1−exp(itn−1/2Sm(h))|].
For every m ∈ N, it holds that limn→∞ rm,n(ξ ) = 0. Furthermore, since |um,n|∞ ≤ 1,
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|Eξ [exp(itn−1/2Sn(h))]−Eξ ′ [exp(itn−1/2Sn(h))]|
≤
∥∥ξ Pm−ξ

′Pm∥∥
TV + rm,n(ξ )+ rm,n(ξ

′) .

Therefore limn→∞ |Eξ [exp(itn−1/2Sn(h))]−Eξ [exp(itn−1/2Sn(h))]| = 0 and the re-
sult follows. 2

We now replace the condition (21.1.5) with a weaker condition in which the exis-
tence of the limit is replaced by a convergence in Cesaro’s mean. As we will see
below, this makes it possible to deal in particular with the case of periodic Markov
kernels. We first need a preliminary result which is of independent interest.

Lemma 21.1.4 Let P be a Markov kernel on X×X with invariant probability π .
For h ∈ L2(π) set A∞(h) :=

{
limn→∞ n−1/2|h(Xn)|= 0

}
. Then Pπ(A∞(h)) = 1 and

Px (A∞(h)) = 1 for π almost all x ∈ X. If P is positive, irreducible and Harris recur-
rent, then Pξ (A∞(h)) = 1 for all ξ ∈M1(X ).

Proof. For all ε > 0, we get

∞

∑
n=1
Pπ(n−1/2|h(Xn)|> ε) =

∞

∑
n=1
Pπ(ε

−2|h(Xn)|2 > n)

=
∞

∑
n=1

π
(
{ε−2|h|2 > n}

)
≤ ε

−2
π(h2)< ∞ .

Therefore, by the Borel Cantelli lemma we obtain Pπ(A∞(h)) = 1. Set g(x) =
Px(A∞(h)). Then

Pg(x) = Ex[EX1 [1A∞(h)]] = Ex[1A∞(h) ◦θ ] = Ex[1A∞(h)] = g(x) .

Therefore, the function g is harmonic and π(g) = Pπ(A∞(h)) = 1. This implies that
g(x) = 1 for π almost all x ∈ X. If P is a positive, irreducible and Harris recurrent,
the function g is constant by Theorem 10.2.11 and therefore g(x) = 1 for all x ∈ X,
which concludes the proof. 2

Proposition 21.1.5 Let P be a Markov kernel on X×X , h : X → R be a

measurable function, and ξ ,ξ ′ ∈M1(X ). Assume that n−1/2h(Xn)
Pξ −prob
−→ 0,

n−1/2h(Xn)
P

ξ ′ −prob
−→ 0 and

lim
m→∞

∥∥∥∥∥ 1
m

m−1

∑
k=0

(ξ −ξ
′)Pk

∥∥∥∥∥
TV

= 0 . (21.1.6)

Then if n−1/2Sn(h)
Pξ

=⇒ µ for some probability measure µ on (R,B(R)), then

n−1/2Sn(h)
P

ξ ′
=⇒ µ .
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Proof. For j,k ∈ N2, set S j,k = ∑
k
i= j h(Xi), with the convention S j,k = 0 if j > k.

The dependence of S j,k on h is implicit. For all t ∈ R and n > m, using the Markov
property, we get

Eξ

[
exp(itn−1/2S0,n−1)

]
=

1
m

m−1

∑
k=0
Eξ

[
exp(itn−1/2Sk,n+k−1)

]
+ rm,n(ξ )

=
1
m

m−1

∑
k=0
E

ξ Pk

[
exp(itn−1/2S0,n−1)

]
+ rm,n(ξ )

=
1
m

m−1

∑
k=0

ξ Pkun + rm,n(ξ )

where we have set un(x) = Ex
[
exp(itn−1/2S0,n−1)

]
and

|rm,n(ξ )| ≤
1
m

m−1

∑
k=0

{
Eξ

[
|1− exp(itn−1/2Sn,n+k−1)|+ |1− exp(itn−1/2S0,k−1)|

]}
.

By Lemma 21.1.4, n−1/2|h(Xn)|
Pξ −prob
−→ 0. This implies for each k ∈ N

lim
n→∞

Eξ

[
|1− exp(itn−1/2Sn,n+k−1)|

]
= 0

and thus, for each m, limn→∞ rm,n(ξ ) = 0. Now since |un|∞ ≤ 1, we get∣∣∣Eξ

[
exp(itn−1/2S0,n−1)

]
−Eξ ′

[
exp(itn−1/2S0,n−1)

]∣∣∣
≤

∣∣∣∣∣ 1
m

m−1

∑
k=0

ξ Pkun−
1
m

m−1

∑
k=0

ξ
′Pkun

∣∣∣∣∣+ |rm,n(ξ )|+ |rm,n(ξ
′)|

≤

∥∥∥∥∥ 1
m

m−1

∑
k=0

(ξ −ξ
′)Pk

∥∥∥∥∥
TV

+ |rm,n(ξ )|+ |rm,n(ξ
′)| ,

which concludes the proof. 2

Corollary 21.1.6 Let P be an irreducible, positive, and Harris recurrent
Markov kernel on X×X with invariant probability π and let h ∈ L2

0(π).

If n−1/2Sn(h)
Pξ

=⇒ N(0,σ2(h)) for some ξ ∈ M1(X ), then n−1/2Sn(h)
P

ξ ′
=⇒

N(0,σ2(h)) for all ξ ′ ∈M1(X ).

Proof. By Corollary 11.3.2, we get limm→∞

∥∥m−1
∑

m−1
k=0 (ξ −ξ ′)Pk

∥∥
TV = 0. The

proof is then completed by applying Proposition 21.1.5. 2



21.2 The Poisson equation 497

We now extend this result to an irreducible, recurrent positive Markov kernel P. For
C be an accessible small set, define

H = {x ∈ X : Px(σC < ∞) = 1} . (21.1.7)

According to Theorem 10.2.7, the set H does not depend on the choice of the small
set C and is maximal absorbing. If we denote by π the unique invariant probability
of P, we get π(H) = 1.

Corollary 21.1.7 Let P be an irreducible recurrent positive Markov kernel
on X×X with invariant probability π and let h ∈ L2

0(π). Let H be given
by (21.1.7). Assume that for some ξ ∈M1(X ) satisfying ξ (Hc) = 0 we get

n−1/2Sn(h)
Pξ

=⇒ N(0,σ2(h)). Then n−1/2Sn(h)
P

ξ ′
=⇒ N(0,σ2(h)) for all ξ ′ ∈

M1(X ) satisfying ξ ′(Hc) = 0.

Proof. By Theorem 10.2.7, the restriction of P to H is Harris recurrent. Since P is
positive, this restriction is irreducible, positive, and Harris recurrent. We conclude
by Corollary 21.1.6. 2

We now generalize the results above to a Markov kernel P which admits an invariant
probability π but which is not necessarily irreducible.

Proposition 21.1.8 Let P be a Markov kernel on X×X with invariant proba-

bility π , ξ ∈M1(X ) and h ∈ L2
0(π). Assume that n−1/2Sn(h)

Pπ=⇒N(0,σ2(h)).
If in addition

(i) the function h is finite,
(ii) either limn→∞ ‖ξ Pn−π‖TV = 0 or limn→∞

∥∥n−1
∑

n−1
k=0 Pk−π

∥∥
TV = 0 and

limn→∞ n−1/2h(Xn) = 0 Pξ − a.s.

then n−1/2Sn(h)
Pξ

=⇒ N(0,σ2(h)).

Proof. Follows from Proposition 21.1.3 and Proposition 21.1.5. 2

21.2 The Poisson equation

In this Section we will prove a central limit theorem for n−1/2Sn(h) by using the
Poisson equation.
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Definition 21.2.1 (Poisson equation) Let P be a Markov kernel on X×X with a
unique invariant probability π . For h ∈ F(X) such that π(|h|)< ∞, the equation

ĥ−Pĥ = h−π(h) , (21.2.1)

is called the Poisson equation associated to the function h.
A solution to the Poisson equation (21.2.1) is a function ĥ ∈ F(X) satisfying for

π-a.e. x ∈ X, P|ĥ|(x)< ∞ and ĥ(x)−Pĥ(x) = h(x)−π(h) .

The solution to the Poisson equation allows to relate Sn(h) to a martingale. If
ĥ−Pĥ = h, we have the decomposition

Sn(h) = Mn(h)+ ĥ(X0)− ĥ(Xn) , (21.2.2)

with

Mn(h) =
n

∑
k=1

{
ĥ(Xk)−Pĥ(Xk−1)

}
. (21.2.3)

The asymptotic behavior of the sequence {Sn(h),n ∈ N} will be derived from that
of the martingale {Mn(h),n ∈ N}.

Lemma 21.2.2 Let P be a Markov kernel on X×X with invariant probability mea-
sure π . If π is the unique invariant probability measure and ĥ1 and ĥ2 are solutions
to Poisson equations such that π(|ĥi|)< ∞, i = 1,2, then there exists c∈R such that
ĥ2(x) = c+ ĥ1(x) for π-a.e. x ∈ X.

Proof. If ĥ1 and ĥ2 are two solutions for the Poisson equation, then ĥ1− ĥ2 =P(ĥ1−
ĥ2), i.e. ĥ1− ĥ2 is harmonic. Since π(|ĥ1− ĥ2|)< ∞ and since π is now assumed to
be the unique invariant probability measure, Proposition 5.2.12 implies that ĥ1− ĥ2
is π-almost surely constant. 2

Proposition 21.2.3 Let P be a Markov kernel with a unique invariant prob-
ability measure π . Let h ∈ Lp(π) be such that π(h) = 0. Assume that
∑

∞
k=0

∥∥Pkh
∥∥

Lp(π)
< ∞ for some p ≥ 1. Then ĥ = ∑

∞
k=0 Pkh is a solution to the

Poisson equation and ĥ ∈ Lp(π).

Proof. Note first that since ∑
∞
k=0

∥∥Pkh
∥∥

Lp(π)
< ∞, the series ∑

∞
k=0 Pkh is normally

convergent in Lp(π). We denote ĥ the sum of this series. Because P is a bounded
linear operator on Lp(π), then Pĥ = ∑

∞
k=1 Pkh and ĥ−Pĥ = h in Lp(π). 2
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Proposition 21.2.4 Let P be an irreducible and aperiodic Markov kernel on
X×X with invariant probability measure π . Assume that there exist V : X→
[0,∞], f : X→ [1,∞), b < ∞ and a non empty petite set C such that supC V < ∞

and PV + f ≤V +b1C.
Any function h ∈ F(X) satisfying |h| f < ∞ is π-integrable and there exists a

solution ĥ to the Poisson equation such that
∣∣ĥ∣∣V < ∞.

Proof. Theorem 17.1.3-(a) shows that the set {V < ∞} is full and absorbing. Since
π is a maximal irreducibility measure, π({V =∞}) = 0 and Proposition 4.3.2 shows
that π( f )< ∞. By Theorem 17.1.3-(c), there exists ς < ∞ such that for any ξ ,ξ ′ ∈
M1(X ),

∞

∑
n=0

∥∥ξ Pn−ξ
′Pn∥∥

f ≤ ς
{

ξ (V )+ξ
′(V )+1

}
. (21.2.4)

Let x∈X be such that V (x)< ∞, which implies PV (x)< ∞. Let h be a function such
that |h| f < ∞ and π(h) = 0. Applying (21.2.4) with ξ = δx and ξ ′ = δxP yields

∞

∑
n=0
|Pnh(x)−Pn+1h(x)| ≤ |h| f

∞

∑
n=0

∥∥Pn(x, ·)−Pn+1(x, ·)
∥∥

f

≤ ς |h| f {V (x)+PV (x)+1}< ∞ . (21.2.5)

By Theorem 17.1.3-(a), we know that limn→∞ Pnh(x) = 0, which implies

h(x) =
∞

∑
n=0
{Pnh(x)−Pn+1h(x)} ,

for all x such that V (x)< ∞. Choose x0 ∈ {V < ∞}. Then (21.2.4) shows that for all
x ∈ X,

∞

∑
n=0
|Pnh(x)−Pnh(x0)| ≤ ς{V (x)+V (x0)+1} . (21.2.6)

Consider the function defined on X by

h̃(x) =
∞

∑
n=0
{Pnh(x)−Pnh(x0)} , (21.2.7)

if V (x)< ∞ and h̃(x) = 0 otherwise. Then, if V (x)< ∞, the absolute summability of
the series in (21.2.6) yields

h̃(x)−Ph̃(x) =
∞

∑
n=0
{Pnh(x)−Pn+1h(x)}= h(x) .
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This proves that h̃ is a solution to the Poisson equation. 2

Theorem 21.2.5. Let P be a Markov kernel with a unique invariant probability mea-
sure π . Let h ∈ L2(π) be such that π(h) = 0. Assume that there exists a solution
ĥ ∈ L2(π) to the Poisson equation ĥ−Pĥ = h. Then

n−1/2
n−1

∑
k=0

h(Xk)
Pπ=⇒ N(0,σ2

π (h)) ,

where

σ
2
π (h) = Eπ [{ĥ(X1)−Pĥ(X0)}2] = 2π(hĥ)−π(h2) . (21.2.8)

Proof. The sequence {Mn(h),n ∈ N} defined in (21.2.3) is a martingale under Pπ

and satisfies the assumptions of Lemma 21.1.1 with m = 1 and G(x,y) = ĥ(y)−
Pĥ(x). By Markov’s property,

E [G(Xk−1,Xk) |Fk−1] = E
[

ĥ(Xk)
∣∣Xk−1

]
−Pĥ(Xk−1) = 0 Pπ − a.s.

Lemma 21.1.1 shows that

n−1/2Mn(ĥ)
Pπ=⇒ N

(
0,Eπ [{ĥ(X1)−Pĥ(X0)}2]

)
.

We will now establish (21.2.8). Since the Markov chain {Xk, k ∈ N} is stationary
under Pπ , we get Eπ [|ĥ(X0)+ ĥ(Xn)|]≤ 2π(|ĥ|) which implies that

n−1/2{ĥ(X0)+ ĥ(Xn)}
Pπ −prob−→ 0 .

Let us now prove the equality of the expressions (21.2.8) of the variance. Since
Pĥ(X0) = E

[
ĥ(X1)

∣∣F0
]
, we have Eπ [ĥ(X1)Pĥ(X0)] = Eπ [{Pĥ(X0)}2] and thus

Eπ [{ĥ(X1)−Pĥ(X0)}2] = Eπ [{ĥ(X1)}2−{Pĥ(X0)}2] = π(ĥ2− (Pĥ)2) .

Since h = ĥ− Pĥ, we further have ĥ2 − (Pĥ)2 = (ĥ− Pĥ)(ĥ + Pĥ) = h(2ĥ− h).
Therefore, π(ĥ2− (Pĥ)2) = 2π(hĥ)−π(h2). 2

Theorem 21.2.6. Let P be a Markov kernel with a unique invariant probability mea-
sure π . Let h ∈ L2(π) be such that π(h) = 0. Assume that ∑

∞
k=0

∥∥Pkh
∥∥

L2(π)
< ∞.

Then, ∑
∞
k=0 |π(hPkh)|< ∞ and
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n−1/2
n−1

∑
k=0

h(Xk)
Pπ=⇒ N(0,σ2

π (h)) ,

where

σ
2
π (h) = π(h2)+2

∞

∑
k=1

π(hPkh) = lim
n→∞

n−1Eπ [S2
n(h)] . (21.2.9)

Proof. By Proposition 21.2.3, the series ĥ = ∑
∞
k=0 Pkh is a solution to the Poisson

equation and ĥ ∈ L2(π). By the Cauchy–Schwarz inequality we have

∞

∑
k=0
|π(hPkk)| ≤ ‖h‖L2(π)

∞

∑
k=0

∥∥∥Pkh
∥∥∥

L2(π)
< ∞ .

We conclude by applying Theorem 21.2.5 using the identity 2π(hĥ)− π(h2) =
π(h2)+2∑

∞
k=1 π(hPkh).

The identity σ2
π (h) = limn→∞ n−1Eπ [S2

n(h)] follows from Lemma 21.2.7 below.
2

Lemma 21.2.7 Let P be a Markov kernel on X×X with invariant probability mea-
sure π . Let h ∈ L2(π). If the limit

lim
n→∞

n

∑
k=1

π(hPkh) (21.2.10)

exists in R∪{+∞}, then

lim
n→∞

n−1Eπ

(n−1

∑
k=0

h(Xk)

)2
= π(h2)+2 lim

n→∞

n

∑
k=1

π(hPkh) . (21.2.11)

Proof. By stationarity, we have

1
n
Eπ

(n−1

∑
k=0

h(Xk)

)2
= π(h2)+2

n−1

∑
k=1

(
1− k

n

)
π(hPkh)

= π(h2)+
2
n

n

∑
`=1

{
`−1

∑
k=1

π(hPkh)

}
,

We conclude the proof by Cesàro’s theorem. 2

Remark 21.2.8. If the limit in (21.2.10) exists, it is usual to denote it ∑
∞
k=1 π(hPkh)

but it is important to remember in that case that this notation does not imply that the
series is absolutely summable. N



502 21 Central limit theorems

We will now illustrate the use of summability condition ∑
∞
k=0

∥∥Pkh
∥∥

L2(π)
< ∞.

The following Lemma is instrumental in the sequel.

Lemma 21.2.9 Let (X,X ) be a measurable space, (ξ ,ξ ′) ∈M1(X ), p ≥ 1 ,and
h ∈ Lp(ξ )∩Lp(ξ ′). Then

|ξ (h)−ξ
′(h)| ≤

∥∥ξ −ξ
′∥∥(p−1)/p

TV

{
ξ (| f |p)+ξ

′(| f |p)
}1/p

. (21.2.12)

Proof. Without loss of generality, we assume that ‖ξ −ξ ′‖TV 6= 0. Note first that

|ξ (h)−ξ
′(h)|p =

∣∣∣∣∫ {ξ (dx)−ξ
′(dx)}h(x)

∣∣∣∣p
≤
(∫ |ξ −ξ ′|(dx)
‖ξ −ξ ′‖TV

|h(x)|
)p∥∥ξ −ξ

′∥∥p
TV ,

where |ξ −ξ ′| denotes the total variation of the finite signed measure ξ −ξ ′. Since
|ξ −ξ ′|/‖ξ −ξ ′‖TV is a probability measure, Jensen’s inequality implies

|ξ (h)−ξ
′(h)|p ≤

∥∥ξ −ξ
′∥∥p

TV

∫ |ξ (dx)−ξ ′(dx)|
‖ξ −ξ ′‖TV

|h(x)|p

≤
∥∥ξ −ξ

′∥∥p−1
TV

{
ξ (|h|p)+ξ

′(|h|p)
}
.

The proof of (21.2.12) is completed. 2

Theorem 21.2.10. Let P be Markov kernel on X×X with invariant probability
measure π . If the Markov kernel P is π-a.e. uniformly ergodic, i.e. there exist ς < ∞

and ρ ∈ [0,1) such that for π-a.e. x ∈ X0,

‖Pn(x, ·)−π‖TV ≤ ςρ
n , for all n ∈ N.

Then, for any h ∈ L2
0(π), ∑

∞
k=0 |π(hPkh)|< ∞, we get

n−1/2
n−1

∑
k=0

h(Xk)
Pπ=⇒ N

(
0,σ2

π (h)
)
,

where

σ
2
π (h) = π(h2)+2

∞

∑
k=1

π(hPkh) . (21.2.13)

Proof. Let h∈L2
0(π). Since π(h2)<∞ and π is invariant, for all n∈N, π(Pnh2)<∞

showing that π(X0) = 1 where
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X0 =
∞⋂

n=0

{
x ∈ X : Pnh2(x, ·)< ∞,‖Pn(x, ·)−π‖TV ≤ ςρ

n} .

For x ∈ X0, we apply Lemma 21.2.9 with ξ = Pn(x, ·), ξ ′ = π and p = 2. Since
π(h) = 0, this implies

|Pnh(x)| ≤ ‖Pn(x, ·)−π‖1/2
TV {P

nh2(x)+π(h2)}1/2 ≤ ςρ
n{Pnh2(x)+π(h2)}1/2

Taking the square and integrating with respect to π , the latter inequality implies
π({Pnh}2) ≤ 2ς2ρ2nπ(h2), showing that ∑

∞
n=0 ‖Pnh‖L2(π) < ∞. We conclude by

applying Theorem 21.2.6. 2

Theorem 21.2.11. Let P be an aperiodic irreducible Markov kernel on X×X with
invariant probability measure π . Assume that there exist V : X→ [0,∞], f : X→
[1,∞), b < ∞ and a non empty petite set C such that supC V < ∞ and PV + f ≤
V +b1C. Assume in addition that π(V 2)< ∞. Then any function h∈ F(X) satisfying
|h| f < ∞ is π-integrable and

n−1/2
n−1

∑
k=0

h̄(Xk)
Pπ=⇒ N(0,σ2

π (h̄)) , h̄ = h−π(h) ,

where σ2
π (h̄) = π(h̄2)+2∑

∞
k=1 π(h̄Pkh̄).

Proof. First note that since f ≤PV + f ≤V +b1C and π(V 2)<∞, we get f ∈L2(π)
and hence h ∈ L2(π). According to Proposition 21.2.4, there exists a solution to the
Poisson equation ĥ0(x) = ∑

∞
k=0{Pkh(x)−Pkh(x0)} where x0 is an arbitrary point in

{V < ∞}. The condition π(V 2)< ∞ implies π(V )< ∞ and Theorem 17.1.3-(c) then
shows that there exists ς < ∞ such that

∞

∑
n=0
‖Pn(x, ·)−π‖ f ≤ ς{V (x)+π(V )+1} .

Since |h| f < ∞, |Pnh(x0)−π(h)| ≤ |h| f ‖Pn(x0, ·)−π‖ f and setting h̄ = h−π(h),
the latter inequality implies

∞

∑
n=0
|Pnh̄(x0)| ≤ ς |h| f {V (x0)+π(V )+1} .

Since by Lemma 21.2.2 Poisson solutions are defined up to an additive constant,
ĥ(x) = ∑

∞
k=0 Pkh̄(x) is a Poisson solution, which satisfies |ĥ(x)| ≤ ∑

∞
k=0 |Pkh̄(x)| ≤

ς{V (x)+π(V )+ 1}. Since π(V 2) < ∞, this implies ĥ ∈ L2(π) and we may apply
Theorem 21.2.5 to prove that
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n−1/2
n−1

∑
k=0

h̄(Xk)
Pξ

=⇒ N(0,σ2
π (h̄))

where σ2
π (h̄) = 2π(h̄ĥ)−π(h̄2). Moreover, since

∞

∑
k=0
|h̄(x)Pkh̄(x)| ≤ ς

∣∣h̄∣∣ f f (x){V (x)+π(V )+1}

we get ∑k≥1 π(|h̄Pkh̄|)< ∞. This shows that

σ
2
π (h̄) = 2π(h̄ĥ)−π(h̄2) = π(h̄2)+2

∞

∑
k=1

π(h̄Pkh̄)

2

Example 21.2.12. Assume that the Markov kernel P is irreducible, aperiodic and
satisfies the geometric drift condition Dg(V,λ ,b,C) and that C is a small set. Then
the central limit theorem holds for every measurable function g such that

∣∣g2
∣∣
V < ∞

if π(V )< ∞ or simply |g|V < ∞ if π(V 2)< ∞. J

Example 21.2.13. Assume that the Markov kernel P is irreducible, aperiodic and
exists a small set C, a measurable function V : X→ [1,∞) such that supC V < ∞ and
constants b,c > 0 and τ ∈ [0,1) such that

PV + cV τ ≤V +b1C . (21.2.14)

If π(V 2)< ∞, then the central limit theorem holds for all g∈ F(X) such that |h|V τ <
∞. The condition π(V 2) < ∞ can be relaxed at the cost of a stronger condition on
g. Let η ∈ (0,1). Then, for x /∈C, PV (x)≤V (x)− cV τ(x) and using the inequality
ϕ(a)≤ ϕ(x)− (x−a)ϕ ′(x) for the concave function ϕ(x) = xη , we get for x /∈C,

P(V η)(x)≤ [PV (x)]η ≤ [V (x)− cV τ(x)]η ≤V η(x)−ηcV τ+η−1(x) .

Also, using the Jensen inequality, we get

sup
x∈C

P(V η)(x)≤ sup
x∈C

(PV (x))η ≤ {sup
x∈C

V (x)+b}η < ∞ .

Thus, there exist constants bη < ∞ and cη < ∞ satisfying

PV η + cηV τ+η−1 ≤V η +bη1C .

Thus, if τ + η − 1 ≥ 0 and π(V 2η) < ∞, the central limit theorem holds for all
functions g such that |g|V τ+η−1 < ∞. J
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21.3 The resolvent equation

The existence of a Poisson solution in L2(π) may be too restrictive. It is possible
to keep a decomposition of the sum Sn(h) in the form of a martingale Mn and a
remainder Rn using Poisson solutions based on the resolvent, which is defined for
h ∈ L2

0(π) and λ > 0 by the resolvent equation

(1+λ )ĥλ −Pĥλ = h . (21.3.1)

Contrary to the classical Poisson equation, the resolvent equation always has a so-
lution ĥλ in L2(π) because (1+λ )I−P is invertible for all λ > 0. This solution is
given by

ĥλ = (1+λ )−1
∞

∑
j=0

(1+λ )− jP jh . (21.3.2)

By Proposition 1.6.3, ‖Ph‖L2(π) ≤ ‖h‖L2(π) and therefore

∥∥ĥλ

∥∥
L2(π)

≤ (1+λ )−1
∞

∑
j=0

(1+λ )− j ∥∥P jh
∥∥

L2(π)
(21.3.3)

≤ (1+λ )−1
∞

∑
j=0

(1+λ )− j ‖h‖L2(π) = λ
−1 ‖h‖L2(π) . (21.3.4)

Define
Hλ (x0,x1) = ĥλ (x1)−Pĥλ (x0) . (21.3.5)

Since ĥλ ∈ L2(π) and P is a weak-contraction in L2(π), then Hλ ∈ L2(π1) where
π1 = π⊗P. Define

Mn(ĥλ ) :=
n

∑
j=1

Hλ (X j−1,X j) , (21.3.6)

Rn(ĥλ ) := ĥλ (X0)− ĥλ (Xn) . (21.3.7)

Lemma 21.3.1 Let P be a Markov kernel on X×X with a unique invariant prob-
ability π . For each fixed λ > 0 and all n≥ 1,

Sn(h) = Mn(ĥλ )+Rn(ĥλ )+λSn(ĥλ ) . (21.3.8)

Moreover, {Mn(ĥλ ), n≥ 0} is a Pπ -martingale,

n−1/2Mn(ĥλ )
Pπ=⇒ N(0,Eπ [H2

λ
(X0,X1)]) (21.3.9)

and
Eπ [R2

n(λ )]≤ 4
∥∥ĥλ

∥∥2
L2(π)

. (21.3.10)

Proof. Since ĥλ is the solution to the resolvent equation, we get
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Sn(h) =
n−1

∑
k=0
{(1+λ )ĥλ (Xk)−Pĥλ (Xk)}

=
n−1

∑
j=0
{ĥλ (X j)−Pĥλ (X j)}+λSn(ĥλ )

=
n

∑
j=1
{ĥλ (X j)−Pĥλ (X j−1)}+ ĥλ (X0)− ĥλ (Xn)+λSn(ĥλ )

= Mn(ĥλ )+Rn(ĥλ )+λSn(ĥλ ) .

This proves (21.3.8). Eq. (21.3.9) follows from Lemma 21.1.1 combined with Re-
mark 21.1.2. The bound (21.3.10) follows from Eπ [ĥ2

λ
(Xn)] =

∥∥ĥλ

∥∥
L2(π)

. 2

Theorem 21.3.2. Let P be a Markov kernel on X×X with a unique invariant prob-
ability π . Let h be a measurable function such that π(h2)<∞ and π(h) = 0. Assume
that there exist a function H ∈ L2(π1) with π1 = π⊗P and a sequence {λk, k ∈ N}
such that

0 < liminf
k→∞

kλk ≤ limsup
k→∞

kλk < ∞ , (21.3.11a)

lim
k→∞

√
λk
∥∥ĥλk

∥∥
L2(π)

= 0 , (21.3.11b)

lim
k→∞

∥∥Hλk
−H

∥∥
L2(π1)

= 0 . (21.3.11c)

Then n−1/2Sn(h)
Pπ=⇒N(0,‖H‖2

L2(π1)
). Moreover, the limit limn→∞ n−1Eπ [S2

n(h)] ex-

ists and is equal to ‖H‖2
L2(π1)

.

Proof. Since π1(Hλ ) = 0 and Hλk
converges to H in L2(π1), we have π1(H) = 0.

Since
∫

P(x0,dx1)Hλ (x0,x1) = 0, we have

∫
π(dx0)

[∫
P(x0,dx1)H(x0,x1)

]2

=
∫

π(dx0)

{∫
P(x0,dx1)[H(x0,x1)−Hλk

(x0,x1)]

}2

≤
∫

π1(dx0,dx1)[H(x0,x1)−Hλk
(x0,x1)]

2 =
∥∥Hλk

−H
∥∥2

L2(π1)
.

By assumption (21.3.11c), this proves that
∫

P(x0,dx1)H(x0,x1) = 0, π-a.e. Hence
E
[

H(X j,X j+1)
∣∣F j

]
= 0, Pπ − a.s.

For n≥ 1, set Mn = ∑
n
j=1 H(X j−1,X j). Then {Mn, n ∈N} is a martingale and by

Lemma 21.1.1, we have
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n−1/2Mn
Pπ=⇒ N(0,‖H‖2

L2(π1)
) . (21.3.12)

Since Eπ [{Mn(ĥλk
)−Mn}2] = n

∥∥Hλk
−H

∥∥2
L2(π1)

for each n, Condition (21.3.11c)
implies that

lim
k→∞

Eπ [{Mn(ĥλk
)−Mn}2] = 0 . (21.3.13)

Next, Condition (21.3.11b) implies that, still for fixed n,

lim
k→∞

λkEπ [S2
n(ĥλk

)]≤ n lim
k→∞

λkEπ [Sn(ĥ2
λk
)] = 0 . (21.3.14)

Using the decomposition (21.3.8), we have for j,k > 0,

Eπ [(Rn(ĥλ j)−Rn(ĥλk
))2]

≤ 2Eπ [{Mn(ĥλ j)−Mn(ĥλk
)}2]+4λ

2
j Eπ [S2

n(ĥλ j)]+4λ
2
k Eπ [S2

n(ĥλk
)] .

Then, (21.3.13) and (21.3.14) show that for any fixed n, {Rn(ĥλk
), k ∈ N} is a

Cauchy sequence in L2(π) and there exists a random variable Rn ∈ L2(π) such that

lim
k→∞

Eπ [{Rn(ĥλk
)−Rn}2] = 0 . (21.3.15)

Therefore, letting λ → 0 along the subsequence λk in the decomposition (21.3.8)
yields

Sn(h) = Mn +Rn , Pπ − a.s. (21.3.16)

It remains to show that Eπ [R2
n] = o(n) as n → ∞. Applying the decompositions

(21.3.8) and (21.3.16) and the conditions (21.3.11), we obtain

Eπ [R2
n] = Eπ [

{
Mn(ĥλn)−Mn +λnSn(ĥλn)+Rn(ĥλn)

}2
]

≤ 3Eπ [{Mn(ĥλn)−Mn}2]+3λ
2
nEπ [S2

n(ĥλn)]+3Eπ [R2
n(ĥλn)]

≤ 3n
{∥∥Hλn −H

∥∥2
L2(π1)

+

(
nλn +

4
nλn

)
λn
∥∥ĥλn

∥∥2
L2(π)

}
= o(n) .

Combining this inequality with (21.3.16) and (21.3.12) yields n−1/2Sn(h)
Pπ=⇒

N(0,‖H‖2
L2(π1)

). The fact that the limit limn→∞ n−1Eπ [S2
n(h)] exists and is equal

to ‖H‖2
L2(π1)

follows from the decomposition (21.3.16) and Eπ [R2
n] = o(n). 2

The challenge now is to find sufficient conditions for the verification of the condi-
tions (21.3.11). Let P be a Markov kernel which admits a unique invariant probabil-
ity measure π . For n≥ 1, define the kernel Vn by

Vnh(x) = Ex

[
n−1

∑
k=0

h(Xk)

]
=

n−1

∑
k=0

Pkh(x) , x ∈ X . (21.3.17)
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By Proposition 1.6.3, ‖Ph‖L2(π) ≤ ‖h‖L2(π), therefore Vn is a bounded linear opera-
tor on L2(π) for each n. Consider the Maxwell-Woodroofe condition:

∞

∑
n=1

n−3/2 ‖Vnh‖L2(π) < ∞ , (21.3.18)

where h∈L2
0(π). Assume first that the Poisson equation ĥ−Pĥ= h admits a solution

ĥ in L2(π), then

Vnh =
n−1

∑
k=0

Pkh =
n−1

∑
k=0

Pk (I−P)ĥ = ĥ−Pnĥ .

Since
∥∥Pnĥ

∥∥
L2(π)

≤
∥∥ĥ
∥∥

L2(π)
, this proves that ‖Vnh‖L2(π)≤ 2

∥∥ĥ
∥∥

L2(π)
and the series

(21.3.18) is summable. Conversely, Jensen’s inequality shows that

‖Vnh‖2
L2(π) = Eπ [

(
EX0 [Sn(h)]

)2
]≤ Eπ [S2

n(h)] .

Thus, if limsupn→∞ n−1Eπ [S2
n(h)] < ∞ then limsupn→∞ n−1/2 ‖Vnh‖L2(π) < ∞ and

we can therefore say that Condition (21.3.18) is (within a logarithmic term) not far
from being necessary.

Theorem 21.3.3. Let P be a Markov kernel which admits a unique invariant proba-
bility measure π . Let h ∈ L2

0(π) be such that (21.3.18) holds. Then the limit

σ
2(h) = lim

n→∞
n−1Eπ [S2

n(h)] (21.3.19)

exists and is finite and n−1/2Sn(h)
Pπ=⇒ N(0,σ2(h)).

Proof. The proof amounts to check the conditions of Theorem 21.3.2. Set µk = 2−k.
We will first establish that

∞

∑
k=0

√
µk
∥∥ĥµk

∥∥
L2(π)

< ∞ . (21.3.20)

Applying summation by parts, we have, for λ > 0 ,

ĥλ =
∞

∑
k=1

Pk−1h
(1+λ )k = λ

∞

∑
n=1

Vnh
(1+λ )n+1 .

This identity and the Minkowski inequality yield

∥∥ĥµk

∥∥
L2(π)

≤ µk

∞

∑
n=1

(1+µk)
−n−1 ‖Vnh‖L2(π) .
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This implies, by changing the order of summation,

∞

∑
k=0

√
µk
∥∥ĥµk

∥∥
L2(π)

≤
∞

∑
n=1

[
∞

∑
k=0

µ
3/2
k

(1+µk)n+1

]
‖Vnh‖L2(π) .

The quantity between brackets is equal to ∑
∞
k=1(µk−1 − µk)hn(µk) with hn(x) =√

x/(1+ x)n+1. Setting an = 1/(2n+1), the function hn is increasing on [0,an] and
decreasing on (an,1], the series is then upper-bounded by

anh(an)+
∫ 1

an

hn(x)dx≤ O(n−3/2)+
∫ 1

0

√
x

1+ x
e−nx/2dx

≤ O(n−3/2)+n−3/2
∫

∞

0

√
ue−u/2du = O(n−3/2) ,

showing (21.3.20).
We will then show that there exists a function H ∈ L2(π1) such that

lim
k→∞

∥∥Hµk −H
∥∥

L2(π1)
= 0 . (21.3.21)

For ν a measure on an arbitrary measurable space, let 〈·, ·〉L2(ν) denote the scalar
product of the space L2(ν). Since ĥλ is a solution to the resolvent equation, we have
Pĥλ = (1+λ )ĥλ −h and thus, for λ ,µ > 0,〈

Hλ ,Hµ

〉
L2(π1)

=
〈
ĥλ , ĥµ

〉
L2(π)

−
〈
Pĥλ ,Pĥµ

〉
L2(π)

=−(λ +µ +λ µ)
〈
ĥλ , ĥµ

〉
L2(π)

+(1+λ )
〈
ĥλ ,h

〉
L2(π)

+(1+µ)
〈
ĥµ ,h

〉
L2(π)

−‖h‖2
L2(π)

.

This yields, applying the Cauchy-Schwarz inequality,∥∥Hλ −Hµ

∥∥2
L2(π1)

= ‖Hλ‖2
L2(π1)

−2
〈
Hλ ,Hµ

〉
L2(π1)

+
∥∥Hµ

∥∥2
L2(π1)

=−(2λ +λ
2)
∥∥ĥλ

∥∥2
L2(π)

+2(λ +µ +λ µ)
〈
ĥλ , ĥµ

〉
L2(π)

− (2µ +µ
2)
∥∥ĥµ

∥∥2
L2(π)

≤ 2(λ +µ)
∥∥ĥλ

∥∥
L2(π)

∥∥ĥµ

∥∥
L2(π)

≤ (λ +µ)
{∥∥ĥλ

∥∥2
L2(π)

+
∥∥ĥµ

∥∥2
L2(π)

}
.

Applying this bound with λ = µk and µ = µk−1 and using (21.3.20) yields
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∞

∑
k=1

∥∥Hµk −Hµk−1

∥∥
L2(π1)

≤
√

3
∞

∑
k=1

√
µk
∥∥ĥµk

∥∥2
L2(π)

+
√

3/2
∞

∑
k=1

√
µk−1

∥∥ĥµk−1

∥∥
L2(π)

≤ (
√

3+
√

3/2)
∞

∑
k=0

√
µk
∥∥ĥµk

∥∥
L2(π)

< ∞ .

This proves (21.3.21).
Let kn be the unique integer such that 2kn−1 ≤ n < 2kn and define λn = 2−kn

for n ≥ 1. Then 1/2 ≤ nλn ≤ 1, i.e. (21.3.11a) holds. Moreover, {λk, k ∈ N∗} ⊂
{2−k, k ∈ N∗}. Thus, (21.3.20) and (21.3.21) yield (21.3.11b) and (21.3.11c) and
Theorem 21.3.2 applies. 2

21.4 A martingale-coboundary decomposition

In this Section, we prove a central limit theorem based on yet another martingale
decomposition. It originates in the general theory of CLT for stationary weakly de-
pendent sequences.

Theorem 21.4.1. Let P be a Markov kernel which admits a unique invariant proba-
bility measure π . Let h ∈ L2

0(π) and assume that

lim
m→∞

sup
n≥0

∣∣∣∣∣ n

∑
k=0

π(PmhPkh)

∣∣∣∣∣= 0 . (21.4.1)

Then n−1/2Sn(h)
Pπ=⇒ N(0,σ2(h)) with

σ
2(h) = π(h2)+2

∞

∑
k=1

π(hPkh) = lim
n→∞

n−1Eπ [S2
n(h)] .

Remark 21.4.2. We do not exclude the possibility that the limiting variance is zero,
in which case weak convergence simply means convergence in probability to 0. A
sufficient condition for Condition (21.4.1) to hold is given by

lim
m→∞

∞

∑
k=0
|π(PmhPkh)|= 0 . (21.4.2)

N

Proof (of Theorem 21.4.1). Fix m≥ 1. Define the sequence {(Yk,Zk), k ≥ m} by

Zk = Pmh(Xk−m) = E [h(Xk) |Fk−m] , Yk = h(Xk)−Zk .
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Applying Lemma 21.1.1 with G(x0, . . . ,xm) = h(xm)− Pmh(x0), we obtain that

there exists σ2
m such that n−1/2

∑
n
k=m Yk

Pπ=⇒ N(0,σ2
m). For n > m, define Rm,n =

∑
n
k=m+1 Zk. It remains to show that

limsup
m→∞

sup
n>m

n−1Eπ [R2
m,n] = 0 , (21.4.3)

lim
m→∞

σ
2
m = σ

2(h) . (21.4.4)

We consider first (21.4.3).

n−1Eπ [R2
m,n]

=
n−m

n
π((Pmh)2)+

2
n

n−1

∑
k=m+1

n

∑
j=k+1

Eπ

[
E [h(Xk) |Fk−m]E

[
h(X j)

∣∣Fk−m
]]

=
n−m

n
π((Pmh)2)+

2
n

n−1

∑
k=m+1

n

∑
j=k+1

Eπ

[
Pmh(Xk−m)P j+m−kh(Xk−m)

]
=

n−m
n

π((Pmh)2)+
2
n

n−1

∑
k=m+1

n

∑
j=k+1

Eπ

[
Pmh(X0)P j+m−kh(X0)

]
=

n−m
n

π((Pmh)2)+
2
n

n−1

∑
k=m+1

n−k

∑
j=1
Eπ

[
Pmh(X0)P j+mh(X0)

]
=

n−m
n

π((Pmh)2)+
2
n

n−m−1

∑
j=1

(n− j−m)π(PmhP j+mh) .

Set for n > m, Sm,n(q) = ∑
n−m
j=q π(PmhP j+mh). Applying summation by parts, we

obtain

n−m−1

∑
q=1

(n−q−m)π(PmhPq+mh) = (n−1−m)Sm,n(1)−
n−m−1

∑
q=1

Sm,n(q) .

Altogether, we obtain

n−1Eπ [R2
m,n] =

n−m
n

π((Pmh)2)+
2(n−1−m)

n
Sm,n(1)−

2
n

n−m−1

∑
q=1

Sm,n(q) ,

which implies that

sup
n≥m+1

n−1Eπ [R2
m,n]≤ π

(
(Pmh)2)+4sup

g∈N
sup

n≥m+1
|Sm,n(q)| .

Since Condition (21.4.1) implies that limm→∞ supq∈N∑n≥m |Sm,n(q)| = 0, (21.4.3)
follows.

We must now prove that limm→∞ σ2
m = σ2(h). The identity (21.1.3) in Re-

mark 21.1.2 shows that
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σ
2
m = Eπ

(m−1

∑
j=0

P j(h(X1)−Ph(X0))

)2
m−1

∑
j=0
Eπ

[
{P jh(X1)−P j+1h(X0)}2]

+2
m−1

∑
j=0

m− j−1

∑
q=1

Eπ

[{
P jh(X1)−P j+1h(X0)

}{
P j+qh(X1)−P j+q+1h(X0)

}]
.

(21.4.5)

For j,q≥ 0, using the stationarity and the Markov property, we can show that

Eπ

[{
P jh(X1)−P j+1h(X0)

}{
P j+qh(X1)−P j+q+1h(X0)

}]
= π

(
P jhP j+qh

)
−π

(
P j+1hP j+q+1h

)
.

Plugging this expression in (21.4.5) and then rearranging the terms in the summation
yields

σ
2
m = π(h2)+2

m−1

∑
j=1

π(hP jh)−π((Pmh)2)−2
m−1

∑
j=1

π(PmhP jh) .

By assumption, we can choose m so that∣∣σ2(h)−σ
2
m
∣∣≤ ε .

Since for every fixed m it holds that limn→∞ n−1Varπ (∑
m
k=1 h(Xk)) = 0, the central

limit theorem follows with the limiting variance as stated. 2

If h is bounded and P is uniformly ergodic, the convergence of the series in
(21.4.2) is trivial. In other circumstances, this requires more work. This will be done
in the following subsections for irreducible geometrically and subgeometrically er-
godic kernels and for non irreducible kernls.

21.4.1 Irreducible geometrically and subgeometrically ergodic
kernels

The main tool is the following lemma which relies on a general covariance inequal-
ity which will proved in Section 21.A for the sake of completeness. We first in-
troduce some notation. Let (Ω ,A ,P) be a probability space and X be a random
variable. We denote by FX the cumulative distribution function and by F̄X the sur-
vival function of the random variable |X |, i.e. for x ∈ R+, FX (x) = P(|X | ≤ x) and
F̄X = 1−FX . The function F̄X is non-increasing, continuous to the right with limits
to the left. We denote by QX the tail quantile function of X , defined for all u ∈ [0,1]
by

QX (u) = inf{x ∈ R+ : F̄X (x)≤ u} (21.4.6)
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with the convention inf /0 = +∞. Note that for all u ∈ [0,1], QX (u) = Q̄X (1− u)
where Q̄X is the quantile function of |X |,

Q̄X (u) = inf{x ∈ R+ : F̄X (x)≥ u}

The quantile function Q̄X being nondecreasing left-continuous with limits to the
right, the tail quantile QX is nonincreasing, right-continuous with limits to the left.
Moreover:

P(|X |> x)≤ u if and only if QX (u)≤ x .

Let P be a Markov kernel on X×X . For h ∈ F(X) and m ∈ N, define the tail
quantile function Qm of |Pmh(X0)| under Pπ by

Qm(u) = inf{x≥ 0 : Pπ(|Pmh(X0)|> x)≤ u} . (21.4.7)

To apply Theorem 21.4.1 it is required to obtain a bound of ∑
∞
k=1 |π(PmhPkh)|.

For this purpose, we will use a covariance inequality which is stated and proved in
Section 21.A.

Lemma 21.4.3 Let P be a Markov kernel which admits an invariant probability
measure π . Assume that there exist a sequence {ρn, n ∈ N} such that for all n≥ 1,∫

X
π(dx)dTV(P

n(x, ·),π)≤ ρn . (21.4.8)

Let H be the function defined on [0,1] by

H(u) =
∞

∑
k=1

1{u < ρk} . (21.4.9)

Then, for all h ∈ L2
0(π),

∞

∑
k=1
|π(PmhPkh)| ≤

∫ 1

0
Q2

0(u)H(u)1{u≤ ρm}du . (21.4.10)

Consequently, if limn→∞ ρm = 0 and
∫ 1

0 Q2
0(u)H(u)du < ∞, then (21.4.2) hold.

Proof. For m ≥ 0, set g = Pmh. We apply Lemma 21.A.1 to X = g(X0) and Y =
h(Xk). For this purpose, it is required to compute for all (x,y) ∈ R2.

|Pπ(g(X0)> x,h(Xk)> y)−Pπ(g(X0)> x)Pπ(h(Xk)> y)|
=
∣∣Eπ

[
1{g(X0)>x}

{
E
[
1{h(Xk)>y}−Pπ(h(Xk)> y)

∣∣F0
]}]∣∣

≤ Eπ

[∣∣∣Pk[1(y,∞) ◦h](X0)−π(1(y,∞) ◦h)
∣∣∣]≤ ρk .

Define
ak = ρk ∧1 . (21.4.11)
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Since h(Xk) has the same distribution as h(X0), its tail quantile function is Q0 and
we obtain

|π(gPkh)| ≤ 2
(∫ ak

0
Q2

0(u)du
)1/2(∫ ak

0
Q2

m(u)du
)1/2

.

Furthermore, by Lemma 21.A.3 applied to Y = Pmh(X0) = E [h(Xm) |F0] and X =
h(Xm) which is distributed as h(X0) under Pπ , we have∫ ak

0
Q2

m(u)du≤
∫ ak

0
Q2

0(u)du .

We have thus obtained, for all k,m≥ 0,

|π(PkhPmh)| ≤ 2
∫ ak

0
Q2

0(u)du .

Interchanging the roles of k and m, we obtain

|π(PkhPmh)| ≤ 2
∫ am

0
Q2

0(u)du .

These two bounds yield

|π(PkhPmh)| ≤ 2
∫ 1

0
Q2

0(u)1{u≤ ρk}1{u≤ ρm}du .

Summing over the indices k yields (21.4.10). 2

Combining Theorem 21.4.1 and Lemma 21.4.3, we obtain central limit theorems
for polynomially or geometrically ergodic Markov kernels.

Theorem 21.4.4. Let P be a Markov kernel on X×X with invariant probability π .
Assume that there exists a sequence {ρk, k ∈ N} such that for all n≥ 1,∫

π(dx)dTV(P
n(x, ·),π)≤ ρn , (21.4.12)

∞

∑
k=1

ρ
δ/(2+δ )
k < ∞ , for some δ > 0. (21.4.13)

Then, for any h ∈ L2+δ (π) and π(h) = 0, we get

n−1/2
n−1

∑
k=0

h(Xk)
Pξ

=⇒ N
(
0,σ2

π (h)
)

(21.4.14)

where σ2
π (h) is given by (21.2.13).



21.4 A martingale-coboundary decomposition 515

Proof. In order to apply Lemma 21.4.3, we must prove that
∫ 1

0 Q2
0(u)H(u)du < ∞

where

H(u) =
∞

∑
k=1

1{u≤ ρk} .

If h ∈ L2+δ (π), by Markov’s inequality, we have Q0(u) ≤ ςu−1/(2+δ ) for all u ∈
[0,1]. Thus∫ 1

0
Q2

0(u)H(u)du≤ ς
2

∞

∑
k=1

∫
ρk

0
u−2/(2+δ )du≤ ς̄

∞

∑
k=1

ρ
δ/(2+δ )
k < ∞ .

2

Corollary 21.4.5 Let P be a Markov kernel on X×X with invariant proba-
bility π . Assume that there exist a > 1 such that for all n≥ 1,∫

π(dx)dTV(P
n(x, ·),π)≤ n−a . (21.4.15)

Then, for any h ∈ L2+δ (π) with δ > 2/(a−1) (i.e. a > 1+2/δ ) and π(h) = 0,
(21.4.14) holds.

Proof. The result follows from Theorem 21.4.4 by setting ρn = n−a. 2

Remark 21.4.6. The condition h ∈ L2+δ (π) with δ > 2/(a− 1) is sharp. There
exists polynomially ergodic chains with rate n−a with a> 1 and functions h∈ L2(π)
such that the CLT does not hold. N

For a geometrically ergodic kernel (i.e. which satisfies one of the equivalent con-
ditions of Theorem 15.1.5) we obtain the following result.

Theorem 21.4.7. Let P be a Markov kernel with invariant probability π . Assume
that P is geometrically ergodic (see Definition 15.1.1). Then, for any measurable
function h such that π(h2 log(1+ |h|))< ∞ and π(h) = 0,

n−1/2
n−1

∑
k=0

h(Xk)
Px=⇒ N

(
0,σ2(h)

)
where the asymptotic variance is given by (21.2.13).

Proof. By Theorem 15.1.6, there exist ρ ∈ [0,1) and a function V : X→ [1,∞) sat-
isfying π(V )< ∞ such that for all n ∈ N and π-a.e. x ∈ X,
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dTV(P
n(x, ·),π)≤V (x)ρn .

Hence, for all n≥ 1,
∫

π(dx)dTV(P
n(x, ·),π)≤ π(V )ρn for all n≥ 1. We must prove

that
∫

Q2
0(u)H(u)du < ∞ where

H(u) =
∞

∑
k=1

1

{
u≤ π(V )ρk

}
=

∞

∑
k=1

1

{
k ≤ log(π(V )/u)

log(1/ρ)

}
≤ log(π(V )/u)

log(1/ρ)
.

Set φ(x) = (1+ x) log(1+ x)− x and ψ(y) = ey− 1− y. Then (φ ,ψ) is a pair of
Young functions (see Lemma 17.A.2), thus xy ≤ φ(cx)+ψ(y/c)} for all x,y ≥ 0
and c > 0. This yields∫ 1

0
Q2

0(u)H(u)du≤
∫ 1

0
φ(cQ2

0(u))du+
∫ 1

0
ψ(H(u)/c)du

≤ π({1+ ch2} log{1+ ch2})+
∫ 1

0

(
u

π(V )

)−1/{c log(1/ρ)}
du

Choosing c > 1/ log(1/ρ) proves that the function
∫ 1

0 Q2
0(u)H(u)du < ∞. On the

other hand the condition π({1+ h2} log(1+ |h|)) < ∞ implies that for all c > 0,
π({1+ ch2} log(1+ ch2))< ∞. 2

Remark 21.4.8. For geometrically ergodic Markov chains, the moment condition
π(h2 log(1+ |h|)) < ∞ cannot be further refined to a second moment without addi-
tional assumptions. One may construct a geometrically ergodic Markov chain and a
function h such that π(h2)< ∞, yet a CLT fails. N

We can also prove the central limit theorem when the rate sequence is a general
subgeometric rate. The following result subsumes the previous ones.

Theorem 21.4.9. Let P be a Markov kernel with invariant probability π . Let (φ ,ψ)
be a pair of inverse Young functions. Assume that there exists ς < ∞ such that for
all n ∈ N, ∫

π(dx)dTV(P(x, ·),π)≤ ς/φ(n) . (21.4.16)

If there exists c > 0 such that
∫ 1

0 φ(φ−1(ς/u)/c)du < ∞, then for every measurable
function h such that π(ψ(h2))< ∞ and π(h) = 0,

n−1/2
n−1

∑
k=0

h(Xk)
Pξ

=⇒ N
(
0,σ2

π (h)
)

where σ2
π (h) is given by (21.2.13).

Proof. We check that under the stated condition the function Q2h is integrable on
[0,1] with
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H(u) =
∞

∑
n=1

1{u≤ ς/φ(n)}=
∞

∑
n=1

1
{

n≤ φ
−1(ς/u)

}
≤ φ

−1(ς/u) .

Therefore, ∫
Q2

0(u)H(u)du≤ Eπ [ψ(h2(X0))]+ c
∫ 1

0
φ(φ−1(ς/u)/c)du .

2

Example 21.4.10. If φ(n) = eaxβ

for some a > 0 and β ∈ (0,1), then φ−1(y) =
log1/β (y/a) and

φ(φ−1(m/u)/c) = ea log(m/u)/c =Cu−a/c .

This is an integrable function on [0,1] if c > a. The inverse Young conjugate ψ of φ

satisfies

ψ(x)∼Cx log1/β (x)

as x→ ∞. Therefore the central limit theorem holds for functions h such that

π(h2 log1/β (1+ |h|))< ∞ .

J

21.4.2 Non irreducible kernels

In this section we check that the conditions of Theorem 21.4.1 hold for a non
irreducible kernel which satisfies the contractivity properties with respect to the
Wasserstein distance of Theorem 20.4.5. For a function V , set as usual V̄ (x,y) =
{V (x)+V (y)}/2.

Theorem 21.4.11. Let P be a Markov kernel on a complete separable metric space,
satisfying the drift condition Dg(V,λ ,b). Let c be a cost function which satisfies
H 20.1.5, c≤ V̄ and for all x,y ∈ X,

Wc (P(x, ·),P(y, ·))≤ c(x,y) .

Assume moreover that there exist ε ∈ (0,1) and d > 0 such that λ +2b/(1+d)< 1
and {V ≤ d}×{V ≤ d} is a (c,1,ε)-contracting set. Then, for every α ∈ (0,1/2),
every function h such that |h|Lip(c1−α V̄ α ) < ∞ and π(h) = 0 and every initial dis-
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tribution ξ such that ξ (V ) < ∞, the central limit theorem holds under Pξ , i.e.

n−1/2
∑

n−1
k=0 h(Xk)

Pξ

=⇒ N(0,σ2(h)) with σ2(h) = π(h2)+2∑
∞
k=1 π(hPkh).

Proof. Fix α ∈ (0,1/2) and set cα = c1−αV̄ α . By Theorem 20.4.5 and Corol-
lary 20.4.7, there exist ρ ∈ (0,1) and a constant ϑ such that

|Pnh(x)| ≤ ϑ |h|Lip(cα )
ρ

nV α(x) .

Since π(V ) < ∞ by Theorem 20.4.5, this implies that ‖Pnh‖L2(π) = O(ρn). There-
fore (21.4.2) holds and this proves the central limit theorem under Pπ with the lim-
iting variance as stated. Let ξ be an initial distribution. As noted in Remark 20.4.3,
Proposition 20.4.2 implies that there exists a coupling {(Xn,X ′n), n ∈ N} such that
{Xn, n ∈ N} and {X ′n, n ∈ N} are Markov chains with kernel P and initial distribu-
tions ξ and π and for all γ ∈ C (ξ ,π),

Eγ [cα(Xn,X ′n)]≤ ϑρ
n{ξ (V )+π(V )} .

This yields for h ∈ Lipcα
(X),

E

[∣∣∣∣∣n−1/2
n−1

∑
i=0

h(Xi)−n−1/2
n−1

∑
i=0

h(X ′i )

∣∣∣∣∣
]

≤ ϑ |h|Lip(cα )
{ξ (V )+π(V )}n−1/2

n−1

∑
k=0

ρ
k = O(n−1/2) .

This proves that the limiting distribution of n−1/2
∑

n
i=1 h(X ′i ) is the same as that of

n−1/2
∑

n
i=1 h(X ′i ) i.e. the CLT holds under Pξ . 2

When the rate of convergence is polynomial, we also obtain a central limit theo-
rem under more stringent restrictions on the functions considered.

Theorem 21.4.12. Let P be a Markov kernel on a complete separable metric space,
satisfying the drift condition Dsg(V,φ ,b,C) hold with V unbounded, π(V 2) < ∞,
supC V < ∞, d = infCc φ ◦V > b, φ(u) = uα0 with α0 ∈ (1/2,1) and c≤ V̄ . Assume
moreover that C̄ =C×C is a (c,1,ε)-contracting set and for all x,y ∈ X,

Wc (P(x, ·),P(y, ·))≤ c(x,y) .

Then for all initial distributions ξ such that ξ (V ) < ∞ and all functions h such
that |h|Lip(c1−α0 ) < ∞ and π(h) = 0, the central limit theorem holds under Pξ , i.e.

n−1/2
∑

n−1
k=0 h(Xk)

Pξ

=⇒ N(0,σ2(h)) with σ2(h) = π(h2)+2∑
∞
k=1 π(hPkh).
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Proof. By Theorem 20.5.2 and remark 20.5.3 and (20.1.9), if π(V ) < ∞, π(h) = 0
and |h|Lip(c1−α0 ) < ∞, then |Ph(x)| ≤ ϑn−α0/(1−α0)V (x). Since α0 > 1/2, α0/(1−
α0) > 1 and if moreover π(V 2) < ∞, then (21.4.2) holds. This proves the central
limit theorem under Pπ with the stated variance. The bound (20.5.3) implies that
there exists a coupling {(Xn,X ′n), n ∈N} such that {Xn, n ∈N} and {X ′n, n ∈N} are
Markov chains with kernel P and initial distributions ξ and π and for all γ ∈C (ξ ,π),

Eγ [c
1−α0(Xn,X ′n)]≤ ϑn−α0/(1−α0){ξ (V )+π(V )} .

This yields for h ∈ Lipc1−α0 (X),

E

[∣∣∣∣∣n−1/2
n−1

∑
i=0

h(Xi)−n−1/2
n−1

∑
i=0

h(X ′i )

∣∣∣∣∣
]

≤ ϑ |h|Lip(cα )
{ξ (V )+π(V )}n−1/2

n−1

∑
k=0

k−α0/(1−α0) = O(n−1/2) .

This proves that the limiting distribution of n−1/2
∑

n
i=1 h(X ′i ) is the same as that of

n−1/2
∑

n
i=1 h(X ′i ) i.e. the CLT holds under Pξ . 2

21.5 Exercises

21.1. Let P be a Markov kernel which admits a positive recurrent attractive atom
α and let h ∈ L1(π) with π(h) = 0. Show that a solution to the Poisson equation
(21.2.1) is given for all x ∈ X by

ĥ(x) = Ex

[
τα

∑
k=0

h(Xk)

]
= Ex

[
σα

∑
k=0

h(Xk)

]
. (21.5.1)

21.2. Let P be a Markov kernel on X×X which admits a positive recurrent attrac-
tive atom α and let h ∈ L1(π) be such that π(h) = 0 and Eα

[(
∑

σα

k=1 h(Xk)
)2
]
< ∞.

1. Show that n−1/2
∑

n
k=1 h(Xk)

Pµ

=⇒ N(0,σ2(h)) for every initial distribution µ ∈
M1(X ), with

σ
2(h) =

1
Eα [σα ]

Eα

( σα

∑
k=1

h(Xk)

)2
 . (21.5.2)

2. Assume that
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Eα

(σα

∑
i=1
|h(Xi)|

)2
< ∞ .

Prove that π(h2)+π(|hĥ|)< ∞ and

2π(hĥ)−π(h2) =
1

Eα [σα ]
Eα

( σα

∑
k=1

h(Xk)

)2
 . (21.5.3)

21.3. Let P be a Markov kernel which admits a positive recurrent attractive atom
α and let h ∈ L2

0(π) be such that ∑
∞
k=1 π(|hPkh|) < ∞. Let σ2(h) be as in (21.5.2).

Show that

σ
2(h) = π(h2)+2

∞

∑
k=1

π(hPkh) = lim
n→∞

1
n
Eπ

( n

∑
k=1

h(Xk)

)2
 .

21.4. Provide an alternative proof of Proposition 21.1.3 based on the maximal dis-
tributional coupling of (Pλ ,Pπ) (see Theorem 19.3.9).

21.5. This exercise provide an example of a Markov chain for which a CLT holds
but limn→∞ nVarπ(Sn(h)2) = ∞. Let X = N and let h be the identity function. Con-
sider the Markov chain on X with transition matrix defined by P(0,0) = 1/2 and
for j ≥ 1, P( j,− j) = P(− j,0) = 1 and P(0, j) = c/ j3 with c = ζ (3)−1/2 and
ζ (s)=∑

∞
n=1 n−s is the Riemann zeta function. Whenever the chain leaves 0, it cycles

to some positive integer j, then to − j and then back to 0.

1. Show that P has a unique invariant probability π , that n−1/2
∑

n−1
i=0 h(Xi)

Pπ=⇒
N(0,σ2) but that limn→∞ nVarπ(Sn(h)2) = ∞.

2. Modify this construction to obtain a non-degenerated CLT.

21.6 (Continuation of Example 20.3.5). Let {εn, n∈N} be i.i.d. random variables
taking the values 0 and 1 with probability 1/2 each and define

Xn =
1
2
(Xn−1 + εn) , n≥ 1 .

Set Dk = { j2−k : j = 0, . . . , 2k− 1}. Let f be a square integrable function f de-
fined on [0,1] such that

∫ 1
0 f (x)dx = 0. Denote by ‖·‖2 the L2 norm with respect to

Lebesgue’s measure on [0,1].

4. Show that

Pk f (x) = 2−k
∑

z∈Dk

∫ 1

0

[
f
( x

2k + z
)
− f

( y
2k + z

)]
dy .

5. Show that
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2
≤ 2k

∫ ∫
|x−y|≤2−k

[ f (x)− f (y)]2dxdy .

6. Prove that if f is Hölder continuous with exponent γ > 1/2, i.e. there exists a
constant ϑ such that | f (x)− f (y)| ≤C|x− y|γ , then Condition (21.4.2) holds.

21.6 Bibliographical notes

Early proofs of the CLT for Markov chains were obtained in Dobrushin (1956c), Do-
brushin (1956a), Nagaev (1957), Billingsley (1961) and Cogburn (1972). A detailed
account of the theory is given in Jones and Hobert (2001), Jones (2004), Häggström
(2005) and Häggström and Rosenthal (2007).

The Poisson equation and the general potential theory of positive kernels is devel-
oped in Neveu (1972) and Revuz (1984). Existence and properties of Poisson equa-
tions are presented in Glynn and Meyn (1996) (the statement of Proposition 21.2.4
is similar to (Glynn and Meyn, 1996, Theorem 2.3) but the proof is different). The
decomposition (21.2.2) was used by Maigret (1978) and Duflo (1997) to derive
a CLT for Harris recurrent Markov chain. For irreducible Markov chains, Meyn
and Tweedie (2009) have used the Poisson equation to derive a central limit theo-
rem and law of iterated logarithm for geometrically ergodic Markov chain. Jarner
and Roberts (2002) have extended these results to polynomial ergodicity (Exam-
ple 21.2.13 is taken from (Jarner and Roberts, 2002, Theorem 4.2)).

The proof of Theorem 21.3.3 is due to Maxwell and Woodroofe (2000) (see
also Tóth (1986) and Tóth (2013)). The resolvent equation was introduced earlier
in Kipnis and Varadhan (1985) and Kipnis and Varadhan (1986). Necessary and
sufficient conditions (not discussed here) for additive functionals of a Markov chains
to be asymptotically normal are given in Wu and Woodroofe (2004).

The proof of Theorem 21.4.1 is originally due to Gordin (1969) (see also Ea-
gleson (1975), Durrett and Resnick (1978), Dedecker and Rio (2000), Dedecker
and Rio (2008)). The version we use here is an adaptation of the proof of (Hall and
Heyde, 1981, Theorem 5.2) to the context of Markov chains. The main arguments of
the proof of Lemma 21.4.3 can be found in Rio (1993) (see also Rio (1994, 2000b,
2017)). The counterexample alluded to in Remark 21.4.6 is developed in (Rio, 2017,
Section 9.7).

Theorem 21.4.4 is taken from Jones (2004) where it is obtained as a consequence
of the CLT for strongly mixing sequence established in Ibragimov (1959) and Ibrag-
imov (1963) (see also Ibragimov and Linnik (1971), Doukhan (1994); Doukhan et al
(1994); Dedecker et al (2007)). Exercise 21.5 is taken from (Häggström and Rosen-
thal, 2007, Examples 11 and 12).

The comparison of the different possible expressions of the variance in the CLT
is discussed in Häggström and Rosenthal (2007); see also Häggström (2005). Con-
struction of confidence intervals for additive functionals of Markov chains using the
CLT is discussed in Flegal and Jones (2010), Atchadé (2011) and Flegal and Jones
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(2011). These papers also discuss different estimators of the asymptotic variance,
which is an important topic in practice. Confidence intervals for additive function-
als are also discussed in Atchadé (2016) and Rosenthal (2017)

21.A A covariance inequality

Lemma 21.A.1 Let (Ω ,A ,P) be a probability space and X ,Y be two square inte-
grable random variables defined on (Ω ,A ,P). Define

α = α(X ,Y ) = 2 sup
(x,y)∈R2

|P(X > x,Y > y)−P(X > x)P(Y > y)| . (21.A.1)

Then

|Cov(X ,Y )| ≤ 2
∫

α

0
QX (u)QY (u)du≤ 2

(∫ a

0
Q2

X (u)du
)1/2(∫ α

0
Q2

Y (u)du
)1/2

.

Proof. For X ,Y two square integrable random variables defined on a probability
space (Ω ,A ,P), it holds that

Cov (X ,Y )

=
∫

∞

0

∫
∞

0
Cov (1{X > x}−1{X <−x} ,1{Y > y}−1{Y <−y})dxdy .

(21.A.2)

Note indeed that any random variable X can be written as

X = X+−X− =
∫

∞

0

[
1{X>x}−1{X<−x}

]
dx .

Writing Y similarly and applying Fubini’s theorem yields (21.A.2). For x ∈ R, set
Ix = 1(x,∞)−1(−∞,−x). Since the functions Ix are uniformly bounded by 1, we obtain

|Cov (Ix(X), Iy(Y )) |=
∣∣E [Ix(X){Iy(Y )−E [Iy(Y )]}]

∣∣≤ 2α .

On the other hand, using that E [|Ix(X)|] = P(|X |> x), we get

|Cov (Ix(X), Iy(Y )) | ≤ 2P(|X |> x)∧P(|Y |> y) .

Plugging these bounds into (21.A.2), we obtain



21.A A covariance inequality 523

|Cov (X ,Y ) | ≤
∫

∞

0

∫
∞

0
|Cov (Ix(X), Iy(Y )) |dxdy

≤ 2
∫

∞

0

∫
∞

0
min{α,P(|X |> x),P(|Y |> y)}dxdy

≤ 2
∫

α

0

(∫
∞

0
1{u < P(|X |> x)}dx

)(∫
∞

0
1{u < P(|Y |> y)}dy

)
du

= 2
∫

α

0
du
∫

∞

0
1{QX (u)> x}dx

∫
∞

0
1{QY (u)> y}dy

= 2
∫

α

0
QX (u)QY (u)du .

The proof is concluded by applying Hölder’s inequality. 2

Lemma 21.A.2 Let (Ω ,A ,P) be a probability space. Let X be a real-valued ran-
dom variable and V be a uniformly distributed random variable independent of X
defined on (Ω ,A ,P). Define FX (x−) = lim y→x

y<x
FX (y), ∆FX (x) = FX (x)− FX (x−)

where FX is the cumulative distribution function and

U = 1−FX (X−)−V ∆FX (X) .

Then U is uniformly distributed and QX (U) = X P −a.s. where QX is the tail quan-
tile function.

Proof. That QX (U) = X is straightforward since by definition, QX (v) = x for all
v ∈ [1−FX (x−),1−FX (x)], whether there is a jump at x or not. To check that U is
uniformly distributed over [0,1], note that P(X > x) > u if and only if QX (u) > x.
Since V is uniformly distributed on [0,1], this yields

P(U > u)

= P(1−FX (X)> u)+P
(
X = QX (u),FX (F←X (u)−)+V ∆FX (FX (F←X (u)−))≤ u

)
= FX (QX (u)−)+P(X = QX (u))

1−FX (QX (u)−)−u
FX (QX (u)−)−FX (QX (u))

= 1−u .

2

Lemma 21.A.3 Let (Ω ,A ,P) be a probability space and B be a sub-σ -algebra
of A . Let X a square integrable random variables and Y = E [X |B]. Then for all
a ∈ [0,1], ∫ a

0
Q2

Y (u)du≤
∫ a

0
Q2

X (u)du .

Proof. By Lemma 21.A.2, let V be a uniformly distributed random variable, in-
dependent of B and X and define U = 1− FY (Y−)−V{FY (Y )− FY (Y−)}. Set
G = B ∨ σ(V ). Then QY (U) = Y is B-measurable and E [X |B] = E [X |G ]
P − a.s.. Applying Jensen’s inequality, we obtain
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0
Q2

Y (u)du = E
[
Q2

Y (U)1{U ≤ a}
]
= E

[
(E [X |G ])2

1{U ≤ a}
]

≤ E
[
E
[

X2 ∣∣G ]1{U ≤ a}
]
= E

[
X2
1{U ≤ a}

]
=
∫

∞

0
P(X2 > x,U ≤ a)dx≤

∫
∞

0
[P(X2 > x)∧a]dx .

Noting that P(X2 > x)> u if and only if Q2
X (u)> x and applying Fubini’s theorem,

we obtain∫
∞

0
[P(X2 > x)∧a]dx =

∫
∞

0

(∫ a

0
1
{
P(X2 > x)> u

}
du
)

dx

=
∫

∞

0

(∫ a

0
1
{

Q2
X (u)> x

}
du
)

dx

=
∫ a

0

(∫
∞

0
1
{

Q2
X (u)> x

}
dx
)

du =
∫ a

0
Q2

X (u)du .

2



Chapter 22
Spectral theory

Let P be a positive Markov kernel on X×X admitting an invariant distribution π .
We have shown in Section 1.6 that P defines an operator on Banach space Lp(π).
Therefore a natural approach to the properties of P consists in studying the spectral
properties of this operator. This is the main theme of this Chapter. In Section 22.1,
we first define the spectrum of P seen as an operator both on Lp(π), p ≥ 1 or on
an appropriately defined space of complex measures. We will also define the adjoint
operator and establish some key relations between the operator norm of the operator
and of its adjoint. In Section 22.2, we discuss geometric and exponential conver-
gence in L2(π). We show that the existence of a L2(π)-spectral gap implies L2(π)-
geometric ergodicity; these two notions are shown to be equivalent if the operator
P is self-adjoint in L2(π) (or equivalently that π is reversible with respect to P).
We extend these notions to cover Lp(π) exponential convergence in Section 22.3.
In Section 22.4, we introduce the notion of conductance and establish the Cheeger
inequality for reversible Markov kernels.

22.1 Spectrum

Let (X,X ) be a measurable space and π ∈M1(X ). For p ≥ 1, denote by Lp(π)
the space of complex-valued functions such that π(| f |p) < ∞, where | f | denotes
the modulus of f .

In this chapter, unless otherwise stated, the vector spaces are defined over
the field C.

Let P be a Markov kernel on X×X . For any f ∈ Lp(π), P f = P fR+ iP fI where
fR and fI denote the real and imaginary parts of f . Let H be a closed subspace of
Lp(π) stable by P, i.e. for any f ∈ H, P f ∈ H. We denote by P|H the restriction of
the Markov kernel P to H. The operator norm of P|H is given by

525
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9P9H = 9P|H9Lp(π) = sup
{
‖P f‖Lp(π) : f ∈ H,‖ f‖Lp(π) ≤ 1

}
. (22.1.1)

Denote by BL(H) the space of bounded linear operators on H. According to Propo-
sition 1.6.3, P|H ∈ BL(H).

Definition 22.1.1 (Resolvent and spectrum) Let H be a closed subspace of Lp(π)
stable by P. The resolvent set of P|H is the set of λ ∈ C for which the operator
(λ I−P|H) has an inverse in BL(H). The spectrum denoted Spec(P|H) of P|H is the
complement of the resolvent set.

A complex number λ is called an eigenvalue of P|H ∈ BL(H) if there exists a
h ∈ H\{0} such that P|Hh = λh, or equivalently Ker(λ I−P|H) 6= {0}. The vector
h is called an eigenvector of P associated to the eigenvalue λ .

The point spectrum of Specp(P|H) is the set of the eigenvalues of P|H. The di-
mension of Ker(λ I−P|H) is called the multiplicity of the eigenvalue λ .

It is easily seen that the point spectrum is a subset of the spectrum.

Proposition 22.1.2 Let P be a Markov kernel on X×X . Assume that P ad-
mits a unique invariant probability measure π . Then, for any p ≥ 1, 1 is an
eigenvalue of P, i.e. 1 ∈ Specp(P|Lp(π)), with multiplicity 1.

Proof. Obviously h = 1 is an eigenvector of P associated to the eigenvalue 1. If
h ∈ Lp(π) is an eigenvector associated to the eigenvalue 1, then Ph = h, i.e. the
function h is harmonic. Since p ≥ 1, this implies h ∈ L1(π). This implies that hR
and hI , the real and imaginary parts of h are harmonic functions in L1(π). Then,
Proposition 5.2.12 shows that h(x) = π(h) for π-almost every x ∈ X. 2

Denote by Π the Markov kernel defined by Π(x,A) = π(A) for any x ∈ X and
A ∈X . The kernel of the operator Π ,

Lp
0(π) = { f ∈ Lp(π) : Π f = 0} , (22.1.2)

plays an important role. Note that Π is a bounded linear operator on Lp(π), it is
therefore continuous (by Theorem 22.A.2) and Lp

0(π) = Ker(Π) is closed.
Let ν ∈ MC(X ) where MC(X ) denotes the set of complex measures on

(X,X ). We say that ν is dominated by π , which we denote ν � π , if for any
A ∈X , π(A) = 0 implies ν(A) = 0. The Radon-Nikodym theorem shows that ν

admits a density dν/dπ with respect to π . For q ∈ [1, ∞] denote by

‖ν‖Mq(π)
=

{∥∥ dν

dπ

∥∥
Lq(π)

, |ν | � π,

∞, otherwise ,
(22.1.3)



22.1 Spectrum 527

and define
Mq(π) =

{
ν ∈MC(X ) : ‖ν‖Mq(π)

< ∞

}
. (22.1.4)

For notational simplicity, the dependence of Mq(π) on X is implicit. The space
Mq(π) is a Banach space which is isometrically isomorphic to Lq(π):

‖ν‖Mq(π)
=

∥∥∥∥dν

dπ

∥∥∥∥
Lq(π)

.

For ν ∈Mq(π), we get

‖ν‖TV =
∫ ∣∣∣∣dν

dπ
(x)
∣∣∣∣π(dx)≤

{∫ ∣∣∣∣dν

dπ
(x)
∣∣∣∣q π(dx)

}1/q

= ‖ν‖Mq(π)
< ∞ . (22.1.5)

Denote byM0
q(π) the subset of signed measures whose total mass is equal to zero.

M0
q(π) =

{
ν ∈Mq(π) : ν(X) = 0

}
. (22.1.6)

Lemma 22.1.3 Let P be a Markov kernel on X×X with invariant probability mea-
sure π . Let q ∈ [1, ∞]. For any ν ∈Mq(π) we have νP ∈Mq(π) and

‖νP‖Mq(π)
≤ ‖ν‖Mq(π)

.

Proof. Let ν be a finite signed measure dominated by π . We first show that νP is
dominated by π . Let N ∈ X be such that π(N) = 0. Since π is invariant for P,
we have

∫
π(dx)P(x,N) = π(N) = 0, showing that P(x,N) = 0 for π-almost every

x ∈ X. We have

νP(N) =
∫

ν(dx)P(x,N) =
∫

π(dx)
dν

dπ
(x)P(x,N) = 0 ,

showing that νP is also dominated by π .
We now prove that if dν/dπ ∈ Lq(π), then d(νP)/dπ ∈ Lq(π) and

‖d(νP)/dπ‖Lq(π) ≤ ‖dν/dπ‖Lq(π) .

For any f ∈MC(X ), we get,∫
| f (y)|

∣∣∣∣d(νP)
dπ

(y)
∣∣∣∣π(dy) =

∫
| f (y)||νP|(dy)

≤
∫∫
| f (y)|

∣∣∣∣dν

dπ
(x)
∣∣∣∣π(dx)P(x,dy) =

∫ ∣∣∣∣dν

dπ
(x)
∣∣∣∣P| f |(x)π(dx) . (22.1.7)

Assume first that q ∈ (1,∞). Let p be such that p−1 +q−1 = 1. Choose f ∈ Lp(π).
Applying Hölder’s inequality to (22.1.7) and using Proposition 1.6.3 yields
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| f (y)|

∣∣∣∣d(νP)
dπ

(y)
∣∣∣∣π(dy)≤

∥∥∥∥dν

dπ

∥∥∥∥
Lq(π)

‖P| f |‖Lp(π) ≤
∥∥∥∥dν

dπ

∥∥∥∥
Lq(π)

‖ f‖Lp(π) < ∞ .

Using Lemma B.2.13, d(νP)/dπ belongs to Lq(π) and

‖d(νP)/dπ‖Lq(π) ≤ ‖dν/dπ‖Lq(π) .

Consider now the case q = 1. Applying (22.1.7) with f = 1, we directly obtain

‖d(νP)/dπ‖L1(π) ≤ ‖dν/dπ‖L1(π) .

To complete the proof, we now consider the case q = ∞. Let A ∈ X . Applying
(22.1.7) with f = 1A and noting that πP1A = π(A) yields:∫

1A(y)
∣∣∣∣d(νP)

dπ
(y)
∣∣∣∣π(dy)≤

∫ ∣∣∣∣dν

dπ
(x)
∣∣∣∣P1A(x)π(dx)≤ esssupπ (dν/dπ)π(A) .

Then, taking Aδ = {y ∈ X : |d(νP)/dπ(y)|> δ} where δ < esssupπ (d(νP)/dπ),
we get:

δπ(Aδ )≤ esssupπ (dν/dπ)π(Aδ ) .

The proof is completed since π(Aδ ) 6= 0 and δ is an arbitrary real number strictly
less than esssupπ (d(νP)/dπ). 2

Lemma 22.1.3 shows that the Markov kernel P can also be considered as a bounded
linear operator on the measure spaceMq(π) where q ∈ [1,∞]. The operator norm of
P, considered as a bounded linear operator on the measure spaceMq(π) is given by:

9P9Mq(π)
= sup

{
‖νP‖Mp(π)

: ν ∈Mq(π),‖ν‖Mp(π)
≤ 1
}
.

We now provide an explicit expression of d(νP)/dπ for any ν ∈M1(π). This re-
quires to introduce the adjoint operator of P. In what follows, we use the following
definition.

We say that (p,q) are conjugate real numbers if p,q ∈ [1,∞] and p−1 +
q−1 = 1 where we use the convention ∞−1 = 0.

If f ∈ L1(π) and f ≥ 0, we may define the finite measure π f by

π f (A) =
∫

π(dx) f (x)P(x,A) A ∈X . (22.1.8)

We can now extend the definition of π f to any real-valued function f ∈ L1(π) ( f is
no longer assumed to be nonnegative) by setting π f = π f+ −π f− . For f a complex-
valued function in L1

π , we set π f = π fR + iπ fI where ( fR, fI) are the real and imag-
inary parts of f , respectively.
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If π(A) = 0, then P(x,A) = 0 for π-almost all x ∈ X and this implies π f (A) = 0.
The complex measure π f is thus dominated by π and we can define the adjoint
operator P∗ as follows.

Definition 22.1.4 Let P be a Markov kernel on X×X . The adjoint operator P∗ :
L1(π)→ L1(π) of P is defined for all f ∈ L1(π) by

P∗ f =
dπ f

dπ
, (22.1.9)

where π f is a complex measure defined by

π f (A) =
∫

π(dx) f (x)P(x,A) , A ∈X . (22.1.10)

By definition, P∗1 = 1. Since |dπ f /dπ| ≤ dπ| f |/dπ π − a.s., (22.1.9) implies
that |P∗ f | ≤ P∗| f | Note that P∗ is actually a bounded linear operator since it is
clearly linear and∫

π(dx)|P∗ f (x)|=
∫

π(dx)P∗| f |(x)≤
∫

π(dx)
dπ| f |
dπ

(x) = ‖ f‖L1(π) .

Since |π f | ≤ π| f |, we have the inclusion L1(π| f |)⊂ L1(|π f |). Then, by definition of
the Radon-Nikodym derivative, we obtain the duality equality, for all g ∈ L1(π| f |),∫

π(dx) f (x)Pg(x) =
∫

π(dx) f (x)Pḡ(x) = π f (ḡ) (22.1.11)

=
∫

π(dx)P∗ f (x)g(x) .

Proposition 22.1.5 (i) Let ( f ,g)∈Lp(π)×Lq(π) where (p,q) are conjugate.
Then ∫

π(dx) f (x)Pg(x) =
∫

π(dx)P∗ f (x)g(x) . (22.1.12)

(ii) For all p ∈ [1,∞], Lp(π) is stable by P∗ and P∗ ∈ BL(Lp(π)).
(iii) For all conjugate real numbers (p,q), α,β ∈ C and Markov kernels P, Q

on X×X with π as invariant probability measure, we have

9ᾱP∗+ β̄Q∗9Lq(π) = 9αP+βQ9Lp(π) .

Moreover, for all n ∈ N, (P∗)n = (Pn)∗.
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Proof. (i) Using (22.1.11), it is sufficient to show g ∈ L1(π| f |). More precisely,
we will establish that for all ( f ,g) ∈ Lp(π)×Lq(π) where (p,q) are conjugate,

π| f |(|g|)≤ ‖ f‖Lp(π) ‖g‖Lq(π) < ∞ . (22.1.13)

If p ∈ (1,∞], then using Hölder’s inequalityand Lemma 1.6.2, we obtain for all
( f ,g) ∈ Lp(π)×Lq(π) ,

π| f |(|g|) =
∫

π(dx)| f |(x)P|g|(x)≤ ‖ f‖Lp(π) ‖P|g|‖Lq(π) ≤ ‖ f‖Lp(π) ‖g‖Lq(π) .

To complete the proof of (22.1.13), consider the case ( f ,g) ∈ L1(π)×L∞(π). For
all ρ > esssupπ (|g|), set Aρ = {|g| > ρ}. Then π(Aρ) = 0 and thus, π| f |(Aρ) = 0.
This implies

π| f |(|g|)≤ ρπ| f |(X)+π| f |(|g|1Aρ
) = ρ ‖ f‖L1(π)

and since ρ is an arbitrary real number strictly larger than esssupπ (|g|), this implies
π| f |(|g|)≤ ‖g‖L∞(π) ‖ f‖L1(π) < ∞. This completes the proof of (i).

(ii) Applying (22.1.13), for all ( f ,g) ∈ Lp(π)×Lq(π) where (p,q) are conju-
gate,∣∣∣∣∫ π(dx)P∗ f (x)g(x)

∣∣∣∣= ∣∣∣∣∫ π(dx) f (x)Pg(x)
∣∣∣∣≤ π| f |(|g|)≤ ‖ f‖Lp(π) ‖g‖Lq(π) < ∞ .

Applying Lemma B.2.13, we get ‖P∗ f‖Lp(π) ≤ ‖ f‖Lp(π), showing that Lp(π) is
stable by P∗ and P∗ ∈ BL(Lp(π)).

(iii) By Lemma B.2.13, if g ∈ Lq(µ)< ∞.

‖g‖Lq(µ) = sup
{∣∣∣∣∫ f ḡdµ

∣∣∣∣ : ‖ f‖Lp(µ) ≤ 1
}

This implies that

9αP∗+βQ∗9Lq(π) = sup
{
‖(αP∗+βQ∗)g‖Lq(π) : ‖g‖Lq(π) ≤ 1

}
= sup

{
ᾱ

∫
f P∗gdπ + β̄

∫
f Q∗gdπ : ‖ f‖Lp(π) ≤ 1,‖g‖Lq(π) ≤ 1

}
= sup

{
ᾱ

∫
P f ḡdπ + β̄

∫
Q f ḡdπ : ‖ f‖Lp(π) ≤ 1,‖g‖Lq(π) ≤ 1

}
= sup

{∥∥(ᾱP+ β̄Q) f
∥∥

Lp(π)
: ‖ f‖Lp(π) ≤ 1

}
= 9ᾱP+ β̄Q9Lp(π) .

If f ∈ Lp(π), then P∗ f is the only element in Lp(π) which satisfies (22.1.12) for all
g ∈ Lq(π). Using this property, we obtain by an easy recursion (P∗)n = (Pn)∗.

2

As a consequence of (22.1.12), for any p ∈ [1,∞] and f ∈ Lp(π), P∗ f is the only
element in Lp(π) such that for all g ∈ Lq(π),
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π(dx) f (x)Pg(x) =

∫
π(dx)P∗ f (x)g(x) .

Remark 22.1.6. Assume that the Markov kernel P is dominated by a σ -finite mea-
sure µ , that is, if for all (x,A) ∈ X×X , P(x,A) =

∫
A p(x,y)µ(dy) where (x,y) 7→

p(x,y) is (X ×X ,B(R))-measurable. In this case, π is dominated by µ . Denoting
hπ the density of π with respect to µ , we have for π-almost all y ∈ X,

P∗ f (y) =
dπ f

dπ
(y) =

hπ(x) f (x)p(x,y)
hπ(y)

.

N

If the complex measure ν is dominated by π , that is if ν ∈M1(π), then plugging
f = dν/dπ into (22.1.10), yields π f = νP and by (22.1.9), we get

P∗
(

dν

dπ

)
= P∗ f =

d(νP)
dπ

. (22.1.14)

Lemma 22.1.7 Let P,Q be Markov kernels on X×X with invariant probability
measure π . For all conjugate real numbers (p,q),

9P−Q9Lp(π) = 9P−Q9Mq(π)
.

Proof. Using (22.1.3), (22.1.14) and Proposition 22.1.5-(iii), we obtain

9P−Q9Mq(π)
= sup

{∥∥∥∥d(µP)
dπ

− d(µQ)

dπ

∥∥∥∥
Lq(π)

: µ ∈Mq(π),‖µ‖Mq(π)
≤ 1

}

= sup

{∥∥∥∥(P∗−Q∗)
(

dµ

dπ

)∥∥∥∥
Lq(π)

:
dµ

dπ
∈ Lq(π),

∥∥∥∥dµ

dπ

∥∥∥∥
Lq(π)

≤ 1

}
= 9P∗−Q∗9Lq(π) = 9P−Q9Lp(π) .

2

Recall that Π is the Markov kernel defined by Π(x,A) = π(A) where A ∈X . By
Lemma 22.1.7, for all conjugate real numbers (p,q) and all n ∈ N,

9Pn−Π9Lp(π) = 9Pn−Π 9Mq(π)
.

Since ΠP = PΠ = Π , we get Pn−Π = (P−Π)n, the previous identity also implies
that

9(P−Π)n9Lp(π) = 9Pn−Π9Lp(π) = 9Pn−Π9Mq(π)
= 9(P−Π)n9Mq(π)

We formalize these results in the following theorem for future reference.
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Theorem 22.1.8. Let P be a Markov kernel on X×X with invariant probability
measure π . For all conjugate real numbers (p,q) and all n ∈ N,

9(P−Π)n9Lp(π) = 9Pn−Π9Lp(π) = 9Pn−Π9Mq(π)
= 9(P−Π)n9Mq(π)

In particular, for all probability measures ν ∈Mq(π) and all n ∈ N,

‖νPn−π‖TV ≤ ‖νPn−π‖Mq(π)
≤ 9(P−Π)n9Lp(π) ‖ν−π‖Mq(π)

.

We conclude this section with a link between self-adjointness and reversibility.
We first need the following definition.

Definition 22.1.9 Let P be a Markov kernel on X×X . We say that P is self-ajdoint
on L2(π) if for all f ∈ L2(π), P f = P∗ f , that is P = P∗.

Lemma 22.1.10 Let P be a Markov kernel on X×X with invariant probability
measure π . Then, P is self-adjoint if and only if π is reversible with respect to P.

Proof. Assume that P is self-adjoint. Then applying (22.1.12) with f = 1A and g =
1B, we get for all A,B ∈X ,

π⊗P(A×B) =
∫

π(dx)1A(x)P(x,B) =
∫

π(dx)1B(x)P(x,A) = π⊗P(B×A) ,

showing that π is reversible for P. Conversely assume that π is reversible with re-
spect to P. Then, for f ∈ L1(π) and B ∈X ,

π f (B) =
∫

π(dx) f (x)P(x,B) =
∫

π(dx)1B(x)P f (x) .

This shows that P f = dπ f /dπ = P∗ f and the proof is concluded. 2

22.2 Geometric and exponential convergence in L2(π)

In this Section, we consider P as an operator on the Hilbert space L2(π) equipped
with the scalar product

〈 f ,g〉L2(π) =
∫

f (x)g(x)π(dx) , ‖ f‖2
L2(π) = 〈 f , f 〉L2(π) . (22.2.1)

Because L2
0(π) is closed, the space L2(π) may be decomposed as
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L2(π) = L2
0(π)

⊥
⊕ {L2

0(π)}⊥ . (22.2.2)

For any f ∈ L2
0(π), we get πP( f ) = π( f ) = 0, showing that L2

0(π) is stable by
P. And since P1 = 1, the subspace {L2

0(π)}⊥ is also stable by P. The orthogonal
projection on these two spaces is then explicitly given by: for f ∈ L2(π),

f = { f −〈 f ,1〉L2(π) 1}+ 〈 f ,1〉L2(π) 1 .

The operator (λ I−P) is invertible if and only if λ I−P|L2
0(π)

and λ I−P|{L2
0(π)}⊥

are invertible. As a consequence,

Spec(P|L2(π)) = Spec(P|L2
0(π))∪Spec(P|{L2

0(π)}⊥)
= {1}∪Spec(P|L2

0(π)) . (22.2.3)

By Proposition 22.1.5-(i), the adjoint operator P∗ of P satisfies for all f ,g ∈ L2(π),

〈P f ,g〉L2(π) = 〈 f ,P
∗g〉L2(π) . (22.2.4)

Lemma 22.2.1 Let P be a Markov kernel on X×X with invariant probability mea-
sure π . For p ∈ [1,∞],

9P9Lp
0 (π)
≤ 9P−Π9Lp(π) ≤ 29P9Lp

0 (π)
(22.2.5)

Moreover,
9P9L2

0(π)
= 9P−Π 9L2(π) . (22.2.6)

Proof. Note first that

9P9Lp
0 (π)

= sup
‖g‖Lp(π)≤1,Π(g)=0

‖Pg‖Lp(π) = sup
‖g‖Lp(π)≤1,Π(g)=0

‖Pg−Π(g)‖Lp(π)

≤ sup
‖ f‖Lp(π)≤1

‖(P−Π) f‖Lp(π) = 9P−Π 9Lp(π) .

To establish the upper bound in (22.2.5) it suffices to notice that

9P−Π9Lp(π) = 2 sup
‖ f‖Lp(π)≤1

‖P{(1/2)( f −Π f )}‖Lp(π)

≤ 2 sup
‖g‖Lp(π)≤1,Π(g)=0

‖Pg‖Lp(π) = 29P9Lp
0 (π)

.

If p = 2, the decomposition (22.2.2) yields ‖ f −Π( f )‖L2(π) ≤ ‖ f‖L2(π), which in
turn implies
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9P−Π9L2(π) = sup
‖ f‖L2(π)≤1

‖(P−Π) f‖L2(π) = sup
‖ f‖L2(π)≤1

‖P{ f −Π( f )}‖L2(π)

≤ sup
‖g‖L2(π)≤1,Π(g)=0

‖Pg‖L2(π) = 9P9L2
0(π)

.

This proves (22.2.6). 2

The spaceM2(π) is a Hilbert space equipped with the inner product

(ν ,µ)M2(π)
=
∫ dν

dπ
(x)

dµ

dπ
(x)π(dx) =

〈
dν

dπ
,

dµ

dπ

〉
L2(π)

.

Using these notations, we may decompose the spaceM2(π) as follows

M2(π) =M0
2(π)

⊥
⊕
{
M0

2(π)
}⊥

,

where M0
2(π) is defined in (22.1.6). The orthogonal projections on these two sub-

spaces is again explicit by writing for µ ∈ M2(π), µ = {µ − µ(X)π}+ µ(X)π .
Then, {

M0
2(π)

}⊥
= {ν ∈M2(π) : ν = c ·π, c ∈ R} .

The spaceM0
2(π) (respectively,

{
M0

2(π)
}⊥) is also a Hilbert space which isometri-

cally isomorphic to L2
0(π) (respectively

{
L2

0(π)
}⊥). Recall that for ν ∈M2(π), we

have by (22.1.14),
d(νP)

dπ
= P∗

dν

dπ
.

Moreover, denoting by νP∗, the measure A 7→ ν(P∗1A), we get by (22.1.12),

νP∗(A) =
∫

π(dx)
dν

dπ
(x)P∗1A(x) =

∫
π(dx)1A(x)P

dν

dπ
(x) ,

showing that d(νP∗)/dπ = Pdν/dπ . Now, for any µ,ν ∈M2(π), we then have

(νP,µ)M2(π)
=

〈
d(νP)

dπ
,

dµ

dπ

〉
L2(π)

(22.2.7)

=

〈
P∗

dν

dπ
,

dµ

dπ

〉
L2(π)

=

〈
dν

dπ
,P

dµ

dπ

〉
L2(π)

=

〈
dν

dπ
,

d(µP∗)
dπ

〉
L2(π)

= (ν ,µP∗)M2(π)
.

Definition 22.2.2 (L2(π)-geometric ergodicity and exponential convergence)
Let P be a Markov kernel P on X×X with invariant probability π .
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(i) P is said to be L2(π)-geometrically ergodic if there exists ρ ∈ [0,1) such that for
all probability measures ν ∈M2(π), there exists a constant C(ν)<∞ satisfying

‖νPn−π‖M2(π)
≤C(ν)ρn , for all n ∈ N .

(ii) P is said to be L2(π)-exponentially convergent, if there exist α ∈ [0,1) and
M < ∞ such that

9Pn−Π9M2(π)
= 9Pn−Π9L2(π) = 9Pn9L2

0(π)
≤Mα

n , for all n ∈ N .

(22.2.8)

Note that the equality in (22.2.8) is a consequence of Lemma 22.2.1.

Definition 22.2.3 (L2(π)-absolute spectral gap) Let P be a Markov kernel on X×
X with invariant probability π . The Markov kernel P has an L2(π)-absolute spec-
tral gap, if

Abs.GapL2(π)(P) := 1− sup
{
|λ | : λ ∈ Spec(P|L2

0(π))
}
> 0 .

Proposition 22.2.4 Let P be a Markov kernel on X×X with invariant proba-
bility π .

(i) P has a L2(π)-absolute spectral gap if and only if there exists m > 1 such
that 9Pm9L2

0(π)
< 1.

(ii) If P has a L2(π)-absolute spectral gap, then the Markov kernel P is L2(π)-
geometrically ergodic.

Proof. (i) Proposition 22.A.13 shows that

sup
{
|λ | : λ ∈ Spec(P|L2

0(π))
}
= lim

m→∞

{
9Pm9L2

0(π)

}1/m
.

(ii) By (i) there exists m > 1 such that 9Pm9L2
0(π)

< 1. By Theorem 22.1.8 and
(22.2.6), we get for any probability measure ν ∈M2(π),

‖νPn−π‖M2(π)
= ‖ν [Pn−Π ]‖M2(π)

≤ 9Pn−Π 9M2(π)
‖ν‖M2(π)

= 9Pn−Π 9L2(π) ‖ν‖M2(π)
= 9Pn9L2

0(π)
‖ν‖M2(π)

.

The proof follows by noting that 9Pn9L2
0(π)
≤ 9Pm9

bn/mc
L2

0(π)
.
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2

We now specialize the results in the case where the the probability measure π is
reversible with respect to the Markov kernel P. According to Lemma 22.1.10, P is
self-adjoint in L2(π). And using (22.1.12), we get for any function f ,g ∈ L2(π),

〈P f ,g〉L2(π) =
∫

X
π(dx)P f (x)g(x) =

∫
X

π(dx) f (x)Pg(x) = 〈Pg, f 〉L2(π) .

Hence, the operator P is self-adjoint in L2(π). Moreover, (22.2.7) shows that the
operator P is also self-adjoint inM2(π), i.e. for all µ,ν ∈M2(π),

(νP,µ)M2(π)
= (ν ,µP)M2(π)

Let H⊂ L2(π) be a subspace of L2(π) stable by P. By Theorem 22.A.19, the spec-
trum of the restriction of a self-adjoint operator P to H is included in a segment of
the real line defined by:

Spec(P|H)⊂ [ inf
f∈H,‖ f‖L2(π)≤1

〈P f , f 〉 , sup
f∈H,‖ f‖L2(π)≤1

〈P f , f 〉] . (22.2.9)

Proposition 22.2.5 Let P be a Markov kernel on X×X with invariant proba-
bility π . Then

1−9P9L2
0(π)

= 1−9P−Π9L2(π) ≤ Abs.GapL2(π)(P) ,

with equality if P is reversible with respect to π .

Proof. By Proposition 22.A.13,

1−Abs.GapL2(π)(P) = lim
m→∞

{
9Pm9L2

0(π)

}1/m
≤ 9P9L2

0(π)
.

This proves the first part of the proposition. Assume now that P is reversible with
respect to π and define

λmin = inf
{

λ : λ ∈ Spec(P|L2
0(π))

}
λmax = sup

{
λ : λ ∈ Spec(P|L2

0(π))
}
.

By applying (22.2.9) with H = L2
0(π), we get

1−Abs.GapL2(π)(P) = sup
{
|λ | : λ ∈ Spec(P|L2

0(π))
}
= max{|λmin|,λmax} .

Moreover, since P is a self-adjoint operator on L2(π), Theorem 22.A.17 together
with Theorem 22.A.19 yields
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9P9L2
0(π)

= sup
{
| 〈P f , f 〉 | : ‖ f‖L2(π) ≤ 1, f ∈ L2

0(π)
}
= max{|λmin|, λmax}

which therefore implies 1−Abs.GapL2(π)(P) = 9P9L2
0(π)

. 2

Assume that P is a self-adjoint operator on L2(π). Theorem 22.B.3 shows that to
any function f ∈ L2(π) we may associate a unique finite measure on [−1,1] (the
spectral measure) satisfying for all k ∈ N,

Eπ [ f (X0) f (Xk)] =
〈

f ,Pk f
〉

L2(π)
=
〈

Pk f , f
〉

L2(π)
=
∫ 1

−1
tk

µ f (dt) . (22.2.10)

Applying this relation with k = 0 shows that

‖ f‖L2(π) = Eπ [| f (X0)|2] = µ f ([−1,1]) . (22.2.11)

Theorem 22.2.6. Let P be a Markov kernel on X×X reversible with respect to the
probability measure π .

(i) If for all f ∈ L2
0(π) the support of the spectral measure µ f is included in the

interval [−ρ,ρ], ρ ∈ [0,1), then Abs.GapL2(π)(P)≥ 1−ρ .
(ii) If the Markov kernel P has a L2(π)-absolute spectral gap Abs.GapL2(π)(P),

then for all f ∈ L2
0(π), the support of the spectral measure µ f is included in the

interval
[
−1+Abs.GapL2(π)(P),1−Abs.GapL2(π)(P)

]
.

Proof. (i) Let f ∈ L2
0(π). By the definition of the spectral measure, we obtain

using (22.2.10) and (22.2.11)

‖P f‖2
L2(π) = 〈P f ,P f 〉L2(π) =

〈
f ,P2 f

〉
L2(π)

=
∫ 1

−1
t2

µ f (dt)≤ ρ
2
µ f ([−1,1]) = ρ

2 ‖ f‖L2(π) .

Combining it with Proposition 22.2.5 yields 1−Abs.GapL2(π)(P) =9P9L2
0(π)
≤ ρ .

(ii) Conversely, assume 9P9L2
0(π)
≤ ρ . By definition this implies that for all

f ∈ L2
0(π) and n ∈ N,

‖Pn f‖L2(π) ≤ ρ
n ‖ f‖L2(π) . (22.2.12)

We now prove by contradiction that µ f is supported by [−ρ,ρ]. Assume that there
exist f ∈L2

0(π) and r∈ (ρ,1] such that µ f (Ir)> 0, where Ir = [−1,−r]∪ [r,1]. Then,
since π is reversible with respect to P,

‖Pn f‖2
L2(π) =

∫ 1

−1
t2n

µ f (dt)≥
∫

Ir
t2n

µ f (dt)≥ r2n
µ f (Ir) .
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This contradicts (22.2.12).
2

Theorem 22.2.7. Let P be a Markov kernel on X×X reversible with respect to the
probability measure π . The following statements are equivalent

(i) P is L2(π)-geometrically ergodic.
(ii) P has a L2(π)-absolute spectral gap.

Proof. (i)⇒ (ii) Assume that P is L2(π)-geometrically ergodic. We first prove
an apparently stronger result: for any complex measure ν ∈M0

2(π), there exist a
finite constant C(ν) and ρ ∈ [0,1) such that

‖νPn‖M2(π)
≤C(ν)ρn , for all n ∈ N . (22.2.13)

Since the real and imaginary parts of the complex measure ν are real-valued signed
measures, we only need to prove this result with real-valued signed measures.
Let ν be a nontrivial real-valued signed measure belonging to M0

2(π). Denote by
f = dν/dπ which by definition belongs to L2

0(π). Denote by g+ = f+/Z, g− =
f−/Z where Z = π( f+) = π( f−). Note that µ+ = g+ ·π and µ− = g− ·π are two
probability measures that belong to M2(π). Moreover, by (22.1.14), d(νPn)/dπ =
Pn(dν/dπ). This implies

‖νPn‖M2(π)
= ‖Pn(dν/dπ)‖L2(π) =

∥∥Pn{Zg+−Zg−}
∥∥

L2(π)

≤ Z
∥∥Pn{g+−1}

∥∥
L2(π)

+Z
∥∥Pn{g−−1}

∥∥
L2(π)

= Z ‖µ+Pn−π‖M2(π)
+Z ‖µ−Pn−π‖M2(π)

.

Since P is L2(π)-geometrically ergodic, there exist two constants C(µ+) < ∞ and
C(µ−)< ∞ such that for all n ∈ N,

‖νPn‖M2(π)
≤ Z{C(µ+)+C(µ−)}ρn ,

showing that (22.2.13) is satisfied.
Let now ν ∈M0

2(π) and set f = dν/dπ which belongs to L2
0(π). For all n ∈ N, we

get using the reversibility of P and (22.2.10),

‖νPn‖M2(π)
= ‖Pn f‖L2(π) =

(〈
f ,P2n f

〉
L2(π)

)1/2
=

(∫ 1

−1
t2n

µ f (dt)
)1/2

,

where µ f is the spectral measure associated to the function f . We must have for all
1 > r > ρ , µ f ([−1,−r]∪ [r,1]) = 0, otherwise we could choose r ∈ (ρ,1) such that

‖νPn‖M2(π)
=
∫ 1

−1
t2n

µ f (dt)≥ r2n
µ f ([−1,−r]∪ [r,1]) ,
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which contradicts (22.2.13). Therefore, if P is L2(π)-geometrically ergodic, then
for any ν ∈ M0

2(π), the spectral measure of the function dν/dπ is included in
[−ρ,ρ]. Since the space M0

2(π) is isometrically isomorphic to L2
0(π), if P is

L2(π)-geometrically ergodic, then the spectral measure associated to any function
f ∈ L2

0(π) must be included in [−ρ,ρ]. We conclude by applying Theorem 22.2.6.
(ii)⇒ (i) Follows from Proposition 22.2.4 (note that in this case the reversibility

does not play a role).
2

We conclude this section with an extension of this result to a possibly non-reversible
kernel provided that the identity P∗P = PP∗ is satisfied.

Proposition 22.2.8 Let P be a Markov kernel on X×X with invariant prob-
ability π . Assume that the Markov kernel P is normal, i.e. P∗P = PP∗. Then,
9P9L2

0(π)
= limn→∞9Pn9

1/n
L2

0(π)
and the following statements are equivalent:

(i) P is L2(π)-exponentially convergent.
(ii) P has a L2(π)-absolute spectral gap.

Moreover, if there exist M < ∞ and α ∈ [0,1) such that for all n ∈ N,
9Pn9L2

0(π)
≤Mαn, then 1−α ≤ Abs.GapL2(π)(P).

Proof. Since P is normal, PP∗ = P∗P and consequently, for any n ∈ N, Pn(P∗)n =
(PP∗)n. By Corollary 22.A.18, we get for all n≥ 1,

9Pn92
L2

0(π)
= 9Pn(P∗)n9L2

0(π)
= 9(PP∗)n9L2

0(π)
.

Now, using again Corollary 22.A.18 and applying successively Proposition 22.2.5
and Proposition 22.A.13 to the self-adjoint operator PP∗, we get

9P92
L2

0(π)
= 9PP∗9L2

0(π)
= 1−Abs.GapL2(π)(PP∗)

= lim
n→∞

9(PP∗)n9
1/n
L2

0(π)

= lim
n→∞

9Pn9
2/n
L2

0(π)
(22.2.14)

which concludes the first part of the proof.

(i)⇒ (ii) Assume that P is L2(π)-exponentially convergent. Then, there exists
M < ∞ and α ∈ [0,1) such that for all n ∈ N, 9Pn9L2

0(π)
≤Mαn which implies by

(22.2.14) that 9P9L2
0(π)
≤ α < 1 and the proof of the first implication follows from

Proposition 22.2.5.
(ii)⇒ (i) Follows from Proposition 22.2.4.

2
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22.3 Lp(π)-exponential convergence

We will now generalize the Definition 22.2.2 to Lp(π) for p≥ 1.

Definition 22.3.1 (Lp(π)-exponential convergence) Let P be a Markov kernel on
X×X with invariant probability π . Let p ∈ [1, ∞]. The Markov kernel P is said
Lp(π)-exponentially convergent if there exist α ∈ [0,1) and M < ∞ such that for all
n ∈ N,

9Pn9Lp
0 (π)
≤Mα

n .

By Proposition 22.A.13, if 9Pm9Lp
0 (π)

< 1 for some m≥ 1, the Markov kernel P
is Lp(π)-exponentially convergent.

Let (p,q) be conjugate real numbers. As shown in the next proposition, Lp(π)-
exponential convergence turns out to imply convergence of the operator Pn, acting
on measures inM0

q(π) in the following sense.

Proposition 22.3.2 Let P be a Markov kernel on X×X with invariant prob-
ability π . Let p,q be conjugate real numbers. Assume the Markov kernel P is
Lp(π)-exponentially convergent. Then there exist a finite positive constant M
and a real number α ∈ (0,1) such that for any ν ∈M0

q(π) and for all n ∈ N,

‖νPn‖Mq(π)
≤Mα

n ‖ν‖Mq(π)
.

Proof. Since ν ∈ M0
q(π), we have νPn = ν(Pn −Π). Combining with Theo-

rem 22.1.8 and Lemma 22.2.1 yields for all n ∈ N,

‖νPn‖Mq(π)
≤ 9Pn−Π 9Mq(π)

‖ν‖Mq(π)

= 9Pn−Π 9Lp(π) ‖ν‖Mq(π)
≤ 29Pn9Lp

0 (π)
‖ν‖Mq(π)

.

The proof is completed by noting that P is Lp(π)-exponentially convergent. 2

Quite surprisingly, the existence of an L2(π)-absolute spectral gap implies Lp(π)-
exponential convergence for any p ∈ (1,∞).

Proposition 22.3.3 Let P be a Markov kernel on X×X with invariant proba-
bility measure π . Assume that P has an L2(π)-absolute spectral gap. Then, for
any p ∈ [1,∞] the Markov kernel P is Lp(π)-exponentially convergent and for
all n ∈ N, we have
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9(P−Π)n9Lp(π) ≤

2(2−p)/p9Pn9
2(p−1)/p
L2

0(π)
p ∈ [1,2] ,

21−2/p 9Pn9
2/p
L2

0(π)
p ∈ [2, ∞] .

(22.3.1)

Proof. Let p ∈ [1,2]. We first use the Riesz-Thorin interpolation Theorem 22.A.3
for p ∈ [1,2]. By Proposition 1.6.3,

9(P−Π)n9L1(π) ≤ 9P−Π9L1(π) ≤ 2 .

Moreover, by (22.2.6), 9(P−Π)n9L2(π) = 9Pn−Π9L2(π) = 9Pn9L2
0(π)

. Noting
that

p−1 = (1−θ).1−1 +θ .2−1 with θ = 2(p−1)/p ,

we then obtain the first upper-bound in (22.3.1) by applying Theorem 22.A.3.
Let p ∈ [2,∞). We use again the Riesz-Thorin Theorem 22.A.3 to interpolate

between 2 and ∞. As before, we have 9(P−Π)n9L2(π) = 9Pn9L2
0(π)

. Applying
again Proposition 1.6.3,

9(P−Π)n9L∞(π) ≤ 9P−Π9L∞(π) ≤ 2 .

Using the convention ∞−1 = 0,

p−1 = (1−θ).∞−1 +θ .2−1 with θ = 2/p ,

and the Riesz-Thorin interpolation Theorem 22.A.3 then concludes the proof. 2

By an interpolation argument we get a partial converse of Proposition 22.3.3 in
the case where P is normal i.e. PP∗ = P∗P, where P∗ is the adjoint of P.

Proposition 22.3.4 Let P be a Markov kernel on X×X with invariant prob-
ability π . Assume that P is normal and that the Markov kernel P is Lp(π)-
exponentially convergent. Then,

9P9L2
0(π)
≤


{

limn→∞9Pn9
1/n
Lp

0 (π)

}p/2
p ∈ [1,2]{

limn→∞9Pn9
1/n
Lp

0 (π)

}1/{2(1−p−1)}
p ∈ [2,∞]

Proof. By Proposition 22.2.8, since P is normal, 9P9L2
0(π)

= limn→∞9Pn9
1/n
L2

0(π)
.

Let α ∈ (limn→∞9Pn9
1/n
Lp

0 (π)
,1). Assume first that p ∈ [1,2]. There exists M < ∞

such that for all n ∈ N, 9(P−Π)n9Lp(π) ≤ Mαn. Using Proposition 1.6.3, we
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get 9(P−Π)n9L∞(π) ≤ 2. We use the Riesz-Thorin interpolation theorem (The-
orem 22.A.3) to show that for all n ∈ N,

9Pn9L2
0(π)

= 9(P−Π)n9L2(π) ≤ 21−p/2Mp/2
α

pn/2 .

Then applying Proposition 22.2.8 to the normal kernel P, we get 9P9L2
0(π)

=

limn→∞9Pn9
1/n
L2

0(π)
≤ α p/2 and the proof is completed for p ∈ [1,2].

Assume now that p∈ [2,∞]. By Proposition 1.6.3, we have 9(P−Π)n9L1(π) ≤ 1
and the proof follows again by using the Riesz-Thorin interpolation Theorem and
Proposition 22.2.8. 2

It is of course interesting to relate Lp(π)-exponential convergence for some p ∈
[1,∞] with the different definitions of ergodicity that we have introduced in Chap-
ter 15. Let P be a Markov kernel on X×X with invariant probability π . Recall
from Definition 15.2.1 that the Markov kernel P is uniformly geometrically ergodic
if there exist constants C < ∞ and ρ ∈ [0,1) such that, for all n ∈ N and x ∈ X,

‖Pn(x, ·)−π‖TV ≤Cρ
n . (22.3.2)

We will say that the Markov kernel P is π-a.e. uniformly geometrically ergodic if
the inequality holds for π-a.e. x. As shown below, uniform geometric ergodicity is
equivalent to L∞(π)-exponential convergence, which by Proposition 22.3.4 implies
that 9P9L2

0(π)
< 1 if the Markov kernel P is normal.

Proposition 22.3.5 Let P be a Markov kernel on X×X with invariant proba-
bility π . The following statements are equivalent:

(i) The Markov kernel P is π-a.e. uniformly geometrically ergodic.
(ii) The Markov kernel P is L∞(π)-exponentially convergent.

In addition, if one of these conditions is satisfied then P is Lp(π)-exponentially
convergent for all p ∈ (1,∞].

Proof. To establish (i) ⇐⇒ (ii), it suffices to show that for all n ∈ N and π-a.e.
x ∈ X,

sup
‖h‖L∞(π)≤1

|Pnh(x)−π(h)|= sup
|h|∞≤1

|Pnh(x)−π(h)| . (22.3.3)

We only need to show that the left-hand side is smaller than the right-hand side, the
reverse inequality being obvious.

For n ∈ N and N ∈X , set X[n,N] = {x ∈ X : Pn(x,N) = 0}. Since π is an in-
variant probability, we get for all n ∈ N and N ∈X ,

π(N) = 0 ⇔ π (X[n,N]) = 1 .
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Let h be a function in L∞(π) satisfying ‖h‖L∞(π) ≤ 1. If N ∈X and π(N) = 0, then
for any x ∈ X[n,N], we have

|Pnh(x)−π(h)|= |Pn(1Nch)(x)−π(1Nc h)| . (22.3.4)

Set h̃(x) = h(x)1{|h(x)|≤1}. Hence |h̃|∞ ≤ 1. Since π({|h| > 1}) = 0, applying
(22.3.4) with N = {|h|> 1} shows that for all x ∈ X[n,{|h|> 1}], we get

|Pnh(x)−π(h)|= |Pnh̃(x)−π(h̃)| ≤ sup
|g|∞≤1

|Png(x)−π(g)| .

Finally, (i) is equivalent to (ii).
We now turn to the proof of the last part of the proposition. More specifically, we

will show that, if P is π-a.e. uniformly geometrically ergodic, then P is exponen-
tially convergent in Lp(π) where p ∈ (1,∞]. Set Q = P−Π . For k ∈ N∗ and x ∈ X
such that

∥∥Qk(x, ·)
∥∥

TV > 0, we get for all h ∈ Lp(π),

|Qkh(x)| ≤
∫ ∣∣∣Qk(x, ·)

∣∣∣(dy)|h|(y) =
∥∥∥Qk(x, ·)

∥∥∥
TV

∫ ∣∣Qk(x, ·)
∣∣

‖Qk(x, ·)‖TV
(dy)|h|(y) .

(22.3.5)
By using the Jensen inequality, we obtain

|Qkh(x)|p ≤
∥∥∥Qk(x, ·)

∥∥∥p−1

TV

∫
|Qk(x, ·)|(dy)|h|p(dy) . (22.3.6)

There exist ς < ∞ and ρ ∈ [0,1) such that
∥∥Qk(x, ·)

∥∥
TV ≤ ςρk for π-a.e. x ∈ X and

all k ∈ N. Since |Qk(x, ·)| ≤ Pk(x, ·)+π and , we get

|Qkh(x)|p ≤
∥∥∥Qk(x, ·)

∥∥∥p−1

TV

{
Pk|h|p(x)+π(|h|p)

}
≤ {ςρ

k}p−1
{

Pk|h|p(x)+π(|h|p)
}
.

This implies that ∥∥∥Qkh
∥∥∥

Lp(π)
≤ 21/p

ς
(p−1)/p

ρ
(p−1)k/p ‖h‖Lp(π) .

The proof is completed. 2

Corollary 22.3.6 Let P be a Markov kernel on X×X . Assume that P is re-
versible with respect to π and is uniformly geometrically ergodic. Then P has
a L2(π)-absolute spectral gap.

Proof. The result follows from Propositions 22.3.4 and 22.3.5. 2
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The next example shows that a reversible Markov kernel P may have an absolute
spectral gap without being uniformly geometrically ergodic. Therefore, the uniform
geometric ergodicity for reversible Markov kernel is a stronger property than the
existence of a spectral gap.

Example 22.3.7 Consider the Gaussian autoregressive process of order 1, given
by the recursion Xk+1 = φXk +σZk+1 where {Zk, k ∈ N∗} is a sequence of i.i.d.
standard Gaussian random variables independent of X0, φ ∈ (−1,1) and σ > 0.
The associated Markov kernel chain is given, for any A ∈B(R) by

P(x,A) =
∫

A

1√
2πσ2

exp
(
− (y−φx)2

2σ2

)
dy . (22.3.7)

This Markov kernel is reversible to N(0,σ2
∞), the Gaussian distribution with zero-

mean and variance σ2
∞ = σ2/(1− φ 2). For any x ∈ R, n ∈ N and A ∈B(R) and

x ∈ R we have

Pn(x,A) =
∫

A

1√
2πσ2

n
exp
(
− (y−φ nx)2

2σ2
n

)
dy , σ

2
n = σ

2 1−φ 2n

1−φ 2 . (22.3.8)

For any δ > 0, liminfn→∞ Pn(φ−n/2, [−δ ,δ ]) = 0 whereas N(0,σ2
∞)([δ ,δ ]) > 0,

showing that the Markov kernel P is not uniformly (geometrically) ergodic. We will
nevertheless show that P has positive absolute spectral gap. For any function f ∈
L2

0(π), we get

‖P f‖2
L2(π) = 〈P f ,P f 〉L2(π) =

〈
f ,P2 f

〉
L2(π)

= Covπ( f (X0), f (X2)) .

To bound the right-hand side of the previous inequality we use the Gebelein inequal-
ity which states that if (U,V ) is a centered Gaussian vector in R2 with E

[
U2
]
= 1

and E
[
V 2
]
= 1 and if f ,g are two complex-valued functions such that E [ f (U)] =

0 and E [g(V )] = 0, then, |E
[

f (U)g(V )
]
| ≤ ρ{E

[
| f (U)|2

]
}1/2{E

[
|g(V )|2

]
}1/2,

where ρ = |E [UV ] | is the correlation coefficient. Applying this inequality with
U = X0/σ∞ and V = X2/σ∞ we obtain

Covπ( f (X0), f (X2))≤ φ
2 ‖ f‖L2(π) .

Hence, the Markov kernel P has an absolute L2(π)-spectral gap which is larger
than 1−φ 2.

Recall from Theorem 15.1.5 that if P is irreducible, aperiodic and positive with
invariant probability measure π , then P is geometrically ergodic if and only if there
exist a measurable function V : X→ [1,∞] and a constant ρ ∈ [0,1) such that π({V <
∞}) = 1 and for all n ∈ N and x ∈ X,

‖Pn(x, ·)−π‖TV ≤V (x)ρn . (22.3.9)
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Lemma 22.3.8 Let P be an irreducible Markov kernel on X×X with invariant
probability π . Assume in addition that P is geometrically ergodic. Then, for all
p ∈ [1,∞), there exists ς < ∞ such that, for all f ∈ Fb(X) and n ∈ N,

‖Pn f −π( f )‖Lp(π) ≤ ς | f |∞ρ
n .

Proof. Note that P is necessarily aperiodic by Lemma 9.3.9. By Theorem 15.1.6,
there exist a function V : X→ [1,∞] satisfying ‖V‖Lp(π) < ∞, ρ ∈ [0,1) and ς0 < ∞

such that for all n ∈ N, ‖Pn(x, ·)−π‖TV ≤ ς0V (x)ρn for π-a.e. x ∈ X. For any f ∈
Fb(X), we therefore have |Pn f (x)−π( f )| ≤ ‖Pn(x, ·)−π‖TV | f |∞ for π-a.e. x ∈ X
which implies that

‖Pn f −π( f )‖Lp(π) ≤ ς0 ‖V‖Lp(π) | f |∞ρ
n .

2

Lemma 22.3.9 Let P be an irreducible Markov kernel on X×X with invariant
probability measure π . If P is L2(π)-geometrically ergodic then P is aperiodic.

Proof. The proof is by contradiction. Assume that the period d is larger than 2.
Let C0, . . . ,Cd−1 be a cyclic decomposition as stated in Theorem 9.3.6 and note
that π(C0)> 0 since C0 is accessible and π is a maximal irreducibility measure (see
Theorem 9.2.15). Set for A∈X , µ(A)= π(A∩C0)/π(C0) and note that µ ∈M2(π).
Note that for all k∈N, µPkd+1(C1) = 1 so that µPkd+1(C0) = 0. Now, using (22.1.5)
and the fact that P is L2(π)-geometrically ergodic,

limsup
n→∞

‖µPn−π‖TV ≤ limsup
n→∞

‖µPn−π‖M2(π)
= 0 .

This implies limn→∞ µPn(C0) = π(C0) > 0 which contradicts µPkd+1(C0) = 0 for
all k ∈ N. 2

Theorem 22.3.10. Let P be an irreducible Markov kernel on X×X with invari-
ant probability π . If the Markov kernel P is L2(π)-geometrically ergodic then P is
geometrically ergodic.

Proof. Let µ ∈M2(π). By (22.1.5), ‖µ‖TV ≤ ‖µ‖M2(π)
. Since the Markov kernel

P is L2(π)-geometrically ergodic, there exist ρ ∈ [0,1) and for all probability mea-
sures µ ∈M2(π) a constant C(µ)< ∞ such that for all n ∈ N,

‖µPn−π‖TV ≤ ‖µPn−π‖M2(π)
≤C(µ)ρn . (22.3.10)

We need to extend this relation to π-a.e. starting points x∈X. Since P is irreducible,
Theorem 9.2.15 shows that π is a maximal irreducibility measure. By Proposi-
tion 9.4.4-(i) and Theorem 9.4.10, there exists an accessible (m,επ)-small set S.
Note that π(S)> 0 since S is accessible and π is a maximal irreducibility measure.
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Define µ to be π restricted to S and normalized to be a probability measure, i.e.
µ = {π(S)}−1

1S(x) ·π . Then,

∫ (dµ

dπ

)2

dπ =
1

π(S)
< ∞ ,

showing that µ is inM2(π). Using (22.3.10), we get for all n ∈ N,∣∣∣∣∫S
µ(dy){Pn(y,S)−π(S)}

∣∣∣∣≤ ∥∥∥∥∫S
µ(dy)Pn(y, ·)−π

∥∥∥∥
TV
≤C(µ)ρn .

By Lemma 22.3.9, P is aperiodic. We conclude by the characterization Theo-
rem 15.1.5-(iii). 2

We now consider the converse application.

Theorem 22.3.11. Let P be an irreducible Markov kernel on X×X reversible with
respect to the probability measure π . Then, the following statements are equivalent.

(i) P has an absolute L2(π)-spectral gap.
(ii) P is geometrically ergodic.

Proof. (i)⇒ (ii) From Proposition 22.2.4, the existence of an absolute L2(π)-
spectral gap implies that the Markov kernel P is L2(π)-geometrically ergodic and
the conclusion follows from Theorem 22.3.10.

(ii)⇒ (i) Since P is geometrically ergodic, Lemma 22.3.8 shows that there exists
a constant ρ ∈ [0,1) such that, for any f ∈ Fb(X) satisfying π( f ) = 0,

‖Pn f‖L2(π) ≤C( f )ρn , for some constant C( f )< ∞. (22.3.11)

Since the Markov kernel P is self-adjoint in L2(π), for all n ∈ N,

‖Pn f‖L2(π) = 〈P
n f ,Pn f 〉L2(π) =

〈
f ,P2n f

〉
=
∫ 1

−1
t2n

ν f (dt) , (22.3.12)

where ν f is the spectral measure associated to P (see Theorem 22.B.3). We now use
the same argument as in the proof of Theorem 22.2.7 to show that the support of the
spectral measure is included in [−ρ,ρ]. To be specific, taking a ∈ (ρ,1), we get

‖Pn f‖L2(π) ≥ a2n
ν f ([−1,−a]∪ [a,1])

and (22.3.11) therefore implies that ν f ([−1,−a]∪ [a,1]) = 0. Using again (22.3.12),
we get that for any function f ∈ Fb(X) with π( f ) = 0,
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‖Pn f‖L2(π) ≤ ρ
n
∫ 1

−1
ν f (dt) = ρ

2n ‖ f‖L2(π) .

Since
{

f ∈ Fb(X) : π( f ) = 0
}

is dense in L2
0(π), we have for any f ∈ L2

0(π) and
n ∈ N, ‖Pn f‖L2(π) ≤ ρn ‖ f‖L2(π). Therefore, Abs.GapL2(π)(P)≥ 1−ρ .

2

22.4 Cheeger’s inequality

In most of this section, we consider a Markov kernel P which is reversible with
respect to the probability measure π . We set

λmax(P) = sup
{

λ : λ ∈ Spec(P|L2
0(π))

}
, (22.4.1)

and we define
GapL2(π)(P) = 1−λmax(P)

as the spectral gap of P. The objective of this Section is to establish bounds on
GapL2(π)(P). We start with the definition of the Cheeger constant (also called the
conductance) which is valid for any Markov kernel P with invariant probability
measure π .

Definition 22.4.1 (Conductance) Let P be a Markov kernel on X×X with invari-
ant probability π . The Cheeger constant is

kP = inf{kP(A) : A ∈X , 0 < π(A)< 1} , (22.4.2)

with

kP(A) =
∫

π(dx)1A(x)P(x,A
c)

π(A)π(Ac)
, A ∈X . (22.4.3)

In words, the Cheeger constant kP(A) associated to a Markov kernel P and a set
A is the probability flow from A to its complement Ac, normalized by the invariant
probabilities of A and Ac. If for some set A ∈X , the flow from A to Ac is very small
compared to the invariant distribution of A and Ac, then it is sensible to expect that
the mixing time of the Markov kernel will be large.

Lemma 22.4.2 Let P be a Markov kernel on X×X reversible with respect to π .
Then,

kP = inf
A∈X ,0<π(A)≤1/2

kP(A)≤ 2 .

Proof. Since P is self-ajoint, we have 〈1A,P1Ac〉L2(π) = 〈1Ac ,P1A〉L2(π), which im-
plies for all A ∈X ,
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kP(A) =
〈1A,P1Ac〉L2(π)

π(A)π(Ac)
=
〈1Ac ,P1A〉L2(π)

π(Ac)π(A)
= kP(Ac),

The proof of the equality is completed since for all A ∈X , either π(A) ≤ 1/2 or
π(Ac)≤ 1/2. We now turn to the upper-bound. First, note that

π(Ac)kP(A) =
∫

π(dx)1A(x)P(x,A
c)

π(A)
≤ 1 .

Replacing A by Ac, we also have π(A)kP(Ac)≤ 1. Combining with kP(Ac) = kP(A),
we deduce kP(A) = π(Ac)kP(A)+π(A)kP(Ac)≤ 2 and the proof is finished. 2

Theorem 22.4.3. Let P be a Markov kernel on X×X , reversible with respect to π .
Then

k2
P

8
≤ GapL2(π)(P)≤ kP . (22.4.4)

Proof. Using the notation Q = I−P, we can express kP(A) defined in (22.4.3) as
follows

kP(A) =−
〈1A,Q1Ac〉L2(π)

π(A)π(Ac)
=
〈1A,Q1A〉L2(π)

π(A)π(Ac)
. (22.4.5)

Moreover, for all f ∈ L2(π),

1−
〈 f ,P f 〉L2(π)

‖ f‖2
L2(π)

=
〈 f , f 〉L2(π)−〈 f ,P f 〉L2(π)

‖ f‖2
L2(π)

=
〈 f ,Q f 〉L2(π)

‖ f‖2
L2(π)

.

Since P is self-adjoint, Theorem 22.A.19 shows that

GapL2(π)(P) = 1−λmax(P) = 1− sup
f∈L2

0(π), f 6=0

〈 f ,P f 〉L2(π)

‖ f‖2
L2(π)

(22.4.6)

= inf
f∈L2

0(π), f 6=0

〈 f ,Q f 〉L2(π)

‖ f‖2
L2(π)

.

Combining this identity with the fact that 〈 f ,Qg〉L2(π) = 0 if f is constant and g ∈
L2

0(π) or if f ∈ L2(π) and g is constant, we get

GapL2(π)(P)≤ inf
A∈X ,0<π(A)<1

〈1A−π(A),Q(1A−π(A))〉L2(π)∥∥1A−π(A)
∥∥2

L2(π)

= inf
A∈X ,0<π(A)<1

〈1A,Q1A〉L2(π)

π(A)π(Ac)
= kP ,
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where the last equality follows from (22.4.5). This shows the upper bound in
(22.4.4). We next turn to the lower bound. The Markov kernel Q being real an self-
adjoint, it suffices to consider real functions. Since π is invariant for P, we obtain
for any real-valued function f ∈ L2(π),

〈 f ,Q f 〉L2(π) =
1
2

∫
π(dx)P(x,dy){ f 2(x)+ f 2(y)−2 f (x) f (y)}

=
1
2

∫
π(dx)P(x,dy){ f (x)− f (y)}2 .

Set now g = f + c. By the Cauchy–Schwarz inequality,

〈 f ,Q f 〉L2(π) =
1
2

∫
π(dx)P(x,dy){g(x)−g(y)}2

≥ 1
2
{
∫

π(dx)P(x,dy)|g2(x)−g2(y)|}2∫
π(dx)P(x,dy){g(x)+g(y)}2

≥ 1
2
{
∫

π(dx)P(x,dy)|g2(x)−g2(y)|}2∫
π(dx)P(x,dy){2g2(x)+2g2(y)}

=
1
8
{
∫

π(dx)P(x,dy)|g2(x)−g2(y)|}2∫
π(dx)g2(x)

(22.4.7)

where we have used in the last equality that πP = π . Using again the invariance of
π , we have

∫
π(dx)P(x,dy){g2(x)−g2(y)}= 0 which implies

N :=
∫

π(dx)P(x,dy)|g2(x)−g2(y)|

= 2
∫

π(dx)P(x,dy)1
{

g2(x)> g2(y)
}
{g2(x)−g2(y)}

= 2
∫

π(dx)P(x,dy)1
{

g2(x)> g2(y)
}∫ ∞

0
1
{

g2(x)> u≥ g2(y)
}

du .

Using first Fubini’s theorem and then writing 1
{

g2(x)> u≥ g2(y)
}
=1Au

(x)1Ac
u
(y)

where Au =
{

x ∈ X : g2(x)> u
}

, we may express N as

N = 2
∫

∞

0
du
∫

π(dx)P(x,dy)1
{

g2(x)> u≥ g2(y)
}
= 2

∫
∞

0
du
〈
1Au ,P1Ac

u

〉
L2(π)

.

Therefore

N ≥ 2kP

∫
∞

0
du π(Au)π(Ac

u) = 2kP

∫
∞

0
du
∫

π(dx)π(dy)1
{

g2(x)> u≥ g2(y)
}

= 2kP

∫
π(dx)π(dy)1

{
g2(x)> g2(y)

}
{g2(x)−g2(y)}

= kP

∫
π(dx)π(dy)|g2(x)−g2(y)| .

Plugging this inequality into (22.4.7) yields for all c ∈ R,
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〈 f ,Q f 〉L2(π) ≥
k2

P

8
{
∫

π(dx)π(dy)|{ f (x)+ c}2−{ f (y)+ c}2|}2∫
π(dx){ f (x)+ c}2(x)

. (22.4.8)

Let f ∈ L2
0(π) such that ‖ f‖L2(π) = 1. Let U0,U1 two i.i.d. random variables on

(X,X ) such that π is the distribution of Ui, i ∈ {0,1}. Setting X = f (U0) and Y =
f (U1), we obtain that X and Y are real-valued i.i.d. random variables with zero-mean
and unit variance. Moreover, (22.4.8) shows that

〈 f ,Q f 〉L2(π) ≥
k2

P

8
sup
c∈R

{E
[
|(X + c)2− (Y + c)2|

]
}2

E [(Y + c)2]
.

Combining it with Lemma 22.4.4 below and (22.4.6) yields GapL2(π)(P) ≥ k2
P /8,

which completes the proof.
2

Lemma 22.4.4 Let X,Y be two i.i.d. centered real-valued random variables X,Y
with variance 1. Then

K := sup
c∈R

{E
[
|(X + c)2− (Y + c)2|

]
}2

E [(Y + c)2]
≥ 1 .

Proof. First note that by definition of K,

K ≥ limsup
c→∞

{E
[
|(X + c)2− (Y + c)2|

]
}2

E [(Y + c)2]

= limsup
c→∞

{E [|(X−Y )(X +Y +2c)|]}2

E [(Y + c)2]
= 4{E [|X−Y |]}2 .

Moreover, using that X ,Y are independent andE [Y ] = 0, we getE [ |X−Y | |σ(X)]≥
|E [X−Y |σ(X)] |= |X | which in turn implies

K ≥ 4{E [|X |]}2 . (22.4.9)

By choosing c = 0 in the definition of K, we get K1/2 ≥ E
[
|X2−Y 2|

]
. Using that

X ,Y are independent and E
[
Y 2
]
= 1,

E
[
|X2−Y 2|

∣∣σ(X)
]
≥ |E

[
X2−Y 2 ∣∣σ(X)

]
|= |X2−1| .

Then, noting that E
[
X2
]
= 1 and u2∧1≤ u for all u≥ 0,

K1/2 ≥ E
[
|X2−1|

]
= E

[
X2 +1−2(X2∧1)

]
≥ 2−2E [|X |] . (22.4.10)

Then using either (22.4.9) if E [|X |] ≥ 1/2 or (22.4.10) if E [|X |] < 1/2, we finally
obtain K ≥ 1 in all cases. 2

Example 22.4.5. Let G⊂ Rd be a bounded Borel set with Leb(G)> 0 and ρ : G→
[0,∞) be an integrable function with respect to the Lebesgue measure. Assume that
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we are willing to sample the distribution πρ on (G,B(G)) with density defined by

hρ(x) =
ρ(x)1G(x)∫

G ρ(x)dx
, πρ = hρ ·Lebd . (22.4.11)

Assume that there exist 0 < c1 < c2 < ∞ such that c1 ≤ ρ(x) ≤ c2 for all x ∈ G.
We consider an independent Metropolis-Hastings sampler (see Example 2.3.3) with
uniform proposal distribution over G, i.e. with density

q̄(x) =
1G(x)

Leb(G)

i.e. a state is proposed with the uniform distribution on G. The Independent Sampler
kernel is given, for x ∈ G and A ∈B(G) by

P(x,A) =
∫

A
α(x,y)

dy
Leb(G)

+1A(x)
(

1−
∫

G
α(x, y)

dy
Leb(G)

)
,

where for (x,y) ∈ G×G,

α(x,y) = min
(

1,
hρ(y)
hρ(x)

)
= min

(
1,

ρ(y)
ρ(x)

)
. (22.4.12)

Recall that the Markov kernel P is reversible with respect to the target distribution
πρ . For all x ∈ G and A ∈B(G), we get

P(x,A)≥ 1
Leb(G)

∫
A

{
1

ρ(y)
∧ 1

ρ(x)

}
ρ(y)dy≥ 1

c2Leb(G)

∫
A

ρ(y)dy

≥ c1

c2

∫
A

q̄(y)dy .

Hence, by applying Theorem 15.3.1, the Markov kernel P is uniformly ergodic and∥∥Pn(x, ·)−πρ

∥∥
TV ≤ (1− c1/c2)

n .

Let us apply Theorem 22.4.3. We estimate the Cheeger constant: for A ∈B(G), we
get ∫

A
P(x, Ac)πρ(dx) =

∫
A

(∫
Ac

α(x, y)
dy

Leb(G)

)
πρ(dx)

=
1

Leb(G)

∫
A

(∫
Ac

min
{∫

G

ρ(z)
ρ(x)

dz,
∫

G

ρ(z)
ρ(y)

dz
}

πρ(dy)
)

πρ(dx)

≥ c1

c2
πρ(A)πρ(Ac) .

and therefore kP ≥ c1/c2. J
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Cheeger’s theorem makes it possible to calculate a bound of the spectral gap,
GapL2(π)(P) in terms of the conductance. Considering (22.4.4), we can see that a
necessary and sufficient condition for the existence of a spectral gap is that the
Cheerger’s contant is positive. Unfortunately, bounds on the conductance only al-
lows bounds on the maximum of the Spec(P|L2

0(π)). The convergence results we
have developed in Section 22.2 require to obtain bounds of the absolute spectral
gap. It is therefore also needed to consider the minimum of Spec(P|L2

0(π)). When
the Markov kernel P is reversible, there is always a simple way to get rid of the
Spec(P|L2

0(π))∩ [−1,0) by considering the lazy version of the Markov chain. At
each step of the algorithm, the Markov chain either remain at the current position
with probability 1/2 or move according to P. The Markov kernel of the lazy chain
therefore is Q = 1/2(I+P). The spectrum of this operator is nonnegative, which
implies that the negative values of the spectrum of P do not matter much in prac-
tice. When the Markov chain is used for Monte Carlo simulations, this strategy has
almost no influence on the computational cost: at each iteration, it is simply neces-
sary to sample an additional binomial random variable. In some cases, it is however
possible to avoid such a modification.

Definition 22.4.6 Let P be a Markov kernel on X×X reversible with respect
to π . We say that P defines a positive operator on L2(π) if for all f ∈ L2(π),
〈 f ,P f 〉L2(π) ≥ 0.

It follows from Theorem 22.A.19 that the spectrum of positive Markov kernel
is a subset of [0,1]. Therefore, if P is reversible and defines a positive operator on
L2(π), then GapL2(π)(P) = Abs.GapL2(π)(P). In other cases, the absolute spectral
gap for P can be possibly different from the spectral gap for P, depending on the
relative value of the infimum of the spectrum associated to L2

0(π) with respect to the
supremum.

Example 22.4.7 (Positivity of the DUGS kernel). We consider the DUGS algo-
rithm described in Section 2.3.3. Let (X,X ) and (Y,Y ) be complete separable
metric spaces endowed with their Borel σ -fields X and Y . Recall that we assume
that there exist probability measures π and π̃ on (X,X ) and Markov kernels R on
X×Y and S on Y×X such that

π
∗(dxdy) = π(dx)R(x,dy) = π̃(dy)S(y,dx) (22.4.13)

where π̃ is a probability measure on Y. Recall that the DUGS sampler is a two steps
procedure, which can be described as follows. Given (Xk,Yk),

(DUGS1) sample Yk+1 from R(Xk, ·),
(DUGS2) sample Xk+1 from S(Yk+1, ·).

The sequence {Xn, n ∈ N} therefore defines a Markov chain with Markov kernel
P = RS. Note that for all ( f ,g) ∈ L2(π)×L2(π̃),
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〈 f ,Rg〉L2(π) =
∫

π(dx) f (x)R(x,dy)g(y) =
∫

π̃(dy) f (x)S(y,dx)g(y) = 〈g,S f 〉L2(π̃) ,

showing that S = R∗. Therefore, Lemma 22.A.20 implies that P = RR∗ is a positive
operator on L2(π). J

Example 22.4.8 (Positivity of the Hit and Run Markov kernel). Let K be a
bounded subset of Rd with non-empty interior. Let ρ : K → [0,∞) be a (not nec-
essarily normalized) density, i.e. a non-negative Lebesgue-integrable function. We
define the measure with density ρ by

πρ(A) =
∫

A ρ(x)dx∫
K ρ(x)dx

,A ∈B(Rd) . (22.4.14)

The hit-and-run method, introduced in Section 2.3.4, is an algorithm to sample πρ .
It consists of two steps: starting from x ∈ K, choose a random direction θ ∈ Sd−1
(the unit sphere in Rd) and then choose the next state of the Markov chain with
respect to the density ρ restricted to the chord determined by x ∈ K and θ ∈ Sd−1.
The Markov operator H that corresponds to the hit-and-run chain is defined by

H f (x) =
∫

Sd−1

1
`ρ(x,θ)

∫
∞

−∞

f (x+ sθ)ρ(x+ sθ)dsσd−1(dθ) ,

where σd−1 is the uniform distribution of the (d−1)-dimensional unit sphere and

`ρ(x, θ) =
∫

∞

−∞

1K(x+ sθ)ρ(x+ sθ)ds . (22.4.15)

We have shown in Lemma 2.3.10 that the Markov kernel Hρ is reversible with re-
spect to πρ . Let µ be the product measure of πρ and the uniform distribution on
Sd−1 and L2(µ) be the Hilbert space of functions g : K×Sd−1→ R equipped with
inner-product

〈g,h〉L2(µ) =
∫

K

∫
Sd−1

g(x,θ)h(x,θ)σd−1(dθ)πρ(dx), for g,h ∈ L2(µ) .

Define the operators M : L2(µ) 7→ L2(π) and T : L2(µ)→ L2(µ) as follows:

Mg(x) =
∫

Sd−1

g(x,θ)σd−1(dθ) , (22.4.16)

and
T g(x,θ) =

1
`ρ(x,θ)

∫
∞

−∞

g(x+ sθ , θ)ρ(x+ sθ)ds . (22.4.17)

Recall that the adjoint operator of M is the unique operator M∗ that satisfies
〈 f ,Mg〉L2(π) = 〈M∗ f ,g〉L2(µ) for all f ∈ L2(π) , g ∈ L2(µ). Since

〈 f ,Mg〉L2(π) =
∫

K

∫
Sd−1

f (x)g(x,θ)σd−1(dθ)πρ(dx) ,
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we obtain that, for all θ ∈ Sd−1 and x ∈ K, M∗ f (x, θ) = f (x). This implies

MT M∗ f (x) =
∫

Sd−1

1
`ρ(x,θ)

∫
∞

−∞

f (x+ sθ)ρ(x+ sθ)dsσd−1(dθ) = H f (x) .

(22.4.18)
First of all, note that by Fubini’s Theorem the operator T is self-adjoint in L2(µ) . It
remains to show that the operator T is positive. For any s ∈ R, x ∈ K and θ ∈ Sd−1
we have

T g(x+ sθ ,θ) =

∫
∞

−∞
g(x+(s+ s′)θ)ρ(x+(s+ s′)θ)1K(x+(s+ s′)θ)ds′∫

∞

−∞
ρ(x+(s+ s′)θ ,θ)1K(x+(s+ s′)θ)ds′

=

∫
∞

−∞
g(x+ s′θ)ρ(x+ s′θ)1K(x+(s+ s′)θ)ds′∫

∞

−∞
ρ(x+ s′θ ,θ)1K(x+ s′θ)ds′

= T g(x,θ).

It follows that

T 2g(x, θ) =
1

`ρ(x,θ)

∫
∞

−∞

T g(x+ sθ , θ)ρ(x+ sθ)ds

= T g(x, θ).

Thus, T is a self-adjoint and idempotent operator on L2(µ) , which implies that T
is a projection and, in particular, that it is positive. By Lemma 22.A.20, the relation
H = MT M∗ established in (22.4.18) shows that the Markov operator H is positive.
J

22.5 Variance bounds for additive functionals and the central
limit theorem for reversible Markov chains

Proposition 22.5.1 Let P be a Markov kernel on X×X with invariant proba-
bility π . Assume that the probability measure π is reversible with respect to P.
Denote

λmin = inf
{

λ : λ ∈ Spec(P|L2
0(π))

}
,

λmax = sup
{

λ : λ ∈ Spec(P|L2
0(π))

}
.

Then, for any h ∈ L2
0(π),

Varπ(Sn(h)) =
∫

λmax

λmin

wn(t)νh(dt) , (22.5.1)
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where Sn(h) = ∑
n−1
j=0 h(X j) and νh denotes the spectral measure associated to h

(see Theorem 22.B.3) and wn : [−1,1]→ R defined by wn(1) = n2 and

wn(t) = n
1+ t
1− t

− 2t(1− tn)

(1− t)2 , for t ∈ [−1, 1) . (22.5.2)

If λmax < 1, then

Varπ(Sn(h))≤
{

n
1+λmax

1−λmax
− 2λmax(1−λ n

max)

(1−λmax)2

}
‖h‖2

L2(π)

≤ 2n
(1−λmax)

‖h‖2
L2(π) . (22.5.3)

Proof. Since h ∈ L2
0(π), we have

Varπ(Sn(h)) =
n−1

∑
j=0
Eπ [|h(X j)|2]+2

n−1

∑
j=0

n−1

∑
i= j+1

Eπ [h(X j)h(Xi)] , (22.5.4)

= nEπ [|h(X0)|2]+2
n−1

∑
`=1

(n− `)Eπ [h(X0)h(X`)] ,

where we have used that for j ≥ i, Eπ [h(Xi)h(X j)] = Eπ [h(X0)h(X j−i)]. For ` ∈ N,
the definition of the spectral measure νh implies

Eπ [h(X0)h(X`)] =
〈

h,P`h
〉

L2(π)
=
∫

λmax

λmin

t`νh(dt) .

Altogether this gives

Varπ(Sn(h)) =
∫

λmax

λmin

{
n+2

n−1

∑
`=1

(n− `)t`
}

νh(dt) =
∫

λmax

λmin

wn(t)νh(dt) .

If λmax < 1, since the function t 7→ wn(t) is increasing, then

Varπ(Sn(h))≤ wn(λmax)
∫

λmax

λmin

νh(dt) .

The proof of (22.5.3) follows from ‖h‖2
L2(π) =

∫ 1
−1 νh(dt). 2

Proposition 22.5.2 Assume that the probability measure π is reversible with
respect to P and h ∈ L2(π). Then, we have the following properties.
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(i) The limit
σ

2
π (h) = lim

n→∞
n−1Eπ [|Sn(h)|2] , (22.5.5)

exists in [0,∞]. This limit σ2
π (h) is finite if and only if∫ 1

0

1
1− t

νh(dt)< ∞ , (22.5.6)

where νh is the spectral measure of associated to h and in this case,

σ
2
π (h) =

∫ 1

−1

1+ t
1− t

νh(dt) . (22.5.7)

(ii) If νh({−1}) = 0, then limn→∞ ∑
n
k=1
〈
h,Pkh

〉
L2(π)

exist in [0,∞]. This
limit is finite if and only if the condition (22.5.6) holds and in this case

0 < σ
2
π (h) = ‖h‖

2
L2(π)+2 lim

n→∞

n

∑
k=1

〈
h,Pkh

〉
L2(π)

. (22.5.8)

Proof. (i) Proposition 22.5.1 shows that

n−1Eπ

[
|Sn(h)|2

]
=
∫ 1

−1
n−1wn(t)νh(dt) ,

where the function wn is defined in (22.5.2) and νh is the spectral measure associated
to h. For t ∈ [−1,0), we get limn→∞ n−1wn(t) = (1+ t)/(1− t) and |n−1wn(t)| ≤ 5
and Lebesgue’s dominated convergence theorem implies

lim
n→∞

∫ 0−

−1
n−1wn(t)νh(dt) =

∫ 0−

−1

1+ t
1− t

νh(dt) .

On the interval [0,1] the sequence {n−1wn(t),n∈N} is increasing and converges to
(1+ t)/(1− t) (with the convention 1/0 = ∞). By monotone convergence theorem,
we therefore obtain

lim
n→∞
↑
∫ 1

0
n−1wn(t)νh(dt) =

∫ 1

0

1+ t
1− t

νh(dt) .

The proof of (ii) follows.
(ii) Assume now that νh({−1}) = 0. We show that limn→∞ ∑

n
k=1
〈
h,Pkh

〉
L2(π)

exists. Applying (22.2.10), we have

Rn =
n−1

∑
k=1

〈
h,Pkh

〉
L2(π)

=
∫ 1

−1
hn(t)νh(dt) , (22.5.9)
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with the convention R1 = 0 and for n > 1,

hn(t) =
n−1

∑
k=1

tk =

{
t 1−tn−1

1−t , t ∈ [−1,1) ,
n−1 t = 1 .

(22.5.10)

For t ∈ [−1,0), 0 ≤ |hn(t)| ≤ 2 and limn→∞ hn(t) = t/(1− t) for t ∈ (−1,0). Since
νh({−1}) = 0, Lebesgue’s dominated convergence theorem shows that

lim
n→∞

∫ 0−

−1
hn(t)νh(dt) =

∫ 0−

−1

t
1− t

νh(dt) .

If t ∈ [0,1), then hn(t) is nonnegative and hn(t) < hn+1(t), therefore the monotone
convergence theorem yields

lim
n→∞

∫ 1

0
hn(t)νh(dt) =

∫ 1

0

t
1− t

νh(dt) ,

the latter limit being in [0,∞].
Since ‖h‖2

L2(π) =
∫ 1
−1 νh(dt), we get that

‖h‖2
L2(π)+2 lim

n→∞

n

∑
k=1

〈
h,Pkh

〉
L2(π)

=
∫ 1

−1

1+ t
1− t

νh(dt) .

The proof is concluded by applying Lemma 21.2.7.
2

Example 22.5.3. Set X = {−1, 1}, π({−1}) = π({1}) = 1/2 and P(1, {−1}) =
P(−1, {1}) = 1. It is easily seen that π is reversible with respect to P. For all
h ∈ L2(π), it can be easily checked that

νh =
1
4
|h(1)+h(−1)|2δ1 +

1
4
|h(1)−h(−1)|2δ−1

satisfies (22.2.10) and by uniqueness, it is the spectral measure νh. Now, let h be
the identity function. Then |∑n−1

i=0 h(Xi)| ≤ 1, so limn→∞ n−1Eπ

[
S2

n(h)
]
= 0. On the

other hand, Covπ(h(X0),h(Xk)) =
〈
h,Pkh

〉
L2(π)

= (−1)k which implies that

−1 = liminf
n→∞

n

∑
k=1

〈
h,Pkh

〉
L2(π)

< limsup
n→∞

n

∑
k=1

〈
h,Pkh

〉
L2(π)

= 0 .

Nevertheless Proposition 22.5.2 is not violated since νh({−1}) = 1. J

We will now find conditions upon which νh({−1,1}) = 0, where νh is the spectral
measure associated to h.

Lemma 22.5.4 Let P be a Markov kernel on X×X and π ∈M1(X ). Assume that
π is reversible with respect to P. Then:
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(i) For any h ∈ L2
0(π) such that νh({−1,1}) = 0, we have

lim
k→∞

〈
h,Pkh

〉
L2(π)

= 0 .

(ii) For any h ∈ L2
0(π) , if limk→∞

〈
h,Pkh

〉
L2(π)

= 0, then νh({−1,1}) = 0.

(iii) If limk→∞

∥∥Pk(x, ·)−π
∥∥

TV = 0 for π-almost all x ∈ X, then for any h ∈ L2
0(π),

lim
k→∞

〈
h,Pkh

〉
L2(π)

= 0 .

Proof. (i) By Lebesgue’s dominated convergence theorem (since |tk| ≤ 1 for

−1≤ t ≤ 1,
∫ 1

−1
νh(dh) = ‖h‖2

L2(π) < ∞), we have:

lim
k→∞

〈
h,Pkh

〉
= lim

k→∞

∫ 1

−1
tk

νh(dt) =
∫ 1

−1
( lim

k→∞
tk)νh(dt) = 0 ,

where we have used that limk→∞ tk = 0, νh-a.e..
(ii) We may write νh = ν0

h + νa
h where ν0

h ({−1,1}) = 0 and νa
h({−1,1}) =

νh({−1,1}). For any k we have〈
h,Pkh

〉
L2(π)

= (−1)k
νh({−1})+νh({1})+

∫ 1

−1
tk

ν
0
h (dt) .

Since limk→∞

∫ 1
−1 tkν0

h (dt) = 0, we have

0 = lim
k→∞

〈
h,P2kh

〉
L2(π)

= νh({−1})+νh({1})

0 = lim
k→∞

〈
h,P2k+1h

〉
L2(π)

=−νh({−1})+νh({1})

The proof follows.
(iii) For any bounded measurable complex-valued function h satisfying π(h) =

0, we get limk→∞ Pkh(x) = 0 for π-almost all x ∈ X. Since〈
h,Pkh

〉
L2(π)

= Eπ [h(X0)h(Xk)] = Eπ [h(X0)Pkh(X0)] ,

Lebesgue’s dominated convergence theorem implies

lim
k→∞

〈
h,Pkh

〉
L2(π)

= lim
k→∞

Eπ [h(X0)Pkh(X0)] = 0 .

The proof follows since the space of bounded measurable complex-valued function
is dense in L2(π) and P is a bounded linear operator in L2(π).

2
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Theorem 22.5.5. Let P be a Markov kernel on X×X , π ∈M1(X ) and h be a
real-valued function in L2

0(π). Assume that π is reversible with respect to P and∫ 1
0 (1− t)−1νh(dt)< ∞, where νh is the spectral measure associated to h defined in

(22.2.10). Then

n−1/2
n−1

∑
j=0

h(X j)
Pπ=⇒ N(0,σ2(h))

with

σ
2(h) =

∫ 1

−1

1+ t
1− t

νh(dt) (22.5.11)

= ‖h‖2
L2(π)+2 lim

n→∞

n

∑
k=1

〈
h,Pkh

〉
L2(π)

= lim
n→∞

n−1Eπ [{Sn(h)}2]< ∞ .

(22.5.12)

Remark 22.5.6. Under the additional assumption νh({−1}) = 0, the proof of The-
orem 22.5.5 is a simple consequence of Theorem 21.4.1. Indeed, (22.2.10) and re-
versibility, show that, for all m,k ≥ 0,〈

Pmh,Pkh
〉

L2(π)
=
〈

h,Pm+kh
〉

L2(π)
=
∫ 1

−1
tm+k

νh(dt) .

Therefore, the condition (21.4.1) of Theorem 21.4.1 is implied by the existence
of the limit limn→∞ ∑

n
k=1
〈
h,Pkh

〉
L2(π)

which was shown to hold under the stated
assumptions in Proposition 22.5.2. N

The proof of Theorem 22.5.5 is an application of Theorem 21.3.2. Before pro-
ceeding with the proof of Theorem 22.5.5, we will establish two bounds on the
solutions for the resolvent equation (see (21.3.1)),

(1+λ )ĥλ −Pĥλ = h , λ > 0 .

For λ > 0, the resolvent equation has a unique solution which is given by

ĥλ = {(1+λ )I−P}−1h = (1+λ )−1
∞

∑
k=0

(1+λ )−kPkh . (22.5.13)

Lemma 22.5.7 Let P be a Markov kernel on X×X , π ∈M1(X ) and h ∈ L2
0(π).

Assume that π is reversible with respect to P. If
∫ 1

0 (1− t)−1νh(dt), then,

lim
λ→0

λ
〈
ĥλ , ĥλ

〉
L2(π)

= 0 . (22.5.14)
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Proof. Consider first (22.5.14). Since ĥλ is the solution to the resolvent equation
(21.3.1),

λ
〈
ĥλ , ĥλ

〉
π
= λ (1+λ )−2

∞

∑
k=0

∞

∑
`=0

(1+λ )−k(1+λ )−`
〈

Pkh,P`h
〉

L2(π)

= λ (1+λ )−2
∞

∑
k=0

∞

∑
`=0

∫ 1

−1
(1+λ )−ktk(1+λ )−`t`νh(dt)

=
∫ 1

−1

λ

(1+λ − t)2 νh(dt) .

Since λ/(1 + λ − t)2 ≤ (1− t)−1 and
∫ 1

0 (1− t)−1νh(dt) < ∞, we conclude by
Lebesgue’s dominated convergence theorem. 2

Define (see (21.3.5))

Hλ (x0,x1) = ĥλ (x1)−Pĥλ (x0) .

Lemma 22.5.8 Let P be a Markov kernel on X×X , π ∈M1(X ) and h ∈ L2
0(π).

Assume that π is reversible with respect to P. Set π1 = π⊗P. If
∫ 1

0 (1− t)−1νh(dt),
then there exists a function H ∈ L2(π1), such that limλ↓0 ‖Hλ −H‖L2(π1)

= 0. In
addition, ∫ 1

−1

1+ t
1− t

νh(dt) = ‖H‖2
L2(π1)

. (22.5.15)

Proof. First we observe that, for g ∈ L2(π),

Eπ [|g(X1)−Pg(X0)|2] = Eπ [|g(X1)|2]−Eπ [|Pg(X0)|2]
= 〈g,g〉L2(π)−〈Pg,Pg〉

π
=
〈
g,(I−P2)g

〉
L2(π)

.

Let 0 < λ1,λ2. Applying this identity with

Hλ1(X0,X1)−Hλ2(X0,X1) = {ĥλ1 − ĥλ2}(X1)−{ĥλ1 − ĥλ2}(X0)

and using that ĥλi = (1+λi)I−P, we get

∥∥Hλ1 −Hλ2

∥∥2
L2(π1)

=
∫ 1

−1
(1− t2)

(
1

1+λ1− t
− 1

1+λ2− t

)2

νh(dt) .

The integrand is bounded by 4(1+ t)/(1− t) which is µ f integrable and goes to 0
when λ1,λ2→ 0, showing that Hλ has a limit in L2(π1), i.e., there exists H ∈ L2(π1)
such that ‖Hλ −H‖L2(π1)

→λ↓0 0.
Along the same lines, we obtain

‖Hλ‖L2(π1)
=
〈
ĥλ ,(I−P2)ĥλ

〉
L2(π)

=
∫ 1

−1

1− t2

(1+λ − t)2 νh(dt) .
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Since the integrand is bounded above by (1+t)/(1−t)−1, by Lebesgue’s dominated
convergence theorem, as λ ↓ 0, the previous expression converges to

‖H‖L2(π1)
= lim

λ↓0
‖Hλ‖L2(π1)

=
∫ 1

−1

1+ t
1− t

νh(dt) .

2

Proof (of Theorem 22.5.5). We use Theorem 21.3.2. Lemma 22.5.7 shows that
limλ↓0

√
λ
∥∥ f̂λ

∥∥
L2(π)

= 0. Lemma 22.5.8 shows that there exists H ∈ L2(π1) such
that limλ↓0 ‖Hλ −H‖L2(π1)

= 0.

Theorem 21.3.2 implies that
√

nSn(h)
Pπ=⇒ N(0,‖H‖L2(π1)

). The proof is con-
cluded since by (22.5.15). 2

Corollary 22.5.9 Let P be a Markov kernel on X×X and π ∈M1(X ). As-
sume that π is reversible with respect to P. Let h ∈ L2

0(π) be a real-valued
function satisfying

lim
n→∞

n−1Eπ [|Sn(h)|2]< ∞ and lim
n→∞
〈h,Pnh〉L2(π) = 0. (22.5.16)

Then

n−1/2
n−1

∑
j=0

h(X j)
Pπ=⇒ N(0,σ2(h))

where σ2(h) > 0 is given by (22.5.11). If λmax =
sup
{

λ : λ ∈ Spec(P|L2
0(π))

}
< 1, in particular, if P is geometrically

ergodic, then the condition (22.5.16) is satisfied for all h ∈ L2
0(π).

Proof. Apply Proposition 22.5.2, Lemma 22.5.4, and Theorems 22.3.11 and 22.5.5.
2

22.6 Exercises

22.1. Let f ,g be two π-integrable functions. Show that P[ f +g] = P f +Pg, π-a.e..

22.2. 1. Let P be the Markov kernel given in (22.3.7) with |φ | < 1. Set π =
N(0,σ2/(1−φ 2)). Show that π is reversible with respect to P.

2. Show (22.3.8).
3. Provide a lower bound for ‖Pn(x, ·)−π‖TV
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22.3. Let P be a Markov kernel on X×X with unique invariant probability π . For
n0 ∈ N and f ∈ F(X) denote

Sn,n0( f ) = n−1
n

∑
j=n0

f (X j+n0) .

For ν ∈M1(X ), define

eν(Sn,n0 , f ) =
{
Eν

[
{Sn,n0( f )−π( f )}2]}1/2

Let r ∈ [1,2]. Assume that f ∈ Lr
0(π) and ν ∈Mr/(r−1)(π) be a probability measure.

1. Show that

eν(Sn,n0 , f )2 = eπ(Sn, f )2 +
1
n2

n

∑
j=1

L j+n0( f 2)+
2
n2

n−1

∑
j=1

n

∑
k= j+1

L j+n0( f Pk− j f ),

(22.6.1)
where for h ∈ Lr(π) and i ∈ N,

Li(h) =
〈
(Pi−Π)h,

(
dν

dπ
−1
)〉

. (22.6.2)

2. Show that if r ∈ [1,2), for any h ∈ Lr
0(π) and k ∈ N we have

|Lk(h)| ≤ 22/r{1−Abs.GapL2(π)(R)}
2k r−1

r

∥∥∥∥dν

dπ
−1
∥∥∥∥

L
r

r−1 (π)

‖h‖Lr(π) (22.6.3)

3. Show that if r = 1 and the transition kernel is L1(π)-exponentially convergent
(for any 9Pn9L1

0(π)
≤Mαn), for any h ∈ L1

0(π) and k ∈ N

|Lk(h)| ≤Mα
k
∥∥∥∥dν

dπ
−1
∥∥∥∥

L∞(π)

‖h‖L1(π) . (22.6.4)

22.4. In this exercise, we construct a reversible Markov kernel P and a function h
such that n−1/2

∑
n−1
i=0 h(Xi)

Pπ=⇒ N(0,σ2) but limn→∞ n−1Eπ [Sn(h)2] = ∞.
Let X be the integers, with h the identity function. Consider the Markov kernel P

on X with transition probabilities given by P(0, 0) = 0,P(0, y) = c|y|−4 for y 6= 0
(with c = 45/π4 and for x 6= 0,

P(x, y) =


|x|−1, y = 0
1−|x|−1, y =−x
0, otherwise

That is, the chain jumps from 0 to a random site x and then oscillates between −x
and x for a geometric amount of time with mean |x|, before returning to 0.
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1. Show that this Markov kernel is positive and identify its unique invariant prob-
ability.

2. Prove that n−1/2
∑

n−1
i=0 h(Xi)

Pπ=⇒ N(0,σ2). [Hint: use Theorem 6.7.1]
3. Show that Varπ(X0) = ∞.
4. For n≥ 2, set Sn = ∑

n
i=0 Xn and Dn = {τα ≤ n}. Show that 0 < Pπ(Dn)< 1 and

that for even n, Sn1{τα>n} = X0.
5. Show that Varπ (∑

n
i=0 Xi) is infinite for n even.

22.5. Let P0 and P1 be Markov transition kernels on (X,X ) with invariant proba-
bility π . We say that P1 dominates P0 on the off-diagonal, writen P0 ≤ P1, if for all
A ∈X , and π-a.e. all x in X,

P0(x,A\{x})≤ P1(x,A\{x}) .

Let P0 and P1 be Markov transition kernels on (X,X ) with invariant probability π .
We say that P1 dominates P0 in the covariance ordering, writen P0 � P1, if for all
f ∈ L2(π),

〈 f ,P1 f 〉 ≤ 〈 f ,P0 f 〉 .

Let P0 and P1 be Markov transition kernels on (X,X ), with invariant probability π .
Assume that P0 ≤ P1. For all x ∈ X and A ∈X , define

P(x,A) = δx(A)+P1(x,A)−P0(x,A) .

1. Show that P is a Markov kernel.
2. Show that for all f ∈ L2(π)

〈 f ,P0 f 〉−〈 f ,P1 f 〉=
∫∫

π(dx)P(x,dy)( f (x)− f (y))2 /2

and that P0 � P1.

22.6. We use the notations of Exercise 22.5. Let P0 and P1 be Markov kernels on
X×X and π ∈M1(X ). Assume that π is reversible with respect to P0 and P1. The
objective of this exercise is to show that if P0 � P1 then for any f ∈ L2

0(π),

v1( f ,P1)≤ v0( f ,P0) ,

where for i ∈ {0,1}

vi( f ,Pi) = π( f 2)+2 lim
n→∞

n

∑
k=1

π( f Pk
i f ) .

For all α ∈ (0,1), denote Pα = (1−α)P0 +αP1. For λ ∈ (0,1), define

wλ (α) =
∞

∑
k=0

λ
k
〈

f ,Pk
α f
〉
,



564 22 Spectral theory

1. Show that, for all α ∈ (0,1),

dwλ (α)

dα
=

∞

∑
k=0

λ
k

k

∑
i=1

〈
f ,Pi−1

α (P1−P0)Pk−i
α f

〉
.

2. Show that wλ (1)≤ wλ (0) for all λ ∈ (0,1)

22.7 Bibliographical notes

Spectral theory is a very active area and this chapter only provides a very short and
incomplete introduction to the developments in this field. Our presentation closely
follows Rudolf (2012) (see also Rudolf and Schweizer (2015)).

Theorem 22.3.11 was established in (Roberts and Rosenthal, 1997, Theorem 2.1);
and Roberts and Tweedie (2001). These results were further improved in Kontoyian-
nis and Meyn (2012). Proposition 22.3.3 is established in (Rudolf, 2012, Proposi-
tion 3.17) (see also Rudolf (2009) and Rudolf (2010)).

The derivation of the Cheeger inequality is taken from Lawler and Sokal (1988).
Applications of Cheeger inequality to compute mixing rates of Markov chains were
considered, among many others, by Lovász and Simonovits (1993), Kannan et al
(1995) Yuen (2000, 2001, 2002) and Jarner and Yuen (2004).

Proposition 22.5.2 is borrowed from Häggström and Rosenthal (2007) (the proof
presented here is different). Theorem 22.5.5 was first established in Kipnis and
Varadhan (1985, 1986) (see also Tóth (1986),Tóth (2013),Cuny and Lin (2016),
Cuny (2017)). The proof given here is borrowed from Maxwell and Woodroofe
(2000).

The use of spectral theory is explored in depth in Huang et al (2002) and in the
series of papers Kontoyiannis and Meyn (2003), Kontoyiannis and Meyn (2005) and
Kontoyiannis and Meyn (2012).

We have not covered the theory of quasi-compact operators. The book Hennion
and Hervé (2001) is a worthwhile introduction to the subject with an emphasis on
limit theorems. Recent developments are presented in Hennion and Hervé (2001)
Hervé and Ledoux (2014a), Hervé and Ledoux (2014b), Hervé and Ledoux (2016).

22.A Operators on Banach and Hilbert spaces

We introduce the basic definitions and notations that we be used in this book. A basic
introduction to operator theory is given in Gohberg and Goldberg (1981), covering
most what is needed for the development of Chapter 22. A much more detailed
account is given in Simon (2015). Let (H,‖ ·‖H) and (G,‖ ·‖G) be complex Banach
spaces. Whenever there is no ambiguity on the space, we work ‖ ·‖ instead of ‖ ·‖H.
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A function A : H→ G is a linear operator from H to G if for all x,y ∈ H and α ∈ C,
A(x+ y) = A(x)+A(y) and A(αx) = αA(x). For convenience, we often write Ax
instead of A(x). The linear operator A is called bounded if sup‖x‖H≤1 ‖Ax‖G < ∞.
The (operator) norm of A written 9A9H→G, is given by

9A9H→G := sup
‖y‖H≤1

‖Ay‖G = sup
‖y‖H=1

‖Ay‖G . (22.A.1)

The identity operator I : H→ H, defined by Ix = x is a bounded linear operator and
its norm is 1. Denote by BL(H,G) the set of bounded linear operators from H to G.
For simplicity BL(H,H) will be abbreviated BL(H). If A ∈ BL(H), we will use the
short-hand notation 9A9H instead of 9A9H→H. If A and B are in BL(H,G), it is
easy to check that

(i) αA+βB ∈ BL(H,G), for all α,β ∈ C;
(ii) 9αA9H→G = |α|9A9H→G, for all α ∈ C;

(iii) 9A+B9H→G ≤ 9A9H→G +9B9H→G;
(iv) if A,B ∈ BL(H) then defining AB by ABx = A(Bx), then AB,BA ∈ BL(H) and

9CA9H ≤ 9C9H9A9H.

Theorem 22.A.1. The set BL(H,G) equipped with its operator norm is a Banach
space.

Theorem 22.A.2. Let A ∈ BL(H,G). The following statements are equivalent

(i) A is continuous at a point.
(ii) A is uniformly continuous on H.

(iii) A is bounded.

Proof. See (Gohberg and Goldberg, 1981, Theorem 3.1). 2

An operator A ∈ BL(H) is called invertible if there exists an operator A−1 ∈ BL(H)
such that AA−1x = A−1Ax for every x ∈ H. The operator A−1 is called the inverse of
A. If A and B are invertible operators in BL(H) then AB is invertible and (AB)−1 =
B−1A−1.

Theorem 22.A.3 (Riesz-Thorin interpolation theorem). Let (X,X ,µ) be a σ -
finite measure space, p0, p1,q0,q1 ∈ [1,∞] and T ∈ BL(Lp j(µ),Lq j(µ)) for j ∈
{0,1}. For θ ∈ [0,1], we define p−1

θ
= (1−θ)p−1

0 +θ p−1
1 and q−1

θ
= (1−θ)q−1

0 +

θq−1
1 . Then T ∈ BL(Lpθ (µ),Lqθ (µ)) and
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9T9Lpθ (µ)→Lqθ (µ) ≤
{
9T9Lp0 (µ)→Lq0 (µ)

}1−θ {
9T9Lp1 (µ)→Lq1 (µ)

}θ
.

Proof. See (Lerner, 2014, Theorem 9.1.2). 2

The kernel of A ∈ BL(H) is denoted Ker(A). It is the closed subspace defined
by {x ∈ H : Ax = 0}. The operator A is called injective if Ker(A) = {0}. The range
(or Image) of A, written Ran(A), is the subspace {Ax : x ∈ H}. If Ran(A) is finite
dimensional, A is called an operator of finite rank and dimRan(A) is the rank of A.

Lemma 22.A.4 Let A ∈ BL(H) such that for all x ∈ H, ‖Ax‖ ≥ c‖x‖, where c is a
positive constant. Then, for any n ∈N, the range of An (denoted Ran(An)) is closed.

Proof. Since ‖Anx‖ ≥ cn‖x‖ for all x ∈ H, it suffices to establish the property with
n = 1. Let {yn, n ∈N} be a convergent sequence of elements of Ran(A) converging
to y. Then yn = Axn for some sequence {xn, n∈N} and we need to show that y = Ax
for some x. Since {yn, n ∈ N} is convergent it is a Cauchy sequence. Now,

‖xn− xm‖ ≤
1
c
‖A(xn− xm)‖=

1
c
‖yn− ym‖

so {xn, n ∈ N} is a Cauchy sequence and it therefore converges to some element x.
Then, since A is continuous, y = lim

n
yn = lim

n
Axn = A lim

n
xn = Ax, as required. 2

Theorem 22.A.5. Assume that T ∈ BL(H) and 9T9H < 1. Then I−T is invertible,
and for every y ∈ H, (I−T )−1y = ∑

∞
k=0 T ky with the convention T 0 = I. Moreover,

lim
n→∞

9(I−T )−1−
n

∑
k=0

T k9H = 0 ,

and 9(I−T )−19H ≤ (1−9T9H)
−1.

Proof. Given y ∈H, the series ∑
∞
k=0 T ky converges. Indeed, let sn = ∑

n
k=0 T ky. Then

for n > m,

‖sn− sm‖ ≤
n

∑
k=m+1

‖T ky‖ ≤ ‖y‖
n

∑
k=m+1

{9T9H}k→ 0

as m,n → ∞. Since H is complete, the sequence {sn, n ∈ N} converges. Define
S : H→ H by Sy = ∑

∞
k=0 T ky. The operator S is linear and

‖Sy‖ ≤
∞

∑
k=0
‖T ky‖ ≤

∞

∑
k=0
{9T9H}k ‖y‖= (1−9T9H)

−1 ‖y‖ .
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Hence 9S9H ≤ (1−9T9H)
−1 and

(I−T )Sy = (I−T )
∞

∑
k=0

T ky =
∞

∑
k=0

(I−T )T ky =
∞

∑
k=0

T k(I−T )y

= S(I−T )y =
∞

∑
k=0

T ky−
∞

∑
k=0

T k+1y = y.

Therefore, I−T is invertible and (I−T )−1 = S. Finally as n→ ∞,

9(I−T )−1−
n

∑
k=0

T k9H ≤
∞

∑
k=n+1

{9T9H}k→ 0

2

Corollary 22.A.6 Let T ∈ BL(H) be invertible. Assume that S ∈ BL(H) and 9T −
S9H <

{
9T−19H

}−1. Then S is invertible,

S−1 =
∞

∑
k=0

[T−1(T −S)]kT−1

and

9T−1−S−19H ≤
{
9T−19H

}2
9T −S9H

1−9T−19H9T −S9H
(22.A.2)

Proof. Since S = T−(T−S) = T [I−T−1(T−S)] and9T−1(T−S)9H <9T−19H

9T −S9H < 1, it follows from Theorem 22.A.5 that S is invertible and

S−1y = [I−T−1(T −S)]−1T−1y =
∞

∑
k=0

[T−1(T −S)]kT−1y .

Hence 9T−1 − S−19H ≤ {9T9H}−1
∑

∞
k=1
{
9T−19H

}k
9 T − S9H, which prove

(22.A.2). 2

If we define the distance d(T,S) between the operators T and S to be 9T − S9H,
then Corollary 22.A.6 shows that the set X of invertible operators in BL(H) is an
open set in the sense that if T is in X, then there exists an r > 0 such that d(T,S)< r
implies S ∈ X.

Also, the inverse operation is continuous with respect to d, i.e. if T is invertible
and d(T,Tn)→ 0, then Tn is invertible for all n sufficiently large and d(T−1,T−1

n )→
0.

Given a linear operator T which maps a finite dimensional vector space H into
H, it is well known from linear algebra that the equation λx−T x = y has a unique
solution for every y ∈ H if and only if det(λ I−T ) 6= 0, where by abuse of notation,
T is the matrix associated to the operator T in a given basis of H. Therefore, λ I−T
is invertible for all but a finite number of λ . If H is an infinite dimensional Banach
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space, then the set of those λ for which λ I− T is not invertible is a set which is
usually more difficult to determine.

Definition 22.A.7 Given T ∈BL(H), a point λ ∈C is regular if λ I−T is invertible,
i.e. there exists a bounded linear operator Rλ (T ) such that

(λ I−T )Rλ (T ) = Rλ (T )(λ I−T ) = I .

The set Res(T |H) of regular points is called the resolvent set of T , i.e.

Res(T |H) := {λ ∈ C : λ I−T is invertible} . (22.A.3)

The spectrum Spec(T |H) of T is the complement of Res(T |H).

Spec(T |H) = C\Res(T |H) . (22.A.4)

If λ ∈ Res(T |H), then for any x ∈ H,

‖(T −λ I)Rλ (T )x‖H = ‖x‖H ,

so if y = Rλ (T )x, then ‖y‖H ≤ 9Rλ (T )9H ‖x‖H, which implies

‖(T −λ I)y‖H = ‖x‖H ≥ {9Rλ (T )9H}−1 ‖y‖H ,

showing that
inf
‖y‖H=1

‖(T −λ I)y‖H ≥ {9Rλ (T )9H}−1 . (22.A.5)

Theorem 22.A.8. The resolvent set of any T ∈ BL(H) is an open set. The closed set
Spec(T |H) is included in the ball {λ ∈ C : |λ |< 9T9H}.

Proof. Assume λ0 ∈ Res(T |H). Since λ0I−T is invertible, it follows from Corol-
lary 22.A.6 that there exists an ε > 0 such that if |λ − λ0| < ε , then λ I− T is
invertible. Hence Res(T |H) is open. If |λ |>9T9H, then I−T/λ is invertible since
9T/λ9H < 1. Therefore λ I−T = λ (I−T/λ ) is also invertible. 2

As a consequence the spectrum Spec(T |H) is a non-empty compact subset of C and
Spec(T |H)⊂ B(0,9T9H).

Definition 22.A.9 (Analytic operator-valued function) An operator-valued func-
tion λ 7→ A(λ ) which maps a subset of C into BL(H) is analytic at λ0 if
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A(λ ) =
∞

∑
k=0

Ak(λ −λ0)
k ,

where each Ak ∈ BL(H) and the series converges for each λ in some neighborhood
of λ0.

Theorem 22.A.10. The function λ 7→ RT (λ ) = (λ I−T )−1 is analytic at each point
in the open set Res(T |H).

Proof. Suppose λ0 ∈ Res(T |H). iWe have

λ I−T = (λ0I−T )− (λ0−λ )I = (λ0I−T )[I− (λ0−λ )RT (λ0)] . (22.A.6)

Since Res(T |H) is open, we may choose ε > 0 such that |λ −λ0| < ε implies λ ∈
Res(T |H) and 9(λ −λ0)RT (λ0)9H < 1. In this case, it follows from (22.A.6) that

RT (λ ) = [I− (λ0−λ )RT (λ0)]
−1(λ0I−T )−1

=
∞

∑
k=0

(λ0−λ )kRk+1
T (λ0) ,

which completes the proof. 2

Definition 22.A.11 The function λ 7→= RT (λ ) = (λ I−T )−1 is called the resolvent
function of T , or simply, the resolvent of T .

A complex number λ is called an eigenvalue of T ∈ BL(H) if there exists a y 6=
0 ∈ H such that Ty = λy, or equivalently Ker(λ I−T ) 6= {0}. The vector y is called
an eigenvector of T corresponding to the eigenvalue λ . Every linear operator on a
finite dimensional euclidean space over C has at least an eigenvalue. However, an
operator on an infinite dimensional Banach space may possibly have no eigenvalue.

Definition 22.A.12 (Point spectrum, spectral radius) The point spectrum
Specp(T |H) is the subset of the spectrum

Specp(T |H) := {λ ∈ C : Ker(λ I−T ) 6= {0}} (22.A.7)
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The elements λ of Specp(T |H) are called the eigenvalues of T and Ker(λ I−T ) is
said the proper space associated to λ . The dimension of Ker(λ I−T ) is called the
multiplicity of the eigenvalue λ .

The spectral radius of T is defined by

Sp.Rad.(T |H) := sup{|λ | : λ ∈ Spec(T |H)} . (22.A.8)

Proposition 22.A.13 For any T ∈ BL(H), we have

Sp.Rad.(T |H) = lim
n→∞
{9T n9H}1/n ≤ 9T 9H . (22.A.9)

Proof. Once one knows that limn→∞ {9T n9H}1/n exists, this is essentially a ver-
sion of the Cauchy formula, that the radius of convergence of (I− λT )−1 is
limsupn→∞ {9T n9H}1/n.

Since for every n∈N, 9T n9H ≤ {9T9H}n, the inequality in (22.A.9) holds. We
first show that limn→∞ {9T n9H}1/n exists. Indeed, denoting αn := log9T n9H, we
obtain that {αn, n ∈ N∗} is subadditive: αn+m ≤ αn +αm for all (m,n) ∈ N∗×N∗.
Then, by Fekete’s subadditive Lemma (see for example Exercise 5.12), limn→∞ αn/n
exists and is equal to infn∈Nαn/n. This implies that {9T n9H}1/n converges as n
goes to infinity.

Note that R= {limn→∞ {9T n9H}1/n}−1 is the radius of convergence of the series
∑

∞
n=0 λ nT n. For all |λ |< R, the series ∑

∞
n=0 λ nT n is convergent, the operator I−λT

is therefore invertible. Writing I−λT = λ (λ−1I−T ), we then obtain that λ−1 ∈
Res(T |H) for all |λ−1|> R−1 and thus Sp.Rad.(T |H)≤ limn→∞ {9T n9H}1/n.

On the other hand, if r > Sp.Rad.(T |H), then the function µ 7→ (I− µT )−1

is analytic on the disc
{

µ : |µ| ≤ r−1
}

. Thus by a Cauchy estimate, 9T n9H ≤
C(r−n)−1 and limn→∞ {9T n9H}1/n≤ r. That is, taking r to the sup, Sp.Rad.(T |H)≥
limn→∞ {9T n9H}1/n. 2

Assume that (H,〈·, ·〉H) is an Hilbert space. For each y ∈ H, the functional fy
defined on H by fy(x) = 〈x,y〉H is linear. Moreover,

| fy(x)|= | 〈x,y〉H | ≤ ‖x‖H‖y‖H .

Thus, fy is bounded and 9 fy9H ≤ ‖y‖H. Since

9 fy9H ‖y‖H ≥ | fy(y)|= | 〈y,y〉H |= ‖y‖
2
H

we have 9 fy9 ≥ ‖y‖. The Riesz representation theorem shows that any bounded
linear functional is an fy.
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Theorem 22.A.14 (Riesz representation theorem). Let (H,〈·, ·〉H) be a Hilbert
space. For any f ∈ H∗, there exists a unique y ∈ H such that for all x ∈ H,
f (x) = 〈x,y〉H. Therefore, f = fy and 9 fy9H = ‖y‖H.

Proof. See (Gohberg and Goldberg, 1981, Theorem 5.2). 2

Let (H,〈·, ·〉H) and (G,〈·, ·〉G) be two Hilbert spaces and T ∈ BL(H,G). For each
y ∈ G, the functional x 7→ fy(x) = 〈T x,y〉G is a bounded linear functional on H.
Hence the Riesz representation theorem guarantees the existence of a unique y∗ ∈H
such that for all x ∈ H, 〈T x,y〉H = fy(x) = 〈x,y∗〉H. This gives rise to an operator
T ∗ ∈ BL(G,H) defined by T ∗y = y∗ satisfying

〈T x,y〉G = 〈x,y∗〉H = 〈x,T ∗y〉H , for all x ∈ H . (22.A.10)

The operator T ∗ is called the adjoint of T .
Now we will consider the case where H,G are Banach spaces and T ∈ BL(H,G).

For µ ∈G∗, ν ∈H∗, we use the notation µ(x)= 〈µ,x〉G, x∈G, ν(y)= 〈ν ,y〉H, y∈H.
There exists a unique adjoint T ∗ ∈ BL(G∗,H∗) which is defined by an equation that
generalizes (22.A.10) to the setting of Banach spaces: for any µ ∈ G∗ and x ∈ H,

T ∗µ(x) := 〈T ∗µ,x〉H = 〈µ,T x〉G .

Note, however, that the adjoint is a map T ∗ : G∗→H∗ whereas T : H→G. In partic-
ular, unlike the Hilbert space case, we cannot consider compositions of T with T ∗

We have that
9T9H→G = 9T ∗9G∗→H∗ . (22.A.11)

Theorem 22.A.15. If T and S are in BL(H,G), then

(i) (T +S)∗ = T ∗+S∗, (αT )∗ = ᾱT ∗ for any α ∈ C;
(ii) If H and G are Hilbert spaces, (T S)∗ = S∗T ∗.

Proof. See (Gohberg and Goldberg, 1981, Theorem 11.3). 2

Definition 22.A.16 (Self-adjoint) Let (H,〈,〉H) be an Hilbert space. An operator
T ∈ BL(H) is said to be self-adjoint if T = T ∗, i.e. for all x,y ∈ H,

〈T x,y〉H = 〈x,Ty〉H .
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Theorem 22.A.17. Let T be a self-adjoint operator on the Hilbert space (H,〈·, ·〉H).
Then 9T9H = sup‖x‖H≤1 | 〈T x,x〉H |.

Proof. See (Gohberg and Goldberg, 1981, Theorem 4.1, Chapter III). 2

Corollary 22.A.18 Let (H,〈·, ·〉H) be a Hilbert space. For any T ∈ BL(H),

9T ∗T9H = 9T 92
H .

Proof. Since T ∗T is self-adjoint,

9T ∗T9H = sup
‖x‖≤1

|〈T ∗T x, x〉H|= sup
‖x‖≤1

‖T x‖2
H = 9T 92

H .

2

Theorem 22.A.19. Let T be a self-adjoint operator on the Hilbert space (H,〈·, ·〉H).
Set

m = inf
‖x‖H=1

〈T x,x〉H and M = sup
‖x‖H=1

〈T x,x〉H .

(i) Spec(T |H)⊆ [m,M] ,
(ii) m ∈ Spec(T |H) and M ∈ Spec(T |H) .

Proof. (i) Suppose λ 6∈ [m,M]. Denote by d the distance of λ to the seg-
ment [m,M]. Let x ∈ H be any unit vector and write α = 〈T x,x〉H ∈ [m,M]. Then
〈(αI−T )x,x〉H = 〈x,(αI−T )x〉H = 0 and

‖(λ I−T )x‖2
H = ‖[λ I−αI+(αI−T )]x‖2

H

= 〈[λ I−αI+(αI−T )]x, [λ I−αI+(αI−T )]x〉H
= |λ −α|2‖x‖2 +‖(αI−T )x‖2

H ≥ |λ −α|2 ≥ d2

It follows that for any x ∈ H, ‖(λ I−T )x‖H ≥ d‖x‖H [apply the above for x/‖x‖H].
Hence λ I−T is injective and, by Lemma 22.A.4, it has closed range. Further, if 0 6=
z⊥Ran(λ I−T ) then 0 = 〈(λ I−T )x,z〉=

〈
x,(λ̄ I−T )z

〉
for all x ∈H and so (λ̄ I−

T )z = 0. But this is impossible, since, from above, noting that d = d(λ , [m,M]) =
d(λ , [m,M]) , we have ‖(λ̄ I−T )z‖H ≥ d‖z‖H. Therefore, Ran(λ I−T ) = H, (being
both dense and closed).
Therefore, for any y ∈ H, there is a unique x ∈ H such that y = (λ I−T )x. Define
(λ I−T )−1y = x. Then ‖y‖H ≥ d‖x‖H so

‖(λ I−T )−1y‖H = ‖x‖H ≤
1
d
‖y‖H
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showing that (λ I−T )−1 is a bounded operator. Thus λ 6∈ Spec(T |H) , proving (i).
(ii) From Theorem 22.A.17 9T9 is either M or −m. We only consider the case

9T9 = M = sup‖x‖=1 〈T x,x〉; if 9T9 = −m, it suffices to apply the proof to −T .
There exists a sequence {xn, n∈N} of unit vectors such that limn→∞ 〈T xn,xn〉= M.
Then

‖(T −MI)xn‖2 = ‖T xn‖2 +M2−2M 〈T xn,xn〉 ≤ 2M2−2M 〈T xn,xn〉 → 0 .

Hence T−MI has no inverse in BL(H) (since if X were such an operator, 1= ‖xn‖=
‖X(T −MI)xn‖ ≤ 9X 9 ‖X(T −MI)xn‖ → 0) and so M ∈ Spec(T |H). For m, note
that by Theorem 22.A.17,

sup
‖x‖=1

〈(MI−T )x,x〉= M−m = ‖MI−T‖

since inf‖x‖=1 〈(MI−T )x,x〉 = 0. Applying the result just proved to the operator
MI−T shows that M−m∈ Spec(MI−T |H) , that is, (M−m)I−(MI−T ) = T−mI
has no inverse. Hence m ∈ Spec(T |H) .

2

A self adjoint operator on the Hilbert space H is positive if for all f ∈H, 〈 f ,P f 〉 ≥ 0.

Lemma 22.A.20 Let H1 and H2 be Hilbert spaces and M : H1→H2 be a bounded,
linear operator. Let M∗ be the adjoint operator of M and let T : H2 → H2 be a
bounded, linear and positive operator. Then MT M∗ : H1→ H1 is also positive.

Proof. We denote the inner product of Hi by 〈,̇·〉i for i = 1,2. By the definition of
the adjoint operator and positivity of T ,

〈MT M∗ f , f 〉1 = 〈T M∗ f ,M∗ f 〉2 ≥ 0.

2

22.B Spectral measure

Denote by C[X ] (resp. R[X ]) the set of polynomials with complex (resp. real) coef-
ficients. Let H be a Hilbert space on C equipped with a sesquilinear product 〈·, ·〉.
If p ∈ C[X ] or R[X ], write p(T ) the operator on H defined by p(T ) = ∑

m
k=0 akT m

where the coefficients {ai , i = 0, . . . ,m} are such that p(X) = ∑
m
k=0 akXm. We now

review some basic properties of the self-adjoint operator T .

Lemma 22.B.1 Let T , T1 and T2 be bounded linear operators on H and assume that
T = T1T2 = T2T1. Then, T is invertible if and only if T1 and T2 are invertible.

Proof. If T1 and T2 are invertible then T is also invertible. Assume now that T
is invertible, we have T1(T2T−1) = I and T−1T1T2 = (T−1T2)T1 = I but T−1T2 =



574 22 Spectral theory

(T−1T2)T1(T2T−1) = T2T−1 so that T2T−1 is an inverse for T1. In the same way,
T1T−1 is an inverse for T2. 2

Proposition 22.B.2 Let T be a self-adjoint operator on the Hilbert space
(H,〈·, ·〉).

(i) Sp.Rad.(T |H) = 9T9H where Sp.Rad.(T |H) is defined in (22.A.8).
(ii) For all p ∈C[X ], p(T ) is a bounded linear operator on H. For all p1, p2 ∈

C[X ], p1(T ) and p2(T ) commute. If p ∈ R[X ], p(T ) is self-adjoint. More-
over, for all p ∈ C[X ],

p(Spec(T |H)) = Spec(p(T )|H) .

(iii) for any p ∈ R[X ], 9p(T )9 = sup{|p(λ )| : λ ∈ Spec(T |H)}.

Proof. (i) By Proposition 22.A.13, we know that

Sp.Rad.(T |H) = lim
n→∞
{9T n9H}1/n ≤ 9T 9 .

Since T is self-adjoint, we have for all x ∈ H such that ‖x‖= 1,

‖T x‖2 = 〈T x,T x〉=
〈
T 2x,x

〉
≤ ‖T 2x‖ ‖x‖ ≤ 9T 29

so that 9T92 ≤9T 29. Finally, 9T 29 =9T92. By a straightforward induction, we
then obtain that for all n ∈ N, 9T n9 = 9T9n and thus,

Sp.Rad.(T |H) = lim
n→∞
{9T n9H}1/n = 9T 9H .

(ii) The first assertions are obvious. We have only to prove that p(Spec(T |H)) =
Spec(p(T )|H) for all p ∈C[X ]. Write λ − p(z) = a0 ∏

m
k=1(zk− z) where a0 ∈C and

z1, . . . ,zm are the (not necessarily distinct) roots of λ − p(z). Then,

λ I− p(T ) = a0

m

∏
k=1

(zkI−T ) ,

According to Lemma 22.B.1, λ I− p(T ) is invertible if and only if, for all k ∈
{1, . . . ,m}, zkI− T is invertible. Therefore, λ ∈ Spec(p(T )|H) if and only if, for
some k ∈ {1, . . . ,m}, zk ∈ Spec(T |H). Finally, λ ∈ Spec(p(T )|H) if and only if there
exists µ ∈ Spec(T |H) such that λ = p(µ). Hence, Spec(p(T )|H) = p(Spec(T |H)).

(iii) Noting that p(T ) is self adjoint and using (i) and (ii), we obtain
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9p(T )9H = Sp.Rad.(p(T )|H) = sup
λ∈Spec(T |H)

|λ |

= sup
λ∈p(Spec(T |H))

|λ |= sup
µ∈Spec(T |H)

|p(µ)| .

2

Theorem 22.B.3 (Spectral measure). Let T be a self-adjoint operator on H and
f ∈ H. There exists a unique measure ν f on R, supported by Spec(T |H), such that
for all n≥ 0, ∫

xn
ν f (dx) = 〈T n f , f 〉 . (22.B.1)

Furthermore ν f (R) = ν f (Spec(T |H)) = ‖ f‖2.

Proof. We consider only R-valued functions. If p,q ∈ R[X ] with p(λ ) = q(λ ) for
all λ ∈ Spec(T |H), then by Proposition 22.B.2-(iii),

9p(T )−q(T )9 = sup
λ∈Spec(T |H)

|p(λ )−q(λ )|= 0 .

thus, p(T ) = q(T ). Set I (p) = 〈p(T ) f , f 〉. I is a well defined linear form on

D =
{

ϕ ∈ Cb(Spec(T|H)) : ϕ = p|Spec(T |H), p ∈ R[X ]
}

and is continuous since by Proposition 22.B.2-(iii),

|I (p)|= | 〈p(T ) f , f 〉 | ≤ ‖p(T ) f‖ .‖ f‖

≤ 9p(T )9 ‖ f‖2 = ‖ f‖2 . sup
λ∈Spec(T |H)

|p(λ )| .

Since by the Stone-Weierstrass theorem, D is dense in Cb(Spec(T|H)), I extends
to a continuous linear form on Cb(Spec(T|H)). Moreover, let ϕ be a nonnegative
function in Cb(Spec(T|H)). Using again the Stone-Weierstrass theorem, there exists
a sequence of polynomials {pn, n ∈ N} such that limn→∞ supλ∈Spec(T |H) |p2

n(λ )−
ϕ(λ )|= 0. Since

I (p2
n) =

〈
p2

n(T ) f , f
〉
= 〈pn(T ) f , pn(T ) f 〉 ≥ 0

we have I (ϕ) = limn→∞ I (p2
n) ≥ 0. Therefore, I is a nonnegative continuous

linear form on Cb(Spec(T|H)) and the Riesz theorem shows that there exists a mea-
sure ν f on Spec(T |H) such that I ( f ) =

∫
f dν f . We can then extend this measure

to R setting ν f (A) = ν f (A∩Spec(T |H)) for any A ∈B(R). Finally, taking n = 0 in
(22.B.1), we have ν f (R) = ‖ f‖2. The uniqueness of the spectral measure is obvious
due to the density of the polynomials. 2





Chapter 23
Concentration inequalities

Let (X,X ) be a measurable space, (Ω ,F ,P) be a probability space and {Xk, k ∈
N} be an X-valued stochastic process. The concentration of measure phenomenon
occurs when a function f (X0, . . . ,Xn) takes values which are close to the mean value
of E [ f (X0, . . . ,Xn)] (provided such a quantity exists). This phenomenon has been
extensively studied in the case where {Xk, k ∈ N} is a sequence of independent
random variables. We consider in this chapter the case of a homogeneous Markov
chain.

In Section 23.1, we introduce subgaussian concentration inequalities for func-
tions of independent random variables. We will consider functions of bounded dif-
ference, which means that oscillations of such functions with respect to each vari-
able are uniformly bounded. These functions include additive functions and suprema
of additive functions and are sufficient for most statistical applications. We will state
and prove McDiarmid’s inequality for independent random variable in order to in-
troduce in this simple context the main idea of the proof which is a martingale
decomposition based on a sequential conditioning.

The same method of proof, with increasingly involved technical details, will be
applied in Sections 23.2 and 23.3 to obtain subgaussian concentration inequalities
for uniformly ergodic and V -geometrically ergodic Markov chains.

In Section 23.4, we will consider possibly non irreducible kernels which are con-
tracting in the Wasserstein distance. In that case, functions of bounded difference
must be replaced by separately Lipschitz functions.

Throughout this chapter, we will use the following shorthand notation for tuples.

For k ≤ n and xk, . . . ,xn ∈ X, we write xn
k for (xk, . . . ,xn).

577
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23.1 Concentration inequality for independent random variables

We first define the class of functions of interest.

Definition 23.1.1 (Functions of bounded difference) A measurable function f :
Xn → R is said to have the bounded difference property if there exist nonnegative
constants (γ0, . . . ,γn−1) such that for all xn−1

0 ∈ Xn and yn−1
0 ∈ Xn,

| f (xn−1
0 )− f (yn−1

0 )| ≤
n−1

∑
i=0

γi1{xi 6=yi} . (23.1.1)

The class of all functions f which satisfy (23.1.1) is denoted by BD(Xn,γn−1
0 ).

In words, if f ∈ BD(Xn,γn−1
0 ), if we change the i-th component xi to yi while

keeping all other x j fixed, the value of f changes by at most γi.
Conversely, let f be a function such that for any i ∈ {0, . . . ,n− 1}, xn−1

0 ∈ Xn,
yi ∈ X,

| f (xn−1
0 )− f (xi−1

0 ,yi,xn−1
i+1 )| ≤ γi1{xi 6=yi} , (23.1.2)

with the convention xq
p = /0 if p > q. Since, for any xn−1

0 ∈ Xn and yn−1
0 ∈ Xn,

f (xn−1
0 )− f (yn−1

0 ) =
n−1

∑
i=0
{ f (xi

0,y
n−1
i+1 )− f (xi−1

0 ,yn−1
i )}

we get that if (23.1.2) is satisfied, then BD(Xn,γn−1
0 ).

Example 23.1.2. Let f0, . . . , fn−1 be n functions with bounded oscillations, γi =
osc ( fi)< ∞ and let f be the sum f (xn−1

0 ) = ∑
n−1
i=0 fi(xi), xn−1

0 ∈ Xn. The function f
belongs to BD(Xn,γn−1

0 ). J

Example 23.1.3. Let (X,X ) be a measurable space and X0, . . . ,Xn−1 be n indepen-
dent X-valued random variables with common distribution µ . For each xn−1

0 ∈ Xn,
let µ̂xn−1

0
be the empirical measure defined by

µ̂xn−1
0

=
1
n

n−1

∑
i=0

δxi . (23.1.3)

Let G be collection of functions defined on X and assume that supg∈G |g|∞ ≤ M.
Consider the function f defined on X by

f (xn−1
0 ) = sup

g∈G
|µ̂xn−1

0
(g)−µ(g)| . (23.1.4)
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By changing only one coordinate x j, the value of f (xn−1
0 ) can change at most by

M/n. Indeed, for xn−1
0 ∈ Xn, i ∈ {0, . . . ,n− 1} and x′i ∈ X, let xn−1,(i)

0 denote xn−1
0

with xi replaced by x′i :
xn−1,(i)

0 = (xi−1
0 ,x′i,x

n−1
i+1 ) .

Then,

f (xn−1
0 )− f (xn−1,(i)

0 ) = sup
g∈G
|µ̂xn−1

0
(g)−µ(g)|− sup

g′∈G
|µ̂

xn−1,(i)
0

(g′)−µ(g′)|

= sup
g∈G

inf
g′∈G
{|µ̂xn−1

0
(g)−µ(g)|− |µ̂

xn−1,(i)
0

(g′)−µ(g′)|}

≤ sup
g∈G
{|µ̂xn−1

0
(g)−µ(g)|− |µ̂

xn−1,(i)
0

(g)−µ(g)|}

≤ sup
g∈G
|µ̂xn−1

0
(g)− µ̂

xn−1,(i)
0

(g)|

=
1
n

sup
g∈G
|g(xi)−g(x′i)| ≤ 2M/n .

Swapping xn−1
0 and xn−1,(i)

0 , we obtain that | f (xn−1
0 )− f (xn−1,(i)

0 )| ≤ 2M/n. Thus
f ∈ BD(Xn,γn−1

0 ) with γi = 2M/n for all i ∈ {0, . . . ,n−1}. J

Let (Ω ,F ,P) be a probability space and {Xk, k ∈ N} be an X-valued stochastic
process. The process {Xk, k ∈N} satisfies a subgaussian concentration inequality if
there exists a constant κ such that, for all n ∈N∗, γ

n−1
0 ∈Rn

+, f ∈ BD(Xn,γn−1
0 ) and

s≥ 0 it holds that

E
[
exp
(
s
{

f (Xn−1
0 )−E

[
f (Xn−1

0 )
]})]

≤ es2κ ∑
n−1
j=0 γ2

j . (23.1.5)

This inequality might be used to bound the probability P(Y ≥ t) where Y =
f (Xn−1

0 )−E
[

f (Xn−1
0 )

]
for any t > 0 using Chernoff’s technique. Observe that for

any s > 0 we have

P(Y ≥ t) = P(esY ≥ est)≤ e−stE
[
esY ] (23.1.6)

where the first step is by monotonicity of the function ψ(x)= esx and the second step
is by Markov’s inequality. The Chernoff bound is obtained by choosing an s > 0 that
makes the right-hand side of (23.1.6) suitably small. If (23.1.6) holds for all s > 0,
the optimal bound is

P(Y ≥ t)≤ inf
s>0

e−stE
[
esY ] .

Using (23.1.5) for E
[
esY
]

and optimizing with respect to s shows that

P
[

f (Xn−1
0 )−E

[
f (Xn−1

0 )
]
≥ t
]
≤ exp

(
− t2

4κ ∑
n−1
j=0 γ2

j

)
. (23.1.7)
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The same inequality is satisfied if we replace f by − f so that the bound (23.1.5)
also implies that

P
[∣∣ f (Xn−1

0 )−E
[

f (Xn−1
0 )

]∣∣≥ t
]
≤ 2exp

(
− t2

4κ ∑
n−1
j=0 γ2

j

)
. (23.1.8)

In some cases, (23.1.5) is satisfied only for s ∈ [0,s∗) where s∗ < ∞, in which case
the optimisation leading to (23.1.7) should be adapted. If (23.1.5) is not satisfied for
any s≥ 0, one might consider polynomial concentration inequality. We will not deal
with the latter case in this chapter.

The method for getting exponential inequalities in this chapter is based on a
martingale decomposition of the difference f (Xn−1

0 )−E
[

f (Xn−1
0 )

]
. The argument

is easily described when {Xk, k∈N} is a sequence of independent random variables.
For each k∈N, we denote by µk the law of Xk. Without loss of generality, we assume
that E

[
f (Xn−1

0 )
]
= 0. Define gn−1(xn−1

0 ) = f (xn−1
0 ) and for ` ∈ {0, . . . ,n− 2} and

x`0 ∈ X`+1, set

g`(x`0) =
∫

f (x`0,x
n−1
`+1)

n−1

∏
k=`+1

µk(dxk) . (23.1.9)

With these definitions, we get

gn−1(xn−1
0 ) =

n−1

∑
`=1

{
g`(x`0)−g`−1(x`−1

0 )
}
+g0(x0) . (23.1.10)

For all ` ∈ {1, . . . ,n−1} and all x`−1
0 ∈ X`, we have

g`−1(x`−1
0 ) =

∫
g`(x`−1

0 ,x`)µ`(dx`) .

Thus we obtain that g`−1(X `−1
0 ) = E

[
g`(X `

0)
∣∣F X

`−1

]
P − a.s. for ` ≥ 1 where

F X
` = σ(X0, . . . ,X`). Setting by convention F X

−1 = { /0,XN}, we have

E
[

g0(X0) |F X
−1
]
= E [g0(X0)] = E

[
f (Xn−1

0 )
]
= 0 .

Hence, the sequence {(g`(X `
0),F

X
` ), `= 0, . . . ,n−1} is a zero-mean P-martingale.

Furthermore, for each ` ∈ {1, . . . ,n−1}, x`0 ∈ X`+1 and x ∈ X,

inf
x∈X

g`(x`−1
0 ,x)≤ g`(x`0)≤ inf

x∈X
g`(x`−1

0 ,x)+ γ` , (23.1.11)

inf
u∈X

g0(u)≤ g0(x)≤ inf
u∈X

g0(u)+ γ0 (23.1.12)

Indeed, for `≥ 1, the inequality infx∈X g`(x`−1
0 ,x)≤ g`(x`0) obviously holds. More-

over, by (23.1.9), we have for all x∗ ∈ X,
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g`(x`0)≤
∫

f (x`−1
0 ,x∗,xn−1

`+1)
n−1

∏
k=`+1

µk(dxk)+ γk = g`(x`−1
0 ,x∗)+ γk ,

which shows (23.1.11) since x∗ is arbitrary. The proof of (23.1.12) is along the same
lines.

The next ingredient is the following Lemma (which is often used to establish
Hoeffding’s inequality).

Lemma 23.1.4 Let (X,X ) be a measurable space, µ ∈ M1(X ) and h ∈ F(X).
Assume that

(i) There exists γ ≥ 0 such that for all x ∈ X,

−∞ < inf
x′∈X

h(x′)≤ h(x)≤ inf
x′∈X

h(x′)+ γ ;

(ii)
∫
|h(x)|µ(dx)< ∞.

Then for all s≥ 0 and x ∈ X,∫
es[h(x)−

∫
h(u)µ(du)]

µ(dx)≤ es2γ2/8 .

Proof. Without loss of generality, we assume
∫

h(x)µ(dx) = 0. For s≥ 0, we set

L(s) = log
∫

esh(x)
µ(dx) . (23.1.13)

Since h is bounded, the function L is (infinitely) differentiable and we have L(0) = 0
and L′(0) = 0. Define µs ∈M1(X ) by

µs(A) =
∫

A esh(x)µ(dx)∫
X esh(x)µ(dx)

, A ∈X . (23.1.14)

Then

L′(s) =
∫

X
h(x)µs(dx) ,

L′′(s) =
∫

X
h2(x)µs(dx)−

{∫
h2(x)µs(dx)

}2

.

Set c= infx∈X h(x)+γ/2. Note that fot all x∈X we have |h(x)−c| ≤ γ/2. Therefore,
for all s≥ 0,

L′′(s) =
∫ [

h(x)−
∫

h(x′)µs(dx′)
]2

µs(dx)

≤
∫

[h(x)− c]2 µs(dx)≤ γ
2/4 .
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Since L(0) = 0 and L′(0) = 0, we conclude by applying Taylor’s Theorem that
L(s)≤ s2γ2/8 for all s≥ 0. 2

Since (23.1.11) and (23.1.12) hold, we can apply Lemma 23.1.4 and we have for all
s≥ 0,

8 logE
[

es{g`(X`
0 )−g`−1(X

`−1
0 )}

∣∣∣F X
`−1

]
≤ s2

γ
2
` . (23.1.15)

Thus, for `≤ n−1, we have

E
[
esg`(X`

0 )
]
= E

[
esg`−1(X

`−1
0 )esg`(X`

0 )−sg`−1(X
`−1
0 )
]

= E
[
esg`−1(X

`−1
0 )E

[
es{g`(X`

0 )−g`−1(X
`−1
0 )}

∣∣∣F X
`−1

]]
≤ E

[
esg`−1(X

`−1
0 )
]

es2γ2
` /8 .

By a straightfoward induction, using (23.1.10) and (23.1.15) yields for all s≥ 0,

Eξ

[
esgn−1(X

n−1
0 )
]
≤ exp

(
(s2/8)

n−1

∑
`=0

γ
2
`

)
. (23.1.16)

Applying Markov’s inequality yields

Pξ

(
f (Xn−1

0 )> t
)
≤ exp

(
−st + s2

n−1

∑
`=0

γ
2
` /8

)
.

By choosing s = 4t/∑
n−1
`=0 γ2

` , we obtain McDiarmid’s inequality for independent
random variables, stated in the following theorem.

Theorem 23.1.5. Let (X,X ) be a measurable space, (Ω ,F ,P) a probability space
and (X0, . . . ,Xn−1) be a n-tuple of independent X-valued random variables defined
on (Ω ,F ,P). Let (γ0, . . . ,γn−1) be nonnegative constants and f ∈ BD(Xn,γn−1

0 ).
Then, for all t > 0,

P( f (Xn−1
0 )−E

[
f (Xn−1

0 )
]
≥ t)≤ exp

(
− 2t2

∑
n−1
i=0 γ2

i

)
. (23.1.17)

We now illustrate the usefulness of McDiarmid’s inequality.

Example 23.1.6. Let (X,X ) be a measurable space and X0, . . . ,Xn−1 be n indepen-
dent X-valued random variables with common distribution µ . Let G ⊂ Fb(X) be a
countable collection of functions such that supg∈G |g|∞ ≤M and consider the func-
tion

f (xn−1
0 ) = sup

g∈G
|µ̂xn−1

0
(g)−µ(g)| .
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We have shown in Example 23.1.3 that f ∈ BD(Xn,γn−1
0 ) with γi = 2M/n for all

i ∈ {0, . . . ,n− 1}. Consequently, by applying Theorem 23.1.5 we get that for all
ε > 0,

P(| f (Xn−1
0 )−E

[
f (Xn−1

0 )
]
| ≥ ε)≤ 2e−2nε2/M2

.

This shows that the uniform deviation f (xn−1
0 ) = supg∈G |µ̂xn−1

0
(g)−µ(g)| concen-

trates around its mean E
[

f (Xn−1
0 )

]
with an exponential rate. J

23.2 Concentration inequality for uniformly ergodic Markov
chains

We will now prove a concentration inequality similar to McDiarmid’s inequality
(23.1.17) for uniformly ergodic Markov chains. Let P be a positive Markov ker-
nel on X×X with invariant probability measure π . We will use a martingale de-
composition similar to the one obtained in (23.1.10). Assume E

[
f (Xn−1

0 )
]
= 0. Set

gn−1(xn−1
0 ) = f (xn−1

0 ) and for `= 0, . . . ,n−2 and x`0 ∈ X`+1, set

g`(x`0) =
∫

f (xn−1
0 )

n−1

∏
i=`+1

P(xi−1,dxi) = Ex`

[
f (x`0,X

n−`−1
1 )

]
. (23.2.1)

With these definitions, we get

gn−1(xn−1
0 ) =

n−1

∑
`=1

{
g`(x`0)−g`−1(x`−1

0 )
}
+g0(x0) , (23.2.2)

and for ` ∈ {1, . . . ,n−1} and x`−1
0 ∈ X`,

g`−1(x`−1
0 ) =

∫
g`(x`−1

0 ,x`)P(x`−1,dx`) . (23.2.3)

This shows that g`−1(X `−1
0 ) = E

[
g`(X `

0)
∣∣F X

`−1

]
Pξ − a.s. for `≥ 1 where F X

` =

σ(X0, . . . ,X`). Hence, {(g`(X `
0),F

X
` ), `= 0, . . . ,n−1} is a Pξ -martingale for every

ξ ∈M1(X ).
When considering (23.2.1), a first crucial step is to bound Eξ

[
h(Xn−1

0 )
]
−

Eξ ′
[
h(Xn−1

0 )
]

where h ∈ BD(Xn,γn−1
0 ) and ξ ,ξ ′ are two arbitrary initial distribu-

tions.
Considering the inequality (23.1.1), a natural idea is to use exact coupling tech-

niques. Consider Z = {Zn, n ∈ N}, Z′ = {Z′n, n ∈ N} two X-valued stochastic pro-
cesses and T an N̄-valued random variable defined on the same probability space
(Ω ,G ,P) such that (Z,Z′) is an exact coupling of (Pξ ,Pξ ′) with coupling time T
(see Definition 19.3.3). Recall that the shift operator θ : XN → XN is defined by:
for z = {zk, k ∈ N} ∈ XN, θz is the sequence θz = {zk+1, k ∈ N}. We then set
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θ1 = θ and for n ∈ N∗, we define inductively, θn = θn−1 ◦ θ . We also need to de-
fine θ∞. To this aim, fix an arbitrary x∗ ∈ X, we define θ∞ : XN→ XN such that for
z = {zk, k ∈ N} ∈ XN, θ∞z ∈ XN is the constant sequence (θ∞z)k = x∗ for all k ∈ N.
With these notations, we recall the two properties of an exact coupling.

(i) for all A ∈X ⊗N, P(Z ∈ A) = Pξ (A) and P(Z′ ∈ A) = Pξ ′(A),
(ii) θT Z = θT Z′ P − a.s.

Then, for any exact coupling of (Pξ ,Pξ ′) with coupling time T :

∣∣Eξ

[
h(Xn−1

0 )
]
−Eξ ′

[
h(Xn−1

0 )
]∣∣= ∣∣∣E[h(Zn−1

0 )−h({Z′}n−1
0 )

]∣∣∣
≤ E

[
n−1

∑
i=0

γi1
{

Zi 6= Z′i
}]
≤

n−1

∑
i=0

γiP(T > i) . (23.2.4)

If the coupling is in addition maximal that is, if dTV(ξ Pn,ξ ′Pn) = P(T > n) for all
n ∈ N, then

|Eξ

[
h(Xn−1

0 )
]
−Eξ ′

[
h(Xn−1

0 )
]
| ≤

n−1

∑
i=0

γidTV(ξ Pi,ξ ′Pi) . (23.2.5)

For example Theorem 19.3.9 shows that maximal exact couplings always exist if
(X,d) is a complete separable metric space. Unfortunately, for general state space
(X,X ), maximal exact coupling may not exist without further assumption. The
following Lemma provide sufficient conditions for getting an upper-bound similar
to (23.2.5) up to a multiplicative constant β .

Lemma 23.2.1 Let P be a Markov kernel on X×X . Then, there exists a constant
β such that for any n ∈ N, nonnegative constants (γ0, . . . ,γn−1), h ∈ BD(Xn,γn−1

0 ),
and ξ ,ξ ′ ∈M1(X ),

|Eξ

[
h(Xn−1

0 )
]
−Eξ ′

[
h(Xn−1

0 )
]
| ≤ β

n−1

∑
i=0

γidTV(ξ Pi,ξ ′Pi) . (23.2.6)

Moreover, if one of the following condition holds:

(i) for any ξ ,ξ ′ ∈M1(X ), there exists a maximal exact coupling for (Pξ ,Pξ ′),
(ii) for any n ∈ N and i ∈ {0, . . . ,n−1}, xn−1

i 7→ infui−1
0 ∈Xi h(ui−1

0 ,xn−1
i ) is measur-

able,

then (23.2.6) holds with β = 1. Otherwise, the inequality (23.2.6) holds with β = 2.

Proof. If for any (ξ ,ξ ′) ∈ M1(X ) there exists a maximal exact coupling for
(Pξ ,Pξ ′), then (23.2.6) with β = 1 follows from (23.2.5).

We now give consider the case where a maximal coupling might not exist. Set
h0 = h and for i ∈ {1, . . . ,n−1},

hi(xn−1
i ) = inf

ui−1
0 ∈Xi

h(ui−1
0 ,xn−1

i ) ,
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and by convention, we set hn the constant function hn(xn−1
0 ) = infun−1

0 ∈Xn h(un−1
0 ).

Then,

h(xn−1
0 ) =

n−1

∑
i=0
{hi(xn−1

i )−hi+1(xn−1
i+1 )}+hn .

Assume that hi is measurable for all i ∈ {0, . . . ,n− 1}. Then, we can set for all
i ∈ {0, . . . ,n−1} and xi

0 ∈ Xi+1,

wi(xi) =
∫ {

hi(xn−1
i )−hi+1(xn−1

i+1 )
} n−1

∏
`=i+1

P(x`−1,dx`) ,

=
∫ {

inf
ui−1

0 ∈Xi
h(ui−1

0 ,xn−1
i )− inf

ui
0∈Xi+1

h(ui
0,x

n−1
i+1 )

}
n−1

∏
`=i+1

P(x`−1,dx`) .

(23.2.7)

With these notations, we getE
[
{hi(Xn−1

i )−hi+1(Xn−1
i+1 )}

∣∣F X
i
]
=wi(Xi) Pξ −a.s.

which implies that

Eξ

[
h(Xn−1

0 )
]
=

n−1

∑
i=0

ξ Piwi +hn .

Since h ∈ BD(Xn,γn−1
0 ), the expression (23.2.7) shows that 0 ≤ wi ≤ γi. Since for

i ∈ {0, . . . ,n−1}, dTV(ξ Pi,ξ ′Pi) = sup
{

ξ Pi f −ξ ′Pi f : f ∈ Fb(X), | f |∞ ≤ 1
}

, we
obtain

|Eξ

[
h(Xn−1)

]
−Eξ ′

[
h(Xn−1)

]
| ≤

n−1

∑
i=0
|ξ Piwi−ξ

′Piwi| ≤
n−1

∑
i=0

γidTV(ξ Pi,ξ ′Pi) .

This shows (23.2.6) with β = 1.
If we no longer assume that hi is measurable for all i ∈ {0, . . . ,n− 1}, then we

still can show (23.2.6) but the upper-bound is less tight: i.e. β = 2. Fix an arbitrary
x∗ ∈ X. The proof follows the same lines as above but for i ∈ {1, . . . ,n− 1}, we
replace hi by h̄i(xn−1

i ) = h(x∗, . . . ,x∗,xn−1
i ). By convention, we set h̄n the constant

function h̄n = h(x∗, . . . ,x∗) and h̄0 = h. With these notations, we again have the
decomposition

h(xn−1
0 ) =

n−1

∑
i=0
{h̄i(xn−1

i )− h̄i+1(xn−1
i+1 )}+ h̄n .

Setting for all i ∈ {0, . . . ,n−1} and all xi
0 ∈ Xi+1,

w̄i(xi) =
∫ {

h̄i(xn−1
i )− h̄i+1(xn−1

i+1 )
} n−1

∏
`=i+1

P(x`−1,dx`) ,

=
∫ {

h(x∗, . . . ,x∗,xn−1
i )−h(x∗, . . . ,x∗,xn−1

i+1 )
} n−1

∏
`=i+1

P(x`−1,dx`) . (23.2.8)
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It is easily seen that E
[
{h̄i(Xn−1

i )− h̄i+1(Xn−1
i+1 )}

∣∣F X
i
]
= w̄i(Xi) Pξ − a.s. which

implies that

Eξ

[
h(Xn−1

0 )
]
=

n−1

∑
i=0

ξ Piw̄i + h̄n .

Since h ∈ BD(Xn,γn−1
0 ), (23.2.8) shows that |w̄i|∞ ≤ γi. Then, using (D.2.2),

|Eξ

[
h(Xn−1)

]
−Eξ ′

[
h(Xn−1)

]
| ≤

n−1

∑
i=0
|ξ Piw̄i−ξ

′Piw̄i| ≤ 2
n−1

∑
i=0

γidTV(ξ Pi,ξ ′Pi) .

2

We now extend McDiarmid’s inequality to uniformly ergodic Markov kernels. Re-
call that ∆ (P) denotes the Dobrushin coefficient of a Markov kernel P.

Theorem 23.2.2. Let P be Markov kernel on X×X . Then, there exists β > 0 such
that for all n ∈ N∗, γ

n−1
0 ∈ Rn

+, f ∈ BD(Xn,γn−1
0 ), ξ ∈M1(X ) and t > 0

Pξ

(
f (Xn−1

0 )−Eξ [ f (X
n−1
0 )]> t

)
≤ e−2t2/Dn(β ) , (23.2.9)

with

Dn(β ) =
n−1

∑
`=0

(
γ`+β

n−1

∑
m=`+1

γm∆
(

Pm−`
))2

. (23.2.10)

Moreover, we may set β = 1 if one of the following two conditions is satisfied

(i) for any ξ ,ξ ′ ∈M1(X ), there exists a maximal exact coupling of (Pξ ,Pξ ′);
(ii) for all i ∈ {0, . . . ,n−1}, xn−1

i 7→ infui−1
0 ∈Xi h(ui−1

0 ,xn−1
i ) is measurable.

In all other cases, (23.2.9) is satisfied with β = 2.

Remark 23.2.3. For a n-tuple of independent random variables Xn−1
0 , we can ap-

ply the previous result with ∆
(
P j
)
= 0 for all j ≥ 1 and we recover McDiarmid’s

inequality:

P
(
| f (Xn−1

0 )−E
[

f (Xn−1
0 )

]
| ≥ t

)
≤ 2exp

(
−2t2/

n−1

∑
i=0

γ
2
i

)
. (23.2.11)

N

Proof (of Theorem 23.2.2). Without loss of generality, we assume Eξ [ f (X
n−1
0 )] = 0.

We only need to prove the one-sided inequality

Pξ

(
f (Xn−1

0 )> t
)
≤ e−2t2/Dn . (23.2.12)
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For `= 0, . . . ,n−1, set

A` = γ`+β

n−1

∑
m=`+1

γm∆
(

Pm−`
)
.

Consider the functions g`, ` ∈ {0, . . . ,n−1} defined in (23.2.1). We will prove that,
for each ` ∈ {1, . . . ,n−1} and x`0 ∈ X`+1,

inf
x∈X

g`(x`−1
0 ,x)≤ g`(x`0)≤ inf

x∈X
g`(x`−1

0 ,x)+A` , (23.2.13)

inf
x∈X

g0(x)≤ g0(x0)≤ inf
x∈X

g0(x)+A0 . (23.2.14)

If (23.2.13) holds, then applying Hoeffding’s Lemma 23.1.4 yields for all s≥ 0,

8 logE
[

es{g`(X`
0 )−g`−1(X

`−1
0 )}

∣∣∣F X
`−1

]
≤ s2A2

` .

This and (23.2.2) yield for all s≥ 0,

8 logEξ

[
es f (Xn−1

0 )
]
= 8logEξ

[
esgn−1(X

n−1
0 )
]
≤ s2

n−1

∑
`=0

A2
` = s2Dn .

Applying Markov’s inequality,

Pξ

(
f (Xn−1

0 )> t
)
≤ exp

(
−st + s2Dn/8

)
.

Choosing s = 4t/Dn yields (23.2.12). To complete the proof, it remains to establish
(23.2.13) and (23.2.14). The first inequality in (23.2.13), infx∈X g`(x`−1

0 ,x)≤ g`(x`0),
obviously holds. We now turn to the second inequality in (23.2.13). For an arbitrary
x∗ ∈ X,

g`(x`0) =
∫

f (xn−1
0 )

n−1

∏
i=`+1

P(xi−1,dxi)≤
∫

f (x`−1
0 ,x∗,xn−1

`+1)
n−1

∏
i=`+1

P(xi−1,dxi)+ γ`

= Eδx`P

[
h`+1(Xn−`−2

0 )
]
+ γ` ,

where h`+1 : Xn−`−1→R is defined by h`+1(xn−1
`+1) = f (x`−1

0 ,x∗,xn−1
`+1). Since h`+1 ∈

BD(Xn−`−1,γn−1
`+1 ), (23.2.6) shows that

Eδx`P

[
h`+1(Xn−`−2

0 )
]
−Eδx∗P

[
h`+1(Xn−`−2

0 )
]

≤ β

n−1

∑
m=`+1

γmdTV(δx`P
m−`,δx∗Pm−`) .

By Definition 18.2.1, dTV(ξ Pk,ξ ′Pk) ≤ ∆
(
Pk
)

dTV(ξ ,ξ
′) for all ξ ,ξ ′ ∈M1(X ),

thus we get
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g`(x`0)≤ Eδx∗P

[
h`+1(Xn−`−2

0 )
]
+β

n−1

∑
m=`+1

γm∆
(

Pm−`
)
+ γ`

= g`(x`−1
0 ,x∗)+A` .

Since x∗ is arbitrary, we finally obtain g`(x`0)≤ infx∗∈X g`(x`−1
0 ,x∗)+A` which com-

pletes the proof of (23.2.13). The proof of (23.2.14) is along the same lines. 2

As a byproduct of Theorem 23.2.2, we obtain Hoeffding’s inequality for uniformly
ergodic Markov kernels. We consider the functional xn−1

0 7→∑
n−1
i=0 f (xi) where f has

bounded oscillations and we study the deviation of the sum centered at π( f ).

Corollary 23.2.4 Let {Xk, k ∈ N} be a uniformly ergodic Markov chain with
kernel P and invariant probability measure π . Set

∆ =
∞

∑
`=1

∆
(

P`
)
< ∞ . (23.2.15)

Let f : X→R be a measurable function with bounded oscillations. Then for all
ξ ∈M1(X ) and t ≥ n−1dTV(ξ ,π)(1+∆)osc ( f ),

Pξ

(∣∣∣n−1

∑
i=0

f (Xi)−π( f )
∣∣∣> nt

)

≤ 2exp

{
−

2n
(
t−n−1dTV(ξ ,π)(1+∆)osc ( f )

)2

osc2 ( f )(1+∆)2

}
. (23.2.16)

Remark 23.2.5. The restriction t ≥ n−1dTV(ξ ,π)(1+∆)osc ( f ) is the cost of cen-
tering at π( f ). It is zero if ξ = π , in which case we simply recover (23.2.9).

Proof. Note first that the convergence of the series (23.2.15) is ensured by Theo-
rem 18.2.5. Applying the bound (18.2.5), we obtain

n−1

∑
i=0

∣∣Eξ [ f (Xi)]−π( f )
∣∣≤ dTV(ξ ,π)(1+∆)osc ( f ) .

Next, applying Theorem 23.2.2 to the function (x0, . . . ,xn−1) 7→ ∑
n−1
i=0 f (xi) which

satisfies (23.1.1) with γi = osc ( f ) for all i = 0, . . . ,n−1, we obtain
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Pξ

(∣∣∣n−1

∑
i=0

f (Xi)−π( f )
∣∣∣> nδ

)

≤ Pξ

(∣∣∣n−1

∑
i=0

f (Xi)−Eξ [ f (Xi)]
∣∣∣+dTV(ξ ,π)(1+∆)osc ( f )> nδ

)
≤ 2e−2[nδ−dTV(ξ ,π)(1+∆)osc( f )]

2
/Dn ,

with

Dn =
n−1

∑
`=0

(
γ`+

n−1

∑
s=`+1

∆
(

Ps−`
)

γs

)2

≤ nosc2 ( f )(1+∆)2 .

2

23.3 Subgaussian concentration inequalities for V -geometrically
ergodic Markov chain

The results presented in the previous section apply to uniformly ergodic Markov ker-
nels. In this section, we will study how these results can be extended to V -uniformly
ergodic Markov kernels.

Theorem 23.3.1. Let P be an irreducible, aperiodic and geometrically regular
Markov kernel on X×X with invariant probability π . Then, for every geomet-
rically recurrent small set C, there exists a positive constant β such that for all
n ∈ N∗, γ

n−1
0 ∈ Rn

+, f ∈ BD(Xn,γn−1
0 ), t ≥ 0 and x ∈C,

Px
(∣∣ f (Xn−1

0 )−Ex
[

f (Xn−1
0 )

]∣∣> t
)
≤ 2e−β t2/∑

n−1
`=0 γ2

` . (23.3.1)

Remark 23.3.2. It is possible to obtain an explicit expression of the constant β as a
function of the tail distribution of the return time to the set C. N

Remark 23.3.3. Denote by π the invariant probability measure. By Theorems 15.1.3
and 15.1.5, there exists an increasing family of geometrically recurrent small sets
{Cn, n∈N} such that π(∪n≥0Cn)= 1. Therefore, the exponential inequality (23.3.1)
holds for π-almost all x ∈ X with a constant β which may depend on x but is uni-
form on geometrically recurrent small sets. In many applications, the sets C can be
chosen to be the level sets {V ≤ d} of a drift function V such that Dg(V,λ ,b,C)
holds. N

Proof (of Theorem 23.3.1). Similarly to the proof of Theorem 23.2.2, the inequality
(23.3.1) will be a consequence of a bound for the Laplace transform. We will prove
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in Lemma 23.3.4 that there exists a constant κ such that for all x ∈ C, γ
n−1
0 ∈ Rn

+

and f ∈ BD(Xn,γn−1
0 ),

Ex

[
e f (Xn−1

0 )−Ex[ f (Xn−1
0 )]

]
≤ eκ ∑

n−1
i=1 γ2

i . (23.3.2)

Let s > 0. Applying Markov’s inequality and (23.3.2) to the function s · f yields

Px( f (Xn−1
0 )−Ex[ f (Xn−1

0 )]> t) = Px

(
es( f (Xn−1

0 )−Ex[ f (Xn−1
0 )]) > est

)
≤ e−stEx

[
es( f (Xn−1

0 )−Ex[ f (Xn−1
0 )])

]
≤ e−st+κs2

∑
n−1
i=1 γ2

i .

Taking s = t/(2κ ∑
n−1
i=1 γ2

i ) yields:

Px( f (Xn−1
0 )−Ex[ f (Xn−1

0 )]> t)≤ e−t2/(4κ ∑
n−1
i=1 γ2

i ) .

Applying again this inequality with f replaced by − f proves (23.3.1) with β =
(4κ)−1. 2

Our main task is now to prove (23.3.2).

Lemma 23.3.4 Let P be an irreducible, aperiodic, geometrically regular Markov
kernel on X×X with invariant probability π . Then, for every geometrically re-
current small set C, there exists a constant κ such that for all γ

n−1
0 ∈ Rn

+, f ∈
BD(Xn,γn−1

0 ) and x ∈C,

Ex

[
e f (Xn−1

0 )−Ex[ f (Xn−1
0 )]

]
≤ exp

(
κ

n−1

∑
i=1

γ
2
i

)
. (23.3.3)

Proof. Define the stopping times {τi, i ∈ N} by

τi = inf{n≥ i : Xn ∈C}= i+ τC ◦θi . (23.3.4)

In words, for any i ∈ N, τi is the first hitting time of the set C after i. Note that
τn−1 ≥ n−1 and τ0 = 0 if X0 ∈C. Thus we have, for all x ∈C,

Ex[ f (Xn−1
0 )|F X

τn−1
] = f (Xn−1

0 ) , Ex[ f (Xn−1
0 )|F X

τ0
] = Ex[ f (Xn−1

0 )], Px − a.s.

Setting, for i ∈ {0, . . . ,n−1}, Gi = Ex[ f (Xn−1
0 )|F X

τi
] we obtain

f (Xn−1
0 )−Ex[ f (Xn−1

0 )] =
n−1

∑
i=1
{Gi−Gi−1} . (23.3.5)

Note that for i ∈ {1, . . . ,n− 1}, if τi−1 > i− 1, then τi = τi−1 which implies Gi−
Gi−1 = 0. Therefore we get
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Gi−Gi−1 = {Gi−Gi−1}1{τi−1=i−1} . (23.3.6)

We will prove in Lemma 23.3.6 that we may choose a constant α0 ∈ [0,1) in such
a way that for all α ∈ [α0,1), there exist ς1, ς2 such that for all n ∈ N, γ

n−1
0 ∈ Rn

+,
i ∈ {1, . . . ,n−1} and x ∈C,

|Gi−Gi−1| ≤ ς11{τi−1=i−1}{max
1≤i≤n

γi}σC ◦θi−1 , Px − a.s. (23.3.7)

|Gi−Gi−1|2 ≤ ς21{τi−1=i−1}α
−2σC◦θi−1

n−1

∑
k=i

γ
2
k α

k−i , Px − a.s. (23.3.8)

For i ∈ {1, . . . ,n−1}, we have Ex

[
Gi−Gi−1 |F X

τi−1

]
= 0. Thus, applying (23.3.6),

(23.3.7), (23.3.8) and the bound et ≤ 1+ t + t2e|t|, we obtain

Ex

[
eGi−Gi−1

∣∣F X
τi−1

]
≤ 1+Ex

[
(Gi−Gi−1)

2e|Gi−Gi−1|
∣∣∣F X

i−1

]
1{τi−1=i−1}

≤ 1+ ς2

(
n−1

∑
k=i

γ
2
k α

k−i

)
Ex

[
e(−2logα+ς1{max1≤i≤n γi})σC ◦θi−1

∣∣∣F X
i−1

]
1{τi−1=i−1}

≤ 1+ ς2

(
n−1

∑
k=i

γ
2
k α

k−i

)
EXi−1

[
e(−2logα+ς1{max1≤i≤n γi})σC

]
1{τi−1=i−1} .

The small set C is geometrically recurrent, thus there exists δ > 1 such that
supx∈CEx[δ

σC ]< ∞. Choose

ε ∈
(
0,ς−1

1 log(δ )
)
. (23.3.9)

and then pick α ∈ [α0,1) such that

−2log(α)+ ς1ε ≤ log(δ ) . (23.3.10)

Since τi−1 = i−1 implies Xi−1 ∈C, this choice of α implies that for all i∈{1, · · · ,n}
and γ

n−1
0 ∈ Rn

+ satisfying max0≤k≤n−1 γk ≤ ε ,

Ex

[
eGi−Gi−1

∣∣F X
τi−1

]
≤ 1+ ς2

(
n−1

∑
k=i

γ
2
k α

k−i

)
sup
x∈C
Ex[δ

σC ]

≤ exp

(
ς2 sup

x∈C
Ex[δ

σC ]
n−1

∑
k=i

γ
2
k α

k−i

)
,

By the decomposition (23.3.5) and successive conditioning, we obtain that for all
n ∈ N, γ

n−1
0 ∈ Rn

+ such that max0≤k≤n−1 γk ≤ ε , f ∈ BD(Xn,γn−1
0 ),
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Ex

[
e f (Xn−1

0 )−Ex[ f (Xn−1
0 )]

]
= Ex

[
e∑

n−1
i=1 {Gi−Gi−1}

]
≤ eκε ∑

n−1
k=1 γ2

k (23.3.11)

where
κε = ς2(1−α)−1 sup

x∈C
Ex[δ

σC ] (23.3.12)

We now extend this result to all n ∈ N and γ
n−1
0 ∈ Rn

+. Choose an arbitrary x∗ ∈ X
and define the function f̃ : Xn→ R by:

f̃ (xn−1
0 ) = f (x01{γ0≤ε}+ x∗1{γ0>ε}, . . . ,xn−11{γn−1≤ε}+ x∗1{γn−1>ε}) .

Then, f̃ ∈ BD(Xn,γ01{γ0≤ε}, . . . ,γn−11{γn−1≤ε}) and (23.3.11) shows that,

Ex

[
e f̃ (Xn−1

0 )−Ex[ f̃ (Xn−1
0 )]

]
≤ eκε ∑

n−1
k=1 γ2

k 1{γk≤ε} .

Moreover,

| f (xn−1
0 )− f̃ (xn−1

0 )| ≤
n−1

∑
i=1

γi1{γi>ε} ≤ ε
−1

n−1

∑
i=1

γ
2
i .

This implies

Ex

[
e f (Xn−1

0 )−Ex[ f (Xn−1
0 )]

]
≤ e2ε−1

∑
n−1
i=1 γ2

i Ex

[
e f̃ (Xn−1

0 )−Ex[ f̃ (Xn−1
0 )]

]
≤ e(2ε−1+κε )∑

n−1
i=1 γ2

i .

Thus (23.3.3) holds for all n∈N, γ
n−1
0 ∈Rn

+, f ∈BD(Xn,γn−1
0 ) with κ = κε +2ε−1.

2

There only remains to prove the bounds (23.3.7) and (23.3.8). A preliminary
lemma is needed.

Lemma 23.3.5 Let P be an irreducible, aperiodic, geometrically regular Markov
kernel on X×X with invariant probability π . For any geometrically recurrent small
set C, there exist α0 ∈ [0,1) and ς0 < ∞ such that for all n ∈ N, γ

n−1
0 ∈ Rn

+, f ∈
BD(Xn,γn−1

0 ) and x ∈C,

|Ex[ f (Xn−1
0 )]−Eπ [ f (Xn−1

0 )]| ≤ ς0

n−1

∑
k=0

γkα
k
0 . (23.3.13)

Proof. By Lemma 23.2.1, we get

|Ex
[

f (Xn−1
0 )

]
−Eπ

[
f (Xn−1

0 )
]
| ≤ 2

n−1

∑
k=0

γkdTV(δxPk,π) .

The small set C is a geometrically recurrent, thus there exist δ > 1 such that
supx∈CEx[δ

σC ] < ∞ and by Theorem 15.1.3-(c) there exist α0 ∈ [0,1) and ς such
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that for all x ∈C, k ∈ N,

dTV(δxPk,π)≤ ςα
k
0 sup

x∈C
Ex[δ

σC ]< ∞ .

2

Lemma 23.3.6 Let P be an irreducible, aperiodic, geometrically regular Markov
kernel on X×X with invariant probability π . Then, for every geometrically re-
current small set C, there exists a constant α0 ∈ [0,1) such that for all α ∈ [α0,1),
there exist constant ς1,ς2 satisfying for any n ∈ N, i ∈ {1, . . . ,n− 1}, γ

n−1
0 ∈ Rn

+,
f ∈ BD(Xn,γn−1

0 ) and x ∈C,

|Gi−Gi−1| ≤ ς11{τi−1=i−1}{max
1≤i≤n

γi}σC ◦θi−1 Px − a.s. (23.3.14)

|Gi−Gi−1|2 ≤ ς21{τi−1=i−1}α
−2σC◦θi−1

n−1

∑
k=i

γ
2
k α

k−i Px − a.s. (23.3.15)

where Gi = Ex[ f (Xn−1
0 )|F X

τi
].

Proof. For i ∈ {1, . . . ,n} denote

Gi,1 = Ex[ f (Xn−1
0 )|F X

τi−1
]1{τi−1=i−1} ,

Gi,2 = Ex[ f (Xn−1
0 )|F X

τi
]1{τi−1=i−1} .

With these notations, we get for i ∈ {1, . . . ,n−1},

Gi−Gi−1 = {Gi−Gi−1}1{τi−1=i−1} = Gi,2−Gi,1 .

Consider first Gi,1. Define gn−1 = f and for i = 0, . . . ,n−2,

gi(xi
0) = Exi [ f (x

i
0,X

n−i−1
1 )] .

By the Markov property, we have for all 0≤ i≤ n−1, for all x ∈ X,

Ex[ f (Xn−1
0 )|F X

i ] = gi(X i
0) , Px − a.s.

Define also gn−1,π = f and for 0≤ i < n−1,

gi,π(xi
0) = Eπ [ f (xi

0,X
n−i−1
1 )] = Eπ [ f (xi

0,X
n−1
i+1 )] . (23.3.16)

Lemma 23.3.5 shows that there exist ς0 and α0 ∈ [0,1) such that for all n ∈ N,
i ∈ {0, . . . ,n−1}, γ

n−1
0 ∈ Rn

+, f ∈ BD(Xn,γn−1
0 ) and xi ∈C,

|gi(xi
0)−gi,π(xi

0)| ≤ ς0

n−1

∑
k=i+1

γkα
k−i
0 . (23.3.17)

This implies that
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Gi,1 = gi−1(X i−1
0 )1{τi−1=i−1} = Ri,1 +gi−1,π(X i−1

0 )1{τi−1=i−1} ,

where by (23.3.17), |Ri,1| ≤ ς0 ∑
n−1
k=i γkα

k−i+1
0 . Consider now Gi,2.

Gi,2 = f (Xn−1
0 )1{τi−1=i−1,τi≥n−1}+

n−2

∑
j=i

g j(X
j

0 )1{τi−1=i−1,τi= j} .

Then, noting that if τi < ∞, Xτi ∈C and using again (23.3.17), we obtain

n−2

∑
j=i

g j(X
j

0 )1{τi−1=i−1,τi= j} = Ri,2 +
n−2

∑
j=i

g j,π(X
j

0 )1{τi−1=i−1,τi= j} ,

where |Ri,2| ≤ ς0 ∑
n−1
k=τi+1 γkα

k−τi
0 with the convention ∑

t
k=s = 0 if t < s. Thus, for

i ∈ {1, . . . ,n−1}, we get

{Gi−Gi−1}1{τi−1=i−1}

= Ri,1 +Ri,2 +
[

f (Xn−1
0 )−gi−1,π(X i−1

0 )
]
1{τi−1=i−1,τi≥n−1}

+
n−2

∑
j=i

[
g j,π(X

j
0 )−gi−1,π(X i−1

0 )
]
1{τi−1=i−1,τi= j} .

Then,

| f (xn−1
0 )−gi−1,π(xi−1

0 )| ≤ Eπ [| f (xn−1
0 )− f (xi−1

0 ,Xn−1
i )|]≤

n−1

∑
k=i

γk .

And similarly, for all 1≤ i≤ j ≤ n−2, using (23.3.16), we get

|g j,π(x
j
0)−gi−1,π(xi−1

0 )| ≤ Eπ [| f (x j
0,X

n−1
j+1 )− f (xi−1

0 ,Xn−1
i )|]≤

j

∑
k=i

γk .

Altogether, we obtained that for any i ∈ {1, . . . ,n−2},

|Gi−Gi−1|1{τi−1=i−1}

≤ ς0

n−1

∑
k=i

γkα
k−i+1
0 + ς0

n−1

∑
k=τi+1

γkα
k−τi
0 +

τi∧(n−1)

∑
k=i

γk . (23.3.18)

This yields, with γ̄ = max1≤i≤n γi,

|Gi| ≤ 2ς0γ̄(1−α0)
−1 + γ̄(τi− i+1) .

Since τi = i+τC ◦θi and σC = 1+τC ◦θ , we get for i≥ 1 that τi− i+1 = σC ◦θi−1
and the previous equation yields (23.3.7) with ς1 = 2ς0(1+(1−α0)

−1).
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We now consider (23.3.15). Note first that for α ∈ (α0,1), (23.3.4) and (23.3.18)
yield

|Gi−Gi−1| ≤ ς0

n−1

∑
k=i

γkα
k−i + ς0α

−τi+i
n−1

∑
k=τi+1

γkα
k−i+1 +α

−τi+i
τi∧(n−1)

∑
k=i

γkα
k−i

≤ ς0

n−1

∑
k=i

γkα
k−i + ς0α

−σC◦θi−1
n−1

∑
k=i

γkα
k−i ≤ 2ς0α

−σC◦θi−1
n−1

∑
k=i

γkα
k−i .

The latter bound and the Cauchy–Schwarz inequality yield

|Gi−Gi−1|2 ≤ 4ς
2
0 (1−α)−1

α
−2σC◦θi−1

n−1

∑
k=i

γ
2
k α

k−i .

This proves (23.3.8) with ς2 = 4ς2
0 (1−α)−1. 2

Since P is not uniformly ergodic, we cannot obtain a deviation inequality for
all initial distributions. However, we can extend 23.3.1 to the case where the initial
distribution is the invariant probability.

Corollary 23.3.7 Let P be a geometrically ergodic Markov kernel. Then there
exists a constant β such that for all f ∈ BD(Xn,γn−1

0 ) and all t ≥ 0,

Pπ

(∣∣ f (Xn−1
0 )−Eπ

[
f (Xn−1

0 )
]∣∣> t

)
≤ 2e−β t2/∑

n−1
i=0 γ2

i .

Proof. Assume that P is geometrically ergodic. Then, by Lemma 9.3.9, the Markov
kernel P is aperiodic. By Theorem 15.1.5 there exists an accessible geometrically
recurrent small set C. Let x∗ ∈C. For k > 0 and f ∈ BD(Xn,γn−1

0 ), denote

∆k =
∣∣∣Ex∗

[
f (Xn+k−1

k )
]
−Eπ

[
f (Xn−1

0 )
]∣∣∣ .

The function xn+k−1
0 7→ f (xn+k−1

k ) belongs to BD(Xn+k,0k−1
0 ,γn−1

0 ) where 0k−1
0 is

the k-dimensional null vector. Thus, applying Theorem 23.3.1, there exists β > 0
such that

Px∗
(∣∣∣ f (Xn+k−1

k )−Eπ

[
f (Xn−1

0 )
]∣∣∣> t

)
≤ Px∗

(∣∣∣ f (Xn+k−1
k )−Ex∗

[
f (Xn+k−1

k )
]∣∣∣> (t−∆k)

+
)

≤ 2e−β ((t−∆k)
+)2/∑

n−1
i=0 γ2

i .

Moreover, for all x ∈ C, limn→∞ dTV(P
n(x, ·),π) = 0. Thus, limk→∞ ∆k = 0 and

for every bounded measurable function h, limk→∞ Pkh(x∗) = π(h). Setting h(x) =
Px
(∣∣ f (Xn+k−1

k )−Eπ

[
f (Xn−1

0 )
]∣∣> t

)
we therefore get
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π(h) = Pπ

(∣∣ f (Xn−1
0 )−Eπ

[
f (Xn−1

0 )
]∣∣> t

)
= lim

k→∞
Pkh(x∗) = lim

k→∞
Px∗
(∣∣∣ f (Xn+k−1

k )−Eπ

[
f (Xn−1

0 )
]∣∣∣> t

)
≤ lim

k→∞
2e−β ((t−∆k)

+)2/∑
n−1
i=0 γ2

i = 2e−β t2/∑
n−1
i=0 γ2

i .

The proof is completed. 2

Similarly to Corollary 23.2.4, we obtain as a corollary an exponential inequality
for the empirical measure π̂n centered at π( f ).

Corollary 23.3.8 Let P be a geometrically recurrent Markov kernel. Then, for
every geometrically recurrent small set C, there exist constants β > 0 and κ

such that, for all x ∈C and t > κn−1 osc ( f ),

Px (|π̂n( f )−π( f )|> t)≤ 2exp

{
−

2n
(
t−κn−1 osc ( f )

)2

κ2 osc2 ( f )

}
. (23.3.19)

Proof. By Lemma 23.3.5, there exists a constant κ such that for all x ∈C,

|Ex[π̂n( f )]−π( f )| ≤ κn−1 osc ( f ) .

The rest of the proof is along the same lines as the proof of Corollary 23.2.4. 2

23.4 Exponential concentration inequalities under Wasserstein
contraction

In this Section, (X,d) is a complete separable metric space endowed with its Borel
σ -field denoted by X . We cannot extend McDiarmid’s inequality to functions of
bounded differences applied to a non irreducible Markov chain. Recall from Chap-
ter 18 that functions of bounded differences are closely related to the total variation
distance. As seen in Chapter 20, in order to use the Wasserstein distance, we can
only consider Lipschitz functions. Therefore we introduce the following definition
which parallels Definition 23.1.1.

Definition 23.4.1 (Separately Lipschitz functions) A function f : Xn→ R is sep-
arately Lipschitz if there exist nonnegative constants (γ0, . . . ,γn−1) such that for all
xn−1

0 ∈ Xn and yn−1
0 ∈ Xn,
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| f (xn−1
0 )− f (yn−1

0 )| ≤
n−1

∑
i=0

γid(xi,yi) . (23.4.1)

The class of all functions f which satisfy (23.4.1) is denoted by Lipd(X
n,γn−1

0 ).

Note that if d is the Hamming distance, then Lipd(X
n,γn−1

0 ) =BD(Xn,γn−1
0 ). We

first state a technical result, which is similar to Lemma 23.2.1.

Lemma 23.4.2 Let P be a Markov kernel on X×X such that ∆d (P) < ∞. Then,
for all n ∈ N∗, γ0

0 [n−1] ∈ Rn
+, f ∈ BD(Xn,γn−1

0 ) and ξ ,ξ ′ ∈M1(X ),

|Eξ [ f (X
n−1
0 )]−Eξ ′ [ f (X

n−1
0 )]| ≤

n−1

∑
i=0

γi∆
i
d (P)Wd

(
ξ ,ξ ′

)
.

Proof. Theorem 20.1.3 shows that there exists a kernel coupling K of (P,P) such
that for all (x,x′) ∈ X×X, Wd (P(x, ·),P(x′, ·)) = Kd(x,x′). Using Lemma 20.3.2
and Proposition 20.3.3, we have for all i ∈ N and (x,x′) ∈ X×X,

Kid(x,x′)≤∆i
d (P)d(x,x′) . (23.4.2)

Let η ∈C (ξ ,ξ ′) and let P̄η be the probability measure on ((X×X)N,(X ⊗X )⊗N)
which makes the coordinate process {(Xn,X ′n), n ∈ N} a Markov chain with the
Markov kernel K and initial distribution η and let Ēη be the associated expectation
operator. Then, applying (23.4.2),

|Eξ [ f (X
n−1
0 )]−Eξ ′ [ f (X

n−1
0 )]|= |Ēη [ f (Xn−1

0 )− f ({X ′}n−1
0 )]|

≤ Ēη

[
n−1

∑
i=0

γid(Xi,X ′i )

]
=

n−1

∑
i=0

γiη(Kid)≤
n−1

∑
i=0

γi∆
i
d (P)

∫
η(dxdy)d(x,y) ,

which completes the proof since η is arbitrary in C (ξ ,ξ ′).
2

In order to get exponential concentration inequalities for

Px(| f (Xn−1
0 )−Ex[ f (Xn−1

0 )]|> t)

where f ∈ Lipd(X
n,γn−1

0 ), we again make use of the functions g`, ` ∈ {0, . . . ,n−1}
defined in (23.2.1):

g`(x`0) =
∫

f (xn−1
0 )

n−1

∏
i=`+1

P(xi−1,dxi) = Ex`

[
f (x`0,X

n−`−1
1 )

]
. (23.4.3)
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Combining Lemma 23.4.2 and (23.4.3) shows that for all ` ∈ {0, . . . ,n−1}, x`−1
0 ∈

X` and x,y ∈ X,

g`(x`−1
0 ,x)−g`(x`−1

0 ,y)

≤ γ`d(x,y)+Ex

[
f (x`−1

0 ,y,Xn−`−1
1 )

]
−Ey

[
f (x`−1

0 ,y,Xn−`−1
1 )

]
≤ γ`d(x,y)+

n−1

∑
i=`+1

γi∆
i−`−1
d (P)Wd (P(x, ·),P(y, ·))

≤

{
n−1

∑
i=`

γi∆
i−`
d (P)

}
d(x,y) . (23.4.4)

Theorem 23.4.3. Let (X,d) be a complete separable metric space and P be a
Markov kernel on X×X . Assume that there exist constants (β ,δ ) ∈R+× R̄+ such
that for all measurable functions h such that |h|Lip(d) ≤ δ and all x ∈ X,

P(eh)(x)≤ e2β 2|h|2Lip(d)ePh(x) . (23.4.5)

Let n≥ 1 and let γ0, . . . ,γn−1 be non negative real numbers (at least one of which is
positive). Define for ` ∈ {0, . . . ,n−1},

α` =
n−1

∑
i=`

γi∆
i−`
d (P) , α

∗ = max
0≤k≤n−1

αk , α
2 =

n−1

∑
k=0

α
2
k .

Then, for all f ∈ Lipd(X
n,γn−1

0 ) and all x ∈ X,

Px(| f (Xn−1
0 )−Ex[ f (Xn−1

0 )]|> t)≤

2e
− t2

8β2α2 if 0≤ t ≤ δ (2βα)2/α∗ ,

2e−
δ t

2α∗ if t > δ (2βα)2/α∗ .
(23.4.6)

Proof. Without loss of generality, we assume Ex[ f (Xn−1
0 )] = 0. We again consider

the functions g`, ` ∈ {0, . . . ,n−1} defined in (23.4.3). By (23.4.4), for all s≥ 0 and
x`−1

0 ∈ X`, the function
x 7→ sg`(x`−1

0 ,x)

is Lipschitz with constant sα` = s∑
n−1
i=` γi∆

i−`
d (P). Thus, if sα∗ ≤ δ , then, combin-

ing (23.4.5) with (23.2.3), we obtain for all ` ∈ {1, . . . ,n−1},

E
[

esg`(X`
0 )
∣∣∣F X

`−1

]
≤ e2s2β 2α2

` esg`−1(X
`−1
0 )

E
[
esg0(X0)

]
≤ e2s2β 2α2

0 .
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This implies using the decomposition (23.2.2),

logEx

[
es f (Xn−1

0 )
]
= logEx

[
esgn−1(X

n−1
0 )
]
≤ 2s2

β
2

n−1

∑
`=0

α
2
` .

Applying Markov’s inequality and setting α2 = ∑
n−1
`=0 α2

` ,

Px
(

f (Xn−1
0 )−Ex[ f (Xn−1

0 )]> t
)
≤ exp

(
−st +2s2

β
2
α

2) . (23.4.7)

If 0 ≤ t ≤ δ (2βα)2/α∗, we can choose s = (2βα)−2t which implies sα∗ ≤ δ and
consequently,

Px
(

f (Xn−1
0 )−Ex[ f (Xn−1

0 )]> t
)
≤ e
− t2

8β2α2 .

If t > δ (2βα)2/α∗, we choose s = δ/α∗. Then,

2s2
β

2
α

2 = 2
δ 2β 2α2

(α∗)2 ≤
δ t

2α∗
.

Plugging this inequality and s = δ/α∗ into (23.4.7) yields

Px
(

f (Xn−1
0 )−Ex[ f (Xn−1

0 )]> t
)
≤ e−

δ t
2α∗ .

This proves (23.4.6). 2

To apply Theorem 23.4.3, the Markov kernel P must satisfy property (23.4.5). This
inequality can be proved when P satisfies the so-called logarithmic Sobolev inequal-
ity. See Exercise 23.5. We will here illustrate this result by considering a Markov
kernel P be on X×X with finite granularity, defined as

σ∞ =
1
2

sup
x∈X

diam{supp(S(x))} , S(x) = supp(P(x, ·)) . (23.4.8)

For every Lipschitz function h we get

Ex

[
{h(X1)−Ph(x)}2

]
=

1
2

∫∫
X2
{h(y)−h(z)}2P(x,dy)P(x,dz)

≤ 1
2

∫∫
S(x)×S(x)

{h(y)−h(z)}2P(x,dy)P(x,dz)

≤ 1
2
|h|2Lip(d)

∫∫
S(x)×S(x)

d2(y,z)P(x,dy)P(x,dz) .

Since d(y,z)≤ 2σ∞ for all y,z ∈ S(x), the previous bound implies

Ex

[
{h(X1)−Ph(x)}2

]
≤ |h|2Lip(d) 2σ

2
∞ . (23.4.9)
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Lemma 23.4.4 Let P be a Markov kernel on X×X . Assume that the granular-
ity σ∞ < ∞ is finite. Let h : X→ R be a measurable function such that |h|Lip(d) ∈
(0,1/(3σ∞)]. Then, for all x ∈ X,

P(eh)(x)≤ e2|h|2Lip(d)σ
2
∞ePh(x) . (23.4.10)

Proof. Note that for all u ∈ [0,1] and x ∈ X,

{(1−u)Ph(x)+uh(X1)} ≤ Ph(x)+ |h|Lip(d)

∫
S(x)

d(X1,y)P(x,dy)

≤ Ph(x)+2 |h|Lip(d) σ∞ Px − a.s. (23.4.11)

where we have used that X1 ∈ S(x) Px − a.s. and for all y,z ∈ S(x), d(y,z)≤ 2σ∞,
where S(x) is defined in (23.4.8). Set ϕ(u) = exp{[(1−u)Ph(x)+uh(X1)]}, u ∈
[0,1]. Writing ϕ(1)≤ ϕ(0)+ϕ ′(0)+ supu∈[0,1] ϕ

′′(u)/2 and taking the expectation
with respect to Px yields

Ex[eh(X1)]≤ ePh(x)+
1
2
Ex

[
{h(X1)−Ph(x)}2

]
ePh(x)+2|h|Lip(d)σ∞

where the last term of the right-hand side follows from (23.4.11). Combining with
the bound (23.4.9), we finally get

P(eh)(x) = Ex[eh(X1)]≤ ePh(x)
(

1+ |h|2Lip(d) σ
2
∞e2|h|Lip(d)σ∞

)
If |h|Lip(d) < 1/(3σ∞) then e2|h|Lip(d)σ∞ ≤ e2/3 ≤ 2 and this proves (23.4.10) using
1+u≤ eu. 2

Theorem 23.4.5. Let P be a Markov kernel on X×X . Assume that ∆d (P) < ∞

and σ∞ < ∞ where σ∞ is defined in (23.4.8). Let n ≥ 1 and let γ0, . . . ,γn−1 be non
negative real numbers (at least one of which is positive). Define

αk =
n−1

∑
i=k

γi∆
i−k
d (P) , α

∗ = max
0≤k≤n−1

αk , α
2 =

n−1

∑
k=0

α
2
k .

Then, for all f ∈ Lipd(X
n,γn−1

0 ),

Px(| f (Xn−1
0 )−Ex[ f (Xn−1

0 )]|> t)≤

2e
− t2

8α2σ2
∞ if 0≤ t ≤ 4α2σ∞/(3α∗) ,

2e−
t

6α∗σ∞ if t > 4α2σ∞/(3α∗) .
(23.4.12)
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Proof. Lemma 23.4.4 shows that (23.4.5) is satisfied with δ = 1/3σ∞ and β 2 = σ2
∞.

The result then follows from Theorem 23.4.3. 2

23.5 Exercices

23.1 (Hoeffding’s Lemma). In this exercise, we derive another proof of Hoeffd-
ing’s inequality. Let V be an integrable random variable on (Ω ,F ,P) and G ⊂F
be a σ -field such that

E [V |G ] = 0 and A≤V ≤ B P − a.s.

where A,B are two G -measurable random variables.

1. Set p =−A/(B−A) and φ(u) =−pu+ log(1− p+ peu). Show that

E
[

esV ∣∣G ]= (1− p+ pes(B−A))e−ps(B−A) = eφ(s(B−A)),

2. Show that for any s > 0,

E
[

esV ∣∣G ]≤ e
1
8 s2(B−A)2

.

23.2. Let P be a uniformly ergodic Markov kernel on R with invariant probability π

and let x 7→ Fπ(x) = π((−∞,x]) be the associated distribution function. Let {Xt , t ∈
N} be the canonical chain associated to the kernel P and let Fn be the corresponding
empirical distribution function, i.e. F̂n(x) = n−1

∑
n−1
t=0 1{Xt≤x}. Let the Kolmogorov-

Smirnov statistic Kn be defined by

Kn = sup
x∈R
|F̂n(x)−Fπ(x)|

Prove that for every initial distribution ξ , n ≥ 1 and t ≥ n−1dTV(ξ ,π)(1+∆), we
have

Pξ (Kn ≥ t)≤ 2exp

{
−

2n
(
t−n−1dTV(ξ ,π)(1+∆)

)2

(1+2∆)2

}
,

where ∆ is defined in (23.2.15).
Hint: write Kn as a function of (X0, . . . ,Xn−1) which satisfies the assumptions of
Theorem 23.2.2.

23.3. Let P be a uniformly ergodic Markov kernel on Rd and let {Xk, k ∈N} be the
associated canonical chain. Assume that the (unique) invariant probability π has a
density h with respect to Lebesgue measure on Rd . Let K be a measurable nonneg-
ative function on Rd such that

∫
Rd K(u)du = 1. Given X0, . . . ,Xn−1, a nonparametric

kernel density estimator hn of the density h is defined by:
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hn(x) =
1
n

n−1

∑
i=0

1
bd

n
K
(

x−Xi

bn

)
, x ∈ Rd (23.5.1)

where {bn, n ∈ N∗} is a sequence of positive real numbers (called bandwiths). The
integrated error is defined by

Jn =
∫
|hn(x)−h(x)|dx .

Prove that for all n≥ 1 and t > 0,

Pπ(|Jn−Eπ [Jn]|> t)≤ 2exp
(
− nt2

2(1+2∆)2

)
. (23.5.2)

Hint: write Jn as a function of X0, . . . ,Xn−1 which satisfy the assumptions of Theo-
rem 23.2.2.

23.4. Let P be a Markov kernel ôn X×X , where (X,ϒ ) is a complete separable
metric space and X is the associated σ -field. Assume that ∆d (P) ≤ 1− κ with
κ ∈ [0,1). Recall that by Theorem 20.3.4, P admits a unique invariant measure π

such that

E(x) =
∫

X
d(x,y)π(dy)< ∞

for all x ∈ X. Note that E(x)≤ diam(X). Let f be a 1-Lipschitz function. Define

π̂n( f ) =
1
n

n−1

∑
i=0

f (Xi)

1. Show that

|Ex[π̂n( f )]−π( f )| ≤ E(x)
nκ
≤ diam(X)

nκ
. (23.5.3)

2. Assume that σ∞ < ∞ (see (23.4.8)) and that diam(X)< ∞. Show that for every
Lipschitz function f and t > (nκ)−1 | f |Lip(d) diam(X),

Px(|π̂n( f )−π( f )|> t)

≤

{
2e−nκ2(t−(nκ)−1| f |Lip(d)diam(X))2/(8σ2

∞) if 0≤ t ≤ 4σ∞/(3κ) ,

2e−nκ(t−(nκ)−1| f |Lip(d)diam(X))/(6σ∞) if t > 4σ∞/(3κ) .
(23.5.4)

23.5. Assume that the kernel P on Rd satisfies the logarithmic Sobolev inequality,
that is for all continuously differentiable functions f : Rd → R and all x ∈ Rd ,

P( f 2 log( f 2))(x)− (P f 2)(x) log(P f 2)(x)≤ 2CP(|∇ f |2)(x) . (23.5.5)
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1. Set f 2
t = eth− 1

2 t2C|h|2Lip(d) . Prove that for all t ∈ R and all x ∈ R,

P(|∇ ft |2)(x)≤
t2

4
|h|2Lip(d) P( f 2

t )(x) . (23.5.6)

2. Set Λ(t,x) = P ft(x). Use (23.5.5) and (23.5.6) to prove that for all x ∈ Rd and
t ∈ R,

tΛ ′(t,x)≤Λ(t,x) logΛ(t,x) . (23.5.7)

3. Deduce that Λ(t) ≤ 1 for all t ∈ R+ and x ∈ Rd . Conclude that (23.4.5) holds
with β 2 =C/4 and δ = ∞.

23.6 Bibliographical notes

The concentration of measure phenomenon was evidenced by V. Milman in the
1970s while studying the asymptotic geometry of Banach spaces. The monographs
Ledoux (2001) and Boucheron et al (2013) presents numerous examples and prob-
abilistic, analytical and geometric techniques related to this notion. A short but in-
sightful introduction is given in Bercu et al (2015).

The Hoeffding’s inequality (see Lemma 23.1.4 has been first established in Ho-
effding (1963). McDiarmid’s inequality (Theorem 23.1.5) has been established in
McDiarmid (1989) who introduced the method of proof based on a martingale
decomposition. McDiarmid’s inequality for uniformly ergodic Markov chain has
been first established in Rio (2000a) whose result is slightly) improved in Theo-
rem 23.2.2. See also Samson (2000) for other types of concentration inequalities for
uniformly ergodic Markov chains. For additive functionals, Lezaud (1998) proved a
Prohorov-type inequality under spectral gap condition in L2, from which a subgaus-
sian concentration inequality follows.

There are far fewer results for geometrically ergodic chains. Adamczak (2008)
has established a subgaussian concentration inequality for geometrically ergodic
Markov chains under the additional assumption that the Markov kernel is trongly
aperiodic and that the functional is invariant under permutations of variables. The
subgaussian concentration inequality of V -geometrically ergodic Markov chain
stated in Theorem 23.3.1 is adapted from Dedecker and Gouëzel (2015) (see also
Chazottes and Gouëzel (2012)). The proof essentially follows the original deriva-
tion Dedecker and Gouëzel (2015) but simplifies (and clarifies) some arguments by
using distributional coupling.

The exponential concentration inequality for uniformly contractive Markov chain
in the Wasserstein distance (Theorem 23.4.5) is due to Joulin and Ollivier (2010).
Many important results were already presented in Djellout et al (2004). The use of
the logarithmic Sobolev inequality (illustrated in Exercise 23.5) to prove concentra-
tion inequalities is the subject of a huge literature. See e.g. Ledoux (2001).
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Appendix A
Notations

Sets and Numbers

• N: the set of natural numbers including zero, N= {0,1,2, . . .}.
• N∗: the set of natural numbers excluding zero, N∗ = {1,2, . . .}.
• N̄: the extended set of natural numbers, N̄= N∪{∞}.
• Z: the set of relative integers, Z= {0,±1,±2, . . .}.
• R: the set of real numbers.
• Rd : Euclidean space consisting of all column vectors x = (x1, . . . , xd)

′.
• R̄: the extended real line, i.e. R∪{−∞,∞}.
• dxe: the smallest integer bigger than or equal to x.
• bxc: the largest integer smaller than or equal to x.
• if a = {a(n), n ∈ Z} and b = {b(n), n ∈ Z} are two sequences, a ∗ b denote

the convolution of a and b, defined formally by a ∗ b(n) = ∑k∈Z a(k)b(n− k).
The j-th power of convolution of the sequence a is denoted a∗ j with a∗0(0) = 1
and a∗0(k) = 0 if k 6= 0.

Metric space

• (X,d) a metric space.
• B(x,r) the open ball of radius r > 0 centred in x,

B(x,r) = {y ∈ X : d(x,y) < r} .

• U closure of the set U ⊂ X.
• ∂U boundary of the set U ⊂ X.

609
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Binary relations

• a∧b the minimum of a and b
• a∨b the maximum of a and b

Soient {an, n ∈ N} et {bn, n ∈ N} two positive sequences.

• an � bn the ratio of the two sides is bounded from above and below by positive
constants that do not depend on n
• an ∼ bn the ratio of the two sides converges to one

Vectors, matrices

• Md(R) (resp. Md(C)) the set of d×d matrices with real (resp. complex) coef-
ficients.
• for M ∈Md(C) and |·| any norm on Cd , 9M9 is the operator norm, defined as

9M9 = sup
{
|Mx|
|x|

, x ∈ Cd , x 6= 0
}

.

• Id d×d identity matrix.
• Let A and B be a m× n and p× q matrices, respectively. Then, the Kronecker

product A⊗B of A with B is the mp×nq matrix whose (i, j)’th block is the p×q
Ai, jB, where Ai, j is the (i, j)’th element of A. Note that the Kronecker product
is associative (A⊗B)⊗C = A⊗ (B⊗C) and (A⊗B)(C⊗B) = (AC⊗BD) (for
matrices with compatible dimensions).

• Let A be an m× n matrix. Then Vec(A) is the (mn× 1) vector obtained from
A by stacking the columns of A (from left to right). Note that Vec(ABC) =
(CT ⊗A)Vec(B).

Functions

• 1A indicator function with 1A(x) = 1 if x ∈ A and 0 otherwise. 1{A} is used if
A is a composite statement

• f+: the positive part of the function f , i.e. f+(x) = f (x)∨0,
• f−: the negative part of the function f , i.e. f−(x) =−( f (x)∧0).
• f−1(A): inverse image of the set A by f .
• For f a real valued function on X, | f |∞ = sup{ f (x) : x ∈ X} is the supremum

norm and osc ( f ) is the oscillation seminorm , defined as

osc ( f ) = sup
(x,y)∈X×X

| f (x)− f (y)|= 2 inf
c∈R
| f − c|∞ . (A.0.1)
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• A nonnegative (resp. positive) function is a function with values in [0,∞] (resp.
(0,∞]).

• A nonnegative (resp. positive) real-valued function is a function with values in
[0,∞) (resp. (0,∞)).

• If f : X→ R and g : Y→ R are two functions, then f ⊗ g is the function from
X×Y to R defined for all (x,y) ∈ X×Y by f ⊗g(x,y) = f (x)g(y).

Function spaces

Let (X,X ) be a measurable space.

• F(X): the vector space of measurable functions from (X,X ) to (−∞,∞).
• F+(X): the cone of measurable functions from (X,X ) to [0,∞].
• Fb(X): the subset of F(X) of bounded functions.
• For any ξ ∈Ms(X ) and f ∈ Fb(X), ξ ( f ) =

∫
f dξ .

• If X is a topological space,

– Cb(X) is the space of all bounded continuous real functions defined on X;
– C(X) is the space of all continuous real functions defined on X;
– Ub(X) is the space of all bounded uniformly continuous real functions de-

fined on X;
– U(X) is the space of all uniformly continuous real functions defined on X;
– Lipb(X) is the space of all bounded Lipschitz real functions defined on X;
– Lip(X) is the space of all Lipschitz real functions defined on X;

• If X is a locally compact separable metric space,

– Cc(X) is the space of all continuous functions with compact support.
– F0(X) is the space of all continuous functions which converges to zero at

infinity.

• L p(µ): the space of measurable functions f such that
∫
| f |pdµ < ∞.

Measures

Let (X,X ) be a measurable space.

• δx Dirac measure with mass concentrated on x, i.e. δx(A) = 1 if x ∈ A and 0
otherwise.
• Leb: Lebesgue measure on Rd

• Ms(X ) is the set of finite signed measures on (X,X ).
• M+(X ) is the set of measures on (X,X ).
• M1(X ) denotes the set of probabilities on (X,X ).
• M0(X ) the set of finite signed measures ξ on (X,X ) satisfying ξ (X) = 0.
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• Mb(X ) the set of bounded measures ξ on (X,X ).
• µ � ν : µ is absolutely continuous with respect to ν .
• µ ∼ ν : µ is equivalent to ν , i.e., µ � ν and ν � µ .

If X is a topological space (in particular a metric space) then X is always taken
to be the Borel sigma-field generated by the topology of X. If X = R̄d , its Borel
sigma-field is denoted by B

(
R̄d
)
.

• supp(µ) : the (topological) support of a measure µ on a metric space.
• µn

w⇒ µ: The sequence of probability measures {µn, n ∈ N} converges weakly
to µ , i.e. for any h ∈ Cb(X), limn→∞ µn(h) = µ(h).

The topological space X is locally compact if every point x ∈ X has a compact
neighborhood.

• C0(X): the Banach space of continuous functions that vanish at infinity.

• µn
w∗⇒ µ: The sequence of σ -finite measures {µn, n ∈ N} converges to µ

*weakly, i.e. limn→∞ µn(h) = µ(h) for all h ∈ C0(X).

Probability space

Let (Ω ,F ,P) be a probability space. A random variable X is a measurable mapping
from (Ω ,F ) to (X,X ).

• E(X), E [X ]: the expectation of a random variable X with respect to the proba-
bility P.

• Cov(X ,Y ) covariance of the random variables X and Y .
• Given a sub-σ -field F and A ∈A , P(A |F ) is the conditional probability of A

given F and E [X |F ] is the conditional expectation of X given F .
• LP (X): the distribution of X on (X,X ) under P, i.e. the image of P under X .

• Xn
P

=⇒ X the sequence of random variables (Xn) converge to X in distribution
under P.

• Xn
P −prob−→ X the sequence of random variables (Xn) converge to X in probability

under P.
• Xn

P-a.s.−→ X the sequence of random variables (Xn) converge to X P-almost surely.

Usual distributions

• B(n, p): Binomial distribution of n trial with success probability p.
• N(µ,σ2): Normal distribution with mean µ and variance σ2.
• Unif(a,b): uniform distribution of [a,b].
• χ2: chi-square distribution.
• χ2

n : chi-square distribution with n degrees of freedom.
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Topology, measure and probability

B.1 Topology

B.1.1 Metric spaces

Theorem B.1.1 (Baire’s theorem). Let (X,d) be a complete metric space. A count-
able union of closed sets with empty interior has an empty interior.

Proof. (Rudin, 1991, Theorem 2.2) 2

Let (X,d) be a metric space. The distance from a point to a set and the distance
between two sets are defined, for x ∈ X and E,F ⊂ X, by

d(x,E) = inf{d(x,y) : y ∈ E}
d(E,F) = inf{d(x,y) : x ∈ E,y ∈ F}= inf{d(x,F) : x ∈ E} .

Observe that d(x,E) = 0 if and only if x ∈ E. The diameter of E ⊂ X is defined as
diam(E) = sup{d(x,y) : x,y ∈ E}. A set E is said to be bounded if diam(E)< ∞.

Lemma B.1.2 Let X be a metric space. Let F be a closed set and W be an open set
such that F ⊂W. Then there exists f ∈ C(X) such that 0 ≤ f ≤ 1, f = 1 on F and
f = 0 on W c.

Proof. For all x ∈ X, d(x,F)+ d(x,W c) > 0. Therefore the function f defined by
f (x) = 1−d(x,F)/{d(x,F)+d(x,W c)} has the required properties. 2

Lemma B.1.3 Let (X,d) be a separable metric space. Then for every ε > 0, there
exists a partition {Ak, k ∈ N∗} ⊂B(X) of X such that diam(Ak)≤ ε for all k ≥ 1.

Proof. Since X is separable, there exists a countable covering {Bn, n ∈N∗} of X by
open balls of radius ε/2. We set A1 = B1 and, for k ≥ 2, Ak = Bk \

⋃k
j=1 B j so that

613
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{Ak, k ∈ N∗} defines a partition of X by Borel sets with diameters at most equal to
ε . 2

Definition B.1.4 (Polish space)
A Polish space X is a topological space which is separable and completely metriz-
able, i.e. there exists a metric d inducing the topology of X such that (X,d) is a
complete separable metric space.

B.1.2 Lower and Upper semi-continuous functions

Definition B.1.5 Let X be a topological space.

(i) A function f : X→ (−∞,∞] is said to be lower semi-continuous at x0 if for all
a < f (x0), there exists V ∈ Vx0 such that for all x ∈V , f (x)≥ a. A function f is
lower semi-continuous on X (which we denote f is lower semi-continuous), if f
is lower semi-continuous at x for all x ∈ X.

(ii) A function f : X→ [−∞,∞) is upper semi-continuous a x0 if − f is lower semi-
continuous at x0. A function f is upper semi-continuous on X if f is upper
semi-continuous at x for all x ∈ X.

(iii) A function f : X→ (−∞,∞) is continuous if it is both lower and upper semi-
continuous.

Lemma B.1.6 Let X be a topological space. A function f : X→ R is lower semi-
continuous if and only if the set { f > a} is open for all a ∈ R; it is upper semi-
continuous if and only if { f < a} is open for all a ∈ R.

Proposition B.1.7 Let X be a topological space.

(i) If U is open in X, then 1U is lower semi-continuous,
(ii) If f is lower semi-continuous and c ∈ [0,∞), then c f is lower semi-

continuous,
(iii) If G is a family of lower semi-continuous functions and f (x) =

sup{g(x) : g ∈ G }, then f is lower semi-continuous,
(iv) If f and g are lower semi-continuous, then f +g is lower semi-continuous,
(v) If f is lower semi-continuous and K is compact, then inf{x ∈ K : f (x)}=

f (x0) for some x0 ∈ K,
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(vi) If X is a metric space and f is lower semi-continuous and nonnegative,
then

f (x) = sup{g(x) : g ∈ C(X),0≤ g≤ f}

Proposition B.1.8 Let X be a separable metric space. A function f : X→ R
is lower semi-continuous if and only if there exists an increasing sequence
{ fn, n ∈ N} of continuous functions such that f = limn→∞ fn.

Proposition B.1.9 Let X be a topological space and A ∈ X.

(i) if f is lower semi-continuous, then supx∈A f (x) = supx∈A f (x).
(ii) if f is upper semi-continuous, then infx∈A f (x) = infx∈A f (x).

B.1.3 Locally compact separable metric space

Definition B.1.10 A metric space (X,d) is said to be a locally compact separable
metric space if it is separable and if each point admits a relatively compact neigh-
borhood.

A compact space is locally compact but there exist locally compact sets which are
not compact such as the euclidean space Rn or any space locally homeomorphic
to Rn.

Definition B.1.11 Let (X,d) be a locally compact separable metric space.

(i) The support of a real-valued continuous function f , denoted supp( f ), is the
closure of the set {| f |> 0}.

(ii) Cc(X) is the space of continuous functions with compact support.
(iii) C0(X) is the space of continuous functions vanishing at infinity, i.e. for every

ε > 0, there exists a compact Kε such that | f (x)| ≤ ε if x /∈ Kε .
(iv) Cb(X) is the space of bounded continuous functions.
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The following inclusions obviously hold: Cc(X) ⊂ C0(X) ⊂ Cb(X). Moreover,
C0(X) is the closure of Cc(X) with respect to the uniform topology. The next result
is known as Urysohn’s lemma.

Lemma B.1.12 If X is a locally compact separable metric space and K ⊂U ⊂ X
where K is compact and U is open, there exist a relatively compact open set W such
that K ⊂W ⊂U and a function f ∈ Cc(X) such that 1K ≤ f ≤ 1W .

Proposition B.1.13 Let (X,d) be a locally compact separable metric space.

(i) Let U be an open set. There exists a sequence {Vn, n ∈ N∗} of relatively
compact open sets such that Vn ⊂ V̄n ⊂Vn+1 and U =

⋃
n Vn.

(ii) Let U be an open set. There exists an increasing sequence { fn, n ∈ N∗},
fn ∈ Cc(X), 0 ≤ fn ≤ 1, such that fn ↑ 1U (1U is the pointwise increasing
limits of elements of Cc(X)).

(iii) Let K be a compact set. There exists a sequence {Vn, n ∈ N∗} of relatively
compact open sets such that Vn+1 ⊂ V̄n+1 ⊂Vn and K =

⋂
n Vn.

(iv) Let K be a compact set. There exists a decreasing sequence { fn, n ∈ N∗},
fn ∈ Cc(X), 0≤ fn ≤ 1, such that fn ↓ 1K (1K is the pointwise decreasing
limit of functions in Cc(X)).

Lemma B.1.14 Let f ≥ 0 be a lower semi-continuous function. Then there exists
an increasing sequence { fn, n ∈ N} ∈ C+

c (X) such that f = limn→∞ fn.

Theorem B.1.15. Let (X,d) be a locally compact separable metric space. Then,
C0(X) equipped with the uniform norm is separable.

B.2 Measures

An algebra on a set X is a nonempty set of subsets of X which is closed by finite
union, finite intersection and complement (hence contains X). A σ -field on X is a
set of subsets of X which is closed by coutable union, coutable intersection and
complement. A measurable space is a pair (X,X ) where X is a non empty set and
X a σ -field.

A σ -field B is said to be generated by a collection of sets C , written B = σ(C ),
if B is the smallest σ -field containing the all sets of C . A σ -field B is countably
generated if it is generated by a countable collection C .

If X is a topological space, its Borel σ -field is the σ -field generated by its topol-
ogy.
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B.2.1 Monotone Class Theorems

Definition B.2.1 Let Ω be a set. A collection M of subsets of Ω is called a mono-
tone class if

(i) Ω ∈M ,
(ii) A,B ∈M , A⊂ B =⇒ B\A ∈M ,

(iii) {An, n ∈ N} ⊂M , An ⊂ An+1 =⇒
⋃

∞
n=1 An ∈M .

A σ -field is a monotone class. The intersection of an arbitrary family of monotone
classes is also a monotone class. Hence for any family of subsets C of Ω , there is
a smallest monotone class containing C , which is the intersection of all monotone
classes containing C .

If N is a monotone class which is stable by finite intersection, then N is an
algebra. Indeed since Ω ⊂N , N is stable by proper difference, if A ∈N , then
Ac = Ω \A ∈N . The stability by finite intersection implies the stability by finite
union.

Theorem B.2.2. Let C ⊂M . Assume that C is stable by finite intersection and that
M is a monotone class. Then σ(C )⊂M .

Proof. (Billingsley, 1986, Theorem 3.4) 2

Theorem B.2.3. Let H be a vector space of bounded functions on Ω and C a class
of subsets of Ω stable by finite intersection. Assume that H satisfies

(i) 1Ω ∈H and for all A ∈ C , 1A ∈H
(ii) If { fn, n ∈ N} is a bounded increasing sequence of functions of H then

supn∈N fn ∈H .

Then H contains all the bounded σ(C )-measurable functions.

Theorem B.2.4. Let H be a vector space of bounded real-valued functions on a
measurable space (Ω ,A ) and {Xi, i ∈ I} be a family of measurable applications
from (Ω ,A ) to (Xi,Fi). Assume that

(i) if {Yn, n ∈ N} is a bounded increasing sequence of functions of H then
supn∈NYn ∈H .
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(ii) for all J a finite subset of I and Ai ∈Fi, i ∈ J,

∏
i∈J

1Ai ◦Xi ∈H .

Then H contains all the bounded σ(Xi, i ∈ I)-measurable functions.

B.2.2 Measures

Let A and B be two subsets of a set E. Let A∆B be the set of elements of A∪B which
are not in A∩B, i.e.

A∆B = (A∪B)\ (A∩B) = (A\B)∪ (B\A) .

Lemma B.2.5 Let µ be a bounded measure on a measurable set (X,X ) and let A
be a sub-algebra of X . If X = σ(A ), then for every measure µ on X , for every
ε > 0 and B ∈X , there exists A ∈A such that µ(A∆B)≤ ε .

Proof. Let M be the set of B ∈X having the requested property. Let us prove that
M is a monotone class. By definition, A ⊂M , thus X∈M . Let B,C ∈M be such
B⊂C. For ε > 0, let A,A′ ∈A be such that µ(A∆B)≤ ε and µ(A′∆C)≤ ε . Then,

µ((C \B)∆(A′ \A)) = µ(|1C1Bc −1A′1Ac |)
≤ µ (|1C−1A′ |1Bc)+µ (1A′ |1Bc −1Ac |)≤ µ(C∆A′)+µ(B∆A)≤ 2ε .

This proves that C \B ∈M . Let now {Bn, n ∈ N} be an increasing sequence of
elements of M and set B = ∪∞

i=1Bi, B̄n = B \Bn. Then B̄n decreases to /0. Thus by
Lebesgue’s dominated convergence theorem for ε > 0 there exists n ≥ 1 be such
that µ(B̄n)≤ ε . Let also A ∈A be such that µ(A∆Bn)≤ ε . Then,

µ(A∆B) = µ(A\{Bn∪ B̄n})+µ({Bn∪ B̄n}\A)

≤ µ(A\Bn)+µ(Bn \A)+µ(B̄n) = µ(A∆Bn)+µ(B̄n)≤ 2ε .

We have proved that M is a monotone class, hence M = σ(A ) = X . 2

Theorem B.2.6. Let µ and ν be two measures on a measurable space (X,X ) and
C ⊂X be stable by finite intersection. If for all A ∈ C , µ(A) = ν(A) < ∞ and
X =

⋃
∞
n=1 Xn with Xn ∈ C , then, µ = ν on σ(C ).
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Definition B.2.7 (Image measure) Let µ be a measure on (X,X ) and f :
(X,X )→ (Y,Y ) be a measurable function. The image measure µ ◦ f−1 of µ by f
is a measure on Y, defined by µ ◦ f−1(B) = µ( f−1(B)) for all B ∈ Y .

A set function µ defined on an algebra A is said to be σ -additive if for each
collection {An, n ∈ N} of pairwise disjoint sets of A such that

⋃
∞
n=0 An ∈ A , it

holds that

µ

(
∞⋃

n=0

An

)
=

∞

∑
n=0

µ(An) .

It is necessary to assume that
⋃

∞
n=0 An ∈A since A is an algebra, not a σ -field.

Theorem B.2.8 (Caratheodory extension theorem). Let X be a set and A be an
algebra. Let µ be a σ -additive nonnegative set function on an algebra A of a set
X. Then there exists a measure µ̄ on σ(A ). If µ is σ -finite, this extension is unique.

Proof. See (Billingsley, 1986, Theorem 3.1) 2

B.2.3 Integrals

Theorem B.2.9 (Monotone Convergence Theorem). Let µ be a measure on
(X,X ) and let { fi, i ∈ N} ⊂ F+(X) be an increasing sequence of functions. Let
f = supn→∞ fn. Then

lim
n→∞

µ( fn) = µ( f ) . (B.2.1)

Theorem B.2.10 (Fatou’s lemma). Let µ be a measure on (X,X ) and { fn : n ∈
N} ⊂ F+(X). Then∫

X
liminf

n→∞
fn(x)µ(dx)≤ liminf

n→∞

∫
X

fn(x)µ(dx) . (B.2.2)
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Theorem B.2.11 (Lebesgue’s dominated convergence theorem). Let µ be a mea-
sure on (X,X ) and g ∈ F+(X) a µ-integrable function. Let { f , fn : n ∈ N} ⊂ F(X)
be such that | fn(x)| ≤ g(x) for all n and limn→∞ fn(x) = f (x) for µ-a.e. x ∈ X, then
all the functions fn and f are µ-integrable and

lim
n→∞

µ( fn) = µ( f ) .

Theorem B.2.12 (Egorov’s theorem). Let { fn, n ∈ N} be a sequence of measur-
able real-valued functions defined on a measured space (X,X ,µ) . Let A ∈X be
such that µ(A) < ∞ and { fn, n ∈ N} converges µ-a.e. to a function f on A. Then
for every ε > 0, there exists a set B ∈X such that µ(A \B) ≤ ε and { fn, n ∈ N}
converges uniformly to f on B.

Lemma B.2.13 Let (X,X ,µ) be a probability space and let p,q ∈ [1,∞] such that
(p,q) are conjugate. Then, for all measurable functions g,

‖g‖Lq(µ) = sup
{∣∣∣∣∫ f gdµ

∣∣∣∣ : f is measurable and ‖ f‖Lp(µ) ≤ 1
}

.

Proof. (Royden, 1988, Proposition 6.5.11) 2

B.2.4 Measures on a metric space

Let (X ,d) be a metric space endowed with its Borel σ -field.

Definition B.2.14 (Topological support of a measure) The topological support of
a measure µ is the smallest closed set whose complement has zero µ-measure.

Proposition B.2.15 Let (X,d) be a separable metric space. The support of a
measure µ is the set of all points x ∈ X for which every open neighbourhood
U ∈ Vx of x has a positive measure.

Proof. See (Parthasarathy, 1967, Theorem 2.2.1) 2
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Definition B.2.16 (Inner and outer regularity) Let (X,d) be a metric space. A
measure µ on the Borel sigma-field X = B(X) is called

(i) inner regular on A ∈B(X) if µ(A) = sup{µ(F) : F ⊂ A , F closed set},
(ii) outer regular on A ∈B(X) µ(A) = inf{µ(U) : U open set ⊃ A}.

(iii) regular if it is both inner and outer regular on all A ∈B(X).

Theorem B.2.17. Let (X,d) be a metric space. Every bounded measure is inner
regular.

Proof. (Billingsley, 1999, Theorem 1.1) 2

Corollary B.2.18 Let µ,ν be two measures on (X,d). If µ( f ) ≤ ν( f ) for all
nonnegative bounded uniformly continuous functions f , then µ ≤ ν . In particu-
lar, if µ( f ) = ν( f ) for all nonnegative bounded uniformly continuous functions
f , then µ = ν .

Proof. (Billingsley, 1999, Theorem 1.2) 2

Definition B.2.19 Let X be a locally compact separable metric space. A measure
µ on the Borel sigma-field X is called a Radon measure if µ is finite on every
compact set. The set of Radon measures on X is denotedMr(X ).

A bounded measure on a locally compact separable metric space is a Radon
measure. Lesbesgue’s measure on Rd equipped with the Euclidean distance is a
Radon measure.

Theorem B.2.20. A Radon measure on a locally compact separable metric space X
is regular and moreover for every Borel set A,

µ(A) = sup{µ(K) : K ⊂ A , K compact set} .
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Corollary B.2.21 Let µ and ν be two Radon measures on a locally compact
separable metric space X. If µ( f )≤ ν( f ) for all f ∈ C+

c (X), then µ ≤ ν .

Corollary B.2.22 Let µ be a Radon measure on a locally compact separable
metric space X. For all p, 1≤ p <+∞, Cc(X) is dense in Lp(X,µ).

B.3 Probability

B.3.1 Conditional Expectation

Let (Ω ,F ,P) be a probability space.

Lemma B.3.1 Let X be a non negative random variable and G be a sub-σ -field of
F . There exists a non negative G -measurable random variable Y such that

E [XZ] = E [Y Z] (B.3.1)

for all non negative G -measurable random variable Z. If E [X ]< ∞ then E [Y ]< ∞.
If Y ′ is a non negative G -measurable random variable which also satisfies (B.3.1),
then Y = Y ′ P − a.s.

A random variable with the above properties is called a version of the conditional
expectation of X given G and we write Y = E [X |G ]. Conditional expectations are
thus defined up to P-almost sure equality. Hence, when writing E [X |G ] = Y for
instance, we always mean that this relations holds P − a.s., that is, Y is a version of
the conditional expectation.

Define X− = max(−X ,0).

Definition B.3.2 (Conditional Expectation) Let G be a sub-σ field and X be a
random variable such that E [X−]∧E [X+]< ∞. A version of the conditional expec-
tation of X given G is defined by

E [X |G ] = E
[

X+
∣∣G ]−E [X−

∣∣G ] .
If X is an indicator 1A we denote P(A |G ) = E [1A |G ].
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Lemma B.3.3 Let B be a σ -field B generated by a countable partition of measur-
able sets {Bn, n ∈ N} with P(Bn) > 0 for all n ∈ N. Then, for every non negative
random variable X,

E [X |B] =
∞

∑
j=0

E
[
X1B j

]
P(B j)

1B j

Conditional expectation has the same properties as the expectation operator: in
particular it is a positive linear operator and satisfies Jensen’s inequality.

Proposition B.3.4 Let G be a sub σ -field of F and X be a random variable
such that E [X−]< ∞. All equalities below hold P − a.s.

(i) If G = { /0,Ω}, then E [X |G ] = E [X ].
(ii) If H is a sub-σ -field G then E [E [X |H ]|G ] = E [X |G ].

(iii) If X is independent of G then

E [X |G ] = E [X ] . (B.3.2)

(iv) If X is G -measurable and either Y ≥ 0 or E [|XY |] < ∞ and E [|Y |] < ∞,
then E [XY |G ] = XE [Y |G ].

(v) If φ is a convex function and E [φ(X)−] < ∞, then φ(E [X |G ]) ≤
E [φ(X) |G ].

The monotone convergence theorem and Lebesgue’s dominated convergence the-
orem hold for conditional expectations.

Proposition B.3.5 Let {Xn, n ∈ N} be a sequence of random variables.

(i) If Xn ≥ 0 and Xn ↑ X, then limn→∞E [Xn |G ] = E [X |G ].
(ii) If |Xn| ≤ Z, E [Z|G ] < ∞ and limn→∞ Xn = X, then

limn→∞E [ |Xn−X | |G ] = 0.

Lemma B.3.6 Let X be an integrable random variable such that E [X ] = 0.

sup
C∈C
|E [X1C] |= E

[
E [X |C ]+

]
=

1
2
E [|E [X |C ] |] .

Proof. Since E [X ] = 0, it also holds that E [E [X |C ]] = 0 which yields

E
[
E [X |C ]+

]
= E

[
E [X |C ]−

]
=

1
2
E [|E [X |C ] |] .
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Observe first that

E [X1C] = E [E [X |C ]1C]≤ E
[
(E [X |C ])+1C

]
≤ E

[
(E [X |C ])+

]
.

We prove similarly that −E
[
X1C

]
≤ E [(E [X |C ])−] and since E [(E [X |C ])−] =

E [(E [X |C ])+] this proves that supC∈C |E
[
X1C

]
| ≤E [(E [X |C ])+]. The quality is

seen to hold by taking C = {E [X |C ]≥ 0}. 2

B.3.2 Conditional Expectation Given a Random Variable

Let Y be a random variable such that E [Y+]∧E [Y−]< ∞ and let σ(X) be the sub-
σ -field generated by a random variable X . We write E [Y |X ] for E [Y |σ(X)] and
we call it the conditional expectation of Y given X . By construction, E [Y |X ] is
a σ(X)-measurable random variable. Thus, there exists a real-valued measurable
function g on X such that E [Y |X ] = g(X) PX − a.s. The function g is defined up
to PX equivalence: if g̃ satisfying this equality then P(g(X) = g̃(X)) = 1. Therefore
we write E [Y |X = x] for g(x). If Y is an indicator 1A, we write P(A |X = x) for
E [A |X = x].

B.3.3 Conditional Distribution

Definition B.3.7 (Regular Conditional Probability) Let (Ω ,F ,P) be a probabil-
ity space and G be a sub-σ -field of F . A regular version of the conditional proba-
bility given G is a map PG : Ω ×F → [0,1] such that

(i) for all F ∈F , PG (·,F) is G -measurable and for every ω ∈ Ω , PG (ω, ·) is a
probability on F ,

(ii) for all F ∈F , PG (·,F) = P(F |G ) P − a.s.

Definition B.3.8 (Regular Conditional Distribution of Y Given G ) Let G be a
sub-σ -field of F , (Y,Y ) be a measurable space and Y be an Y-valued random
variable. A regular version of the conditional distribution of Y given G is a function
PY |G : Ω ×Y → [0,1] such that

(i) for all E ∈ Y , PY |G (·,E) is G -measurable and for every ω ∈ Ω , PY |G (ω, ·) is
probability measure on Y

(ii) for all E ∈ Y , PY |G (·,E) = P(E |G ), P − a.s..
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A regular version of the conditional distribution exists if Y takes values in a Polish
space.

Theorem B.3.9. Let (Ω ,F ,P) be a probability space, Y be a Polish space, G be a
sub-σ -field of F and Y be an Y-valued random variable. Then there exists a regular
version of the conditional distribution of Y given G .

When a regular version of a conditional distribution of Y given G exists, con-
ditional expectations can be written as integrals for each ω: if g is integrable with
respect to PY then

E [g(Y ) |G ] =
∫

Y
g(y)PY |G (·,dy) P − a.s.

Definition B.3.10 (Regular Conditional Distribution of Y Given X) Let
(Ω ,F ,P) be a probability space and let X and Y be random variables with
values in the measurable spaces (X,X ) and (Y,Y ), respectively. Then a
regular version of the conditional distribution of Y given σ(X) is a function
N : X×Y → [0,1] such that

(i) For all E ∈ Y , the N(·,E) is X -measurable, for all x ∈ X, N(x, ·) is a proba-
bility on (Y,Y )

(ii) For all E ∈ Y ,
N(X ,E) = P(Y ∈ E |X) P − a.s. (B.3.3)

Theorem B.3.11. Let X be a random variable with values in (X,X ) and Y be a
random variable with values in a Polish space Y. Then there exists a regular version
of the conditional distribution of Y given X.

If µ and ν are two probabilities on a measurable space (X,X ), we denote by
C (µ,ν) the set of all couplings of µ and ν ; see Definition 19.1.3.

Lemma B.3.12 (Gluing lemma) Let (Xi,Xi), i ∈ {1,2,3}, be three measurable
spaces. For i ∈ {1,2,3}, let µi be a probability measure on Xi and set X =
X1×X2×X3 and X = X1⊗X2⊗X3. Assume that (X1,X1) and (X3,X3) are
Polish spaces. Then, for every γ1 ∈ C (µ1,µ2) and γ2 ∈ C (µ2,µ3), there exists a
probability measure π on (X,X ) such that π(·×X3) = γ1(·) and π(X1×·) = γ2(·).

Proof. Since X1 and X3 are Polish spaces, we can apply Theorem B.3.11. There
exist two kernels K1 on X2×X1 and K3 on X2×X3 such that for all A ∈X1⊗X2
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and all B ∈X2⊗X3,

γ1(A) =
∫

X1×X2

1A(x,y)µ2(dy)K1(y,dx) , γ2(B) =
∫

X2×X3

1B(y,z)µ2(dy)K3(y,dz) .

Then, define the probability measure π on X by

π( f ) =
∫

X1×X2×X3

f (x,y,z)K1(y,dx)K3(y,dz)µ2(dy) ,

for all bounded and measurable functions f . Then, for all (A,B,C)∈X1×X2×X3,

π(A×B×X3) =
∫

B
µ2(dy)K1(y,A)K3(y,X3) =

∫
B

µ2(dy)K1(y,A) = γ1(A×B) ,

π(X1×B×C) =
∫

B
µ2(dy)K1(y,X1)K3(y,C) =

∫
B

µ2(dy)K3(y,C) = γ3(B×C) .

2

Remark B.3.13. An equivalent formulation of the gluing Lemma B.3.12 is that
when X1 and X3 are Polish spaces, then for every µi ∈M1(Xi), i ∈ {1,2,3} and
γ1 ∈C (µ1,µ2) and γ2 ∈C (µ2,µ3), there exist a probability space (Ω ,F ,P) and Xi-
valued random variables Zi, i ∈ {1,2,3} such that LP (Z1,Z2) = γ1, LP (Z2,Z3) =
γ2. N

B.3.4 Conditional independence

Definition B.3.14 (Conditional Independence) Let (Ω ,F ,P) be a probability
space, G and G1, . . . ,Gn be sub-σ -fields of F . Then G1, . . . ,Gn are said to be condi-
tionally independent given G if for any bounded random variables X1, . . . ,Xn mea-
surable with respect to G1, . . . ,Gn, respectively,

E [X1 · · ·Xn|G ] =
n

∏
i=1
E [Xi|G ] .

If Y1, . . . ,Yn and Z are random variables, then Y1, . . . ,Yn are said to be condition-
ally independent given Z if the sub-σ -fields σ(Y1), . . . ,σ(Yn) are P-conditionally
independent given σ(Z).

Proposition B.3.15 Let (Ω ,F ,P) be a probability space and let A , B, C be
sub-σ -fields of F . Then A and B are P-conditionally independent given C if
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and only if for every bounded A -measurable random variable X,

E [X |B∨C ] = E [X |C ] , (B.3.4)

where B∨C denotes the σ -field generated by B∪C .

Proposition B.3.15 can be used as an alternative definition of conditional indepen-
dence: it means that A and B are conditionally independent given C if for all
A -measurable non-negative random variables X there exists a version of the condi-
tional expectation E [X |B∨C ] that is C -measurable.

Lemma B.3.16 Let A ,B be conditionally independent given C . For every random
variable X ∈ L1(A ) such E [X ] = 0,

sup
B∈B∨C

|E [X1B]|= sup
B∈C
|E [X1B]|=

1
2
E [|E [X |C ] |] .

Proof. We already know that the second equality holds by Lemma B.3.6. By
the conditional independence assumption and Proposition B.3.15, E [X |B∨C ] =
E [X |C ] P − a.s. Thus, applying Lemma B.3.6 yields

sup
B∈B∨C

|E [X1B] |= sup
B∈B∨C

|E [E [X |B∨C ]1B] |= sup
B∈B∨C

|E [E [X |C ]1B] |

=
1
2
E [|E [E [X |C ] |B∨C ]|] = 1

2
E [|E [X |C ]|] .

2

B.3.5 Stochastic processes

Let (Ω ,F ,P) be a probability space and (X,X ) be a measurable space. Let T be
a set and {Xt , t ∈ T} be a an X-valued stochastic process, that is a collection of
X-valued random variables indexed by T . For every finite subset S ⊂ T , let µS be
the distribution of (Xs,s ∈ S). Denote by S the set of all finite subsets of T . The set
of probability measures {µS, S ∈S } are called the finite dimensional distributions
of the process {Xt , t ∈ T}. For S ⊂ S′ ⊂ T , the canonical projection pS,S′ of XS on
XS′ is defined by pS,S′(xs,s ∈ S) = (xs,s ∈ S′). The finite-dimensional distributions
satisfy the following consistency conditions:

µS = µS′ ◦ p−1
S,S′ . (B.3.5)

Conversely, let {µS, S ∈S } be a family of probability measures such that for any
S∈S , µS is a probability on X ⊗S. We say that this family is consistent if it satisfies
(B.3.5). Introduce the canonical space Ω = XT whose elements are denoted ω =
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(ωt , t ∈ T ) and the coordinate process {Xt , t ∈ T} defined by

Xt(ω) = ωt , t ∈ T .

The product space Ω is endowed with the product σ -field F = X ⊗T .

Theorem B.3.17 (Kolmogorov). Assume that X is a Polish space. Let {µS,S ⊂
T,S finite} be a consistent family of measures. Then there exists a unique proba-
bility measure on the canonical space under which the family of finite dimensional
distributions of the canonical process process is {µS, S ∈S }.

Proof. (Kallenberg, 2002, Theorem 5.16) 2

Theorem B.3.18 (Skorohod’s representation theorem). Let {ξn, n ∈ N} be a se-
quence of random elements in a complete separable metric space (S,ρ) such that
ξn

w⇒ ξ0. Then on a suitable probability space (Ω̂ ,F̂ , P̂), there exists a sequence
{ηn, n ∈ N} of random elements such that LP̂ (ηn) = LP (ξn) for all n ≥ 0 and
ηn→ η0 P̂-almost surely.

Proof. (Kallenberg, 2002, Theorem 3.30). 2



Appendix C
Weak convergence

Throughout this Chapter, (X,d) is a metric space and all measures are defined on
its Borel σ -field, that is the smallest σ -field containing the open sets. Additional
properties of the metric space (completeness, separability, local compactness, etc.)
will be made precise for each result as needed. The essential reference is Billingsley
(1999)

Definition C.0.1 (Weak convergence) Let (X,d) be a metric space. Let {µ,µn,n∈
N} ⊂M1(X). The sequence {µn, n ∈N} converges weakly to µ if for all f ∈ Cb(X)

limn→∞ µn( f ) = µ( f ). This is denoted µn
w⇒ µ .

C.1 Convergence on locally compact metric spaces

In this Section, the (X,d) is assumed to be a locally compact separable metric space
space.

Definition C.1.1 (weak* convergence) Let (X,d) be a locally compact separable
metric space. A sequence of bounded measures {µn, n ∈ N} converges weakly* to

µ ∈Mb(X ), written µn
w∗⇒ µ , if limn→∞ µn( f ) = µ( f ) for all f ∈ C0(X).

Proposition C.1.2 Let X be a locally compact separable metric space. If

µn
w∗⇒ µ on X, then µ( f ) ≤ liminfn→∞ µn( f ) for every f ∈ Cb(X) and

limsupn→∞ µn(K)≤ µ(K) for every compact set K.

629



630 C Weak convergence

One fundamental difference between weak and weak* convergence is that the
latter does not preserve the total mass. However, the previous result shows that
if the sequence of measure {µn, n ∈ N} converges weakly* to µ , then µ(X) ≤
liminfn→∞ µn(X). Thus in particular, if a sequence of probability measures weakly*
converges to a bounded measure µ , then µ(X)≤ 1. It may even happen that µ = 0.

Proposition C.1.3 Let (X,d) be a locally compact separable metric space and
let {µn, n ∈ N} be a sequence in Mb(X ) such that supn∈N µn(X) ≤ B < ∞.
Then there exist a subsequence {nk, k ∈N} and µ ∈M+(X ) such that µ(X)≤
B and {µnk ,k ∈ N} converges weakly* to µ .

C.2 Tightness

Definition C.2.1 Let (X,d) be a metric space. Let Γ be a subset ofM1(X).

(i) The set Γ is said to be tight if for all ε > 0, there exists a compact set K ⊂ X
such that for all µ ∈ Γ µ(K)≥ 1− ε .

(ii) The set Γ is said to be relatively compact if every sequence of elements in Γ

contains a weakly convergent subsequence or equivalently if Γ is compact.

Theorem C.2.2 (Prohorov). Let (X,d) be a metric space. If Γ ⊂M1(X) is tight,
then it is relatively compact. If (X,d) is separable and complete then the converse
is true.

Proof. (Billingsley, 1999, Theorems 5.1 and 5.2). 2

As a consequence, a finite family of probability measures on a complete separable
metric space is tight.

Corollary C.2.3 Let (X,d) be a complete separable metric space and µ ∈
M1(X). Then, for all A ∈B(X),
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µ(A) = sup{µ(K) : K compact set⊂ A} .

Lemma C.2.4 Let (X,d) be a metric space. Let {νn, n ∈ N} be a sequence in
M1(X ) and V be a nonnegative function in C(X). If the level sets {V ≤ c} are
compact for all c > 0 and supn≥1 νn(V )< ∞, then the sequence {νn, n∈N} is tight.

Proof. Set M = supn≥1 νn(V ). By Markov’s inequality, we have, for ε > 0,

νn({V > M/ε})≤ (ε/M)νn(V )≤ ε .

By assumption, {V ≤M/ε} is compact, thus {νn, n ∈ N} is tight. 2

Lemma C.2.5 Let (X,d) be a metric space. Let Γ ⊂M1(X
⊗2). For λ ∈ Γ and

A ∈X , define λ1(A) = λ (A×X) and λ2(A) = λ (X×A). If Γ1 = {λ1 : λ ∈ Γ } and
Γ2 = {λ2 : λ ∈ Γ } are tight inM1(X) then Γ is tight.

Proof. Simply observe that

X2 \ (K1×K2)⊂ ((X\K1)×X)∪ (X× (X\K2)) .

Moreover, if K1 and K2 are compact subsets of X, then K1×K2 is a compact subset
of X2. These two facts yield the result. 2

For A⊂ X and α > 0, we define Aα = {x ∈ X, d(x,A)< α}.

Definition C.2.6 Let (X,d) be a metric space. The Prokhorov metric ρρρd is defined
onM1(X ) by

ρρρd(λ ,µ) = inf{α > 0 : λ (F)≤ µ(Fα)+α for all closed F} . (C.2.1)

Theorem C.2.7. Let (X,d) be a separable metric space. Then (M1(X),ρρρd) is sep-
arable and ρρρd metrizes the weak convergence. If moreover (X,d) is complete, then
(M1(X),ρρρd) is complete.

Proof. (Dudley, 2002, Theorem 11.3.3) and (Billingsley, 1999, Theorem 6.8) 2

Lemma C.2.8 Let (X,d) be a metric space. Let µ,ν ∈M1(X). If there exist random
variables X, Y defined on a probability space (Ω ,F ,P) such that LP (X) = µ ,
LP (Y ) = ν and α > 0 such that P(d(X ,Y )> α)≤ α then ρρρd(µ,ν)≤ α .
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Proof. For every closed set F ,

µ(F) = P(X ∈ F)≤ P(X ∈ F,d(X ,Y )< α)+P(d(X ,Y )≥ α)≤ P(Y ∈ Fα)+α .

Thus ρρρd(µ,ν)≤ α . 2



Appendix D
Total and V-total variation distances

Given the importance of total variation in this book, we provide an almost self-
contained introduction. Unlike the other chapters in this appendix, we will establish
most of the results, except the most classical ones.

D.1 Signed measures

Definition D.1.1 (Finite signed measure) A finite signed measure on (X,X ) is a
function ν : X → R such that if {An, n ∈ N} ⊂X is a sequence of pairwise dis-
joints sets, then ∑

∞
n=1 |ν(An)| < ∞ and ν(∪∞

n=1An) = ∑
∞
n=1 ν(An). The set of finite

signed measure on (X,X ) is denotedM±(X ).

Definition D.1.2 (Singular measures) Two measures µ,ν on a measurable space
(X,X ) are singular if there exists a set A in X such that µ(Ac) = ν(A) = 0.

Theorem D.1.3 (Hahn-Jordan). Let ξ be a finite signed measure. There exists a
unique couple of finite singular measures (ξ+,ξ−) such that ξ = ξ+−ξ−.

Proof. (Rudin, 1987, Theorem 6.14) 2

The pair (ξ+,ξ−) is called the Jordan decomposition of the signed measure ξ . The
finite (positive) measure |ξ | = ξ++ ξ− is called the total variation of ξ . It is the
smallest measure ν such that, for all A ∈ X , ν(A) ≥ |ξ (A)|. A set S such that

633



634 D Total and V-total variation distances

ξ+(Sc) = ξ−(S) = 0 is called a Jordan set for ξ . If S and S′ are two Jordan sets for
ξ , then |ξ |(S∆S′) = 0.

Lemma D.1.4 Let µ be a signed measure on X . Then, for all B ∈X ,

µ
+(B) = sup

A∈X
µ(B∩A) . (D.1.1)

If X is generated by an algebra A , then,

µ
+(B) = sup

A∈A
µ(B∩A) . (D.1.2)

Proof. Let S be a Jordan set for µ . Then, for all B ∈X , µ+(B) = µ(B∩S). More-
over, for all A ∈X ,

µ(B∩A)≤ µ
+(B∩A)≤ µ

+(B) .

This proves (D.1.1).
Assume now that X = σ(A ) and let B ∈X . By (D.1.1), for all ε > 0, there

exist C ∈X , such that µ+(B) ≤ µ(B∩C)+ ε . The approximation Lemma B.2.5
applied to the (positive) measure µ++µ− implies that there exists A ∈A such that
µ+(C∆A)+µ−(C∆A)≤ ε . Then (D.1.2) follows from

µ
+(B)≤ µ(B∩C)+ ε ≤ µ(B∩A)+2ε .

2

Lemma D.1.5 Let X be a set and B be a countably generated σ -field on X. There
exists a sequence {Bn, n ∈ N} ⊂B, such that, for all signed measures on B,

sup
B∈B
|µ(B)|= sup

n∈N
|µ(Bn)| , sup

B∈B
µ(B) = sup

n∈N
µ(Bn) . (D.1.3)

Proof. Since B is countably generated, there exists a coutable algebra A = {Bn, n∈
N} such that σ(A ) = B. Let µ a signed measure and S be a Jordan set for µ . Then
supB∈B µ(B) = µ(S) and by Lemma B.2.5 there exists A∈A such that µ(S\A)≤ ε .
This yields µ(A) ≥ µ(S)− ε and therefore the second statement in (D.1.3) holds.
Since supB∈B |µ(B)|= max(µ(S),−µ(Sc)), the first statement in (D.1.3) is proved
similarly. 2

D.2 Total variation distance
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Proposition D.2.1 A set function ξ is a signed measure if and only if there
exist µ ∈M+(X ) and h ∈ L1(µ) such that ξ = h · µ . Then, S = {h ≥ 0} is a
Jordan set for ξ , ξ+ = h+ ·µ , ξ− = h− ·µ and |ξ |= |h| ·µ .

Proof. The direct implication is straightforward. Let us now establish the converse.
Let ξ be a signed measure, (ξ+,ξ−) be its Jordan decomposition and S be a Jordan
set. We have for all A ∈X ,

ξ
+(A) = ξ (A∩S), ξ

−(A) =−ξ (A∩Sc) .

Then, for A ∈X ,

ξ (A) = ξ (A∩S)−ξ (A∩Sc) = |ξ |(A∩S)−|ξ |(A∩Sc) =
∫

A
(1S−1Sc)d|ξ | ,

showing that ξ = (1S−1Sc) · |ξ | and concluding the proof. 2

Definition D.2.2 (Total variation distance) Let ξ be a finite signed measure on
(X,X ) with Jordan decomposition (ξ+,ξ−). The total variation norm of ξ is de-
fined by

‖ξ‖TV = |ξ |(X) .

The total variation distance between two probability measures ξ ,ξ ′ ∈M1(X) is
defined by

dTV(ξ ,ξ
′) =

1
2

∥∥ξ −ξ
′∥∥

TV .

Note that dTV(ξ ,ξ
′) = (ξ −ξ ′)(S) where S is a Jordan set for ξ −ξ ′. This definition

entails straightforwardly the following equivalent one.

Proposition D.2.3 Let ξ be a finite signed measure on (X,X )

‖ξ‖TV = sup
I

∑
i=1
|ξ (Ai)| (D.2.1)

where the supremum is taken over all finite measurable partitions {A1, . . . ,AI}
of X

Proof. Let S be a Jordan set for µ . Then ‖µ‖TV = µ(S)− µ(Sc). Thus ‖ξ‖TV ≤
sup∑

I
i=1 |µ(Ai)|. Conversely,
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I

∑
i=1
|µ(Ai)|=

I

∑
i=1

µ(Ai∩S)−
I

∑
i=1

µ(Ai∩Sc)≤ ‖ξ‖TV .

2

Let M0(X ) be the set of finite signed measures ξ such that ξ (X) = 0. We now
give equivalent characterizations of the total variation norm for signed measures.
Let the oscillation osc ( f ) of a bounded function f be defined by

osc ( f ) = sup
x,x′∈X

| f (x)− f (x′)|= 2 inf
c∈R
| f − c|∞ .

Proposition D.2.4 For ξ ∈Ms(X ),

‖ξ‖TV = sup{ξ ( f ) : f ∈ Fb(X), | f |∞ ≤ 1} . (D.2.2)

If moreover ξ ∈M0(X ), then

‖ξ‖TV = 2sup{ξ ( f ) : f ∈ Fb(X), osc ( f )≤ 1} . (D.2.3)

Proof. By Proposition D.2.1, ξ = h ·µ with h∈ L1(µ) and µ ∈M+(X ). The proof
of (D.2.2) follows from the identity

‖ξ‖TV =
∫

X
|h|dµ =

∫
X
{1h>0−1h<0}hdµ = sup

| f |≤1

∫
f hdµ .

Now, let ξ ∈M0(X ). Then, ξ ( f ) = ξ ( f + c) for all c ∈ R and thus, for all c ∈ R,

|ξ ( f )|= |ξ ( f − c)| ≤ ‖ξ‖TV | f − c|∞ .

Since this inequality is valid for all c ∈ R, this yields

|ξ ( f )| ≤ ‖ξ‖TV inf
c∈R
| f − c|∞ =

1
2
‖ξ‖TV osc ( f ) . (D.2.4)

Conversely, if we set f = (1/2)(1S − 1Sc) where S is a Jordan set for ξ , then
osc ( f ) = 1 and

ξ ( f ) =
1
2
{ξ+(S)+ξ

−(Sc)}= 1
2
{ξ+(X)+ξ

−(X)}= 1
2
‖ξ‖TV .

Combining this with (D.2.4) proves (D.2.3). 2
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Corollary D.2.5 If ξ ,ξ ′ ∈M1(X ), then ξ − ξ ′ ∈M0(X ) and for any f ∈
Fb(X),

|ξ ( f )−ξ
′( f )| ≤ dTV(ξ ,ξ

′) osc ( f ) . (D.2.5)

In particular, for every A ∈X , |ξ (A)−ξ ′(A)| ≤ dTV(ξ ,ξ
′).

Proposition D.2.6 If X is a metric space and X is its Borel σ -field, the con-
vergence in total variation of a sequence of probability measures on (X,X )
implies its weak convergence.

Proof. Convergence in total variation implies that limn→∞ ξn(h) = ξ (h) for all
bounded measurable function h. This is a stronger property than weak convergence
which only requires this convergence for bounded continuous function h defined
on X. 2

Theorem D.2.7. The space (Ms(X ),‖·‖TV) is a Banach space.

Proof. Let {ξn, n ∈ N} be a Cauchy sequence inMs(X ). Define

λ =
∞

∑
n=0

1
2n |ξn| ,

which is a measure, as a limit of an increasing sequence of measures. By construc-
tion, |ξn| � λ for any n ∈ N. Therefore, there exist functions fn ∈ L1(λ ) such
that ξn = fn.λ and ‖ξn−ξm‖TV =

∫
| fn − fm|dλ . This implies that { fn, n ∈ N}

is a Cauchy sequence in L1(λ ) which is complete. Thus, there exists f ∈ L1(λ )
such that fn → f in L1(λ ). Setting ξ = f .λ , we obtain that ξ ∈ Ms(X ) and
limn→∞ ‖ξn−ξ‖TV = limn→∞

∫
| fn− f |dλ = 0. 2

We now define and characterize the minimum of two measures.

Proposition D.2.8 Let ξ ,ξ ′ ∈M+(X ) be two measures.

(i) The set of measures η such that η ≤ ξ and η ≤ ξ ′ admits a maximal
element denoted by ξ ∧ξ ′ and called the minimum of ξ and ξ ′.

(ii) The measures ξ−ξ ∧ξ ′ and ξ ′−ξ ∧ξ ′ are positive and mutually singular.
(iii) Conversely, if there exist measures η , ν and ν ′ such that ξ = η +ν , ξ ′ =

η +ν ′ and ν and ν ′ are mutually singular, then η = ξ ∧ξ ′.
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(iv) If ξ = f ·µ and ξ ′ = f ′ ·µ , then ξ ∧ξ ′ = ( f ∧ f ′) ·µ .
(v) If ξ (X)∨ξ ′(X)< ∞, then (ξ −ξ ′)+ = ξ −ξ ∧ξ ′ and

|ξ −ξ
′|= ξ +ξ

′−2ξ ∧ξ
′.

Proof. Let µ be a σ -finite measure such that ξ = f · µ and ξ ′ = f ′ · µ (take for
instance µ = ξ +ξ ′). Let ρ = ( f ∧ f ′) ·µ . If η ≤ ξ and η ≤ ξ ′, then

η(A) = η(A∩{ f ≥ f ′})+η(A∩{ f < f ′})
≤ ξ

′(A∩{ f ≥ f ′})+ξ (A∩{ f < f ′})
= ρ(A∩{ f ≥ f ′})+ρ(A∩{ f < f ′}) = ρ(A) .

This proves (i), (ii) and (iv). Let now η , ν and ν ′ be as in (iii) and let g, h and h′ be
their density with respect to µ . Then f = g+ h, f ′ = g+ h′ and hh′ = 0 µ − a.s.
since ν and ν ′ are mutually singular. This implies that g = f ∧ f ′ µ − a.s., hence
η = ξ ∧ ξ ′. This prove (iii). Finally, using the identities (p− q)+ = p− p∧ q and
|p−q|= p+q−2p∧q (p,q≥ 0), we obtain, for all A ∈X ,

(ξ −ξ
′)+(A) =

∫
A
( f − f ′)+dµ =

∫
A

f dµ−
∫

A
f ∧ f ′dµ = (ξ (A)−ξ ∧ξ

′)(A) ,

|ξ −ξ
′|(A) =

∫
A
| f − f ′|dµ =

∫
A

f dµ +
∫

A
f ′dµ−2

∫
A

f ∧ f ′dµ

= ξ (A)+ξ
′(A)−2(ξ ∧ξ

′)(A) .

This yields (v). 2

Remark D.2.9 It must be noted that ξ ∧ξ ′ is not defined by (ξ ∧ξ ′)(A) = ξ (A)∧
ξ ′(A), since this would not even define an additive set function.

Lemma D.2.10 Let P be a Markov kernel on X×X . Then, for any ξ ,ξ ′ ∈M1(X ),

dTV(ξ P,ξ ′P)≤ dTV(ξ ,ξ
′) .

Proof. Note that if h ∈ F(b)X , |Ph|∞ ≤ |h|∞. Therefore

dTV(ξ P,ξ ′P) = (1/2) sup
|h|≤1
|ξ Ph−ξ

′Ph|

= (1/2) sup
|h|≤1
|ξ (Ph)−ξ

′(Ph)| ≤ dTV(ξ ,ξ
′)

2



D.3 V-total variation 639

D.3 V-total variation

Let (X,X ) be a measurable space. In this section, we consider a function V ∈ F(X)
taking values in [1,∞]. We denote DV = {x ∈ X : V (x)< ∞}.

Definition D.3.1 (V -norm) The space of finite signed measures ξ such that
|ξ |(V )< ∞ is denoted byMV (X ).

(i) The V -norm of a measure ξ ∈MV (X ) is

‖ξ‖V = |ξ |(V ) .

(ii) The V -norm of a function f ∈ F(X) is

| f |V = sup
x∈DV

| f (x)|
V (x)

.

(iii) The V -oscillation of a function f ∈ F(X) is

oscV ( f ) := sup
(x,x′)∈DV×DV

| f (x)− f (x′)|
V (x)+V (x′)

. (D.3.1)

Of course, when V = 1X, then ‖ξ‖
1X

= ‖ξ‖TV by (D.2.2). It also holds that
‖ξ‖V = ‖V ·ξ‖TV. We now give characterizations of the V -norm similar to the char-
acterizations of the TV-norm provided in Proposition D.2.4.

Theorem D.3.2. For ξ ∈MV (X ),

‖ξ‖V = sup{ξ ( f ) : f ∈ Fb(X), | f |V ≤ 1} . (D.3.2)

Let ξ ∈M0(X )∩MV (X ). Then,

‖ξ‖V = sup{ξ ( f ) : oscV ( f )≤ 1} . (D.3.3)

Proof. Equation (D.3.2) follows from

‖ξ‖V = ‖V ·ξ‖TV = sup
| f |∞≤1

ξ (V f ) = sup
|g|V≤1

ξ (g) , (D.3.4)

since {g ∈ F(X) : |g(x)| ≤V (x),x ∈ DV}= {g = f ·V : f ∈ F(X), | f |∞ ≤ 1}.
Assume now that ξ ∈M0(X )∩MV (X ) and let S be a Jordan set for ξ . Since

ξ (V1S−V1Sc) = |ξ |(V ) and oscV (V1S−V1Sc) = 1, we obtain that
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‖ξ‖V = |ξ |(V )≤ sup{|ξ ( f )| : oscV ( f )≤ 1} .

For ξ ∈M0(X )∩MV (X ), we have ξ+(DV ) = ξ−(DV ) and |ξ |(Dc
V ) = 0. Hence,

for any measurable function f such that oscV ( f )< ∞, we obtain

ξ ( f ) =
1

ξ+(DV )

∫∫
DV×DV

ξ
+(dx)ξ ′−(dx′){ f (x)− f (x′)}

=
1

ξ+(DV )

∫∫
DV×DV

ξ
+(dx)ξ ′−(dx′){V (x)+V (x′)} f (x)− f (x′)

V (x)+V (x′)
≤ ‖ξ‖V oscV ( f ) .

This yields sup{|ξ ( f )| : oscV ( f )≤ 1} ≤ ‖ξ‖V . 2

Note that when V = 1X, then oscV ( f ) = osc ( f )/2 and thus Proposition D.2.4
can be seen as a particular case of Theorem D.3.2. We also have the following bound
which is similar to (D.2.4)

|ξ ( f )| ≤ ‖ξ‖V oscV ( f ) . (D.3.5)

Proposition D.3.3 The space (MV (X ),‖·‖V ) is complete.

Proof. Let {ξn, n ∈ N} be a Cauchy sequence inMV (X ). Define

λ =
∞

∑
n=0

1
2n|ξn|(V )

|ξn| ,

which is a measure, as a limit of an increasing sequence of measures. By con-
struction, λ (V ) < ∞ and |ξn| � λ for any n ∈ N. Therefore, there exist functions
fn ∈ L1(V ·λ ) such that ξn = fn.λ and ‖ξn−ξm‖V =

∫
| fn− fm|V dλ . This implies

that { fn, n ∈ N} is a Cauchy sequence in L1(V ·λ ) which is complete. Thus, there
exists f ∈ L1(V ·λ ) such that fn→ f in L1(V ·λ ). Setting ξ = f .λ , we obtain that
ξ ∈MV (X ) and limn→∞ ‖ξn−ξ‖V = limn→∞

∫
| fn− f |V dλ = 0. 2

Proposition D.3.3 yields the following corollary which is the crux when applying
the fixed-point theorem.

Corollary D.3.4 The space (M1,V (X ),dV ) where M1,V (X ) = MV (X ) ∩
M1(X ) is complete. If X is a metric space endowed with its Borel σ -field,
then convergence with respect to the distance dV implies weak convergence.

Proof. We only need to prove the second statement. Since dV (µ,ν) ≤ dTV(µ,ν),
convergence in dV distance implies convergence in total variation which implies
weak convergence by Proposition D.2.6. 2



Appendix E
Martingales

We recall here the definitions and main properties of martingales, submartingales
and supermartingales that are used in this book. There are many excellent books on
martingales, which is an essential topic in probability theory. We will use in this
Chapter Neveu (1975) and Hall and Heyde (1980).

E.1 Generalized positive supermartingales

Definition E.1.1 (Generalized positive supermartingales) Let (Ω ,F ,{Fn, n ∈
N},P) be a filtered probability space and {(Xn,Fn), n ∈ N} be a positive adapted
process. {(Xn,Fn), n ∈ N} is a generalized positive supermartingale if for all
0≤ m < n, E [Xn |Fm]≤ Xm, P − a.s.

Proposition E.1.2 Let {(Xn,Fn), n ∈ N} be a generalized positive super-
martingale. For all a > 0,

P
(

sup
n≥0

Xn ≥ a
)
≤ a−1E [X0∧a] .

Proof. See (Neveu, 1975, Proposition II-2-7) 2

Proposition E.1.3 Let {(Xn,Fn), n ∈ N} be a generalized positive super-
martingale. {(Xn,Fn), n ∈ N} converges almost surely to a variable X∞ ∈

641



642 E Martingales

[0,∞]. The limit X∞ = limn→∞ Xn satisfies the inequality E [X∞ |Fn] ≤ Xn, for
all n ∈ N. Furthermore {X∞ < ∞} ⊂ {X0 < ∞} P-almost surely.

Proof. See (Neveu, 1975, Theorem II-2-9). For any M > 0, using Fatou’s lemma
and the supermartingale property, we get

E
[
1{X0≤M}X∞

]
≤ liminf

n→∞
E
[
1{X0≤M}Xn

]
≤ E

[
1{X0≤M}X0

]
≤M .

2

Proposition E.1.4 Let {(Xn,Fn), n ∈ N} be a generalized positive super-
martingale which converges P − a.s. to X∞. Then for every pair of stopping
times ν1,ν2 such that ν1 ≤ ν2 P − a.s., we have

Xν1 ≥ E [Xν2 |Fν1 ] P − a.s.

Proof. See (Neveu, 1975, Theorem II-2-13). 2

E.2 Martingales

Definition E.2.1 (Martingale, Submartingale, Supermartingale) Let
(Ω ,F ,{Fn, n ∈ N},P) be a filtered probability space and {(Xn,Fn), n ∈ N} a
real-valued integrable adapted process. {(Xn,Fn), n ∈ N} is

(i) a martingale if for all 0≤ m < n, E [Xn |Fm] = Xm, P − a.s.
(ii) a submartingale if for all 0≤ m < n, E [Xn |Fm]≥ Xm, P − a.s.

(iii) a supermartingale if for all 0≤ m < n, E [Xn |Fm]≤ Xm, P − a.s.

If {(Xn,Fn), n ∈ N} is a submartingale then {(−Xn,Fn), n ∈ N} is a supermartin-
gale; it is a martingale if and only if it is a submartingale and a supermartingale.

Definition E.2.2 (Martingale difference) A sequence {Zn, n ∈ N∗} is a martin-
gale difference sequence with respect to the filtration {Fn, n∈N} if {(Zn,Fn), n∈
N} is an integrable adapted process and E [Zn |Fn−1] = 0 P − a.s. for all n ∈ N∗.
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Proposition E.2.3 Let {(Xn,Fn), n ∈ N} be a submartingale. Then, for all
a > 0 and all n≥ 0,

aP
(

max
k≤n

Xk ≥ a
)
≤ E

[
Xn1

{
max
k≤n

Xk ≥ a
}]
≤ E [Xn] .

Proof. See (Neveu, 1975, Proposition II-2-7) and (Hall and Heyde, 1980, Theo-
rem 2.1) 2

Theorem E.2.4 (Doob’s inequalities). Let {(Xn,Fn), n ∈N} be a martingale or a
positive submartingale. Then, for all p ∈ (1,∞) and m ∈ N∗,

‖Xm‖p ≤
∥∥∥∥max

k≤m
|Xk|
∥∥∥∥

p
≤ p

p−1
‖Xm‖p .

Proof. See (Neveu, 1975, Proposition IV-2-8) and (Hall and Heyde, 1980, Theo-
rem 2.2). 2

E.3 Martingale convergence theorems

Theorem E.3.1. If {(Xn,Fn), n∈N} is a submartingale satisfying supnE [X+
n ]<∞,

then there exists a random variable X such that Xn
P-a.s.−→ X and E [|X |]< ∞.

Proof. See (Neveu, 1975, Theorem IV-1-2) and (Hall and Heyde, 1980, Theo-
rem 2.5). 2

Definition E.3.2 (Uniform integrability) A family {Xi, i ∈ I} of random variables
is said to be uniformly integrable if

lim
A→∞

sup
i∈I
E [|Xi|1{|Xi| ≥ A}] = 0 .
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Proposition E.3.3 Let {Xn, n ∈ N} be a sequence of integrable random vari-
ables. The following statements are equivalent.

(i) There exists a random variable X∞ such that limn→∞E [|Xn−X∞|] = 0.

(ii) There exists a random variable X∞ such that Xn
P −prob−→ X∞ and the sequence

{Xn,n ∈ N} is uniformly integrable.

Proof. (Billingsley, 1999, Theorems 3.5 and 3.6) 2

Theorem E.3.4. Let {(Xn,Fn), n ∈ N} be a uniformly integrable submartingale.
There exists a random variable X∞ such that Xn converges almost surely and in L1

to X∞ and Xn ≤ E [X∞|Fn] P − a.s. for all n ∈ N.

Proof. See (Neveu, 1975, Proposition IV-5-24). 2

Corollary E.3.5 Let {(Xn,Fn), n∈N} be a martingale or a non negative sub-
martingale. Assume that there exists p > 1 such that

sup
n≥0
E [|Xn|p]< ∞ . (E.3.1)

Then there exists a random variable X∞ such that Xn converges in Lp and almost
surely to X∞.

Theorem E.3.6. Let {(Xn,Fn), n ∈ N} be a martingale. The following statements
are equivalent.

(i) The sequence {Xn, n ∈ N} is uniformly integrable.
(ii) The sequence {Xn, n ∈ N} converges in L1.

(iii) There exists X ∈ L1 such that for all n ∈ N, Xn = E [X |Fn] P − a.s.

Proof. See (Neveu, 1975, Proposition IV-2-3). 2
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Theorem E.3.7. Let X ∈ L1 and {Fn, n ∈ N} be a filtration and let F∞ =
σ (
⋃

∞
n=0 Fn). Then the sequence {E [X |Fn] ,n ∈ N} converges P − a.s. and in L1

to E [X |F∞]

The sequence {E [X |Fn] ,n ∈ N} is called a regular martingale.

Definition E.3.8 (Reversed martingale) Let {Bn, n ∈ N} be a decreasing se-
quence of σ -fields. A sequence {Xn, n ∈ N} of positive or integrable random vari-
ables is called a reversed supermartingale relative to the sequence {Bn, n ∈ N} if
for all n ∈ N the random variable Xn is Bn measurable and E [Xn |Bn+1] ≤ Xn+1
for all n ∈ N. A reversed martingale or submartingale is defined accordingly.

Theorem E.3.9. Let X ∈ L1 and {Bn, n ∈ N} be a non increasing sequence of
σ -fields. Then the sequence {E [X |Bn] ,n ∈ N} converges P − a.s. and in L1 to
E [X |

⋂
∞
n=0 Bn]

Proof. See (Neveu, 1975, Theorem V-3-11). 2

E.4 Central limit theorems

Theorem E.4.1. Let {pn, n ∈ N} be a sequence of integers. For each n ∈ N, let
{(Mn,k,Fn,k), 0≤ k≤ pn}with Mn,0 = 0 be a square-integrable martingale. Assume
that

pn

∑
k=1
E
[
(Mn,k−Mn,k−1)

2∣∣Fn,k−1
] P −prob−→ σ

2 , (E.4.1)

pn

∑
k=1
E
[
|Mn,k−Mn,k−1|2|1{|Mn,k−Mn,k−1|>ε}

∣∣∣Fn,k−1

] P −prob−→ 0 . (E.4.2)

for all ε > 0. Then Mn,pn
P

=⇒ N(0,σ2).

Proof. (Hall and Heyde, 1980, Corollary 3.1) 2
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Applying the previous result in the case where Mn,k = Mk/
√

n and {Mn, n ∈ N}
is a square integrable martingale yields the following corollary.

Corollary E.4.2 Let {(Zn,Fn), n ∈ N} be a square integrable martingale dif-
ference sequence. Assume that there exists σ > 0 such that

n−1
n

∑
j=1
E
[

Z2
j
∣∣F j−1

] P −prob−→ σ
2 , (E.4.3)

n−1
n

∑
k=1
E
[

Z2
k1{|Zk|>ε

√
n}

∣∣∣Fk−1

] P −prob−→ 0 . (E.4.4)

for all ε > 0. Then n−1/2
∑

n
k=1 Zk

P
=⇒ N(0,σ2).

Theorem E.4.3. Let {Zn, n∈N∗} be a stationary sequence adapted to the filtration
{Fn, n ∈ N} and such that E

[
Z2

1
]
< ∞, E [Zn |Fn−m] = 0 for all n≥ m and

1
n

n

∑
q=1
E

(m−1

∑
j=0
E
[

Zq+ j
∣∣Fq

]
−E

[
Zq+ j

∣∣Fq−1
])2

∣∣∣∣∣∣Fq−1

 P −prob−→ s2 . (E.4.5)

Then n−1/2
∑

n
k=1 Zk

P
=⇒ N(0,s2).

Proof. Since E
[
Z2

1
]
< ∞, it suffices to prove the central limit theorem for the sum

Sn = ∑
n
k=m Zk. For k = 1, . . . ,n and q≥ 1 write

ξ
(q)
k = E [Zk |Fq]−E

[
Zk |Fq−1

]
.

Then, using the assumption E [Zm |F0] = 0, we have

Sn =
n

∑
k=m

k

∑
q=k−m+1

ξ
(q)
k =

n

∑
q=1

q+m−1

∑
k=q

ξ
(q)
k 1{m≤ k ≤ n}

=
n

∑
q=1

m−1

∑
j=0

ξ
(q)
q+ j1{m≤ q+ j ≤ n} .

If m≤ q≤ n−m+1, then the indicator is 1, i.e. only 2m−2 terms are affected by
the indicator. Write
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ζq =
m−1

∑
j=0

ξ
(q)
q+ j , Mn =

n−m+1

∑
q=m

ζq .

SinceE
[
Z2

1
]
<∞, n−1/2(Sn−Mn)

P −prob−→ 0. The sequence {ζq} is a stationary square
integrable martingale difference sequence. Therefore, to prove the central limit the-
orem for Mn, we apply Corollary E.4.2. Condition (E.4.3) holds by assumption. By
stationarity, the expectation of the left hand side of (E.4.4) is here

E
[
ζ

2
m1
{
|ζm|> ε

√
n
}]
→ 0 ,

as n tends to infinity since an integrable random variable is uniformly integrable. 2

A stationary sequence {Xn, n ∈ N} is called m-dependentq for a given integer m
if (X1, . . . ,Xi) and (X j,X j+1, . . .) are independent whenever j− i > m.

Corollary E.4.4 Let {Yn, n ∈ N} be a stationary m-dependent process on a
probability space (Ω ,F ,P) such that E

[
Y 2

0
]
< ∞ and E [Y0] = 0. Then

n−1/2
n−1

∑
k=0

Yk
P

=⇒ N(0,σ2)

with

σ
2 = E

[
Y 2

0
]
+2

m

∑
k=1
E [Y0Yk] . (E.4.6)

Theorem E.4.5. Let m be an integer and {Yn, n ∈N∗} be a stationary m-dependent
process with mean 0. Let {ηn, n ∈ N∗} be a sequence of random variables taking
only strictly positive integer values such that

ηn

n
P −prob−→ ϑ ∈ (0,∞) . (E.4.7)

Then

η
−1/2
n

ηn

∑
k=0

Yk
P

=⇒ N(0,σ2) and n−1/2
ηn

∑
k=0

Yk
P

=⇒ N(0,ϑσ
2) ,

where σ2 is given in (E.4.6).

Proof. Denote by Sn = ∑
n
k=1 Yk. Without loss of generality, we may assume that

σ2 = 1. By Corollary E.4.4, Sbϑnc/
√
bϑnc converges weakly to the standard Gaus-

sian distribution. Write
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Sηn√
ηn

=

√
bϑnc

ηn

Sbϑnc√
bϑnc

+

√
ϑn
ηn

Sηn −Sbϑnc√
ϑn

.

By assumption (E.4.7), ηn/ϑn
P −prob−→ 1 and ηn/bϑnc P −prob−→ 1. The theorem will be

proved if we show that
Sηn −Sbϑnc√

ϑn
P −prob−→ 0 . (E.4.8)

Let ε ∈ (0,1) be fixed and set

an = (1− ε
3)ϑn , bn = (1+ ε

3)ϑn .

Then,

P
(
|Sηn −Sbϑnc|> ε

√
ϑn
)

≤ P
(
|Sηn −Sbϑnc|> ε

√
ϑn,ηn ∈ [an,bn]

)
+P(ηn 6∈ [an,bn])

≤ P
(

max
an≤ j≤bn

|S j−Sbϑnc|> ε
√

ϑn
)
+P

(
|ηn−ϑn| ≥ ε

3n
)
. (E.4.9)

For i ∈ {0,1, . . . ,m−1} and j ∈ N, set S(i)j = ∑
b j/mc
k=0 Ykm+i. Note that

P
(

max
an≤ j≤bn

|S j−Sbϑnc|> ε
√

ϑn
)
≤ P

(
max

1≤ j≤bn−an
|S j|> ε

√
ϑn
)

≤
m−1

∑
i=0
P
(

max
1≤ j≤bn−an

|S(i)j |> ε
√

ϑn/m
)

.

(E.4.10)

Since for each i ∈ {0, . . . ,m− 1} the random variables {Ykm+i,k ∈ N} are i.i.d.,
Kolmogorov’s maximal inequality (Proposition E.2.3) yields

P
(

max
1≤ j≤bn−an

|S(i)j |> ε
√

ϑn/m
)
≤ Var(Sbn−an)

ε2ϑn

≤
(2ε3ϑn)m2E

[
Y 2

0
]

mε2ϑn
= 2mε . (E.4.11)

Assumption (E.4.7) implies that limsupn→∞P
(
|ηn−ϑn| ≥ ε3n

)
= 0. Combining

this inequality with (E.4.9) and (E.4.10) shows that

limsup
n→∞

P
(
|Sηn −Sbϑnc|/

√
bϑnc> ε

)
≤ 2m2

ε .

Since ε is arbitrary, this proves (E.4.8) and consequently the theorem. 2



Appendix F
Mixing coefficients

In this appendix, we briefly recall the definitions and the main properties of mix-
ing coefficients for stationary sequences in Appendices F.1 and F.2 and show that
they have particularly simple expressions for Markov chains under the invariant dis-
tribution in Appendix F.3. These mixing coefficient are not particularly useful for
Markov chains since taking advantage of the Markov property usually provides sim-
ilar or better results than using more general methods. Furthermore, Markov chains
are often used to build counterexamples or to show that the results obtained with
these mixing coefficients are optimal in some sense. Therefore this appendix is for
reference only and is not used elswhere in this book. Bradley (2005) provides a
survey of the main results. The books Doukhan (1994), Rio (2017) and Bradley
(2007a,b,c) are authoritative in this field.

F.1 Definitions

Let (Ω ,F ,P) be a probability space and A ,B be two sub σ -fields of F . Different
coefficients were proposed to measure the strength of the dependence between A
and B.

Definition F.1.1 (Mixing coefficients) Let (Ω ,F ,P) be a probability space and
A ,B be two sub σ -fields of F .

(i) The α-mixing coefficient is defined by

α(A , B) = sup{|P(A∩B)−P(A)P(B)|, A ∈A , B ∈B} . (F.1.1)

(ii) The β -mixing coefficient is defined by

649
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β (A , B) =
1
2

sup
I

∑
i=1

J

∑
j=1
|P(Ai∩B j)−P(Ai)P(B j)| , (F.1.2)

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AI}
and {B1, . . . , BJ} of Ω such that Ai ∈A for each i and B j ∈B for each j.

(iii) The φ -mixing coefficient is defined by

φ(A , B) = sup{|P(B |A)−P(B)|, A ∈A , B ∈B, P(A)> 0} . (F.1.3)

(iv) The ρ-mixing coefficient is defined by

ρ(A ,B) = supCorr( f , g) . (F.1.4)

where the supremum is taken over all pairs of square-integrable random vari-
ables f and g such that f is A -measurable and g is B-measurable.

F.2 Properties

These coefficients share many common properties. In order to avoid repetitions,
when stating a property valid for all these coefficients, we will let δ (·, ·) denote any
one of them. The coefficients α , β and ρ are symmetric whereas the coefficient φ is
not but all of them are increasing.

Proposition F.2.1 If A ⊂A ′ and B⊂B′ then δ (A ,B)≤ δ (A ′,B′). More-
over,

δ (A ,B) = sup(δ (U ,V ), U ,V finite σ -field, U ⊂A , V ⊂B), (F.2.1)

Proof. Let δ̃ (A ,B) denote the right hand-side of (F.2.1). By the increasing prop-
erty of the coefficients, δ̃ (A ,B)≤ δ (A ,B). The converse inequality is trivial for
the α , φ and ρ coefficients. It suffices to consider the finite σ -fields { /0,A,Ac,Ω}.
We now prove it for the β coefficient. Let (Ai)i∈I and (B j) j∈J be two partitions of
Ω with elements in A and B, respectively. Let U and V be the σ -fields generated
by these partitions. Then the desired inequality follow from the identity

β (U ,V ) =
1
2

I

∑
i=1

J

∑
j=1
|P(Ai∩B j)−P(Ai)P(B j)| .

To check that this is true, note that if A1∩A2 = /0, then
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|P((A1∪A2)∩B)−P(A1∪A2)P(B)|
= |P(A1∩B)−P(A1)P(B)+P(A2∩B)−P(A2)P(B)|
≤ |P(A1∩B)−P(A1)P(B)|+ |P(A2∩B)−P(A2)P(B)| .

This proves our claim, since a partition of Ω measurable with respect to U consists
of sets which are unions of Ai. 2

The β coefficient can be characterized in terms of total variation distance. Let
PA ,B be the probability measure on (Ω ×Ω ,A ⊗B) defined by

PA ,B(A×B) = P(A∩B) , A ∈A , B ∈B .

Proposition F.2.2 β (A ,B) = dTV(PA ,B,PA ⊗PB).

Proof. Let µ be a finite signed measure on a product space (A×B,A ⊗B). We
will prove that

‖µ‖TV = sup
I

∑
i=1

J

∑
j=1
|µ(Ai×B j)| (F.2.2)

where the supremum is taken over all finite union of disjoint measurable rectangles.
Applying this identity to µ = PA ,B−PA ⊗PB will prove our claim. Let the right-
hand side of (F.2.2) be denoted m. By Proposition D.2.3,

‖µ‖TV = sup∑
k
|µ(Ck)|

where the supremum is taken over finite partitions {Ck} of A×B, measurable with
respect to A ⊗B. Thus, ‖µ‖TV ≥ m. Let D be a Jordan set for µ , i.e. D ∈A ⊗B
satisfying ‖µ‖TV = µ(D)− µ(Dc). For every ε > 0, there exists E ∈ E such that
|µ(D)−µ(E)|< ε and |µ(Dc)−µ(Ec)|< ε . Let (Ai, i ∈ I) and (B j, j ∈ J) be two
finite partitions of (A,A ) and (B,B), respectively, such that E ∈ σ(Ai×B j,(i, j) ∈
I× J). Then, there exists a subset K ⊂ I× J such that

µ(E) = ∑
(i, j)∈K

µ(Ai×B j) , µ(Ec) = ∑
(i, j)∈I×J\K

µ(Ai×B j) .

Therefore,

‖µ‖TV−2ε ≤ |µ(E)|+ |µ(Ec)|
≤ ∑

(i, j)∈K
|µ(Ai×B j)|+ ∑

(i, j)∈I×J\K
|µ(Ai×B j)|

= ∑
(i, j)∈I×J

|µ(Ai×B j)| .



652 F Mixing coefficients

Since ε is arbitrary, this implies that ‖µ‖TV ≤ m. 2

Example F.2.3. Let (Ω ,F ,P) be probability space and let (X ,Y ) be a random pair.
Then

β (σ(X),σ(Y )) = dTV(LP ((X ,Y )) ,LP (X)⊗LP (Y ))

J

The α , β and φ coefficients define increasingly strong measures of dependence.

Proposition F.2.4 2α(A ,B)≤ β (A ,B)≤ φ(A ,B).

Proof. The first inequality is a straightforward consequence of the definitions. Let
A ∈A , B ∈B. Note that |P(Ac∩Bc)−P(Ac)P(Bc)|= |P(A∩Bc)−P(A)P(Bc)|=
|P(Ac∩B)−P(Ac)P(B)|= |P(A∩B)−P(A)P(B). Thus

β (A ,B)≥ 1
2
×4|P(A∩B)−P(A)P(B)|= 2|P(A∩B)−P(A)P(B)| .

Since A and B are arbitrary, this yields β (A ,B)≥ 2α(A ,B).
Let {Ai, i∈ I} and {B j, j ∈ J} be two finite partitions of (Ω ,A ) and (Ω ,B). For

i ∈ I, set

J(i) = { j ∈ J, P(Ai∩B j)≥ P(Ai)P(B j)} , B(i) =
⋃

j∈J(i)

B j .

Since {B j, j ∈ J} is a partition of Ω , it holds that ∑ j∈J(P(Ai∩B j)−P(Ai)P(B j)) =
0, hence ∑ j∈J |P(Ai∩B j)−P(Ai)P(B j)|= ∑ j∈J(i){P(Ai∩B j)−P(Ai)P(B j)} for all
i ∈ I. Thus,

1
2 ∑

j∈J
|P(Ai∩B j)−P(Ai)P(B j)|= ∑

j∈J(i)
{P(Ai∩B j)−P(Ai)P(B j)}

= ∑
j∈J(i)

P(Ai){P
(

B j
∣∣Ai
)
−P(B j)}

= P(Ai){P(B(i) |Ai)−P(B(i))}
≤ P(Ai)φ(A ,B) .

Summing over i, this yields

1
2 ∑

i∈I
∑
j∈J
|P(Ai∩B j)−P(Ai)P(B j)| ≤ φ(A ,B) .

By Proposition F.2.1, this proves that β (A ,B)≤ φ(A ,B). 2
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We now give a characterization of the α coefficient in terms of conditional prob-
abilities.

Proposition F.2.5 α(A ,B) = 1
2 supB∈BE [|P(B |A )−P(B)|] .

Proof. For an integrable random variable X such that E [X ] = 0, we have the follow-
ing characterization:

E [|X |] = 2 sup
A∈A

E [X1A] . (F.2.3)

This is easily seen by considering the set A = {X > 0}. For A ∈A , B ∈B, P(A∩
B)−P(A)P(B) = E [{P(B |A )−P(B)}1A]

α(A ,B) = sup
A∈A

sup
B∈B
|P(A∩B)−P(A)P(B)|

= sup
B∈B

sup
A∈A

E [{P(B |A )−P(B)}1A]

=
1
2

sup
B∈B

E [|P(B |A )−P(B)|] .

2

In order to give more convenient characterizations of the β ad φ coefficients, we
will need the following assumption.

H F.2.6 Let A and B be two sub σ -fields of F . The σ -field B is countably gener-
ated and there exists a Markov kernel N : Ω×B→ [0,1] such that for every B∈B,
ω 7→ N(ω,B) is A -measurable and P(B |A ) = N(·,B) P − a.s.

The following result provides alternate expressions for the φ coefficients and
shows the importance of H F.2.6. For a real-valued random variable X defined on
a probability space (Ω ,F ,P), let esssupP (X) be the smallest number M ∈ (−∞,∞]
such that P(X ≤M) = 1.

Proposition F.2.7 For every sub σ -fields A and B,

φ(A ,B) = sup
B∈B

esssupP|P(B |A )−P(B)| . (F.2.4)

Moreover, if H F.2.6 holds, then

φ(A ,B) = esssupP sup
B∈B
|P(B |A )−P(B)| . (F.2.5)
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Proof. Set φ ′(A ,B) = supB∈B esssupP|P(B |A )− P(B)|. For every B ∈ B, we
have

|P(A∩B)−P(A)P(B)|= |E [1A{P(B |A )−P(B)}] |
≤ P(A) esssupP (|P(B |A )−P(B)|)
≤ P(A)φ ′(A ,B) .

Thus φ(A ,B)≤ φ ′(A ,B). Conversely, for every ε > 0, there exists Bε such that

P(|P(Bε |A )−P(Bε)|> φ
′(A ,B)− ε)> 0 .

Define the A -mesurable sets Aε and A′ε by

Aε = {P(Bε |A )−P(Bε)> φ
′(A ,B)− ε} ,

A′ε = {P(Bε)−P(Bε |A )> φ
′(A ,B)− ε} .

Note that either P(Aε)> 0 or P(A′ε)> 0. Assume that P(Aε)> 0. Then,

φ(A ,B)≥ P(Aε ∩Bε)−P(Aε)P(Bε)

P(Aε)

=
1

P(Aε)

∫
Aε

[P(Bε |A )−P(Bε)]dP≥ (φ ′(A ,B)− ε) .

Since ε is arbtirary, this implies that φ(A ,B) ≥ φ ′(A ,B). This proves (F.2.4)
and we now prove (F.2.5). Under F.2.6, P(B |A ) = N(·,B). Since B is countably
generated, by Lemma D.1.5, there exists a sequence {Bn, n ∈ N} of B-measurable
sets such that

sup
B∈B
|N(·,B)−P(B)|= sup

n∈N
|N(·,Bn)−P(Bn)| .

Therefore, supB∈B |N(·,B)− P(B)| is measurable and we can define the random
variable esssupP (supB∈B |P(B |A )−P(B)|). For every C ∈B,

|P(C |A )−P(C)| ≤ sup
B∈B
|P(B |A )−P(B)| ,

which implies that

esssupP (|P(C |A )−P(C)|)≤ esssupP

(
sup
B∈B
|P(B |A )−P(B)|

)
.

Thus

φ(A ,B) = φ
′(A ,B)≤ esssupP

(
sup
B∈B
|P(B |A )−P(B)|

)
.

Conversely, for every C ∈B,
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|P(C |A )−P(C)| ≤ esssupP (|P(C |A )−P(C)|)
≤ sup

B∈B
esssupP (|P(B |A )−P(B)|) = φ(A ,B) .

This proves that esssupP (supB∈B |P(B |A )−P(B)|)≤ φ(A ,B) and concludes the
proof of (F.2.5). 2

Proposition F.2.8 For every sub σ -fields A and B such that H F.2.6 holds,

β (A ,B) = E
[

sup
B∈B
|P(B |A )−P(B)|

]
.

Proof. Set Q = PA ,B −PA ⊗PB and β1 = (1/2)‖Q‖TV = β (A ,B) by Proposi-
tion F.2.2. Under H F.2.6, supB∈B |P(B |A )−P(B)| is measurable. Therefore we
can set β2 = E [supB∈B |P(B |A )−P(B)|] and we must prove that β1 = β2. Let
D∈A ⊗B be a Jordan set for Q (which is a signed measure on (Ω 2,A ⊗B)). Then
β1 = Q(D). Set Dω1 = {ω2 ∈Ω : (ω1,ω2) ∈ D}. Then Dω1 ∈B. Under H F.2.6,
the identity PA ,B = P⊗N holds. Indeed, for A ∈A and B ∈B, we have

P⊗N(A×B) =
∫

A
P(dω)N(ω,B) = E [1AP(B |A )]

= P(A×B) = PA ,B(A×B) .

Define the signed kernel M by setting, for ω ∈Ω and B ∈B,

M(ω,B) = N(ω,B)−P(B) . (F.2.6)

With these notations, Q = P⊗M. Since B is countably generated, supB∈B M(·,B)
is measurable. Thus, applying Fubini’s theorem, we obtain

β1 = Q(D) =
∫∫
P(dω1)M(ω1,dω2)1D(ω1,ω2) =

∫
P(dω1)M(ω2,Dω1)

≤
∫
P(dω1) sup

B∈B
M(ω1,B) = E

[
sup
B∈B
|P(B |A )−P(B)|

]
= β2 .

By Lemma D.1.5, there exists a sequence {Bn, n ∈ N} such that supB∈B M(·,B) =
supn≥0 M(·,Bn). Set Z = supn≥0 M(·,Bn). For ε > 0, define the A -measurable ran-
dom variable N by

N(ω1) = inf{n≥ 0 : M(ω1,Bn)≥ Z(ω1)− ε} .

Then we can define a set C ∈A ⊗B by

C = {(ω1,ω2), ω2 ∈ BN(ω1)}=
⋃
k

{(ω1,ω2), n(ω1) = k,ω2 ∈ Bk} .
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We then have

β1 ≥ Q(C) = P⊗M(C) =
∫
P(dω1)M(ω1,BN(ω1))

≥ E
[

sup
B∈B

M(·,B)
]
− ε = β2− ε .

Since ε is arbitrary, we obtain that β1 ≥ β2. 2

The following result is the key to prove the specific properties of the mixing
coefficients of Markov chains which we will state in the next section.

Proposition F.2.9 Let A , B and C be sub σ -fields of F . If A and C
are conditionally independent given B, then δ (A ∨B,C ) = δ (B,C ) and
φ(A ,B∨C ) = φ(A ,B).

Proof. Write |P(A∩B)−P(A)P(B)| = E [{1A−P(A)}1B]. Lemma B.3.16 implies
that for all A ∈A ,

sup
B∈B∨C

|P(A∩B)−P(A)P(B)|= sup
B∈B
|P(A∩B)−P(A)P(B)|.

This establishes that α(A ,B∨C ) = α(A ,B) and φ(A ,B∨C ) = φ(A ,B). Ap-
plying Propositions B.3.15 and F.2.7, we obtain

φ(A ∨B,C ) = sup
C∈C

esssupP (|P(C |A ∨B)−P(B)|)

= sup
C∈C

esssupP|P(C |B)−P(B)|= φ(B,C ) .

Assume now that A , B and C are generated by finite partitions {Ai, i∈ I}, {B j, j ∈
J} and {Ck, k ∈ K}. Then, B∨C is generated by the finite partition {B j ∩Ck, j ∈
J,k ∈ K}. Therefore, using Lemma B.3.3, we obtain, for every i ∈ I,

∑
j∈J,k∈K

|P(Ai∩B j ∩Ck)−P(Ai)P(B j ∩Ck)|

= E
[
|E
[
1Ai
−P(Ai)

∣∣B∨C
]
|
]

= E
[
|E
[
1Ai
−P(Ai)

∣∣B] |]
= ∑

j∈J
|P(Ai∩B j)−P(Ai)P(B j)| .

Summing this identity over i yields β (A ,B∨C ) = β (A ,B) when the σ -fields are
generated by finite partitions of Ω . Applying Proposition F.2.1 concludes the proof.
2
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F.3 Mixing coefficients of Markov chains

In this Section, we will discuss the mixing properties of Markov chains. Let (X,X )
be a measurable space and assume that X is countably generated. Let P be a
Markov kernel on X×X , (Ω ,F ,P) be the canonical space and {Xn, n ∈ N} be
the coordinate process. For 0≤ m≤ n, define

F n
m = σ(Xk,m≤ k ≤ n) , F ∞

n = σ(Xk,n≤ k ≤ ∞) .

These σ -fields are also countably generated. We are interested in the mixing co-
efficients of the σ -fields F n

0 and F ∞
n+k under the probability measure Pµ on the

canonical space. In order to stress the initial distribution, we will add the subscript
µ to the notation: δµ(F n

0 ,F
∞
n+k) is the δ coefficient of F n

0 and F ∞
n+k under Pµ .

Lemma F.3.1 For all n,k ≥ 0, the pair of σ -fields (F n
0 ,F

∞
n+k) satisfy H F.2.6.

Proof. Let θ be the shift operator. If B ∈F ∞
n+k , then 1B ◦θ−n is the indicator of an

event Bk ∈F ∞
k . By the Markov property,

P(B |F n
0 ) = E

[
1B ◦θ

−n ◦θ
n ∣∣F n

0
]
= EXn [1B ◦θ

−n] = P(Xn,Bk) .

This defines a kernel on Ω ×F ∞
n+k and thus H F.2.6 holds. 2

The Markov property entails a striking simplification of the mixing coefficients
of a Markov chain.

Proposition F.3.2 For every initial distribution µ on X,

δµ(F
n
0 ,F

∞
n+k) = δµ(σ(Xn),σ(Xn+k)) .

Proof. By the Markov property, F n
0 and F ∞

n+k+1 are conditionally independent
given Xn; similarly, F n−1

0 and Xn+k are conditionally independent given Xn. Ap-
plying Proposition F.2.9, we have, for any coefficient δµ ,

δµ(F
n
0 ,F

∞
n+k) = δµ(F

n
0 ,σ(Xn+k)∨F ∞

n+k+1) = δµ(F
n−1
0 ,σ(Xn+k))

= δµ(F
n
0 ∨σ(Xn),σ(Xn+k)) = δµ(σ(Xn),σ(Xn+k)) .

2

We can now state the main result of this section.

Theorem F.3.3. For every initial distribution µ ,
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αµ(F
n
0 ,F

∞
n+k) = sup

A∈X

∫
µPn(dx)|Pk(x,A)−µPn+k(A)| , (F.3.1)

βµ(F
n
0 ,F

∞
n+k) =

∫
µPn(dx)dTV(P

k(x, ·),µPn+k) , (F.3.2)

φµ(F
n
0 ,F

∞
n+k) = esssupµPn

(
dTV(P

k(x, ·),µPn+k)
)
. (F.3.3)

Proof. Applying Proposition F.3.2 and Proposition F.2.5, we have

αµ(F
n
0 ,F

∞
n+k) = αµ(σ(Xn),σ(Xn+k))

=
1
2

sup
B∈σ(Xn+k)

Eµ [|Pµ(B|σ(Xn))−P(B)|]

=
1
2

sup
C∈X

Eµ(|Pµ(Xn+k ∈C|Xn)−P(Xn+k ∈C)|)

=
1
2

sup
C∈X

∫
µPn(dx)|Pk(x,C)−µPn+k(C)| .

This proves (F.3.1). Applying now Proposition F.2.8, we obtain

βµ(F
n
0 ,F

∞
n+k) = βµ(σ(Xn),σ(Xn+k))

= Eµ

[
sup

B∈σ(Xn+k)

|Pµ(B|σ(Xn))−Pµ(B)|

]

= Eµ

[
sup

C∈X
|Pµ(Xn+k ∈C|Xn)−Pµ(Xn+k ∈C)|

]
= Eµ

[
sup

C∈X
|Pk(Xn,C)−µPn+k(C)|

]
=
∫

µPn(dx) sup
C∈X

|Pk(x,C)−µPn+k(C)|

≤
∫

µPn(dx)dTV(P
k(x, ·),µPn+k) .

This proves (F.3.2). Using Proposition F.2.7, we have
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φµ(F
n
0 ,F

∞
n+k) = φµ(σ(Xn),σ(Xn+k))

= esssupP

(
sup

B∈σ(Xn+k)

|Pµ(B|σ(Xn))−P(B)|

)

= esssupP

(
sup

C∈X
|Pk(Xn,C)−P(Xn+k ∈C)|

)
= esssupµPn

(
sup

C∈X
|Pk(x,C)−µPn+k(C)|

)
= esssupµPn

(
dTV(P

k(x, ·),µPn+k)
)
.

This proves (F.3.3). 2

Corollary F.3.4 Let P be a positive Markov kernel on X×X with invari-
ant probability measure π . Assume that there exists a function V : X→ [0,∞]
such that π(V ) < ∞ and a nonincreasing sequence {βn, n ∈ N∗} satisfying
limn→∞ βn = 0 such that dTV(P

n(x, ·),π) ≤ V (x)βn for all n ≥ 0 and x ∈ X.
Then the canonical chain {Xn, n ∈ N} is β -mixing under Pπ :

βπ(F
n
0 ,F

∞
n+k)≤ π(V )βn . (F.3.4)

If V is bounded then canonical chain {Xn, n ∈ N} is π-mixing with geometric
rate under Pπ .

Proof. The bound (F.3.4) is an immediate consequence of (F.3.2). The last statement
is a consequence of (F.3.3) and Proposition 15.2.3). 2

We now turn to the ρ-mixing coefficients under stationarity. For notational clarity,
we set ρk = ρπ(F n

0 ,F
∞
n+k).

Proposition F.3.5 Let P be a positive Markov kernel on X×X with invariant
probability measure π . Then, for all k ≥ 1,

ρk = 9P9L2
0(π)

.

and for all k ≥ 1, ρk ≤ ρk
1 . Furthermore, if P is reversible with respect to π ,

then P is geometrically ergodic if and only if ρ1 < 1.

Proof. The first two claims are straightforward consequences of the definition of
the ρ mixing coefficients and the last one is a consequence of Theorem 22.3.11. 2





Appendix G
Solutions to selected exercises

Solutions to exercises of Chapter 1

1.4 1. We have

Ē[1A×{Sn=k} f (Yn+1)] = Ē[1A×{Sn=k} f (Xk+Zn+1)]

=
∞

∑
j=0

a( j)Ē[1{Sn=k}1A f (Xk+ j)]

=
∞

∑
j=0

a( j)Ē[1{Sn=k}1AP j f (Xk)]

= Ē[1A×{Sn=k}Ka f (Xk)] = Ē
[
1A×{Sn=k}Ka f (Yn)

]
,

2. This identity shows that for all n ∈ N and f ∈ F+(X), Ē [ f (Yn+1 |Hn] = f (Yn).

1.5 Let π be an invariant probability. Then, for all f ∈ F+(X), by Fubini’s theorem∫
X

f (x)π(dx) =
∫

X
P f (x)π(dx) =

∫
X

[∫
X

p(x,y) f (y)µ(dy)
]

π(dx)

=
∫

X

[∫
X

p(x,y)π(dx)
]

f (y)µ(dy) .

This implies that π( f ) =
∫

X f (y)q(y)µ(dy) with q(y) =
∫

X p(x,y)π(dx)> 0.
Hence, the probability π and µ are equivalent.
Assume that there are two distinct invariant probabilities. By Theorem 1.4.6-(ii),

there exist two singular invariant probabilities π and π ′, say. Since we have just
proved that π ∼ µ and π ′ ∼ µ , this is a contradiction.

1.6 1. The invariance of π implies that

π(X1) = 1 =
∫

X1

P(x, X1)π(dx) .

661
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Therefore, there exists a set X2 ∈X such that,

X2 ⊂ X1 , π(X2) = 1 and P(x, X1) = 1 , for all x ∈ X2.

Repeating the above argument, we obtain a decreasing sequence {Xi, i ≥ 1} of
sets Xi ∈X such that π(Xi) = 1 for all i = 1,2, . . ., and P(x, Xi) = 1, for all
x ∈ Xi+1.

2. The set B is non-empty because

π(B) = π

(
∞⋂

i=1

Xi

)
= lim

i→∞
π(Xi) = 1 .

3. The set B is absorbing for P because for any x ∈ B,

P(x, B) = P

(
x,

∞⋂
i=1

Xi

)
= lim

i→∞
P(x, Xi) = 1.

1.8 The proof is by contradiction. Assume that µ is invariant. Clearly, one must
have µ({0}) = 0 since P(x,{0}) = 0 for every x ∈ [0,1]. Since for x ∈ [0,1],
P(x,(1/2,1]) = 0, one must also have µ((1/2,1]) = 0. Proceeding by induction,
we must have µ((1/2n,1]) = 0 for every n and therefore µ((0,1]) = 0. Therefore,
µ([0,1]) = 1.

1.11 1. The transition matrix is given by:

P(i, i+1) =
N− i

N
, i = 0, . . . ,N−1 ,

P(i, i−1) =
i
N

, i = 1, . . . ,N .

2. For all i = 0, . . . ,N−1,(
N
i

)
N− i

N
=

N!(N− i)
i!(N− i)!N

=

(
N

i+1

)
i+1

N
.

This is the detailed balance condition of Definition 1.5.1. Thus the binomial
distribution B(N,1/2) is invariant.

3. For n≥ 1,

E [Xn |Xn−1] = (Xn−1 +1)
N−Xn−1

N
+(Xn−1−1)

Xn−1

N
= Xn−1(1−2/N)+1 .

4. Set mn(x) = Ex[Xn] for x ∈ {0, . . . ,N} and a = 1−2/N, this yields

mn(x) = amn−1(x)+1 .

The solution to this recurrence equation is
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mn(x) = xan +
1−an

1−a
,

and since 0 < a < 1, this yields that limn→∞Ex[Xn] = 1/(1−a) = N/2, which
is the expectation of the stationary distribution.

1.12 1. For all (x,y) ∈ X×X, [DM]x,y = π(x)M(x,y) and [MT D]x,y = M(y,x)π(y)
and hence, [DM]x,y = [MD]x,y.

2. The proof is by induction. Assume that DMk−1 = (Mk−1)T D. Then

DMk = DMk−1M = (Mk−1)T DM = (Mk−1)T MT D = (Mk)T D .

3. Premultiplying by D−1/2 and postmultiplying by D1/2 the relation DM = MT D,
we get T = D1/2MD−1/2 = D−1/2MT D1/2. Thus T can be orthogonally di-
agonalized T = Γ βΓ t with Γ orthogonal and β a diagonal matrix having
the eigenvalues of T , and so M, on the diagonal. Thus M = V βV−1 with
V = D−1/2Γ ,V−1 = Γ T D1/2.

4. The right eigenvectors of M are the columns of V : Vxy = Γxy/
√

π(x). These
are orthonormal in L2(π) . The left eigenvectors are the rows of V−1 : V−1

xy =

Γyx
√

π(y). These are orthonormal in L2(1/π).

1.13 If µ = µP, then µ = µKaη
. Conversely, assume that µ = µKaη

. The identity
Kaη

= (1−η)I +ηKaη
P yields µ = (1−η)µ +ηµP. Thus µ(A) = µP(A) for all

A ∈X such that µ(A)< ∞. Since by definition µ is σ -finite, this yields µP = µ .

Solutions to exercises of Chapter 2

2.1 1. For any bounded measurable function f we get

E [ f (X1)] = E [ f (V1X0 +(1−V1)Z1)]

= αE [ f (X0)]+(1−α)E [ f (Z1)] = αξ ( f )+(1−α)π( f ) .

This implies that the {Xn, n ∈ N} is a Markov chain with kernel P defined by

P f (x) = α f (x)+(1−α)π( f ) .

2. Since P f = α f +(1−α)π( f ) we get

ξ P = αξ +(1−α)π ,

for any probability measure ξ on R. This yields that π is the unique invariant
probability.

3. for any positive integer h, we get

Cov(Xh,X0) = Cov(VhXh−1 +(1−Vh)Zh,X0) = α Cov(Xh−1,X0) ,
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which implies that Cov(Xh,X0) = αh Var(X0).

2.2 1. The kernel P is defined by Ph(x) = E [h(φx+Z0)].
2. Iterating (2.4.2) yields for all k ≥ 1,

Xk = φ
kX0 +

k−1

∑
j=0

φ
jZk− j = φ

kX0 +Ak , (G.1)

with Ak = ∑
k−1
j=0 φ jZk− j. Since {Zk, k ∈N} is an i.i.d. sequence, Ak and Bk have

the same distribution for all k ≥ 1.
3. Assume that |φ |< 1. Then {Bk, k ∈N} is a martingale and is bounded in L1(P),

i.e.

sup
k≥0
E [|Bk|]≤ E [|Z0|]

∞

∑
j=0
|φ j|< ∞ .

Hence, by the martingale convergence theorem (Theorem E.3.1),

Bk
P-a.s.−→ B∞ =

∞

∑
j=0

φ
jZ j .

4. Let π be the distribution of B∞ and let Z−1 have the same distribution as Z0 and
be independent of all other variables. Then π is invariant since φB∞ +Z−1 has
the same distribution as B∞ and has distribution πP by definition of P. Let ξ

be an invariant distribution and X0 have distribution ξ . Then, for every n ≥ 1,
the distribution of Xn = φ nX0 +∑

n
j=1 φ j + Zn− j is also ξ . On the other hand,

we have seen that the distribution of Xn is the same as that of φ nX0 +Bk. Since
Bk

P-a.s.−→ B∞ and φ nX0
P-a.s.−→ 0, we obtain that ξ = π .

5. If X0 = x, applying (G.1), we obtain for all n≥ 1,

φ
−nXn = x+φ

−n φ n−1
φ −1

µ +
n−1

∑
j=0

φ
j−nZn− j

= x+
1−φ−n

φ −1
µ +

n

∑
j=1

φ
− jZ j .

Thus, since C j = ∑
n
j=1 φ− jZ j is a martingale bounded in L1(P) we obtain

lim
n→∞

φ
−nXn = x+

1
φ −1

µ +
∞

∑
j=1

φ
− jZ j Px − a.s.

Thus limn→∞ |Xn| = +∞ unless possibly if x+ 1
φ−1 µ +∑

∞
j=1 φ− jZ j = 0, which

happens with zero Px probability for all x if the distribution of ∑
∞
j=1 φ− jZ j is

continuous.

2.3 Defining f (x,z) = (a+bz)x+ z yields Xk = f (Xk−1,Zk).
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(i) For (x,y,z) ∈ R3, | f (x,z)− f (y,z)| ≤ |a+ bz||x− y|. If E [ln(|a+bZ0|)] < 0,
then (2.1.16) holds with K(z) = |a+bz|. If in addition, E

[
ln+(|Z0|)

]
< ∞, then

(2.1.18) also holds and Theorem 2.1.9 holds. Thus the bilinear process defined
by (2.4.3 has a unique invariant probability π and ξ Pn w⇒ π for every initial
distribution ξ .

2.4 Set Z = [0,1]×{0,1} and Z =B([0,1])⊗P{0,1}. Then, Xk = fZk(Xk−1) with
Zk = (Uk,εk) and fu,ε(x) = xuε +(1−ε)[x+u(1−x)]. For all (x,y) ∈ [0,1]× [0,1],
| fu,ε(x)− fu,ε(y)| ≤ K(u,ε)|x− y| with

K(u,ε) = εu+(1− ε)(1−u) . (G.2)

(2.1.16) is satisfied since E [| log(K(U,ε))|] = E [| log(U)|] < ∞ and E [log(U)] =
−1. (2.1.18) is also satisfied since for all x∈ [0,1] and z∈Z, fz(x)∈ [0,1]. Therefore,
Theorem 2.1.9 shows that {Xk, k ∈ N} has a unique invariant probability.

Solutions to exercises of Chapter 3

3.1 1. We must show that the events {τ ∧σ ≤ n}, {τ ∨σ ≤ n} and {τ +σ ≤ n}
belong to Fn for every n ∈ N. Since

{τ ∧σ ≤ n}= {τ ≤ n}∪{σ ≤ n}

and τ and σ are stopping times, {τ ≤ n} and {σ ≤ n} belong to Fn; therefore
{τ ∧σ ≤ n} ∈Fn. Similarly, {τ ∨σ ≤ n}= {τ ≤ n}∩{σ ≤ n} ∈Fn. Finally,

{τ +σ ≤ n}=
n⋃

k=0

{τ ≤ k}∩{σ ≤ n− k} .

For 0 ≤ k ≤ n, {τ ≤ k} ∈ Fk ⊂ Fn and {σ ≤ n− k} ∈ Fn−k ⊂ Fn; hence
{τ +σ ≤ n} ∈Fn.

2. Let A ∈Fτ and n ∈ N. As {σ ≤ n} ⊂ {τ ≤ n},

A∩{σ ≤ n}= A∩{τ ≤ n}∩{σ ≤ n} .

Since A ∈Fτ and {σ ≤ n} ∈Fn (σ begin a stopping time), we have A∩{τ ≤
n} ∈Fn. Therefore A∩{τ ≤ n}∩{σ ≤ n} ∈Fn and A∩{σ ≤ n} ∈Fn. Thus
A ∈Fσ .

3. It follows from (i) and (ii) that Fτ∧σ ⊂Fτ ∩Fσ . Conversely, let A∈Fτ ∩Fσ .
Obviously A ⊂ F∞. To prove that A ∈ Fτ∧σ , one must show that, for every
k≥ 0, A∩{τ∧σ ≤ k} ∈Fk. We have A∩{τ ≤ k} ∈Fk and A∩{σ ≤ k} ∈Fk.
Hence, since {τ ∧σ ≤ k}= {τ ≤ k}∪{σ ≤ k}, we get
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A∩{τ ∧σ ≤ k}= A∩ ({τ ≤ k}∪{σ ≤ k})
= (A∩{τ ≤ k})∪ (A∩{σ ≤ k}) ∈Fk .

4. Let n ∈ N. It holds that

{τ < σ}∩{τ ≤ n}=
n⋃

k=0

{τ = k}∩{σ > k} .

For 0 ≤ k ≤ n, {τ = k} = {τ ≤ k}∩{τ ≤ k− 1}c ∈Fk ⊂Fn and {σ > k} =
{σ ≤ k}c ∈Fk ⊂Fn. Therefore, {τ < σ}∩{τ ≤ n} ∈Fn, showing that {τ <
σ} ∈Fτ . Similarly,

{τ < σ}∩{σ ≤ n}=
n⋃

k=0

{σ = k}∩{τ < k}

and since, for 0 ≤ k ≤ n, {σ = k} ∈Fk ⊂Fn and {τ < k} = {τ ≤ k− 1} ∈
Fk−1 ⊂ Fn, it also holds {τ < σ} ∩ {σ ≤ n} ∈ Fn so that {τ < σ} ∈ Fσ .
Finally, {τ < σ} ∈Fτ ∩Fσ . The last statement of the proposition follows from

{τ = σ}= {τ < σ}c∩{σ < τ}c ∈Fτ ∩Fσ .

3.5

Pn(x,A) = Ex[1A(Xn)] = Ex[1{σ≤n}1A(Xn)]+Ex[1{σ>n}1A(Xn)]

=
n

∑
k=1
Ex[1{σ=k}1A(Xn)]+Ex[1{σ>n}1A(Xn)] .

By the Markov property, for k ≤ n, we get

Ex[1{σ=k}1A(Xn)] = Ex[1{σ=k}1A(Xn−k)◦θ
k] = Ex[1{σ=k}P

n−k
1A(Xk)] .

The proof follows.

3.7 1. First note that the assumption C ⊂ C+(r, f ) implies Px(1C(X1)EX1 [U ] <
∞) = 1.
Combining U ◦ θ = ∑

σC◦θ
k=1 r(k− 1) f (Xk) with the fact that on the event {X1 /∈

C}, σC = 1+σC ◦θ , we get

1Cc(X1)U ◦θ = 1Cc(X1)

(
σC−1

∑
k=1

r(k−1) f (Xk)

)
≤M1Cc(X1)

(
σC−1

∑
k=1

r(k) f (Xk)

)
≤M1Cc(X1)U .

2. by the Markov property, for every x ∈C+(r, f ),

Ex[1Cc(X1)EX1 [U ]] = Ex[1Cc(X1)U ◦θ ]≤MEx[1Cc(X1)U ]≤MEx[U ]< ∞ .
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This implies Px(1Cc(X1)EX1 [U ]< ∞) = 1 and (3.7.2) is proved.
3. Therefore the set C+(r, f ) is absorbing. The set C being accessible and C ⊂

C+(r, f ), the set C+(r, f ) is in turn accessible. The proof is then completed by
applying Exercise 3.8.

3.8 1. Since π is invariant,

π(C) = πKaε
(C) =

∫
C

π(dx)Kaε
(x,C)+

∫
Cc

π(dx)Kaε
(x,C) . (G.3)

Since C is absorbing, Kaε
(x,C) = 1 for all x∈C. The first term of the right-hand

side of (G.3) is then equal to π(C). Finally,∫
Cc

π(dx)Kaε
(x,C) = 0 .

2. The set C being accessible, the function x 7→ Kaε
(x,C) is positive. The previous

equation then implies π(Cc) = 0.

Solutions to exercises of Chapter 4

4.1 1. Since f is superharmonic, {Pn f : n ∈ N} is a decreasing sequence of posi-
tive functions, hence convergent.

2. Since Pn f ≤ f for all n ≥ 1 and P f ≤ f < ∞, applying Lebesgue’s dominated
convergence theorem yields, for every x ∈ X,

Ph(x) = P
(

lim
n→∞

Pn f (x)
)
= lim

n→∞
Pn+1 f (x) = h(x) .

3. Since f is superharmonic, g is nonnegative. Therefore Pkg≥ 0 for all k ∈N and
Ug = limn→∞ ∑

n−1
k=0 Pkg is well defined. Moreover, we have, for all n ≥ 1 and

x ∈ X,

n−1

∑
k=0

Pkg(x) = f (x)−Pn f (x) .

Taking limits on both sides yields Ug(x) = f (x)−h(x).
4. Since h̄ is harmonic, we have,

Pn f = h̄+
∞

∑
k=n

Pkḡ .

5. Since Uḡ(x)<∞ for all x∈X, it holds that limn→∞ ∑
∞
k=n Pkḡ(x) = 0. This yields

h̄ = lim
n→∞

Pn f = h .
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This in turn implies that Ug =Uḡ. Since Ug = g+PUg and Uḡ = ḡ+PUḡ, we
also conclude that g = ḡ.

4.2 1. Applying Exercise 4.1, we can write fA(x) = h(x) +Ug(x) with h(x) =
limn→∞ Pn fA(x) and g(x) = fA(x)−P fA(x).

2. The Markov property yields

Pn fA(x) = Ex[ fA(Xn)] = Ex[PXn(τA < ∞)]

= Px(τA ◦θn < ∞) = Px

(⋃
k≥n

{Xk ∈ A}

)
.

This yields that the harmonic part of fA in the Riesz decomposition is given by

h(x) = lim
n→∞

Pn fA(x) = lim
n→∞

Px

(⋃
k≥n

{Xk ∈ A}

)

= Px

(
limsup

k→∞

{Xk ∈ A}
)
= Px(NA = ∞) = hA(x) .

3. We finally have to compute fA−P fA.

fA(x)−P fA(x) = Px

(⋃
k≥0

{Xk ∈ A}

)
−Px

(⋃
k≥1

{Xk ∈ A}

)

= Px

(
{X0 ∈ A}∩

∞⋂
n=1

{Xn 6∈ A}

)
= 1A(x)Px(σA = ∞) = gA(x) .

4.3 1. We have Un+1 −Un = Zn+1 − E [Zn+1 |Fn] thus E [Un+1−Un |Fn] = 0.
Therefore, {(Un,Fn), n ∈ N} is a martingale.

2. Since {(Un,Fn), n ∈ N} is a martingale, E [Un∧τ ] = E [U0]. This implies

E [Zn∧τ ]−E [Z0] = E

[
n∧τ−1

∑
k=0
{E [Zk+1 |Fk]−Zk}

]
.

3. We conclude by applying Lebesgue’s dominated convergence theorem since
{Zn, n ∈ N} is bounded and the stopping time τ is integrable.

4.4 Applying Exercise 4.3 to the finite stopping time τ ∧n and the bounded process
{ZM

n , n ∈ N} where ZM
n = Zn∧M, we get

E
[
ZM

τ∧n
]
+E

[
τ∧n−1

∑
k=0

ZM
k

]
= E

[
ZM

0
]
+E

[
τ∧n−1

∑
k=0

E
[

ZM
k+1
∣∣Fk

]]
.

Using Lebesgue’s dominated convergence theorem, limn→∞E
[
ZM

τ∧n
]
= E

[
ZM
]

Us-
ing the monotone convergence theorem, we get
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E
[
ZM

τ

]
+E

[
τ−1

∑
k=0

ZM
k

]
= E

[
ZM

0
]
+E

[
τ−1

∑
k=0
E
[

ZM
k+1
∣∣Fk

]]
.

We conclude by using again the monotone convergence theorem as M goes to infin-
ity.

4.5 1. For x 6∈ A, Px(τ = 0) = 1. For x ∈ Ac we have

Px(τ ≤ (b−a))≥ Px(X1 = x+1, X2 = x+2, . . . , Xb−x = b)

≥ pb−x ≥ pb−a > 0 .

This implies that Px(τ > b−a)≤ 1− γ for all x ∈ Ac where γ = pb−a.
2. For any x ∈ Ac and k ∈ N∗, the Markov property implies

Px(τ > k(b−a)) = Px(τ > (k−1)(b−a), τ ◦θ(k−1)(b−a) > (b−a))

= Ex[1{τ>(k−1)(b−a)}PX(k−1)(b−a)(τ > (b−a))]

≤ (1− γ)Px(τ > (k−1)(b−a)) ,

which by induction yields, for every x ∈ Ac,

Px(τ > k(b−a))≤ (1− γ)k .

For n ≥ (b− a), setting n = k(b− a)+ r, with r ∈ {0, . . . ,(b− a)− 1}, we get
for any x ∈ Ac,

Px(τ > n)≤ Px(τ > k(b−a))≤ (1− γ)k ≤ (1− γ)(n−(b−a))/(b−a) .

3. Proposition 4.4.4 shows that u1(x) = Ex[τ] is the minimal solution to (4.6.1)
with g(x) = 1Ac(x), α = 0 and β = 0.

4. For s = 2 and every x ∈ Ac, we have

u2(x) = Ex[σ
2] = Ex[(1+ τ ◦θ)2]

= 1+2Ex[τ ◦θ ]+Ex[τ
2 ◦θ ]

= 1+2Ex[E [τ ◦θ |F1]]+Ex[E
[

τ
2 ◦θ

∣∣F1
]
]

= 1+2Ex[EX1 [τ]]+Ex[EX1 [τ
2]]

= 1+2Pu1(x)+Pu2(x) .

Therefore, u2 is the finite solution to the system (4.6.1) with g(x) = 1+2Pu1(x)
for x ∈ Ac and α = β = 0

5. Similarly, for x ∈ Ac it holds that,

u3(x) = Ex[τ
3] = Ex[(1+ τ ◦θ1)

3]

= 1+3Ex[τ ◦θ1]+3Ex[τ
2 ◦θ1]+Ex[τ

3 ◦θ1]

= 1+3Pu1(x)+3Pu2(x)+Pu3(x)
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which implies that u3 is the finite solution to the system (4.6.1) with g(x) =
1+3Pu1(x)+3Pu2(x) for x ∈ Ac, α = β = 0.

6. Direct upon writing the definitions.
7. By straightforward algebraic manipulations.
8. Applying (4.6.3), we obtain, for x ∈ {a+1, . . . ,b}, φ(x)−φ(x−1) = ρx−a+1,

which implies

φ(x) =
x

∑
y=a+1

ρ
y−a+1 =

{
(1−ρx−a)/(1−ρ) if ρ 6= 1,
x−a otherwise.

9. Equation (4.6.3) becomes, for x ∈ {a+1, . . . ,b},

∆ψ(x) =−p−1
x−a−1

∑
y=0

ρ
yg(x− y−1) ,

and this yields

ψ(x) =−p−1
x

∑
z=a+1

z−a−2

∑
y=0

ρ
yg(x− y−1) . (G.4)

10. Set
w = α + γφ +ψ (G.5)

with γ = {φ(b)}−1(β −α−ψ(b)) (which is well-defined since φ(b) > 0). By
construction, w(a) = α , w(x) = Pw(x)+g(x) for all x ∈ {a+1, . . . ,b−1} and
w(b) = α + γφ(b)+ψ(b) = β .

4.6 Level dependent birth-and-death process can be used to describe the position of
a particle moving on a grid, which at each step may only remain at the same state or
move to an adjacent state with a probability possibly depending on the state.

If P(0,0) = 1 and px + qx = 1 for x > 0, this process may be considered as a
model for the size of a population, recorded each time it changes, px being the
probability that a birth occurs before a death when the size of the population is x.
Birth-and-death have many applications in demography, queueing theory, perfor-
mance engineering or biology. They may be used to study the size of a population,
the number of diseases within a population or the number of customers waiting in a
queue for a service.

1. By Proposition 4.4.2, the function h is the smallest solution to the Dirichlet
problem (4.4.1) with f = 1 and A = {0}. The equation Ph(x) = h(x) for x > 0
yields

h(x) = pxh(x+1)+qxh(x−1) .

2. Note that h is decreasing and define u(x) = h(x−1)−h(x). Then pxu(x+1) =
qxu(x) and we obtain by induction that u(x+1) = γ(x)u(1) with γ(0) = 1 and
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γ(x) =
qxqx−1 . . .q1

px px−1 . . . p1
.

This yields, for x≥ 1,

h(x) = h(0)−u(1)−·· ·−u(x) = 1−u(1){γ(0)+ · · ·+ γ(x−1)} .

3. If ∑
∞
x=0 γ(x) = ∞, the restriction 0 ≤ h(x) ≤ 1 imposes u(1) = 0 and h(x) = 1

for all x ∈ N.
4. If ∑

∞
x=0 γ(x) < ∞, we can choose u(1) > 0 such that 1− u(1)∑

∞
x=0 γ(x) ≥ 0.

Therefore, the minimal non-negative solution to the Dirichlet problem is ob-
tained by setting u(1) = (∑∞

x=0 γ(x))−1 which yields the solution

h(x) =
∑

∞
y=x γ(y)

∑
∞
y=0 γ(y)

.

In this case, for x ∈ N∗, we have h(x) < 1, so the population survives with
positive probability.

4.8 1. u is harmonic on X\{−b,a} by Theorem 4.1.3-(i). Thus, for x∈X\{−b,a},

u(x) = Pu(x) =
1
2

u(x−1)+
1
2

u(x+1) . (G.6)

This implies that u(x+1)−u(x) = u(x−1)−u(x) and

u(x) = u(−b)+(x+b){u(−b+1)−u(−b)} (G.7)

for all x ∈ X\{−b,a}. Since u(a) = u(−b) = 1, this yields u(−b+1) = u(−b)
and thus u(x) = 1, i.e. Px(τ < ∞) = 1 for all x ∈ X. Therefore, the game ends in
finite time almost surely finite for any initial wealth x ∈ {−b, . . . ,a}.

2. We now compute the probability u(x) = Px(τa < τ−b) of winning. We can also
write u(x) = Ex[1a(Xτ)]. Theorem 4.4.5 (with β = 1 and f = 1a shows that u
is the smallest nonnegative solution to the equations{

u(x) = Pu(x) , x ∈ X\{−b,a} ,
u(−b) = 0 , u(a) = 1 .

3. We have established in (4.6.5) that the harmonic functions on X \ {−b,a} are
given by u(x) = u(−b)+ (x+ b){u(−b+ 1)− u(−b)}. Since u(−b) = 0, this
yields u(x) = (x+ b)u(−b+ 1) for all x ∈ {−b, . . . ,a}. The boundary condi-
tion u(a) = 1 implies that u(−b+1) = 1/(a+b). Therefore, the probability of
winning when the initial wealth is x is equal to u(x) = (x+b)/(a+b).

4. We will now compute the expected time of a game. Denote by τ = τa ∧ τ−b
be the hitting time of the set {−b,a}. By Theorem 4.4.5, u(x) = Ex[τC] is the
smallest solution to the Poisson problem (4.4.4). This yields the following re-
currence equation (which differs from (G.6) by an additional constant term).
For x ∈ {−b+1, . . . ,a−1},
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u(x) = 1
2 u(x−1)+ 1

2 u(x+1)+1 . (G.8)

5. The boundary conditions are u(−b) = 0 and u(a) = 0. Define ∆u(x− 1) =
u(x)− u(x− 1) and ∆ 2u(x− 1) = u(x+ 1)− 2u(x)+ u(x− 1). Equation (G.8)
implies that for x ∈ {−b+1, . . . ,a−1},

∆
2u(x−1) =−2 . (G.9)

6. The boundary conditions implies that the only solution to (G.9) is given by

u(x) = (a− x)(x+b) , x =−b, . . . ,a . (G.10)

4.10 For k ≥ 0, set Zk = r(k)h(Xk) and

U0 = {PV1(X0)+ r(0)h(X0)}1C(X0)+V0(X0)1Cc(X0) , Uk =Vk(Xk) , k ≥ 1
Y0 = 0 , Yk = ∞×1C(Xk) , k ≥ 1

with the convention ∞×0 = 0. Then (4.6.8) yields, for k ≥ 0 and x ∈ X,

Ex [Uk+1 |Fk]+Zk ≤Uk +Yk Px − a.s.

Hence (4.3.1) holds and (4.6.9) follows from the application of Theorem 4.3.1 with
σC

Ex
[
UσC1{σC < ∞}

]
+Ex

[
σC−1

∑
k=0

r(k)h(Xk)

]

= Ex
[
VσC(XσC)1{σC < ∞}

]
+Ex

[
σC−1

∑
k=0

r(k)h(Xk)

]

≤ Ex[U0]+Ex

[
σC−1

∑
k=0

Yk

]
= {PV1(x)+ r(0)h(x)}1C(x)+V0(x)1Cc(x) .

4.11 1. To prove (4.6.11), recall that σC = 1+ τC ◦θ and XτC ◦θ = XσC . Applying
the Markov property (Theorem 3.3.3) and these relations, we get

PWn+1(x)

= Ex[EX1 [r(n+1+ τC)g(XτC)1{τC<∞}]]+Ex

[
EX1

[
τC−1

∑
k=0

r(n+ k+1)h(Xk)

]]

= Ex[r(n+1+ τC ◦θ)g(XτC ◦θ)1{τC◦θ<∞}]+Ex

[
τC◦θ−1

∑
k=0

r(n+ k+1)h(Xk ◦θ)

]

= Ex[r(n+σC)g(XσC)1{σC<∞}]+Ex

[
σC−1

∑
k=1

r(n+ k)h(Xk)

]
.



G Solutions to selected exercises 673

Adding r(n)h(x) = r(n)Ex[h(X0)] on both sides proves (4.6.11).
2. Applying Theorem 4.5.1 with h̃(n,x) = r(n)h(x), g̃(n,x) = g(n)r(x) (noting that

Ũ(n,x) = Wn(x) for n ≥ 0 and x ∈ X) yields Vn ≥Wn for all n ≥ 0. The bound
(4.6.13) follows from (4.6.11) with n = 0 and W0 ≤V0.

4.12 For x ∈ X, define

W f ,g,δ
C (x) = Ex[g(XτC)1{τC<∞}]+Ex

[
τC−1

∑
k=0

δ
k+1 f (Xk)

]
.

Applying Theorem 4.5.1-Equation (4.5.3) with m = 0, g̃(k,x) = δ k, f̃ (k,x) =
δ k+1 f (x), we obtain

δ
−1W f ,g,δ

C (x) =

{
g(x) x ∈C
PW f ,g,δ

C (x)+ f (x) x 6∈C .

Let V be a function satisfying (4.6.14) and V (x)≥ g(x) for x∈C. Then (4.5.4) holds
with ṽ(k,x) = δ kV (x) and we conclude by applying Theorem 4.5.1 that V ≥W f ,g,δ

C .

Solutions to exercises of Chapter 5

5.1 For A ∈X , it can be easily checked that {X2n ∈ A, i.o.} ∈ ∩k≥0σ(Xl , l > k) but
{X2n ∈ A, i.o.} /∈I .

5.2 The probabilities P ◦T−1 and P coincides on B0 which is stable by finite in-
tersection. The proof follows from Theorem B.2.6. We will show that they coin-
cide on the sigma-field generated by B0, that is B. To achieve this aim, consider
C = {B ∈B,P[T−1(B)] = P[B]}. Under the assumptions of the Lemma, B0 ⊂ C .
We now show that C = B by applying the monotone class Theorem. Note first that
Ω ∈ C , since T−1(Ω) = Ω . Let A ∈ C and B ∈ C such that A ⊂ B; since P ◦T−1

and P are probabilities,

P[T−1(B\A)] = P[T−1(B)]−P[T−1(A)] = P[B]−P[A] = P[B\A] .

Finally, let {An, n ∈ N} be an increasing sequence of elements of C . Then, using
classical properties of measures,

P◦T−1

(⋃
n∈N

An

)
== lim

n→∞
P[T−1(An)] = lim

n→∞
P[An] = P

[⋃
n∈N

An

]

Therefore, C is a monotone class containing B0. Thus, by the monotone class The-
orem, B = σ(B0)⊂ C .

5.3 Let A ∈I . Since 1A = 1A ◦Tk and T is measure-preserving, we have
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E
[
1A Y ◦Tk

]
= E

[
1A ◦Tk Y ◦Tk

]
= E [1AY ] = E [1AE [Y |I ]] .

This implies that E
[
Y ◦Tk

∣∣I ]= E [Y |I ] P − a.s.

5.4 1. Let A ∈I and define h(x) = Ex[1A], B = {x ∈ X : h(x) = 1}. By Proposi-
tion 5.2.2-(i), h is a nonnegative harmonic function bounded by 1. It implies that
for x ∈ B, Ex[h(X1)] = Ph(x) = h(x) = 1. Thus, for any x ∈ B, we get (using that
if Z a random variable taking values in [0,1] and E [Z] = 1 then Z = 1 P−a.s.)

Px(X1 ∈ B) = Px(h(X1) = 1) = 1 .

Thus B is absorbing.
2. By Proposition 5.2.2 (iii), we know that Pπ(EX0 [1A] = 1A) = 1 which implies

that Pπ(h(X0) ∈ {0,1}) = 1. This yields

Pπ(A) = Eπ [EX0 [1A]] =
∫

X
π(dx)h(x)

=
∫

X
π(dx)1{h(x) = 1}=

∫
X

π(dx)1B(x) = π(B) .

5.5 1. Since f is bounded, the convergence also holds on L1(Pπ). Then, since by
the Markov property Eπ [P f (Xk)] = Eπ [ f (Xk+1)],

π(P f ) = Eπ

[
lim

n

1
n

n−1

∑
k=0

P f (Xk)

]

= lim
n→∞

1
n

n−1

∑
k=0
Eπ [P f (Xk)] = Eπ

[
lim

n

1
n

n

∑
k=1

f (Xk)

]
= π( f ) ,

which shows that π is invariant.
2. Let A ∈ I . By Proposition 5.2.2-(iii), 1A = PX0(A) = 1B(X0) Pπ − a.s.

where B = {x ∈ X : Px(A) = 1}. Since for any k ∈ N, 1A = 1B(X0) = · · · =
1B(Xk) Pπ − a.s., we obtain

1B(X0) =
1
n

n−1

∑
k=0

1B(Xk)
Pπ-a.s.−→ π(B) .

3. Therefore, π(B) = Pπ(A) = 0 or 1, i.e. the invariant σ -field is trivial for Pπ and
thus (XN,X ⊗N,Pπ ,θ) is ergodic.

5.11 (i) Let ε > 0. There exists m∈N and a σ(Xk,−m≤ k≤m)-measurable ran-
dom variable denoted Z satisfying E [|Y −Z|]< ε . We also have E [|Y −Z ◦θ m|]< ε

and Z ◦ θ m ∈ σ(Xk,k ≥ 0). Therefore, we can construct a sequence {Zn, n ∈ N}
of σ(Xk,k ≥ 0)-measurable r.andom variable such that limn→∞E [|Zn−Y |] = 0.

Taking, if necessary, a subsequence, we can assume that Zn
[-a.s.−→ P]Y . Then U =
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limsupn→∞ Zn is σ(Xk,k ≥ 0) measurable and Y = U P − a.s. Hence Y is F ∞
0 -

measurable. We treat in the same manner the negative case.
(ii) The σ -algebra F ∞

0 and F 0
−∞ are independent conditionally to X0. This im-

plies that

E
[
Y 2 ∣∣X0

]
= E [Y.Y |X0] = E [Y |X0]E [Y |X0] = {E [Y |X0]}2.

The Cauchy-Schwarz inequality shows that

{E
[
Y 2]}2 = {E [YE [Y |X0]]}2 ≤ E

[
Y 2]E[{E [Y |X0]}2]

= E
[
Y 2]E[E [Y 2 ∣∣X0

]]
= {E

[
Y 2]}2.

Therefore, the equality holds in the Cauchy-Schwarz inequality and Y = λE [Y |X0]
P − a.s. Taking the expectation, we obtain λ = 1.

(iii) The proof is elementary and left to the reader.

5.12 Set m ∈ N?. Any number n can be written in the form n = q(n)m+ r(n), where
r(n)∈ {0, . . . ,m−1}. We define a0 = 0. Then, we have an = aq(n)m+r(n) ≤ q(n)am+
ar(n). Then, we have

an

n
=

aq(n)m+r(n)

q(n)m+ r(n)
≤ q(n)m

q(n)m+ r(n)
am

m
+

ar(n)

n
,

which implies that,

inf
n∈N?

an

n
≤ liminf

n→∞

an

n
≤ limsup

n→∞

an

n
≤ am

m
.

Since this inequality is valid for all m ∈ N?, the result follows.

5.13 By subadditivity of the sequence,

Y+
n ≤

(
n−1

∑
k=0

Y1 ◦Tk

)+

≤
n−1

∑
k=0

Y+
1 ◦Tk .

Now, take the expectation in both sides of the previous inequality and use that T
is measure-preserving. We obtain that E [Y+

n ] ≤ nE
[
Y+

1

]
< ∞. With a similar ar-

gument, E
[
Y+

p ◦Tn] < ∞. This implies that E [Yn+p] or E [Yp ◦Tn] are well-defined
and

E [Yn+p]≤ E [Yn +Yp ◦Tn] = E [Yn]+E [Yp ◦Tn] = E [Yn]+E [Yp] .

The proof of (5.3.1) and (5.3.2) follows from the Fekete Lemma (see Exercise 5.12)
applied to un = E [Yn] and un = E [Yn |I ] and Exercise 5.3.

5.14 1. By Parthasaraty’s theorem, there exists a countable set H ⊂ Ub(X) such
that, for all µ,µn ∈M1(X ),n≥ 1, the two following statements are equivalent

(i) µn
w⇒ µ
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(ii) for all h ∈ H, limn→∞ µn(h) = µ(h).

Now, for all h ∈ H, since h is bounded, π|h| < ∞ and therefore by Theo-
rem 5.2.9, P

({
ω ∈Ω : limn→∞ n−1

∑
n−1
k=0 h(X ′k(ω)) = π(h)

})
= 1. The proof

follows since H is countable.
2. Set B = {ω ∈Ω : limn→∞ d(Xn(ω),X ′n(ω)) = 0} and

A′ =

{
ω ∈Ω : ∀h ∈ H , lim

n→∞
n−1

n−1

∑
k=0

h(X ′k(ω)) = π(h)

}
,

Then, A∩B ⊂ A′. Since P(A) = P(B) = 1, we deduce P(A′) = 1 and applying
again Parthasaraty’s theorem, for all ω ∈ A′, the sequence of measures µn(ω) =
n−1

∑
n
k=1 δXk(ω) converges weakly to π . The result follows.

3. By Theorem 5.2.9,

lim
n→∞

1
n

n−1

∑
k=0

V (X ′k) = π(V ) , P − a.s.

For every α > 0,∣∣∣∣∣n−1
n−1

∑
k=0
{V (X ′k)−V (Xk)}

∣∣∣∣∣≤ sup
{
|V (x)−V (x′)| : d(x,x′)≤ α

}
+n−1

n−1

∑
k=0
|V (X ′k)−V (Xk)|1

{
d(X ′k,Xk)> α

}
.

The first term of the right-hand side can be made arbitrary small since V is
uniformly continuous. Moreover, since d(Xn,X ′n)

P-a.s.−→ 0, the series in the second
term of the right-hand side contains only a finite number of positive terms P −
a.s. and therefore the second term of the right-hand side tends to 0 P − a.s. as
n goes to infinity. Finally,

lim
n→∞

1
n

n−1

∑
k=0

V (Xk) = π(V ) , P − a.s.

4. There exists Ω̄ such that P(Ω̄) = 1 and for all ω ∈ Ω̄ ,

µn(ω) = n−1
n

∑
k=1

δXk(ω)

converges weakly to π and limn→∞ n−1
∑

n−1
k=0 V (Xk(ω)) = π(V ). For all ω ∈ Ω̄ ,
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1
n

n−1

∑
k=0
{V −V ∧M}(Xk(ω)) =

1
n

n−1

∑
k=0

V (Xk(ω))− 1
n

n−1

∑
k=0

V ∧M(Xk(ω))

→ π(V )−π(V ∧M) ,

showing that

lim
M→∞

lim
n→∞

1
n

n−1

∑
k=0
{V −V ∧M}(Xk(ω)) = 0 . (G.11)

Without loss of generality, we assume that 0≤ f ≤V . Note that

1
n

n−1

∑
k=0

f (Xk(ω))−π( f ) =
1
n

n−1

∑
k=0
{ f − f ∧M}(Xk(ω))

+
1
n

n−1

∑
k=0
{ f ∧M(Xk(ω))−π( f ∧M)}+π( f ∧M)−π( f ) .

Since the function x 7→ x−x∧M is nondecreasing, we have { f − f ∧M}(Xk)≤
{V −V ∧M}(Xk) and (G.11) implies

lim
M→∞

lim
n→∞

1
n

n−1

∑
k=0
{ f − f ∧M}(Xk(ω)) = 0 .

On the other hand, since the function f ∧M is bounded and continuous, we
obtain

lim
n→∞

1
n

n−1

∑
k=0
{ f ∧M(Xk(ω))−π( f ∧M)}= 0.

The proof is complete by noting that limM→∞ π( f ∧M) = π( f ) and P(Ω̄) = 1.

Solutions to exercises of Chapter 6

6.1 1. The transition matrix is given by P(0,0) = 1 and for j ∈ N∗ and k ∈ N,

P( j,k) = ∑
(k1,...,k j)∈N j ,k1+···+k j=k

ν(k1)ν(k2) · · ·ν(k j) = ν
∗ j(k) .

The state 0 is absorbing and the population is forever extinct if it reaches zero.
2. The state 0 is absorbing and hence recurrent. Since we assume that ν(0) > 0,

we have P(x,0) = νx(0) > 0 for every x ∈ N∗ and thus Px(σ0 < ∞) > 0 for all
x ∈ N, which implies that Px(σx = ∞)> 0. Thus 0 is the only recurrent state.

3. The Markov property yields Ex[Xk+1] = Ex[Ex [Xk+1 |Xk]] = µEx[Xk] and by
induction we obtain that Ex[Xk] = xµk for all k ≥ 0.
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4. Note indeed that {τ0 = ∞}=
⋂

∞
k=0{Xk ≥ 1}, the population does not disappear

if there is at least one individual in the population at each generation. Since
{Xk+1 ≥ 1} ⊂ {Xk ≥ 1}, we get for all x ∈ N,

Px(τ0 = ∞) = lim
k→∞

Px(Xk ≥ 1)≤ lim
k→∞

Ex[Xk] = lim
k→∞

xµ
k = 0 .

5. p0 = 0 and p1 < 1: in this case, the population diverges to infinity with proba-
bility 1.

6.2 1. By the Markov property, we get

Φk+1(u) = E
[
uXk+1

]
= E

[
E
[

uXk+1
∣∣Xk
]]

= E
[
E
[

u∑
Xk
j=1 ξ

(k+1)
j

∣∣∣∣Xk

]]
= E

[
Xk

∏
k=1
E
[

uξ
(k+1)
j

]]
= Φk(φ(u)) .

By induction, we obtain that

Φk(u) = φ ◦ · · · ◦φ(u)︸ ︷︷ ︸
k times

,

and thus it also holds that Φk+1(u) = φ(Φk(u)).
2. Φn(0) = E

[
0Xn
]
= ∑

∞
k=0E

[
0k
1{Xn=k}

]
= P(Xn = 0). By the nature of Galton-

Watson process, these probabilities are nondecreasing in n, because if Xn =
0 then Xn+1 = 0. Therefore the limit limn→∞ Φn(0) = 0. Finally {σ0 < ∞} =⋃

∞
n=1{Xn = 0}.

3. By the continuity of ϕ , we have

ϕ(ρ) = ϕ

(
lim
n→∞

Φn(0)
)
= lim

n→∞
ϕ(Φn(0))

= lim
n→∞

Φn+1(0) = ρ.

Finally, it remains to show that ρ is the smallest nonnegative root of the Fixed-
Point Equation. This follows from the monotonicity of the probability generat-
ing functions Φn(0) : Since ζ ≥ 0,

Φn(0)≤Φn(ζ ) = ζ .

Taking the limit of each side as n→ ∞ show that ρ ≤ ζ .

6.3 Since ∑
∞
n=2 bn > 0, we have

φ(0) = b0 , φ(1) = 1 , φ
′(s) = ∑

n≥1
nbnsn−1 > 0 , φ

′′(s) = ∑
n≥2

n(n−1)bnsn−2 > 0 .

Thus the function φ is continuous and strictly convex on [0,1]. Note also that the
left derivative of φ at 1 is φ ′(1) = ∑n≥0 nbn = µ (and by convexity, this makes sense
also if µ = ∞).
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• If µ ≤ 1, then by convexity, the graph of φ stands above the diagonal on [0,1).
• If µ > 1, then by convexity, the graph of φ is below the diagonal on an interval
(1− ε,1] and since φ(0) > 0, by the mean value theorem, there must exist an
s ∈ (0,1) such that φ(s) = s, that is the graph of φ crosses the diagonal at s.

b0

1

1

0

b0

1

1

0

Fig. G.0.1 The cases µ < 1 (left panel) and µ > 1 (right panel).

6.4 1. For n ∈ N, Pn(0,x) is the probability of an n-step transition from 0 to x (the
probability that a ”particle”, starting at zero, finds itself after n iterations at x).
Suppose that n and x are both even or odd and that |x| ≤ n (otherwise Pn(0,x) =
0). Then Pn(0,x) is the probability of (x + n)/2 successes in n independent
Bernoulli trials, where the probability of success is p. Therefore

Pn(0,x) = p(n+x)/2q(n−x)/2
(

n
(n+ x)/2

)
,

where the sum n+ x is even and |x| ≤ n and Pn(0,x) = 0 otherwise.
2. If the chain starts at 0, then it cannot return at 0 after an odd number of steps,

so P2n+1(0,0) = 0. Any given sequence of steps of length 2n from 0 to 0 occurs
with probability pnqn, there being n steps to the right and n steps to the left, and
the number of such sequences is the number of way of choosing n steps to the
right in 2n moves. Thus

P2n(0,0) =
(

2n
n

)
pnqn .

3. The expected number of visits to state 0 for the random walk is started at 0 is
therefore given by

U(0,0) =
∞

∑
k=0

Pk(0,0) =
∞

∑
k=0

(
2k
k

)
pkqk .

4. Applying Stirling’s formula (2k)!∼
√

4πk(2k/e)2k k!∼
√

2πk(k/e)k yields

P2k(0,0) =
(

2k
k

)
pkqk ∼k→∞ (4pq)k(πk)−1/2 .
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5. If p 6= 1/2, then 4pq < 1 and the series U(0,0) is summable. The expected
number of visits to 0 when the random walk is started to 0 is finite. The state
{0} is transient and all the atoms are transient.

6. If p = 1/2, then 4pq = 1 and P2k(0,0) ∼k→∞ (πk)−1/2, so that U(0,0) =
∑

∞
n=0 Pn(0,0) = +∞. The state 0 is therefore recurrent and all the accessible

sets are recurrent.
7. The counting measure on Z is an invariant measure. Since λ (X) = ∞, the

Markov kernel is therefore null recurrent.

6.5 1. Then {X+
n , n ∈N} and {X−n , n ∈N} are independent simple symmetric ran-

dom walks on 2−1/2Z, and Xn = (0,0) if and only if X+
n = X−n = 0. Therefore,

P(2n)((0,0),(0,0)) =

((
2n
n

)(
1
2

)2n
)2

∼ 1
πn

,

as n→ ∞ by Stirling’s formula.
2. ∑

∞
n=0 Pn(0,0) = ∞ and the simple symmetric random walk on Z2 is recurrent.

3. If the chain starts at 0, then it can only return to zero after an even number of
steps, say 2n. Of these 2n steps there must be i up, i down, j north, j south, k
east, k west for some i, j,k ≥ 0 such that i+ j+ k = n. This yields

P2n(0,0) = ∑
i, j,k≥0

i+ j+k=n

(2n)!
(i! j!k!)2

1
62n =

(
2n
n

)
1

22n ∑
i+ j+k=n
i, j,k≥0

(
n

i j k

)2 1
32n .

Note now that

∑
i+ j+k=n
i, j,k≥0

(
n

i j k

)
= 3n ,

and if n = 3m then (
n

i j k

)
=

n!
i! j!k!

≤ n!
(m!)3 ,

for all i, j,k such that i+ j + k = 3m. Thus, applying Stirling’s formula, we
obtain

P2n(0,0)≤
(

2n
n

)(
1
2

)2n n!
(m!)3

(
1
3

)n

∼ 1

2
√

2π
3

(
6
n

)3/2

.

Hence ∑
∞
m=0 P6m(0,0)< ∞.

4. Since P6m(0,0) ≥ (1/6)2P(6m−2)(0,0) and P6m(0,0) ≥ (1/6)4P(6m−4)(0,0),
this proves that U(0,0) < ∞ and the three dimensional simple random walk
is transient. In fact, it can be shown that the probability of return to the origin is
about 0.340537329544.
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6.6 Note first that the set I is stable by addition. We set d+ = g.c.d.(S+) and d− =
g.c.d.(S−). Under the stated assumption, g.c.d.(d+,d−) = 1. Let I+ = {x ∈ Z+, x =
x1 + . . .+ xn, n ∈ N∗, x1, . . . ,xn ∈ S+}. By Lemma 6.3.2, there exists n+ such that,
for all n ≥ n+, d+ n ∈ I+ ⊂ I; similarly, there exists n− such that, for all n ≥ n−,
−d−n ∈ I. Now, by Bezout’s identity, pd++ qd− = 1 for some p,q ∈ Z. Then, for
all r ∈ Z∗ and k ∈ Z,

r = r(p− kd−)d++ r(q+ kd+)d− .

If r > 0 (resp r < 0), for −k large (resp. for k large), r(p− kd−) ≥ n+ and −r(q+
kd+)≥ n−, showing that r ∈ I. Furthermore 0 = r− r ∈ I.

6.7 1. If m 6= 0 then limn→∞ Xn/n = sign(m)×∞ P − a.s. by the law of large num-
ber. This implies that Sn→ ∞ with the sign of m almost surely and the Markov
kernel P is therefore transient.

2. Since ν 6= δ0, this implies that there exist integers z1 > 0 and z2 < 0 such that
ν(z1)ν(z2)> 0. By Exercise 6.6, for every x ∈ Z, there exist z1, . . . ,zk ∈ S such
that x = z1 + · · ·+ zn. Therefore,

P0(Xn = x)≥ P(0,z1)P(z1,z1 + z2) . . .P(z1 + · · ·+ zn−1,x)

= ν(z1) . . .ν(zn)> 0 ,

which proves that P0(σx < ∞) > 0. Since for all x,y ∈ Z, Px(σy < ∞) =
P0(σy−x < ∞) the proof follows.

3. Let ε > 0. By the law of large numbers, limk→∞P0(k−1|Xk| ≤ ε) = 1 for all
ε > 0. Hence, by Cesaro’s theorem, limn→∞ n−1

∑
n
k=1P0(|Xk| ≤ εk) = 1, for all

ε > 0. Since P0(|Xk| ≤ εk)≤ P0(|Xk| ≤ bεnc) for all k ∈ {0, . . . ,n}, we get

1 = lim
n→∞

1
n

n

∑
k=1
P0(|Xk| ≤ εk)

≤ liminf
n→∞

1
n

n

∑
k=1
P0(|Xk| ≤ bεnc)≤ liminf

n→∞

1
n

U(0, [−bεnc,bεnc])

4. By the maximum principle, for all i ∈ Z, we have U(0, i) ≤U(i, i) = U(0,0).
Therefore, we obtain

1 = liminf
n→∞

1
n

bεnc−1

∑
i=−bεnc

U(0, i)

≤ liminf
n→∞

2bεnc
n

U(0,0) = 2εU(0,0) .

Since ε is arbitrary, this implies U(0,0) = ∞ and the chain is recurrent.

6.10 Define Y0 = 0 and for k ≥ 0, Yk+1 = (Yk +Zk+1)
+. The proof is by recursion.

We have X+
0 = Y0 = 0. Now assume that X+

k−1 = Yk−1, then since r = 1R+ ,
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Xk = Xk−11{Xk−1 ≥ 0}+Zk = Yk−1 +Zk .

This implies X+
k = (Yk−1 +Zk)

+ = Yk.

Solutions to exercises of Chapter 7

7.1 Let a ∈ X+
P and x ∈ X be such that there exists n ≥ 1 such that Pn(a,x) > 0. Let

y ∈ X. Since a is accessible, there exists k ∈ N such that Pk(y,a)> 0. This yields

Pn+k(y,x)≥ Pk(y,a)Pn(a,x)> 0 .

Thus x is accessible and thus X+
P is absorbing. Let now x be a non accessible state

and let a be an accessible state. Then Px(σa < ∞) > 0. Since X+
P is absorbing, we

have Px(σx = ∞)≥ Px(σa < ∞)> 0. Thus x is transient.

7.2 A transient kernel may indeed have an invariant probability, which is necessarily
infinite. Consider for instance the symmetric simple random walk on Z which is
irreducible, transient and admits an invariant infinite measure.

7.4 1. Recall that by definition, P(0,0) = 1 and P(N,N) = 1, i.e. both states 0 and
N are absorbing. The chain is therefore not irreducible (there is no accessible
atom).

2. For x ∈ {1, . . . ,N−1}, Px(σx = ∞)≥ Px(X1 = 0)+Px(X1 = N)> 0.
3. The distribution of Xn+1 given Xn is Bin(N,Xn/N), thusE [Xn+1 |Xn] =Xn. Thus
{Xn, n ∈ N} is a martingale. Since it is uniformly bounded, by the Martingale
convergence Theorem E.3.4, it converges Px − a.s. and in L1(Px) for all x ∈
{0, . . . ,N}.

4. Since the total number of visits to x ∈ {1, . . . ,N − 1} is finite, X∞ ∈ {0,N}
P − a.s. necessarily takes its values in {0, N}. Since {Xn} converges to X∞

L1(Px), we obtain

x = Ex[X0] = Ex[X∞] = N ·Px(X∞ = N) ,

so that Px(X∞ = N) = x/N and Px(X∞ = 0) = 1− x/N.

7.5 1. We have P2(0,0) = qp > 1 and for x≥ 1, Px(x,0) = qx showing that {0} is
accessible. On the other hand, for all x ≥ 1, Px(0,x) = px. Hence all the states
communicate.

2. By Corollary 4.4.7, the function f defined on N by f (x) = Px(τ0 < ∞), x ∈ N
is the smallest nonnegative function on N such that f (0) = 1 and P f (x) = f (x)
on Z+. This is exactly (7.7.1).

3. Since p+q+ r = 1, this relation implies that, for x≥ 1,

q{ f (x)− f (x−1)}= p{ f (x+1)− f (x)}
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showing that f (x)− f (x−1)= (p/q)x−1( f (1)−1), for x≥ 1. Therefore, f (x)=
c1 + c2(q/p)x if p 6= q and f (x) = c1 + c2x if p = q for constants c1 and c2 to
be determined.

4. Assume first that p < q. Then c2 ≥ 0, since otherwise f (x) would be strictly
negative for large values of x. The smallest positive solution is therefore of
the form f (x) = c1; the condition f (0) = 1 implies that the smallest positive
solution to (7.7.1) taking the value 1 at 0 is f (x) = 1 for x > 0. Therefore, if
p < q, for any x > 1, the chain starting at x visits 0 with probability 1.

5. Assume now that p > q. In this case c1 ≥ 0, since limx→∞ f (x) = c1. The small-
est nonnegative solution is therefore of the form f (x) = c2(q/p)x and the con-
dition f (0) = 1 implies c2 = 1. Therefore, starting at x ≥ 1, the chain visits
the state 0 with probability f (x) = (q/p)x and never visits 0 with probability
1− (q/p)x.

6. If p = q, f (x) = c1 + c2x. Since f (x) = 0, c1 = 1 and the smallest positive
solution is obtained for c2 = 0. The hitting probability of 0 is therefore f (x) = 1
for every x = 1,2, . . . , as in the case p < q.

7.6 1. Applying a third order Taylor expansion to V (y)−V (x) for y ∈ Zd such that
|y− x| ≤ 1 and summing over the 2d neighbors, we obtain, for x ∈ Zd such that
|x| ≥ 2,

PV (x)−V (x) = 4α(2α−2+d) |x|2α−2 + r(x) ,

where (constants may take different values upon each appearance)

|r(x)| ≤C sup
‖y−x‖≤1

|V (3)(y)| ≤ sup
‖y−x‖≤1

‖y‖2α−3

≤C |x|2α−3 .

If |y− x| ≤ 1 and |x| ≥ 2, then ‖y‖ ≥ ‖x‖/2.

PV (x)−V (x) = 2α{2α−2+d + r(x)}|x|2α−2 ,

with |r(x)| ≤C(α,d) |x|−1.
2. If d = 1, then for each α ∈ (0,1/2), we can choose M such that PV (x)−V (x)≤

0 for |x| ≥M. Applying Theorem 7.5.2 yields that the one dimensional simple
symmetric random walk is recurrent.

3. If d ≥ 3, then for each α ∈ (−1/2,0), we can choose M such that PV (x)−
V (x) ≤ 0 if |x| ≥M. Moreover, since α < 0, inf|x|≤M W (x) ≥Mα and for each
x0 such that |x0| > M, V (x0) = |x0|α < Mα . So we can apply Theorem 7.5.1 to
obtain that the d-dimensional simple symmetric random walk is transient.

4. By a Taylor expansion, we can show that, if |x| ≥ 2,

PW (x)−W (x) = {4α(α−1)+O(|x|−1)}{log(|x|2)}α−2 |x|−2 .
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Therefore we can choose M such that PW (x)−W (x)≤ 0 if |x| ≥M and Theo-
rem 7.5.2 shows that the chain is recurrent.

7.8 1. The transition kernel of the chain is given by P(0,y) = ay for y ∈ N and for
x≥ 1,

P(x,y) =

{
ay−x+1 if y≥ x−1 ,

0 otherwise.

2. If a0 = 1, there is no client entering into service. If a0 + a1 = 1, then there
is at most 1 client entering into service and the number of clients in service
will always decrease, unless a0 = 0 in which case the number of client remains
constant.

3. By assumption, there exists k0 > 1 such that ak0 > 0. For k ∈ N, let m be the
unique integer such that k0 +m(k0−1)≥ k > k0 +(m−1)(k0−1) and set r =
k0 +m(k0− 1)− k. Then, 0→ k0 → 2k0− 1→ ··· → k0 +m(k0− 1)→ k0 +
m(k0−1)−1→ ·· · → k0 +m(k0−1)− r = k. Formally,

P(0,k)≥ P(0,k0)P(k0,2k0−1) · · ·P(k0 +m(k0−1))ar
0 = am

k0
ar

0 > 0 .

Thus 0→ k and k→ i for all i≤ k. This proves that all the states communicate
and the Markov kernel is irreducible.

4. We have

PW (x) =
∞

∑
y=0

P(x,y)by =
∞

∑
y=x−1

ay−x+1by

= bx−1
∞

∑
y=x−1

ay−x+1by−x+1 = bx−1
∞

∑
y=0

ayby = bx−1
ϕ(b)

If m > 1, the mean number of clients entering into service is strictly larger than
the number of clients processed in one unit of time. In that case, we will prove that
the chain is transient and the number of clients in the queue diverges to infinity hence
each individual state is visited almost surely a finite number of times. If m < 1, then
we will prove that the chain is recurrent. Consider first the case m > 1.

5. Exercise 6.3 shows that there exists a unique b0 ∈ (0,1), such that φ(b0) = b0.
6. Set F = {0} and W (x)= bx

0 for x∈N. Then, PW (x)=W (x) and W (x)<W (0)=
1 for all x ∈ Fc. Thus, the assumptions of Theorem 7.5.1 are satisfied and we
can conclude that the Markov kernel P is transient.

7. Recall that m > 1 and V (x) = x. For all x > 0, we have

PV (x) =
∞

∑
y=x−1

ay−x+1y =
∞

∑
y=x−1

ay−x+1(y− x+1)+ x−1

=
∞

∑
k=0

kak−1+ x =V (x)− (1−m)≤V (x) , (G.12)
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8. Define Vm(x) = x/(1−m) for x≥ 0. Then (7.7.2) can be rewritten as PVm(x)≤
Vm(x)−1 for every x > 0. Moreover,

PVm(0) = (1−m)−1
∞

∑
k=0

kak ≤ m/(1−m) .

Thus we can apply Theorem 7.5.3 to conclude that the Markov kernel P is
positive if m < 1.

7.11 Set F = {V ≤ r} and

W (x) =

{
(|V |∞−V (x))/(|V |∞− r) , x ∈ Fc ,

1 , x ∈ F .
(G.13)

Since by assumption {V > r} is non empty and V is bounded, |V |∞ > r. Thus W is
well defined, nonnegative and

PW (x) = Ex[W (X1)] = Ex[1Fc(X1)W (X1)]+Ex[1F(X1)W (X1)]

= Ex

[
|V |∞−V (X1)

|V |∞− r

]
+Ex

[
1F(X1)

(
1− |V |∞−V (X1)

|V |∞− r

)]
=
|V |∞−PV (x)
|V |∞− r

+Ex

[
1F(X1)

V (X1)− r
|V |∞− r

]
≤ |V |∞−PV (x)

|V |∞− r
.

By assumption, if x ∈ Fc, then PV (x)≥V (x). Thus the previous inequality implies
that PW (x)≤W (x) for x 6∈ F . On the other hand W (x) = 1 for x∈ F and since {V >
r} is accessible, there exists x0 ∈ Fc such that W (x0)< 1 = infx∈F W (x). Therefore
Theorem 7.5.1 applies and P is transient.

7.12 Since f ≥ 1, the kernel P is positive by Theorem 7.5.3. Applying Proposi-
tion 4.3.2 and Theorem 7.2.1 yields, for every x ∈ X,

π( f ) =
1

Ex[σx]
Ex

[
σF−1

∑
k=0

f (Xk)

]
<

V (x)+b
Ex[σx]

< ∞ .

Solutions to exercises of Chapter 8

8.1 We have u(n) = p for n ≥ 1, showing that u(z) = (1− (1− p)z)/(1− z). Hence
B(z) = pz/(1− (1− p)z) by virtue of (8.1.10).

8.2 For k ∈ N and i ∈ {0, . . . ,k}, for any D ∈F B
k = σ(B`, `≤ k), we get
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B0

B1

B2

B3

B4

S0 S1 S2

Fig. G.0.2 An example of age process. If for some k ∈ N and i ∈ {0, . . . ,k} we have Bk = i > 0,
then either Bk+1 = i+1 or 0, Bk−1 = i−1, . . . ,Bk−i = 0 and k− i is a renewal time.

P0(D,Bk = i,Bk+1 = i+1) =
k

∑
`=0
P0(D,Bk = i,ηk = `,Y`+1 > i+1)

= P0(Y1 > i+1)
k

∑
`=0
P0(D,Bk = i,ηk = `)

= P0(Y1 > i+1)P0(D,Bk = i) ,

where we have used that D∩{ηk = `} ∈F S
` and Y`+1 is independent of F S

` . Along
the same lines, we obtain

P0(D,Bk = i,Bk+1 = 0) = P0(Y1 = i+1)
k

∑
`=0
P0(D,Bk = i,ηk = `) .

The Markov kernel R is thus defined for n ∈ N by

R(n,n+1) = P0,b (Y1 > n+1 |Y1 > n) =
∑

∞
j=n+2 b( j)

∑
∞
j=n+1 b( j)

, (G.14a)

R(n,0) = P0,b (Y1 = n+1 |Y1 > n) =
b(n+1)

∑
∞
j=n+1 b( j)

. (G.14b)

8.3 For all k ∈ {0, . . . ,sup{n ∈ N : b(n) 6= 0}− 1}, Rk(0,k) > 0 and R`(k,0) > 0
where `= inf{n≥ k : b(n) 6= 0}+1. The kernel R is recurrent since P1(σ1 < ∞) =
1. For j ≥ 1, we have

π̄R( j) = π̄( j−1)R( j−1, j) = m−1P0(Y1 > j−1)
P0(Y1 > j)
P0(Y1 > j−1)

= m−1P0(Y1 > j) = π̄( j) .

For j = 0, we get
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π̄R(0) =
∞

∑
j=0

π̄( j)R( j,0) = m−1
∞

∑
j=0
P0(Y1 > j)

P0(Y = j+1)
P0(Y1 > j)

= m−1
∞

∑
j=0
P0(Y = j+1) = m−1 = π̄(0) .

8.4 1. Set L = limsupn u(n). There exists a subsequence {nk, k ∈ N} such that
limk→∞ u(nk)= L. Using the diagonal extraction procedure we can assume with-
out loss of generality that there exists a sequence {q( j), j ∈ Z} such that

lim
k→∞

u(nk + j)1{ j≥−nk} = q( j) ,

for all j ∈ Z.
2. It then holds that q(0) = L and q( j)≤ L for all j ∈ Z. By the renewal equation

(8.1.9), for all p ∈ Z,

u(nk + p) =
∞

∑
j=1

b( j)u(nk + p− j)1{ j≤nk+p} .

Since u(k)≤ 1, we obtain, by Lebesgue’s dominated convergence theorem

q(p) =
∞

∑
j=1

b( j)q(p− j) . (G.15)

3. Since q( j)≤ L for all j ∈ Z, (G.15) yields, for p ∈ S,

L = q(0) =
∞

∑
j=1

b( j)q(− j) = b(p)q(−p)+ ∑
j 6=p

b( j)q(− j)

≥ b(p)q(−p)+{1−b(p)}L .

This implies that q(−p) = L for all p ∈ S.
4. Let now p be such that q(−p) = L. Then, arguing as previously,

L =
∞

∑
j=1

b( j)q(−p− j)≥ b(q)q(−p−h)+{1−b(h)}L ,

and thus q(−p−h) = L for every h∈ S. By induction, we obtain that q(−p) = L
if p = p1 + . . .+ pn with pi ∈ S for i = 1, . . . ,n.

5. Since the sequence {b( j), j ∈ N} is aperiodic, by Lemma 6.3.2, there exists
p0 ≥ 1 such that q(−p) = L for all p≥ p0. By (G.15), this yields

q(−p0 +1) =
∞

∑
j=1

b( j)q(−p0 +1− j) = L .

By induction, this yields that q( j) = L for all j ∈ Z.
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6. Set b̄( j) = ∑
∞
i= j+1 b(i), so that b̄(0) = 1 , b( j) = b̄( j− 1)− b̄( j), j ≥ 1 and

∑
∞
j=0 b̄( j)=m. Applying the identity (8.1.9) and summation by parts, we obtain,

for n≥ 1,

u(n) = b∗u(n) =
n

∑
j=1
{b̄( j−1)− b̄( j)}u(n− j)

=
n−1

∑
j=0

b̄( j)u(n− j−1)−
n

∑
j=0

b̄( j)u(n− j)+ b̄(0)u(n) .

Since b̄(0) = 1, this yields, for all n≥ 1,

n

∑
j=0

b̄( j)u(n− j) =
n−1

∑
j=0

b̄( j)u(n−1− j)

7. By induction, this leads to

n

∑
j=0

b̄( j)u(n− j) = b̄(0)u(0) = 1 .

Therefore, for all k ≥ 0, we obtain (8.4.3).
8. If m = ∞, applying Fatou’s lemma, (8.4.3) yields

1 = lim
k→∞

∞

∑
j=0

b̄( j)u(nk− j)1{ j≤nk} ≥ L
∞

∑
j=0

b̄( j) = L×∞ ,

which implies that L = 0.
9. If m<∞, (8.4.3) and Lebesgue’s dominated convergence theorem yield Lm= 1,

i.e. limsupn→∞ u(n) = 1/m. Setting L̃ = liminfn→∞ u(n) and arguing along the
same lines, we obtain liminfn→∞ u(n)≥ 1/m. This proves (8.1.18) for the pure
renewal sequence.

10. To prove (8.1.18) in the general case of a delayed renewal sequence, write

va(n) = a∗u(n) =
n

∑
k=0

a(k)u(n− k) =
∞

∑
k=0

a(k)u(n− k)1{k≤n} .

The proof is concluded by applying the result for the pure renewal sequence and
Lebesgue’s dominated convergence theorem.

8.5 Decomposing the event {Xn = α} according to the first entrance to the state α

and applying the Markov property yields, for n≥ 1,
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u(n) = Pα(Xn = α) = Pα(Xn = α,σα = n)+
n−1

∑
k=1
Pα(Xn = α,σα = k)

= Pα(σα = n)+
n−1

∑
k=1
Eα [1{σα = k}Eα [1{Xn−k = α}◦θk |Fk]]

= Pα(σα = n)+
n−1

∑
k=1
Pα(σα = k)Pα(Xn−k = α)

= b(n)+
n−1

∑
k=1

u(n− k)b(k) .

Since u(0) = 1, this yields

u(n) = δ0(n)+b∗u(n) . (G.16)

This means that the sequence u satisfies the pure renewal equation (8.1.9). Moreover,
applying the strong Markov property, we obtain

ax ∗u(n) =
n

∑
k=1

ax(k)u(n− k) =
n

∑
k=1
Px(σα = k)Pα(Xn−k = α)

= Ex

[
n

∑
k=1

1{σα = k}PXσα
(Xn−k = α)

]

= Ex

[
n

∑
k=1

1{σα = k}1{Xn = α}
]
= Px(Xn = α) .

This identity and (G.16) prove that ax ∗u is the delayed renewal sequence associated
to the delay distribution ax.

8.6 Applying 8.2.5, we must prove that

lim
n→∞

Px(σα ≥ n) = 0 , (G.17a)

lim
n→∞
|ax ∗u−π(α)| ∗ψ(n) = 0 , (G.17b)

lim
n→∞

∞

∑
k=n+1

ψ(k) = 0 . (G.17c)

Since P is irreducible, for all x ∈ X, Px(σα < ∞) = 1 thus (G.17a) holds. Since P is
positive recurrent, Eα [σα ] = ∑

∞
n=1 ψ(n)< ∞ so (G.17c) also holds. Since P is ape-

riodic, the distribution b defined in (8.4.5) is also aperiodic. Thus we can apply the
Blackwell Theorem (Theorem 8.1.7) with π(α) = 1/Eα [σα ] = 1/∑

∞
k=1 kb(k) and

we have limn→∞ ax ∗u(n) = π(α). Since ∑k≥1 ψ(k)< ∞, by Lebesgue’s dominated
convergence theorem, we finally obtain that (G.17b) holds.

8.7 1. Since all the states communicate, for all x,y ∈ X, there exists an inte-
ger nr(x,y) such that Px(σy ≤ r(x,y)) > 0. Define r = supx,y∈X r(x,y) and
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ε = infx,y∈XPx(σy ≤ r(x,y)). Since X is finite, r is a finite integer, ε > 0 and
for all x,y ∈ X, Px(σy ≤ r)≥ ε .

2. We have

Px(σy > kr) = Px(σy > (k−1)r,σy ◦θ(k−1)r > r)

= Ex

[
1{σy>(k−1)r}PX(k−1)r(σy > r)

]
≤ (1− ε)Px(σy > (k−1)r) .

Thus, for all x,y, Px(σy > kr)≤ (1− ε)k.
3. For b > 1, it follows that

Ex[bσy ] =
∞

∑
k=1

bkPx(σy = k) = b
∞

∑
k=0

bkPx(σy = k+1)≤ b
∞

∑
k=0

bkPx(σy > k)

≤ rbr+1
∞

∑
k=0

bkrPx(σy > kr)≤ rbr+1
∞

∑
k=0

[(1− ε)br]k .

If b is such that (1− ε)br < 1 then the series is summable and Ex[bσy ]< ∞.

8.8 1. Set M = supx∈CEx[aσ
(n)
C ]. Then, by induction, for all n≥ 1, supx∈CEx[aσ

(n)
C ]≤

Mn. Then σx =σ
(νx)
C . Applying Exercise 8.7 to the induced Markov chain on the

set C,
{

X
σ
(n)
C

: n ∈ N
}

(see Definition 3.3.7) we obtain that there exists r > 1

such that Ex[rνx ]< ∞ for all x ∈C.
2. Choose s > 0 such that Ms ≤ β 1/2. Then,

Px(σx ≥ n)≤ Px(νx ≥ sn)+Px(σ
(νx)
C ≥ n, νx < sn)

≤ Px(νx ≥ sn)+Px(σ
([sn])
C ≥ n)≤ Ex[rνx ]r−sn +β

−nEx

[
β

σ
([sn])
C

]
≤ Ex[rνx ]r−sn +β

−nMsn ≤
(

sup
x∈C
Ex[rνx ]

)
r−sn +(

√
β )−n .

3. Choosing δ = r∧
√

β yields Ex[δ
σx ] for all x ∈C.

Solutions to exercises of Chapter 9

9.3 1. Assume first that F((−∞,0)) = 0. Then for any k > 0, the set [0,k) is not
accessible. Conversely, suppose for some δ ,ε > 0, F((−∞, −ε)) > δ . Then
for any n, if x/ε < n,

Pn(x, {0})≥ δ
n > 0.

showing that {0} is an accessible atom and therefore an accessible small set.
2. If C = [0, c] for some c, then this implies for all x ∈C that



G Solutions to selected exercises 691

Px(σ0 ≤ c/ε)≥ δ
1+c/∈

showing that {0} is uniformly accessible from any compact subset.

9.5 Let A ∈X be such that λ (A∩C)> 0. Then, for every x ∈ X,

∞

∑
n=1

Pn(x,A∩C)≥
∫

A∩C

∞

∑
n=1

pn(x,y)λ (dy)> 0 .

Thus A is accessible.

9.6 Since C is accessible, then for any x ∈ X, Pn(x,C) > 0. By the Chapman-
Kolmogorov equations, we get

Pn+m(x,B)≥
∫

C
Pn(x,dy)Pm(y,B)≥ ν(B)

∫
C

ε(y,B)Pn(x,dy)> 0 .

9.7 Define p(x,y)= q(x,y)α(x,y). Suppose first that π(y)> 0. Consider two cases. If
π(y)q(y,x)≥ π(x)q(x,y), then we simply have p(x,y) = q(x,y)> 0 by assumption;
this is also the case if π(x) = 0. If on the other hand π(y)q(y,x)< π(x)q(x,y), then
p(x,y) = q(y,x)π(y)/π(x), which is positive also since this case requires π(x) > 0
and our assumption then implies that q(y,x)> 0 for all y ∈ X.

Thus if π(A) > 0, we must also have
∫

A p(x,y)λ (dy) > 0 for all x ∈ X and the
chain is ’one-step’ irreducible.

9.10 1. if B⊆C, and x ∈C then

P(x, B) = P(Z1 ∈ B− x)

≥
∫

B−x
γ(y)dy≥ δLeb(B) .

2. From any x we can reach C in at most n= 2|x|/β steps with positive probability.
3. Leb(·∩C) is an irreducibility measure by Proposition 9.1.9.
4. For any x ∈ R, the set {x+q : q ∈Q}= x+Q is absorbing. The state-space R

is covered by an uncountably infinite number of absorbing sets.

9.13 Let C be a non-empty compact set. By hypothesis, we have M = supx∈C hπ(x)<
∞ and ς = infx,y∈C q(x,y)> 0. Choose A⊆C, and for fixed x denote the region where
moves might be rejected by

Rx =

{
y ∈ A :

π(y)
π(x)

q(y,x)
q(x,y)

< 1
}
,

and set Ax = A\Rx as the region where all moves are accepted.
By construction, for x ∈C
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P(x, A)≥
∫

Rx

q(x, y)min
{

hπ(y)
hπ(x)

q(y,x)
q(x,y)

, 1
}

ν(dy)

+
∫

Ax

q(x, y)min
{

hπ(y)
hπ(x)

q(y,x)
q(x,y)

, 1
}

ν(dy)

=
∫

Rx

hπ(y)
hπ(x)

q(y, x)ν(dy)+
∫

Ax

q(x, y)ν(dy)

≥ (ς/M)
∫

Rx

hπ(y)ν(dy)+ ς

∫
Ax

hπ(y)/Mν(dy)

= (ς/M)π(A) .

9.15 For x ∈C, we use the following decomposition

Pm(x, ·) = (1− ε)Rm(x, )̇+ εν , Rm(x, ·) =
1

1− ε
{Pm(x, ·− εν}

Therefore, we get, for (x,x′) ∈C×C,∥∥Pm(x, ·)−Pm(x′, ·)
∥∥

TV ≤ (1− ε)
∥∥Rm(x, ·)−Rm(x′, ·)

∥∥
TV

and we conclude by noting that ‖Rm(x, ·)−Rm(x′, ·)‖TV ≤ 2.

9.18 The result follows by an induction argument. The statement (9.5.1) is trivial for
m = 0. Moreover, suppose the statement is true for m = k−1, then

Pk(x,A) =
∫

X
Pk−1(x,dy)P(y, A)

≤
∫

X

{
k−1

∑
i=0

(
k−1

i

)
Qi(x,dy)

}
{1A(y)+Q(y,A)}

=
k−1

∑
i=0

(
k−1

i

)
Qi(x,A)+

k−1

∑
i=0

(
k−1

i

)
Qi+1(x,A)

=
k−1

∑
i=0

{(
k−1

i

)
+

(
k−1
i−1

)}
Qi(x, A)+Qk(x,A)

=
k

∑
i=0

(
k
i

)
Qi(x, A) .

9.19 We use the notation introduced in Example 2.3.2. To show that unbounded sets
are not small, it is sufficient to prove that for all bounded Borel sets A and for all
m ∈ N∗, lim|x|→∞ Pm(x,A) = 0. This will done by induction on m. First set m = 1
and let A be a bounded Borel set. Denoting by r(x) the probability for staying at the
same position x, that is r(x) = 1−

∫
q̄(z)α(x,x+ z)dz, we have
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P(x,A) =
∫

q̄(z)α(x,x+ z)1A(x+ z)dz+ r(x)1A(x)

≤
∫

q̄(z)1A(x+ z)dz+1A(x) . (G.18)

Since A is bounded, applying Lebesgue’s dominated convergence theorem proves
that lim|x|→∞ P(x,A) = 0. Assume that lim|x|→∞ Pm(x,A) = 0 for some m≥ 1. Then,
using again (G.18),

Pm+1(x,A)≤
∫

q̄(z)Pm(x+ z,A)dz+1A(x)

The induction assumption together with Lebesgue’s dominated convergence theo-
rem, shows that lim|x|→∞ Pm+1(x,A) = 0. This finishes the proof.

9.20 By Definition 9.2.1 and Lemma 9.1.6, there exists an accessible (r,εν)-small
set C with r ∈N∗, ε > 0, ν ∈M1(X ) and ν(C)> 0. Since the kernel P is aperiodic,
Lemma 9.3.3-(ii) shows that there exists an integer n0 such that C is a (n,εnν) small
set for all n ≥ n0. Provided that C is accessible for Pn, the kernel Pn is strongly
aperiodic. We will actually show that C is accessible for Pm for all m ∈ N∗. Since C
is accessible, for all x ∈ X, there exists k > 0 such that Pk(x,C) > 0. Hence for all
n≥ n0 we get

Pk+n(x,C)≥
∫

C
Pk(x,dy)Pn(y,C)≥ εnν(C)Pk(x,C)> 0 .

Thus, C is accessible for Pm for all m ∈ N∗ and the proof is completed.

9.21 1. We will first compute an upper bound for the probability of accepting a
move started at x:

P(x,{x}c) =
∫

q(x,y)(1∧ π(y)
π(x)

)dy

≤ M
π(x)

∫
π(y)dy =

M
π(x)

,

2. Let C be a set on which π is unbounded. Then infx∈C P(x,{x}c) = 0. We may
just choose x0 and x1 such that P(xi,{xi})> (1− ε/2)1/m, i = 0,1.

3. By Proposition D.2.3, we have

‖Pm(x0, ·)−Pm(x1, ·)‖TV = sup
I

∑
i=0
|Pm(x0,Bi)−Pm(x1,Bi),

where the supremum is taken over all finite measurable partitions {Bi}I
i=0. Tak-

ing B0 = {x0}, B1 = {x1} and B2 = X\ (B0∪B1), we therefore have

‖Pm(x0, ·)−Pm(x1, ·)‖TV

> |Pm(x0,{x0})−Pm(x1,{x0})|+ |Pm(x0,{x1})−Pm(x1,{x1})| ≥ 2(1−ε) ,
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where we have used Pm(xi,{xi}) > (1− ε/2), i = 0,1 and Pm(xi,{x j}) < ε/2,
i 6= j ∈ {0,1}.

Solutions to exercises of Chapter 10

10.1 1. For any bounded function h, we have

Ph(x) =
∫

h(x+ y)µ(dy) =
∫

h(x+ y)g(y)dy =
∫

h(y)g(y− x)dy .

Since h ∈ L∞(Leb), g ∈ L1(Leb), the function Ph is uniformly continuous on
Rd . Hence, h any bounded harmonic function is uniformly continuous on Rd .

2. The sequence {(Mn(x),F Z
n ),n ∈ N} is a bounded martingale.

3. Obviously the random variable H(x) is invariant by finite permutation of the
sequence {Zn, n ∈ N∗}, the zero-one-law show that there exists a constant c
such that H(x) = c P − a.s.. Therefore H(x) = E [H(x)] = h(x), P − a.s.. We
have h(x+Z1) = M1(x) = E

[
H(x) |F Z

1
]
= h(x) P − a.s.

4. It follows that h(x+ y) = h(x) µ-a.e.and, by continuity, h(x+ y) = h(x) for all
y ∈ supp(µ) and, since supp(µ)⊃ B(0,a), for all y ∈ Rd .

10.2 1. Let A ∈X such that ν(A) = 0. We have

π(A) =
∫

π(dx)P(x,A) =
∫

π(dx)
∫
1A(y)p(x,y)ν(dy) = 0 .

2. Since P admits an invariant probability, P is recurrent by Theorem 10.1.6. Let
h be a bounded harmonic function. By Proposition 5.2.12, h(x) = π(h) π-a.e..
Since Ph(x) = h(x) for all x ∈ X, we get

Ph(x) =
∫

p(x,y)h(y)ν(dy) =
∫

p(x,y)π(h)ν(dy) = π(h) .

Thus, h(x) = π(h) for all x ∈ X, Theorem 10.2.11-(ii) shows that P is Harris
recurrent.

10.3 1. P admits π as its unique invariant probability: hence P is recurrent by The-
orem 10.1.6. By Proposition 5.2.12, h(x) = π(h) π-a.e..

2. We have ∫
q(x,y)α(x,y)h(y)µ(dy) = {1− ᾱ(x)}π(h)

and thus ∫
P(x,dy)h(y) = {1− ᾱ(x)}π(h)+ ᾱ(x)h(x) = h(x) .

which implies {1− ᾱ(x)}{h(x)−π(h)}= 0.
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3. Since π is not concentrated on a single point, π-irreducibility implies that
ᾱ(x)< 1 for all x ∈ X.

4. h(x) = π(h) for all x∈X. Theorem 10.2.11-(ii) shows that P is Harris recurrent.

10.5 1. For a > 0, x ∈ [0,a] and a measurable set A⊂ R+, we have

P(x,A) = P((x+W )+ ∈ A)≥ P(x+W ≤ 0,0 ∈ A)≥ P(W ≤−a)δ0(A) .

Since q is positive, P(W < −a) > 0 for all a > 0 thus compact sets are small.
This also proves that δ0 is an irreducibility measure by Proposition 9.1.9.

2. For x > x0, we have

PV (x)−V (x) = E
[
W11W1≥−x

]
− xP(W1 ≤−x)≤

∫
∞

−x0

wq(w)dw .

3. The assumptions of Theorem 10.2.13 hold with C = [0, x0] and V (x) = x thus
P is Harris recurrent.

4. For all y >−1, we have log(1+ y)≤ y− (y2/2)1{y < 0} which implies

log(1+ x+W1)1{x+W1 ≥ R}
= [log(1+ x)+ log(1+W1/(1+ x))]1{x+W1 ≥ R}
≤ [log(1+ x)+W1/(1+ x)]1{x+W1 ≥ R}

− (W 2
1 /(2(1+ x)2))1{R− x≤W1 < 0} .

If x > R, then 1+ x > 0, and by taking expectations in the previous inequality,
we obtain

PV (x) = E [log(1+ x+W1)1{x+W1 > R}]
≤ (1−Q(R− x)) log(1+ x)+U1(x)−U2(x) .

5. Since E [W1] = 0, it holds that E [W11{W1 > R− x}] =−E [W11{W1 ≤ R− x}]
and thus for x > R,

E [|W1|1{W1 ≤ R− x}]≤
E
[
W 2

1
]

x−R
.

This shows that U1(x) = o(x−2). On the other hand, since E
[
W 2

1
]
< ∞,

U2(x) = (1/(2(1+ x)2))E
[
W 2

1 1{W1 < 0}
]
−o(x−2) ,

6. Thus by choosing R large enough, we obtain for x > R,

PV (x)≤V (x)− (1/(2(1+ x)2))E
[
W 2

1 1{W1 < 0}
]
+o(x−2)≤V (x) .

Since the function V is unbounded off petite sets, he kernel is recurrent by
Theorem 10.2.13.
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10.6 1. Let K be a compact set with non empty interior. Then Leb(K)> 0 and for
every x ∈ K,

P(x,A) =
∫

A
q(y−m(x))dy≥

∫
A∩K

q(y−m(x))dy≥ εKν(A) ,

with

νK(A) =
Leb(A∩K)

Leb(K)
, εK = Leb(K) min

(t,x)∈K×K
q(t−m(x)) .

2. Using that |m(x)+Z1| ≥ |m(x)| − |Z1|, we obtain

PV (x) = 1−E [exp(−β |m(x)+Z1|)]
≥ 1−µβ exp(−β |m(x)|) =V (x)−W (x)

where
W (x) = µβ exp(−β |m(x)|)+ exp(−β |x|) .

Under the stated conditions, lim|x|→∞ W (x) = ∞.
3. For r ∈ (0,1), {V ≤ r}= {|x| ≤ −α−1 log(1− r)}, and we may choose r small

enough so that, for all x ∈ Rd such that |x| > r, W (x) < 0. Therefore, PV > V
on {V > r}. If Z1 has a positive density with respect to the Lebesgue measure
on Rd , then Leb is an irreducibility measure, and the sets {V ≤ r} and {V > r}
are both accessible. Therefore, by Theorem 10.1.11, the chain is transient.

10.8 1. P is recurrent by application of Theorem 10.1.6 (If P admits an invariant
probability measure π , then P is recurrent).

2. Set A∞ = {x ∈ X : Px(NA = ∞) = 1}. By applying Theorem 10.1.10, this set
is absorbing and full. Since π is a maximal irreducibility measure by Theo-
rem 9.2.15, this implies that π(A∞) = 1, i.e. Py(NA = ∞) = 1 for π almost all
y ∈ X.

3. For all x ∈ X,

Px(NA = ∞) = Px(NA ◦θm = ∞) = Ex[PXm(NA = ∞)]

=
∫

X
r(x,y)Py(NA = ∞)π(dy) =

∫
X

r(x,y)π(dy) = 1 .

Therefore P is Harris recurrent.

10.9 Set A = {limn→∞ n−1
∑

n−1
k=0 Y ◦θk = Eπ [Y ]}. The set A is invariant and the func-

tion h(x) = Px(A) is harmonic (see Proposition 5.2.2-(iii)) and hence is constant
by Theorem 10.2.11. By Theorem 5.2.6, π is ergodic and Pπ(A) = 1. Therefore
Px(A) = 1 for all x ∈ X and Pξ (A) = 1 for all ξ ∈M1(X ).
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Solutions to exercises of Chapter 11

11.1 The first assertion is obvious. To prove the second assertion, note that P0(A) = 0
and P1(A) = 1. Hence, we have Pµ(A) = 1/2 if µ = (δ0 +δ1)/2, showing that the
asymptotic σ -field A is not trivial.

11.2 We get using Lemma 11.1.1 that∥∥∥ξ Pk−ξ
′Pk
∥∥∥

f
= sup
|h|≤ f
|ξ Pkh−ξ

′Pkh|

= sup
|h|≤ f
|[ξ Pk⊗bε ](h⊗1)− [ξ ′Pk⊗bε ](h⊗1)|

= sup
|h|≤ f
|[ξ ⊗bε ]P̌k(h⊗1)− [ξ ′⊗bε ]P̌k(h⊗1)| .

Since the condition |h| ≤ f implies that |h⊗1| ≤ f ⊗1, (11.5.1) follows. Applying
(11.5.1) with ξ ′ = π and using Proposition 11.1.3, we deduce (11.5.2).

11.3 For all x ∈ X, we have

Px(σC < ∞) = lim
n
Px(σC ≤ n)≥ lim

n
Pn(x,C) = ε > 0 .

By Theorem 4.2.6, this implies that Px(NC = ∞) = 1 for all x ∈ X. Therefore, the
chain is Harris recurrent by Proposition 10.2.4 and positive by Exercise 11.5.

11.4 Assume that for all µ ∈M1(X) and all A ∈A , Pµ(A) = 0 or 1. If the mapping
µ → Pµ(A) is not constant, then there exist µ1,µ2 ∈ X such that Pµ1(A) = 1 and
Pµ2(A) = 0 and by setting µ = (µ1 +µ2)/2, we obtain that Pµ(A) = 1/2 which is a
contradiction.

11.5 1. By Theorem 11.A.4, limn→∞ |Pn(x,A)−Pn(y,A)|= 0 for all y ∈ X. Since P
is null recurrent, µ(X) = ∞ is infinite. Therefore, by Egorov’s Theorem B.2.12
there exists B such that µ(B)≥ 1/δ and limn→∞ supy∈B |Pn(x,A)−Pn(y,A)|= 0.

2. We can choose n0 large enough so that supy∈B |Pn(x,A)−Pn(y,A)| ≤ εδ/2 for
n≥ n0. This yields, for n≥ n0,

µ(A)≥
∫

B
µ(dy)Pn(y,A)≥

∫
B

µ(dy)(Pn(x,A)− εδ/2)

= µ(B)(Pn(x,A)− εδ/2) .

3. Letting n→ ∞ and using (11.5.3) yields µ(A) ≥ δ−1{limsupn→∞ Pn(x,A)}−
ε/2 = µ(A)+ ε/2 which is impossible.

4. Elementary.
5. If x ∈ Cc, then Px(σC < ∞) = 1 since the chain is Harris recurrent. By the

Markov property (see Exercise 3.5), we get

Pn(x,A) = Ex[1{n≤ σC}1A(Xn)]+Ex[1{σC < n}Pn−σC(XσC ,A)]→ 0
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as n→ ∞ by Lebesgue’s dominated convergence theorem.

Solutions to exercises of Chapter 12

12.1 1. Then, for f ∈ Fb(Rq),

P f (x) =
∫
Rq

f (m(x)+σ(x)z)µ(dz) . (G.19)

By Lemma 12.1.5, P is Feller if m and σ are continuous.
2. Applying the change of variable y = m(x)+σ(x)z, (G.19) may be rewritten as

P f (x) =
∫
Rq

f (y)|detσ
−1(x)|g

(
σ
−1(x){y−m(x)}

)
dy .

For every ε > 0, there exists a continuous function gε :Rq 7→R+ with compact
support such that

∫
Rq |g(z)−gε(z)|dz≤ ε . For any f ∈ Fb(Rq), define the kernel

Pε by

Pε f (x) =
∫
Rq

f (m(x)+σ(x)z)gε(z)dz

=
∫
Rq

f (y)|detσ
−1(x)|gε

(
σ
−1(x){y−m(x)}

)
dy .

Since gε is continuous with compact support, for every x0 ∈ R,

lim
x→x0

Pε f (x) = Pε f (x0) .

That is, the kernel Pε is strong Feller. Moreover, for every f ∈ Fb(Rq) such that
| f |∞ ≤ 1,

sup
x∈R
|P f (x)−Pε f (x)| ≤ ε .

This yields

|P f (x)−P f (x0)| ≤ |P f (x)−Pε f (x)|+ |Pε f (x)−Pε f (x0)|+ |Pε f (x0)−P f (x0)|
≤ 2ε + |Pε f (x)−Pε f (x0)| .

Thus limsupx→x0
|P f (x)−P f (x0)| ≤ 2ε . Since ε is arbitrary, this proves that P

is strong Feller.

12.2 The kernel P of this chain is defined by

P(x,A) = p1A((x+1)/3)+(1− p)1A(x/3) .
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If f is continuous on [0,1], then for all x ∈ [0,1], P f (x) = p f ((x+ 1)/3) + (1−
p) f (x/3) which defines a continuous function. Thus P is Feller. However it is not
strong Feller. Consider for instance f = 1[0,1/2]. Then P f = p f + 1− p which is
discontinuous.

12.6 1. For all f ∈ Cb(X), we have P f (x) =
∫

f (x+ z)µ(dz), which is continuous
by Lebesgue’s dominated convergence theorem. Thus P is Feller.

2. Assume that µ has a density h with respect to Lebesgue’s measure on Rq. Then,
for f ∈ F(X) and x,x′ ∈ Rq,

|P f (x)−P f (x′)|=
∣∣∣∣∫Rq
{ f (x+ y)− f (x′+ y)}h(y)dy

∣∣∣∣
=

∣∣∣∣∫Rq
{h(y− x)−h(y− x′)} f (y)dy

∣∣∣∣
≤ | f |∞

∫
Rq
|h(y)−h(y− (x− x′))|dy .

The function x 7→
∫
|h(y)−h(y−x)|dy is continuous at 0. (To see this, approxi-

mate h by a compactly supported continuous function gε such that
∫
|gε −h| ≤

ε .) This yields limx′→x |P f (x)−P f (x′)|= 0 and P is strong Feller.
3. Conversely, assume that P is strong Feller. Let A be a measurable set such that

µ(A)= δ > 0. Since x→P(x,A) is continuous and P(0,A)= µ(A)= δ , we may
choose an open set O ∈ V0 such that P(x,A) = µ(A− x)≥ δ/2 for all x ∈ O.

4. Using Fubini’s theorem, symmetry and translation invariance of Lebesgue’s
measure, we obtain

Leb(A) =
∫
Rq

µ(dy)
∫
Rq
1A(x)dx =

∫
Rq

µ(dy)
∫
Rq
1A(y− x)dx

=
∫
Rq

dx
∫
Rq
1A(y− x)µ(dy) =

∫
Rq

µ(A− x)dx

≥
∫

O
µ(A− x)dx≥ δ

2
Leb(O)> 0 .

This proves that µ(A)> 0 implies Leb(A)> 0, hence µ is absolutely continuous
with respect to Lebesgue’s measure.

12.7 1. (i)⇒ (ii) If µ∗p is non-singular with respect to Lebesgue’s measure,
there exists a function g ∈ L1(Leb)∩L∞(Leb) such that µ∗p ≥ g.Leb and g is
not identically equal to zero. Then µ∗2p ≥ g∗g.Leb and g∗g is continuous and
is non identically equal to zero which implies (ii) for q = 2p.

(ii)⇒ (iii) Since g is continuous and non zero, there exists an open set O
and α > 0 such that g≥ α1O. (iii) follows.

(iii)⇒ (i) is obvious.
2. If µ is spread out, we have by Exercise 12.7, µ∗q ≥ g · Leb, where g ∈

C+
c (Rd,B

(
Rd
)
) and g is non-zero. We set for x∈Rd and A∈B(Rd), T (x,A)=

Leb(1A ∗g(x)). It is easily shown that x 7→ T (·,A) is continuous.
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Conversely assume that µ is not spread out and that P is a T -kernel, i.e. there
exists a ∈M1(N∗), such that T (x,A)≥ Ka(x,A) for all x ∈ X and A ∈X .

3. For all n≥ 1, there exists An such that µ∗n(An) = 1 and Leb(An) = 0. If we set
A =

⋂
n≥1 An, we have, for all n≥ 1, µ∗n(A) = 1 and Leb(A) = 0.

4. Since P is a T -kernel,

T (0,Ac)≤ Ka(0,Ac) =
∞

∑
k=1

a(k)µ∗n(Ac) = 0 .

Hence T (·,A)> 0 and, since T is lower semi-continuous, infx∈O T (x,A)= δ > 0
for some O ∈ V0. This implies that infx∈O Ka(x,A)≥ δ > 0.

5. By the symmetry and invariance of the Lebesgue measure, we get

Leb(A) =
∫
Rq

µ
∗n(dy)

∫
Rq
1A(x)dx =

∫
Rq

µ
∗n(dy)

∫
Rq
1A(y− x)dx

=
∫
Rq

dx
∫
Rq
1A(y− x)µ(dy) =

∫
Rq

µ
∗n(A− x)dx

6.

Leb(A) = ∑
n≥1

a(n)Leb(A) = ∑
n≥1

a(n)
∫

Pn(x,A)dx

=
∫

O
Ka(x,A)dx≥ δLeb(O)> 0

and we obtain a contradiction.

12.8 1. Compute the controllability matrix Cp.

Cp = [B|AB| . . . |Ap−1B] =



1 η1 η2 · · · ηp−1

0 1 η1
...

...
. . . 1

. . .
...

...
. . . η1

0 0 · · · · · · 1


where we define η0 = 1, ηi = 0 for i < 0, and for j ≥ 2,

η j =
k

∑
i=1

αiη j−i.

The triangular structure of the controllability matrix now implies that the pair
(A,B) is controllable.

2. then P is a T-kernel by Example 12.2.7.
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3. If the zeros of the polynomial α(z) lie outside of the closed unit disk, the spec-
tral radius ρ(F) is strictly less than one, then Example 12.2.10 show that P is
an irreducible T-kernel which admits a reachable point.

12.9 1. Let f be continuous and bounded on [0,1]. For all x ∈ [0,1], we have

P f (x) = x f (0)+(1− x) f (x) .

Thus P is Feller. Since the chain is nonincreasing starting from any value, the
only accessible sets are those containing 0 and P is δ0 irreducible.

2. For x > 0, we have

Px(σ0 > n) = (1− x)n→ 1 .

3. Since the only accessible sets are those contain zero and zero is absorbing, the
kernel is Harris recurrent since the probability to eventually reach {0} starting
from x 6= 0 is 1.

4. The accessible state {0} is not uniformly accessible from X thus X is compact
but not petite.

12.10 1. Let f be continuous and bounded on [0,1]. For all x ∈ [0,1], we have

P f (x) = x f (0)+(1− x) f (αx) .

Thus P is Feller. Since the chain is decreasing starting from any value, the only
accessible sets are those containing 0 and P is δ0 irreducible.

2. For x > 0, we have

Px(σ0 > n) =
n

∏
k=1

(1−α
kx)→ 1 .

3. Since the only accessible sets are those contain zero and zero is absorbing, the
kernel is recurrent. It is not Harris recurrent since the probability to reach {0}
starting from x 6= 0 is not zero.

4. The accessible state {0} is not uniformly accessible from X thus X is compact
but not petite.

12.11 1. We need to prove that the distribution Pk(x, ·) is absolutely continuous
with respect to Lebesgue measure, and has a density which is everywhere posi-
tive onRp. For each deterministic initial condition x∈Rp, the distribution of Xk
is Gaussian for each k ∈N (a linear combination of independent gaussian vector
is also gaussian). It is only required to prove that Pk(x, ·) is not concentrated on
some lower dimensional subspace of Rp. This will happen if we can show that
the covariance of Xk (or equivalently of the distribution Pk(x, ·)) is of full rank
for each x ∈ Rp.
We compute the mean and variance of Xk for each initial condition x ∈Rp. The
mean is given by µk(x) = Fkx and the covariance matrix is
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Ex[(Xk−µk(x))(Xk−µk(x))T ] = Σk :=
k−1

∑
i=0

F iGGT{F i}T .

The covariance is therefore full rank if and only if the pair (F,G) is controllable.
Therefore, for any k > 0 and x ∈ Rp, Pk(x, ·) has a density pk(x, ·) given by

pk(x,y) = (2π|Σk|)−p/2 exp
{
−1

2
(y−Fkx)Σ−1

k (y−Fkx)
}

The density is everywhere positive, as required.
2. For any compact set A, any set B of positive Lebesgue measure and all k ∈ N∗,

it holds that infx∈A Pk(x,B)> 0. This proves the claim.

12.12 We set ν = f ·Lebq. We set Rs = Rq⊕Rs−q and we choose a linear map Ψ

from Rs to Rs−q with rank s− q. The linear map ∆ = Φ +Ψ is one-to-one from
Rs to Rs. By the change of variables formula, ν ◦∆−1 has a density proportional
to f ◦∆−1 with respect to Lebs. Since Φ = πRq ◦∆ , where πRq is the canonical
projection from Rs to Rq, ν ◦Φ−1 has a density g with respect to Lebq. Finally
ξ ◦Φ−1 ≥ g ·Lebq 6= 0.

12.13 1. By Example 12.2.7, the m-skeleton Pm possesses a continuous compo-
nent T which is everywhere non trivial. By Theorem 9.2.5, there exists a small
set C for which T (x∗,C) > 0 and hence by the Feller property, an open set O
containing x∗ satisfying infx∈O T (x,C) = δ > 0.

2. By Lemma 9.1.7-(ii), O is a small set.
3. Since for all n ∈ N, Xn = FnX0 +∑

n
k=1 Fn−kGZk, for any x ∈ A and any open

neighborhood O of x∗ there exist n large enough and ε sufficiently small such
that, on the event

⋂n
k=1{|Zk− z∗| ≤ ε}

Xn = Fnx+
n

∑
k=1

Fn−kGZk ∈ O ,

showing that infx∈A Pn(x,O)≥ µn(B(z∗,ε))> 0.
4. Hence, applying again Lemma 9.1.7-(ii) shows that A is a small set.

12.14 It suffices to show that {πµ
n ,n ∈ N} is tight. By assumption, {µPn,n ∈ N} is

tight, thus for each ε > 0, there exists a compact set K such that µPn(Kc) ≤ ε for
all n≥ 0. This yields π

µ
n (Kc)≤ ε for all n ∈ N, and thus π

µ
n is tight.

12.15 If the state space is compact, then {πµ
n ,n ∈ N} is tight for all µ ∈M1(X ).

12.16 1. Let µ ∈M1(X ) be such that µ(V )< ∞ (take for instance µ = δx for any
x∈X). By induction, (12.5.3) yields the bound µPnV ≤ µ(V )+b/(1−λ ). Thus
{µ Pn,n ∈N} is tight by Lemma C.2.4 and hence admits limit points which are
invariant probability measures by Exercise 12.14.

2. Let π be an invariant measure. Then by concavity of the function x→ x∧M,
we have, for every M > 0,
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π(V ∧M) = πPn(V ∧M)≤ π((PnV )∧M)≤ π({λ nV +b/(1−λ )}∧M) .

Letting n first and then M tend to infinity yields π(V )≤ b/(1−λ ).

12.17 1. Since P is Feller, if f ∈ Cb(X), then P f ∈ Cb(X). Therefore,

πP( f ) = π(P f ) = lim
n→∞

(µPn)P f = lim
n→∞

µPn+1( f ) = π( f ) .

Thus πP and π take equal values on all bounded continuous functions and are
therefore equal by Corollary B.2.18.

2. π is invariant by 1. For any f ∈ Cb(X) and x ∈ X, we get limn→∞ Pn f (x) =
limn→∞ δxPn( f ) = π( f ) and |Pn f (x)| ≤ | f |∞. Therefore, for ξ ∈ M1(X ),
Lebesgue’s dominated convergence theorem yields

lim
n→∞

ξ Pn( f ) = lim
n→∞

∫
X

Pn f (x)ξ (dx) =
∫

X
lim
n→∞

Pn f (x)ξ (dx) = π( f ) .

Thus ξ Pn w⇒ π . If moreover ξ is invariant, then ξ = ξ Pn for all n, whence
ξ = π .

12.18 1. The homogeneous Poisson point process is stochastically continuous so
Ph(x) = E [h(ω +bx+ c log(1+N(ex)))] is a continuous function of x. Thus P
is Feller.

2. We use the bound |u+ v| = |u|+ |v| if uv ≥ 0 and |u+ v| ≤ |u| ∨ |v| otherwise.
If bc≥ 0, This yields

PV (x) = E
[
e|ω+bx+c log(1+N(ex))|

]
≤ e|ω|e|b||x|E

[
(1+N(ex))|c|

]
≤ e|ω|e|b||x|(1+E [N(ex)])|c| ≤ ϑe|b+c||x| .

If bc < 0, we obtain

PV (x) = E
[
e|ω+bx+c log(1+N(ex))|

]
≤ e|ω|

(
e|b||x|+E

[
(1+N(ex))|c|

])
≤ e|ω|(e|b||x|+ e|c||x|)≤ ϑe(|b|∨|c|)|x| .

This proves that PV/V tends to zero at infinity and is bounded on compact sets,
therefore the drift condition (12.3.3) holds.

3. By Exercise 12.16, the properties we have just shown prove the kernel P admits
an invariant probability measure.

12.19 We take the continuous component to be the part of the kernel corresponding
to accepted updates, that is,

T (x,A) =
∫

A
q(x, y)α(x,y)dy , (G.20)

where we define
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α(x, y) =

{
1, hπ(y)q(y, x)≥ hπ(x)q(x, y)
hπ (y)q(y,x)
hπ (x)q(x,y)

, otherwise
(G.21)

Fix y and consider a sequence xn→ x with x ∈Xπ . It is clear that if q(x, y)> 0, then

α(xn, y)q(xn, y)→ α(x, y)q(x, y)

by the continuity assumptions of the theorem. In case q(x, y) = 0, we have

0≤ α(xn, y)q(xn, y)≤ q(xn, y)→ 0

by the continuity assumptions of the theorem and our definition of α(x, y) . The
integrand in (G.20) being an lower semi-continuous function for each fixed value of
the variable of integration, so is the integral by Fatou’s lemma. It remains only to
be shown that T (x,Xπ) > 0 for every x ∈ Xπ , but if this failed for any x this would
mean that the chain could never move from x to anywhere.

12.20 Without loss of generality, assume that

∂Fk

∂ zk
(x0

0,z
0
1, . . . ,z

0
k) 6= 0 (G.22)

with (z0
1, . . . ,z

0
k) ∈ Rk. Consider the function Fk : Rk+1→ Rk+1

Fk(x0,z1, . . . ,zk) = (x0,z1, . . . ,zk−1,xk)
T ,

where xk = Fk(x0,z1, . . . ,zk) . The Jacobian of Fk is given by

DFk :=


1 0 · · · 0

0
. . .

...
... 1 0

∂Fk
∂x0

∂Fk
∂ z1
· · · ∂Fk

∂ zk

 (G.23)

which is full rank at (x0
0,z

0
1, . . . ,z

0
k) . By the inverse function theorem, there exists an

open set B = Bx0
0
×Bz0

1
×·· ·×Bz0

k
, containing (x0

0,z
0
1, . . . ,z

0
k) , and a smooth function

Gk : {Fk{B}}→ Rk+1 such that

Gk(Fk(x0,z1, . . . ,zk)) = (x0,z1, . . . ,zk),

for all (x0,z1, . . . ,zk) ∈ B. Taking Gk to be the last component of Gk, we get for all
(x0,z1, . . . ,zk) ∈ B,

Gk(x0,z1, . . . ,zk−1,xk) = Gk(x0,z1, . . . ,zk−1,Fk(x0,z1, . . . ,zk)) = zk.

For any x0 ∈ Bx0
0
, and any positive function nonnegative Borel function f , define
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Pk f (x0) =
∫
· · ·
∫

f (Fk(x0,z1, . . . ,zk))p(zk) · · · p(z1)dz1 · · ·dzk (G.24)

≥
∫

B
z0
1

· · ·
∫

B
z0
k

f (Fk(x0,z1, . . . ,zk))p(zk) · · · p(z1)dz1 · · ·dzk.

We integrate first over zk, the remaining variables being fixed. Using the change of
variables

xk = Fk(x0,z1, . . . ,zk),zk = Gk(x0,z1, . . . ,zk−1,xk),

we obtain for (x0,z1, . . . ,zk−1) ∈ Bx0
0
×·· ·×Bz0

k−1
,

∫
B

z0
k

f (Fk(x0,z1, . . . ,zk))p(zk)dzk =
∫
R

f (xk)qk(x0,z1, . . . ,zk−1,xk)dxk (G.25)

where, setting ξ := (x0,z1, . . . ,zk−1,xk), qk(ξ ) is given by

qk(ξ ) := 1B(G
k(ξ ))p(Gk(ξ ))

∣∣∣∣∂Gk

∂xk
(ξ )

∣∣∣∣ .
Since qk is positive and lower semi-continuous on the open set Fk{B}, and zero on
Fk{B}c, it follows that qk is lower semi-continuous on Rk+1. Define the kernel T0
for an arbitrary bounded function f as

T0 f (x0) :=
∫
· · ·
∫

f (xk)qk(ξ )p(z1) · · · p(zk−1)dz1 · · ·dzk−1dxk. (G.26)

The kernel T0 is non-trivial at x0
0 since

qk(ξ
0)p(z0

1) · · · p(z0
k−1) =

∣∣∣∣∂Gk

∂xk
(ξ 0)

∣∣∣∣ p(z0
k)p(z0

1) · · · p(z0
k−1)> 0,

where ξ 0 = (x0
0,z

0
1, . . . ,z

0
k−1,x

0
k) . We will show that T0 f is lower semicontinuous on

R whenever f is positive and bounded.
Since qk(x0,z1, . . . ,zk−1,xk)p(z1) · · · p(zk−1) is lower semi-continuous, there ex-

ists a sequence of nonegative, continuous functions ri :Rk+1→R+, i ∈N, such that
for each i, the function ri has bounded support and, as i ↑ ∞,

ri(x0,z1, . . . ,zk−1,xk) ↑ qk(x0,z1, . . . ,zk−1,xk)p(z1) · · · p(zk−1)

for each (x0,z1, . . . ,zk−1,xk) ∈ Rk+1. Consider the kernel Ti

Ti f (x0) :=
∫
Rk

f (xk)ri(x0,z1, . . . ,zk−1,xk)dz1 · · ·dzk−1dxk.

It follows from Lebesgue’s dominated convergence theorem that Ti f is continuous
for any bounded function f . If f is also positive, then as i ↑ ∞, Ti f (x0) ↑ T0 f (x0),
x0 ∈ R, showing that T0 f is lower semi-continuous.
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Using (G.24) and (G.25) it follows that T0 is a continuous component of Pk and
P is a T -kernel.

12.21 1. By applying Theorem 12.4.3, for x /∈ R, there exists Vn such that Px(σVn <
∞)< 1.

2. For y ∈ An( j), we have Py(σAn( j) < ∞) ≤ Py(σVn < ∞) ≤ 1− 1/ j. By Propo-
sition 4.2.5, this implies that supy∈X U(y,An( j)) < ∞ and An( j) is uniformly
transient. Thus Rc is transient.

12.22 If X0 = x0 ∈ R \Q, then the sequence {Xn, n ∈ N} is a sequence of i.i.d.
random variables with distribution ν . By assumption, ν(U) > 0 for all open set U .
Thus by the strong law of large numbers, every open set is visited infinitely open
starting from any irrational number. If X0 = x0 ∈Q, then the sequence {Xn, n ∈ N}
is a sequence of i.i.d. random variables with value in Q and distribution µ . Since Q
is dense in R, µ(U) > 0 for every open set U and thus by the strong law of large
numbers it also holds that every open set is visited infinitely often starting from any
rational number. Thus the kernel P is topologically Harris recurrent.

The measures µ and ν are both invariant. If X0 ∼ µ , then {Xn, n ∈ N} is a
sequence of i.i.d. random variables with distribution µ . If X0 ∼ ν , then Pν(∃n ≥
0 , Xn ∈Q) = 0; therefore {Xn, n ∈N} is a sequence of i.i.d. random variables with
distribution µ .

12.23 1. Since X is an increasing union of compact sets, there exists an accessible
compact set K. Since P is evanescent, Px(NK = ∞) = 0 for all x ∈ X.

2. Assume that P is recurrent. By Corollary 10.2.8, K contains an accessible
Harris-recurrent set K̃. For all x ∈ K̃, 1 = Px(NK̃ = ∞) ≤ Px(NK = ∞) and this
is a contradiction. Hence P is transient.

12.24 1. By Theorem 10.1.5, P is not transient. Therefore, by Exercise 12.23, P
is not evanescent there exists x0 ∈ X such that 0 ≤ h(x0) < 1, where h(x) =
Px(Xn→ ∞)< 1.

2. The set A = {Xn→ ∞} being invariant, the function h is harmonic by Proposi-
tion 5.2.2. By Theorem 10.2.11, since P is Harris recurrent, bounded harmonic
functions are constants, which implies h(x) = h(x0) for every x ∈ X.

3. By the martingale convergence theorem Theorem E.3.1 PXn(A) = Px (A |Fn)
converges Px almost surely to 1A for all x ∈ X. Therefore h(x) = 0 for all x ∈ X.

12.25 1. The assumption means that V is superharmonic outside C (see Defini-
tion 4.1.1). By Theorem 4.1.2, {V (Xn∧τC),n ≥ 0} is a positive supermartin-
gale. Since V (X0)< ∞, by the supermartingale convergence theorem (Proposi-
tion E.1.3) there exists a random variable M∞ which is Px almost surely finite
for all x ∈ X such that for all n ∈ N, V (Xn∧τC)→M∞.

2. Since V tends to infinity, this implies that Px(σC =∞, Xn→∞) = 0 for all x∈X.
3. If Xn → ∞, then there exists an integer p such that σC ◦ θp = ∞ i.e. the chain

does not return to C after p. The events {σC ◦θp = ∞} are increasing, thus

{Xn→ ∞}=
⋃
p≥0

{Xn→ ∞,σC ◦θp = ∞} .
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4. Since obviously {Xn→ ∞}= {Xn ◦θp→ ∞}, we obtain

Px(Xn→ ∞) = lim
p→∞

Px(Xn→ ∞,σC ◦θp = ∞)

= lim
p→∞

Ex
[
PXp(Xn→ ∞,σC = ∞)

]
= 0 .

12.26 1. By Lemma 10.1.8-(ii) Ã is transient so we can write Ã =
⋃

∞
i=1 Ãi where

the sets Ãi are uniformly transient.
2. By definition of the sets Ã and A0, X = Ã∪A0 and by definition of a T -kernel,

T (x,X)> 0 for all x∈X. Thus there exists j > 0 such that either T (x,A0)> 1/ j
or there exists i > 0 such that T (x, Ãi)> 1/ j. So if we set

U j =
{

x : T (x,A0)> 1/ j
}
, Ui, j = {x : T (x,Ai)> 1/ j} ,

we obtain that (Ui,Ui, j, i, j > 0) is a covering of X and moreover these sets
are open since T (·,A) is lower semi-continuous for every measurable set A by
definition of a T -kernel.

3. Since K ⊂
⋃

j≥1,i≥1(Ui∪Ui, j), the compactness property implies that K can be
covered by finitely many U j and Ui, j. Since the sequences U j,Ui, j are increasing
with respect to j, there exists k ≥ 1 such that K ⊂Uk ∪

⋃k
i=1 Ui,k.

4. By Lemma 10.1.8-(i), each set Ui,k is uniformly transient thus visited only a
finite number of times; therefore {Xn ∈ K i.o.} ⊂ {Xn ∈Uk i.o.} Px − a.s.

5. For y ∈Uk, we have

Py(σA0 < ∞) =
∞

∑
k=0

a(k)Py(σA0 < ∞)

≥
∞

∑
k=0

a(k)Py(Xk ∈ A0) = Ka(y,A0)≥ T (y,A0) = 1/k .

6. By Theorem 4.2.6, this implies that {NUk = ∞} ⊂ {NA0 = ∞} ⊂ {σA0 < ∞}
Px − a.s..

12.27 1. If P is evanescent then P is transient by Exercise 12.23. Conversely, if P is
transient, we apply Exercise 12.26 with A=X, then A0 = /0 and Px(Xn→∞) = 1
for all x ∈ X.

2. By Theorem 10.1.5 P is not transient if and only if it is recurrent thus the state-
ments 1 and 2 are equivalent.

3. If P is Harris-recurrent, then P is non-evanescent by Exercise 12.24. Con-
versely, assume that P is non-evanescent. Then it is recurrent by question 2
and by Theorem 10.2.7, we can write X = H ∪N with H maximal absorbing,
N transient and H ∩N = /0. We must prove that N is empty. Since H is max-
imal absorbing, if x ∈ N, then Px(σH < ∞) < 1, hence Px(σN < ∞) > 0 since
H ∪N = X. This means that N0 = H, where N0 = {x ∈ X : Px(σN < ∞) = 0}.
Since P is non evanescent, Px(Xn → ∞) = 0. By Exercise 12.26 this implies
that Px(σH < ∞) = 1 which is impossible since H is maximal absorbing and
H ∩N = /0. Therefore N is empty and P is Harris recurrent.
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Solutions to exercises of Chapter 13

13.1 1. The bound (13.5.1) follows from (8.3.4) and Proposition 13.2.11.
2. Note that the conditions Eλ [σ

s
α ]+Eµ [σ

s
α ]< ∞ imply that Pλ (σα < ∞) = 1 and

Pµ(σα) = 1. Proposition 13.2.7 shows that P̄λ⊗π(T < ∞) = 1.
By Proposition 13.2.9, we have

Ēλ⊗µ [T
s]≤C{Eλ [σ

s
α ]+Eµ [σ

s
α ]}

. The condition Eλ [σ
s
α ]+Eµ [σ

s
α ]< ∞ implies that Ēλ⊗µ [T s]< ∞. Note that

nsP̄λ⊗µ(T ≥ n)≤ Ēλ⊗µ [T
s
1{T≥n}] .

Since P̄λ⊗µ(T <∞)= 1 and Ēλ⊗µ [T s]<∞, Lebesgue’s dominated convergence
theorem shows that limn→∞ nsP̄λ⊗µ(T ≥ n) = 0. The proof is concluded by
Lemma 8.3.1 which shows that, for all n ∈ N, dTV(λPn,µ)≤ P̄λ⊗µ(T ≥ n).

13.2 Consider the forward recurrence time chain {An, n ∈ N} on N∗.
The state 1 is a accessible positive recurrent atom and it is aperiodic since b is

aperiodic. The distribution of the return time to 1 is the waiting distribution b if the
chains starts at 1, hence, for any sequence {r(n), n ∈ N},

E1 [r(σ1)] =
∞

∑
n=1

r(n)b(n) .

Without loss of generality, we can assume that the delay distribution a puts no mass
at zero. Then, applying the identity (8.1.15), the distribution of A0 is a and since
σ1 = A0−1 if A0 ≥ 2, we have, for n≥ 1,

Pa(σ1 = n) = a(n+1)+a(1)b(n) .

This yields the equivalence, for any sequence {r(n), n ∈ N},

Ea[r(σ1)] =
∞

∑
n=1

r(n)a(n+1)+a(1)
∞

∑
n=1

r(n)b(n) .

The pure and delayed renewal sequences u and va are given by

u(n) = P1(An = 1) , va(n) = Pa(An = 1) .

With Q the kernel of the forward recurrence time chain, this yields

|va(n)−u(n)| ≤ ‖aQn−Qn(1, ·)‖TV .

If a is the invariant probability for Q given in (8.1.17), then va(n)=m−1 for all n≥ 1.
We can now translate Theorems 13.3.1 and 13.3.3 into the language of renewal
theory.
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13.3 1. Clearly all the states communicate and that {0} is an aperiodic atom. Easy
computations show that for all n ≥ 1, P0(σ0 = n+ 1) = (1− pn)∏

n−1
j=0 p j and

P0(σ0 > n)=∏
n−1
j=0 p j. By Theorem 6.4.2, P is positive recurrent sinceE0[σ0]<

∞. The stationary distribution π is given, by π(0) = π(1) = 1/E0[σ0] and for
j ≥ 2,

π( j) =
E0
[
∑

σ0
k=11{ j}(Xk)

]
E0[σ0]

=
P0(σ0 ≥ j)
E0[σ0]

=
p0 · · · p j−2

∑
∞
n=1 p1 . . . pn

.

2. It suffices to note that P0 (Xk = k |σ0 > k) = 1.
3. For all λ < µ < 1, E0[µ

−σ0 ]< ∞ and {0} is thus a geometrically ergodic atom.
4. It is easily seen that ∏

n
i=1 pi = O(n−1−θ ). We have E0

[
∑

σ0−1
k=0 r(k)

]
< ∞ if and

only if ∑
∞
k=1 r(k)k−1−θ < ∞. This shows that E0

[
∑

τ0−1
k=0 r(k)

]
< ∞ for r(k) =

O(kβ ) for any β ∈ [0,θ). The statement follows by noting that Eλ [r(σ0)] ≤
E0[r(σ0)] for any initial distribution λ and applying Theorem 13.3.3.

13.4 For any fixed x(
∑
y
|Mk(x, y)−π(y)|

)2

=

(
∑
y

|Mk(x,y)−π(y)|√
π(y)

√
π(y)

)2

≤∑
y

|Mk(x,y)−π(y)|2

π(y)

= ∑
y

{Mk(x,y)}2

π(y)
−1 =

M2k(x,x)
π(x)

−1

=
1

π(x) ∑
y

β
2k
y f 2

y (x)−1.

Solutions to exercises of Chapter 14

14.1 By definition of the set C, for x ∈ X, we have

b = b1Cc(x)+b1C(x)≤
b
d

V (x)+b1C(x) .

Thus, Dg(V,λ ,b) implies

PV ≤ λV +b≤ λV +
b
d

V +b1C = λ̄V +b1C ,

where λ̄ = λ +b/d.



710 G Solutions to selected exercises

14.2 An application of Proposition 9.2.13 with V0 = V1 = W f ,δ
C proves that the set

{W f ,δ
C < ∞} is full and absorbing and {W f ,δ

C ≤ d} is accessible for all sufficiently
large d. The level sets {W f ,δ

C ≤ d} are petite by Lemma 9.4.8.

14.3 1. Since V ≥ 1, the drift condition (14.5.1) implies that

PV +1−λ ≤ λV +(1−λ )+b1C ≤V +b1C .

Applying Proposition 4.3.2 with f = 1, we obtain Px(σC < ∞) = 1 for all x ∈ X
such that V (x)<∞. The bound (14.5.2) follows from Proposition 14.1.2-(i) with
δ = λ−1 and f ≡ 0.

2. For δ ∈ (1,1/λ ), the drift condition (14.5.1) yields

PV +δ
−1(1−δλ )V ≤ δ

−1V +b1C . (G.27)

Thus the bound (14.5.3) follows from Proposition 14.1.2-(i), with f = δ−1(1−
δλ )V .

3. Follows from Lemma 14.1.10 and the bound (14.5.2).

14.5 1. Recall that W (x) = eβ |x|. Then,

PW (x) = Ex[eβ |X1|]≤ E
[
eβ |h(x)|eβ |Z1|

]
= Keβ |h(x)| .

2. For |x|> M, eβ |h(x)| ≤ eβ |x|e−β` which implies

PW (x)≤ Ke−β`W (x) = λW (x) .

3. For |x| ≤M, PW (x)≤ b where b = K sup|x|≤M eβ |h(x)|.

14.8 True for n = 0. If n≥ 0, (14.5.5) yields

Ex[π(n+1)∧σC−1V(n+1)∧σC
]

= Ex[πn−1 f (Xn)V (Xn+1)1{n < σC}]
+Ex[πσC−1VσC1{σC ≤ n}]+b1{n = 0}1C(x)

≤ Ex[πn−1V (Xn)1{n < σC}]+Ex[πσC−1VσC1{σC ≤ n}]
≤ Ex[πn−1V (Xn)1{n < σC}]+Ex[πn−1V (Xn)1{σC = n}]

+Ex[πσC−1VσC1{σC ≤ n−1}]+b1{n = 0}1C(x)

≤ Ex[πn−1V (Xn)1{n−1 < σC}]
+Ex[πσC−1VσC1{σC ≤ n−1}]+b1{n = 0}1C(x)

= Ex[π(n∧σC−1)Vn∧σC ]+b1{n = 0}1C(x) .

By induction and since V ≥ 1, this yields

Ex[π(n+1)∧σC−1]≤ Ex[π(n+1)∧σC−1V(n+1)∧σC
]≤V (x)+b1C(x)
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Letting n→ ∞ yields (14.5.6).

14.9 1. The proof of (14.5.7) follows by an easy induction. Equation (14.5.7) im-
plies that PmV (m)+ f (m) ≤ λV (m)+λ−(m−1)b(1−λ m)/(1−λ ).

2. Since P is irreducible and aperiodic, Theorem 9.3.11 shows that Pm is irre-
ducible and that the level sets {V (m) ≤ d} are accessible and petite for d large
enough. The proof of (14.5.8) follows from Theorem 14.1.4 applied to Pm.

3. If P is f -geometrically regular, then Theorem 14.2.6-(ii) shows that there ex-
ist a function V : X→ [0,∞] such that {V < ∞} 6= /0, a non-empty petite set C,
λ ∈ [0,1) and b < ∞ such that PV + f ≤ λV + b1C. If moreover P is aperi-
odic, Exercise 14.9 shows that then PmV (m)+ f (m) ≤ λ (m)V (m)+b(m)

1D where
λ (m) ∈ [0,1), D is a non-empty petite set and V (m) = λ−(m−1). Using again The-
orem 14.2.6-(ii), the Markov kernel Pm is therefore f (m)-geometrically regular.

4. Using Theorem 14.2.6-(b) again for Pm, we get that any probability measure
ξ satisfying ξ (V )< ∞ is f -geometrically regular for P and f (m)-geometrically
regular for Pm.

Solutions to exercises of Chapter 15

15.3 The Markov kernel of this chain has a density with respect to the Lebesgue
measure given by

p(x,y) =
1√

2πσ2(x)
exp
(
− 1

2σ2(x)
(y− f (x))2

)
.

Then, for y ∈ [−1,1], we have

inf
x∈R

p(x,y)≥ 1√
2πb

exp
(
− 1

2a
(y− inf

x∈R
f (x))2∨ (y− sup

x∈R
f (x))2

)
> 0 .

Hence the state-space R is 1-small set and the Markov kernel P is uniformly geo-
metrically ergodic by Theorem 15.3.1-(iii).

15.6 Assume that all the states are accessible and that P aperiodic. Choose x0 ∈X. By
Proposition 6.3.6, there exists an integer m0 such that Pn(x0,x0)> 0 for all n > m0.
Since all the states are accessible, for every x ∈ X there exists an integer m(x) such
that Pm(x)(x,x0)> 0. This in turn implies that for m = maxx∈X(m(x)+m0), we have
Pm(x,x0)> 0. Set then ζm = infx′∈X Pm(x′,x0)> 0. This yields Pm(x,A)≥ ζmδx0(A)
for every x ∈ X. Hence the state space is small and the Markov kernel is therefore
uniformly geometrically ergodic.

15.7 1. Since (x+ y)s ≤ xs + ys for all x,y > 0, we have
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PV (x) = Ex[V (X1)] = 1+(α0 +α1x2)s
µ2s

≤ 1+α
s
0µ2s +α

s
1µ2sx2s ≤ λV (x)+b ,

with λ = αs
1µ2s and b = 1−αs

1µ2s +αs
0µ2s. Thus, provided that αs

1µ2s < 1, the
transition kernel P satisfies the geometric drift condition Dg(V,λ ,b) .

2. For A ∈B(R) and x ∈ [−c,c], we have

P(x,A) =
∫

∞

−∞

1A

(
(α0 +α1x2)1/2z

)
g(z)dz

= (α0 +α1x2)−1/2
∫

∞

−∞

1A(v)g((α0 +α1x2)−1/2v)dv

≥ (α0 +α1c2)−1/2gmin

∫
∞

−∞

1A(v)1[−a,a](α
−1/2
0 v)dv

= 2aα
1/2
0 (α0 +α1c2)−1/2 1

2aα
1/2
0

∫ aα
1/2
0

−aα
1/2
0

1A(v)dv .

If we set ε = 2aα
1/2
0 (α0 +α1b2)−1/2gmin and define the measure ν by

ν(A) =
1

2a
√

α0
Leb(A∩ [−a

√
α0,a
√

α0]) ,

we obtain that P(x,A) ≥ εν(A) for all x ∈ [−a,a]. Thus any bounded interval
and hence on every compact set of R is small.

15.8 Let P be the Markov kernel of the INAR process and let V be the identity
function on N, i.e. V (x) = x for all x ∈ N. Then the kernel P satisfies a geometric
drift condition with Lyapunov function V . Indeed,

PV (x) = mx+E [Y1] = mV (x)+E [Y1] .

Fix η ∈ (0,1) and let k0 be the smallest integer such that k0 > E [Y1]/η (assuming
implicitly the latter expectation to be finite). Define C = {0, . . . ,k0} and b = E [Y1].
These choices yield

PV ≤ (m+η)V +b1C .

Let ν denote the distribution of Y1. Then, for x,y ∈ N, we have

P(x,y) = P

(
x

∑
i=1

ξ
(1)
i +Y1 = y

)

≥ P

(
x

∑
i=1

ξ
(1)
i +Y1 = y ,ξ (1)

1 = 0, . . . ,ξ (x)
1 = 0

)
= µ(y) .

Since m < 1 implies that P(ξ (1)
1 = 0)> 0, this yields, for x≤ k0,
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P(x,y)≥ εµ(y) ,

with ε = {P(ξ (1)
1 = 0)}k0 . Thus C is a (1,ε)-small set.

Note also that the INAR process is stochastically monotone, since given X0 = x0
and x > x0,

X1 =
x0

∑
j=1

ξ
(1)
j +Y1 ≤

x

∑
j=1

ξ
(1)
j +Y1 P − a.s.

15.11 Suppose that P is geometrically ergodic, and is therefore π-irreducible. We
show for contradiction that the conditions for Example 15.1.7 hold here. Specifi-
cally, suppose that for some arbitrary ε > 0, x is such that hπ(x) ≥ ε−2. (We know
that π(

{
x : hπ(x)≥ ε−2

}
) > 0). Now set A =

{
y : hπ(y)≥ ε−1

}
, and note that

since hπ is a probability density function, Leb(A) ≤ ε where µLeb
d de- notes d-

dimensional Lebesgue measure. Setting M = sup
z

q(z) , we have the bound

P(x, {x}c) =
∫
Rd

q(x, y)(1∧ π(y)
π(x)

)dy

=
∫

A
q(x, y)(1∧ π(y)

π(x)
)dy+

∫
Ac

q(x, y)(1∧ π(y)
π(x)

)dy

≤
∫

A
q(x, y)dy+

∫
Ac

π(y)
π(x)

q(x, y)dy

≤ εM+ ε = (M+1)ε

Since ε is arbitrary, it follows that esssupπ (P(x,{x})) = 1 so that by Exam-
ple 15.1.7, geometric ergodicity fails.

15.12 By definition, for k ≥ 1, we have,

Xk ≤ β − γ if γ < 0 , (G.28)
Xk ≥ β − γ if γ ≥ 0 . (G.29)

We consider separately two cases.

Case γ < 0.

In that case, (G.28) shows that the state space is (−∞, β − γ]. Let B be a Borel set
such that β − γ ∈ B. Then, for all x≤ β − γ ,

P(x,B) = P(X1 ∈ B |X0 = x) ≥ P(X1 = β − γ |X0 = x)

= P(N1 = 0 |X0 = x) = e−ex ≥ e−eβ−γ

= e−eβ−γ

δβ−γ(B) .

Thus the state space is 1-small.
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Case γ > 0.

Now, (G.29) shows that the state space is [β − γ, ∞). Let C = [β − γ, β + γ]. Then,
for x ∈C and any Borel set B containing β − γ ,

P(x,B) = P(X1 ∈ B |X0 = x) ≥ P(X1 = β − γ |X0 = x)

= P(N1 = 0 |X0 = x) = e−ex ≥ e−eβ+γ

P2(x,B)≥ P(Xt+1 = β − γ, Xt = β − γ |Xk−1 = x)≥ e−2eβ+γ

. (G.30)

On the other hand, if x > β + γ , then, noting that E [X1|X0 = x] = β , we have

P(x,C) = P(β − γ ≤ X1 ≤ β + γ |X0 = x)

= P( |X1−β | ≤ γ |X0 = x)

≥ 1− γ
−2Var (X1|X0 = x)

= 1− γ
−2

γ
2e−x ≥ 1− e−(β+γ) .

Then, for x≥ β + γ , we have

P2(x,B) = P(X2 ∈ B |X0 = x)≥ P(X2 ∈ B, X1 ∈C |X0 = x)

= E [1B(X2)1C(X1)|X0 = x]

= E [1C(X1)P(X1,B)|X0 = x]

≥ e−eβ+γ

P(x,C)≥ e−eβ+γ

(1− e−(β+γ))

= e−eβ+γ

(1− e−(β+γ))δβ−γ(B) . (G.31)

(G.30) and (G.31) shows that the state space is 2-small.

Solutions to exercises of Chapter 16

16.1 1. For x 6∈C, we get

PW (x) = Ex[|h(x)+Z1|]≤ |h(x)|+m≤ |x|− (`−m) .

2. For x ∈C, we similarly obtain

PW (x)≤ |h(x)|+m≤ |x|+ |h(x)|− |x|+m

≤ |x|− (`−m)+ sup
|x|≤M
{|h(x)|− |x|+ `} .

3. Setting V (x) =W (x)/(`−m) et b = (`−m)−1 sup|x|≤M{|h(x)|−|x|+`}, we get
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PV (x)≤V (x)−1+b1C(x) .

16.2 We essentially repeat the arguments of the proof of Proposition 16.1.4. It suf-
fices to consider the case r ∈S .

1. Exercise 4.11 (with g≡ 0 and h≡ f ) implies that

PW f ,r
1,C + r(0) f = sup

x∈C
Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
. (G.32)

Hence, we have
PW f ,r

1,C + r(0) f =W f ,r
0,C +b1C

where b = supx∈CEx

[
∑

σC−1
k=0 r(k) f (Xk)

]
. This proves that W f ,r

0,C (x)< ∞ implies

PW f ,r
1,C (x)<∞. Moreover, W f ,r

0,C ≤W f ,r
1,C because r is non decreasing and therefore

W f ,r
0,C (x)=∞ implies W f ,r

1,C (x)=∞. Hence, by Proposition 9.2.13, the set {W f ,r
0,C <

∞} is full and absorbing and {W f ,r
0,C ≤ d} is accessible for all sufficiently large

d.
2. We can write {W f ,r

0,C ≤ d}=C∪Cd with

Cd =

{
x ∈ X : Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤ d

}
.

By Proposition 9.4.5, the union of two petite sets is petite, thus it suffices to
show that the set Cd is petite. This follows from Lemma 9.4.8 since if x ∈Cd ,

Ex[r(σC)]≤ r(1)Ex[r(σC−1)]≤ r(1)Ex

[
σC−1

∑
k=0

r(k) f (Xk)

]
≤ r(1)d .

16.3 Since ψ is concave and continuously differentiable on [v0,∞), we have for any
v∈ [v0,∞), ψ(v0)≤ψ(v)+ψ ′(v)(v0−v). Hence, ψ(v0)−ψ ′(v)v0 ≤ψ(v)−vψ ′(v)
and since limv→∞ ψ ′(v) = 0 and ψ(v0)≥ 1, we may choose v1 large enough so that
ψ(v1)− v1ψ ′(v1) > 0. It is easily seen that φ(1) = 1, φ(v1) = ψ(v1), and φ ′(v) ≥
φ ′(v1)=ψ ′(v1)≥ 0 for all v∈ [1,v1]. Since ψ(v1)−(v1−1)ψ ′(v1)≥ 0, the function
φ is concave on [1,∞).

16.4 1. Then, for v≥ 1 and t ≥ 0,

Hφ (v) =
∫ v

1

ds
sα

=
v1−α −1

1−α
, H−1

φ
(t) = (1+(1−α)t)1/(1−α) .

Then rφ (t) = (1−α)−1(1+(1−α)t)δ with δ = α/(1−α).
2. Differentiating twice φ0, we obtain

φ
′′
0 (v) =−δv−1 log−δ−2(v)(logv−δ −1) ,
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which is negative for logv≥ δ +1. This proves the first claim with v0 = exp(δ +
1). Now,

Hφ (v) =
∫ v

1

1
φ0(u+ v0)

du =
∫ v+v0

1+v0

1
φ0(u)

du

= (δ +1)−1
(

logδ+1(v+ v0)− logδ+1(1+ v0)
)
.

Then, by straightforward algebra,

rφ (t) =
(

H−1
φ

)′
(t) = (δ +1)(αt +β )−δ/(δ+1) exp

{
(αt +β )1/(δ+1)

}
,

where α = δ +1 and β = log1+δ (v0 +1).

16.5 1. To obtain the polynomial rate r(t) = (1+ ct)γ , c,γ > 0, choose

φ(v) = {1+ c(1+ γ)(v−1)}γ/(1+γ) , v≥ 1 .

2. To obtain the subexponential rate r(t) = (1+ t)β−1ec{(1+t)β−1}, β ∈ (0,1), c >
0, choose

φ(v) =
v

{1+ c−1 log(cβv)}(1−β )/β
.

The rate r is log-concave for large enough t (for all t ≥ 0 if cβ ≥ 1) and the
function φ is concave for v large enough (for all v≥ 1 if cβ ≥ 1).

16.6 By irreducibility, for all x,z ∈ X, Px(σz < ∞) > 0 and thus there exists q ∈ N∗
such that Px(Xq = z) > 0. Applying Theorem 16.2.3 with A = {x}, B = {z}, f ≡ 1
and r(n) = ns∨1, we obtain that Ex[σ

s∨1
z ]< ∞ for all z ∈ X. By Corollary 9.2.14, the

set
Sx :=

{
y ∈ X : Ey[σ

s∨1
x ]< ∞

}
is full and absorbing. Therefore, π(Sx) = 1, thus Sx = X by irreducibility. For y,z ∈
X, we have σz ≤ σx +σz ◦ θσx and thus, applying the strong Markov property, we
obtain

Ey[σ
s∨1
z ]≤ 2(s−1)+Ey[σ

s∨1
x ]+2(s−1)+Ey[σz ◦θ

s∨1
σx ]

= 2(s−1)+Ey[σ
s∨1
x ]+2(s−1)+Ex[σ

s∨1
z ]< ∞ .

The last statement is then a consequence of Exercise 13.1.

Solutions to exercises of Chapter 18

18.2 1. for all x 6= x′ ∈ {1,2,3} we have



G Solutions to selected exercises 717

dTV(P(x, ·),P(x′, ·)) =
1
2 ∑

y∈X

|P(x,y)−P(x′,y)|= 1
2
.

The state space X is not 1-small. The only measure µ for which P(x,{y}) ≥
µ({y}) for all x,y ∈ X is the zero measure.

2. Applying Lemma 18.2.7 to X, we get that ∆(P) = 1/2 and Theorem 18.2.4
implies supx∈X dTV(P

n(x, ·),π)≤ (1/2)n, for all n ∈ N.
3. For m = 2,

P2 =

1/4 1/2 1/4
1/4 1/4 1/2
1/2 1/4 1/4


Then P2(x, ·)≥ (3/4)ν . holds with ε = 3/4 and ∆(P2)≤ 1/4. Theorem 18.2.4
yields that

dTV(P
n(x, ·),π)≤ (1/4)bn/2c =

{
(1/2)n if n is even,
(1/2)n−1 if n is odd.

This second bound is essentially the same as the first one and both are (nearly)
optimal since the modulus of the second largest eigenvalue of the matrix P is
equal to 1/2.

18.3 1. For x,x′ ∈ X and A ∈X , define Q(x,x′,A) =
∫

A pm(x,y)∧ pm(x′,y)µ(dy).
Then Pm(x, ·)−Q(x,x′, ·) and Pm(x, ·)−Q(x,x′, ·) are measures on X . Thus,

dTV(P
m(x, ·),Pm(x′, ·))

=
1
2
|Pm(x, ·)−Q(x,x′, ·)−{Pm(x′, ·)−Q(x,x′, ·)}|(X)

≤ 1
2
|Pm(x, ·)−Q(x,x′, ·)|(X)+ 1

2
|Pm(x′, ·)−Q(x,x′, ·)|(X)

≤ 1−
∫

X
pm(x,y)∧ pm(x′,y)µ(dy)≤ 1− ε .

2. Define the measure ν on X by ν(A) = ε̂−1 ∫
A gm(y)µ(dy). Then for every x∈C

and A∈X , Pm(x,A)≥
∫

A pm(x,y)µ(dy)≥ ε̂ν(A), showing that C is a small set.

18.4 1. Given Xn, the random variable Yn+1 is drawn according to Unif(0,π(Xn))
and then, Xn+1 is drawn according to a density proportional to x 7→ 1{π(x) ≥
Yn+1}.

2. Denote M := supx∈X π(x). By combining (18.6.3) with Fubini’s theorem, we
obtain for all x ∈ X,
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P(x,B) =
∫

B

(
1

π(x)

∫
π(x)

0

1{π(x′)≥ y}
Leb(L(y))

dy
)

dx′

≥ 1
Leb(Sπ)

∫
B

π(x)∧π(x′)
π(x)

dx′

≥ 1
Leb(Sπ)

∫
B

1∧ π(x′)
M

dx′ .

Thus the whole state space X is small and the kernel P is uniformly ergodic by
applying Theorem 15.3.1.

18.5 Pick d sufficiently large so that the set C = {x ∈ X : M(x)≤ d} is non-empty.
Fix η > 0. Then, for all sufficiently large m and x,x′ ∈C, dTV(P

m(x, ·),π)≤ η and
dTV(P

m(x′, ·),π)≤ η so that dTV(P
m(x, ·),Pm(x′, ·))≤ 2η . Thus C is a (m,1−2η)-

Doeblin set.

18.6 The Markov kernel P can be expressed as follows: for all (x,A) ∈ R×B(R),

P(x,A) = r(x)E [1A(x+Z0)]+(1− r(x))E [1A(Z0)] . (G.33)

1. Indeed, for all x ∈ {r ≤ 1− ε}, we have

P(x,A)≥ (1− r(x))E [1A(Z0)]≥ ενZ(A) .

2. Since supx∈R r(x) < 1, the whole state space X is small and P is therefore uni-
formly ergodic.

3. Define the function ϕ on [0, t] by ϕ(s) = E [exp(sZ0)]. Since E [exp(tZ0)]< ∞,
the function ϕ is differentiable at s= 0 and ϕ ′(0)=E [Z0]< 0. Thus, there exists
s ∈ (0, t) such that ϕ(s)< ϕ(0) = 1. This particular value of s being chosen, set
Vs(x) = 1+ exp(sx) and λ = ϕ(s)< 1. With P defined in (G.33), we get

PVs(x) = r(x){exp(sx)E [exp(sZ0)]}+(1− r(x))E [exp(sZ0)]+1
≤ λ exp(sx)+λ +1≤ λVs(x)+1 .

Since for all M > 1, the level set {Vs ≤ M} = {x ∈ R : x≤ log(M−1)/s} is
a subset of {r ≤ r(log(M− 1)/s)} which is small thus Theorem 18.4.3 shows
that the Markov kernel P is Vs-geometrically ergodic.

Solutions to exercises of Chapter 19

19.1 1. X ′ = X +Y follows a Poisson distribution with parameter α +(β −α) = β

and thus, (X ,X ′) is a coupling of (ξ ,ξ ′).
2. We have P(X 6= X ′) = P(Y 6= 0) = 1− exp(β −α). Applying Theorem 19.1.6

yields dTV(ξ ,ξ
′)≤ 1− exp(β −α) This coupling is not optimal since
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{x=x′=0}

ξ ∧ξ
′(dx)δx(dx′) = e−α ,

P(X = X ′ = 0) = P(X = 0,Y = 0) = e−α e−β+α = e−β 6= e−α .

These two quantities should be equal for an optimal coupling by (19.1.4) ap-
plied to B = {X = X ′ = 0}.

19.2 Draw independently a Bernoulli random variable U with probability of success
1− ε , Y ∼ Unif([0,ε]), Y ′ ∼ Unif([1,1+ ε]) and Z ∼ Unif([1− ε,1]) and set

(X ,X ′) =

{
(Y,Y ′) if U = 0 ,
(Z,Z) otherwise.

Then, (X ,X ′) is an optimal coupling of (ξ ,ξ ′).

0 ε 1 1+ ε

Fig. G.0.3 An example of optimal coupling.

19.3 For A ∈X , we have

P(X ∈ A) = (1− ε)η(A)+ξ ∧ξ
′(A) = ξ (A) .

Similarly, P(X ′ ∈ A) = ξ ′(A). Thus (X ,X ′) is a coupling of (ξ ,ξ ′). Since η and
η ′ are mutually singular, Lemma 19.1.5 yields P(Y = Y ′) = 0. Thus, applying
Lemma 19.1.1, we obtain

P(X = X ′) = (1− ε)P(Y = Y ′)+ ε = ε = 1−dTV(ξ ,ξ
′) .

Thus, P(X 6= X ′) = dTV(ξ ,ξ
′) and (X ,X) is an optimal coupling of (ξ ,ξ ′).

19.4 Let (X ,Y ) be a coupling of (ξ ,ξ ′) defined on a probability space (Ω ,F ,P).
Applying Hölder’s inequality and the Minkowski inequality, we obtain
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∫

f dξ
′
∣∣∣∣= |E [( f (X)− f (Y ))1(X 6= Y )] |

≤ ‖ f (X)− f (Y )‖Lp(P) {P(X 6= Y )}1/q

≤ (‖ f (X)‖Lp(P)+‖ f (Y )‖Lp(P)){P(X 6= Y )}1/q

= (‖ f‖Lp(ξ )+‖ f‖Lp(ξ )){P(X 6= Y )}1/q

Taking the infimum over all the coupling (X ,Y ) of ξ and ξ ′ yields the desired bound
by Theorem 19.1.6.

19.5 By Theorem 19.1.12, if ∆ (P) ≤ 1− ε , the optimal kernel coupling defined in
(19.1.15) satisfies (19.6.1). Conversely, if (19.6.1) holds, then Theorem 19.1.6 yields

dTV(P(x, ·),P(x′, ·))≤ K(x,x′;∆
c)≤ 1− ε .

By Lemma 18.2.2, this yields ∆ (P)≤ 1− ε .

19.6 Run two copies of the chain, one from an initial distribution concentrated at x
and the other from the initial (invariant) distribution π (π exists since the Markov
kernel P is uniformly ergodic). At every time instant, do the following

(i) with probability ε , choose for both chains the same next position from the dis-
tribution ν , after which they will be coupled and then can be run with identical
sample paths;

(ii) with probability 1− ε , draw independently for each chain an independent posi-
tion from the distribution

R(x, ·) = {P(x, ·)− εν}/(1− ε).

This is Markov kernel is well defined since for all x ∈ X, P(x, ·)≥ εν . The marginal
distributions of these chains are identical with the original distributions, for every
n (this is a special instance of independent and then forever coupling described
in Example 19.1.15). If we let T the coupling time (see (19.2.1)) then using the
coupling inequality Theorem 19.2.1 we have dTV(P

n(x, )̇,π) ≤ (1− ε)n (at each
time step, the coupling is successful with probability ε).

19.7 1. the state space {0, . . . ,N} and transition matrix P defined by

P(i, i+1) =
N− i
2N

, i = 0, . . . ,N−1 ,

P(i, i) =
1
2
, i = 0, . . . ,N ,

P(i, i−1) =
i

2N
, i = 1, . . . ,N .

2. Consider the independent coupling, that is the kernel K defined by K(x,x′; ·) =
P(x, ·)P(x′, ·). Let {(Xn,X ′n), n∈N} be the canonical chain with kernel K. Then
starting from any x,x′ ∈ {0, . . . ,N}, there is a positive probability of coupling
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in less than N/2 steps if the chains move towards each other at each step. More
precisely,

Px,x′(XN/2 = X ′N/2)≥ 2−N
N/2−1

∏
i=0

N− i
N

N

∏
i=N/2+1

i
N

=
(N!)2

2NNN((N/2)!)2 .

The result follows from Exercise 19.5.

19.8 1. The kernel K of this chain is given by

K(x,x′;xε
i ,x

ε ′
d−i+1) =

1
d

πi,x(ε)πd−i+1,ε ′(x
′) ,

and K(x,x′;z,z′) = 0 for other values z,z′. It is readily checked that K is a cou-
pling kernel of (P,P).

2. • After d/2 moves, all the sites may have been updated by either chain. This
happens only if each site i or d− i+1 was updated only once by each chain.
Since at each each site is chosen at random, this event has the probability

pd =
d(d−2) · · ·2
(d/2)!dd/2 =

(d/2)!2d/2

dd/2 .

• At each move, two different coordinates are updated. They are made (or
remain) equal with probability at least equal to {M/(1+M)}2.

This implies that Px,x′(Xd/2 = X ′d/2)≥ ε with

ε ≥ Md

(1+M)d
(d/2)!2d/2

dd/2 .

3. If all the coordinates of x and x′ are distinct, then Pm(x,x′) = 0 if m < d. It
is impossible for the chain to update all its components and hence move to an
arbitrary state.

4. For m = d, the probability that the sites I1, . . . , Id which are updated during the d
first moves are pairwise distinct is d!d−d . Given that they are, the probability of
hitting a given site x′ ∈X after d steps, starting from x is larger than Md−1π(x′).
Therefore, choosing ε̃ ∈

[
Mdd!d−d ,M−dd!d−d

]
, we obtain Pd(x,x′)≥ ε̃π(x′).

Assume that π is uniform. In the case where π is uniform (M = 1), Stirling’s
formula gives, for large d, ε ∼ (πd)1/2e−d/2 and ε̃ = d!d−d ∼ (2πd)1/2e−d , thus
ε > ε̃ for sufficiently large d.

19.9 Set C = (−∞,x0] and C̄ = C×C. Since C is a Doeblin set, the optimal kernel
coupling K described in Example 19.1.16 satisfies K(x,x′;∆)≥ ε . Let us check that
V̄ satisfies the drift condition (19.4.3). Since V is increasing and since K preserves
the order, if x� x′ ∈ X, we have
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KV̄ (x,x′) = Ex,x′ [V (X1∨X ′1)] = Ex,x′ [V (X ′1)]

= PV (x′)≤ λV (x′)+b = λV̄ (x,x′)+b .

If (x,x′) /∈C×C, then necessarily x0 � x′ and V (x′)≥V (x0). Thus,

KV̄ (x,x′)≤ (λ +b/V (x0))V (x′) = λ̄V̄ (x,x′) .

If (x,x′)∈C×C, then V (x′)≤V (x0) and KV̄ (x,x′)≤ λV (x0)+b = b̄. Thus (19.4.3)
holds. We can apply Lemma 19.4.2 and (19.6.2) is obtained by integration of
(19.4.4b).

Solutions to exercises of Chapter 20

20.2 Let γi ∈ C (ξi,ξ
′
i ), i = 1,2. Then αγ1 +(1−α)γ2 is a coupling of (αξ1 +(1−

α)ξ2,αξ ′1 +(1−α)ξ ′2). thus

Wp
d,p

(
αξ1 +(1−α)ξ2,αξ

′
1 +(1−α)ξ ′2

)
≤ α

∫
X×X

dp(x,y)γ1(dxdy)+(1−α)
∫

X×X
dp(x,y)γ2(dxdy) .

The result follows by taking the infimum over γ1 and γ2.

20.3 1. Note first that by the triangle inequality, we have

|Wd,p (µn,νn)−Wd,p (µ,ν) | ≤Wd,p (µn,µ)+Wd,p (νn,ν) .

Thus limn→∞ Wd,p (µn,νn) = Wd,p (µ,ν). The sequence {γn} is tight (cf. proof
of Theorem 20.1.1).

2. Let γ be a weak limit along a subsequence {γnk}. Then, for M > 0,∫
X×X

(dp(x,y)∧M)γ(dxdy) = lim
k→∞

∫
X×X

(dp(x,y)∧M)γnk(dxdy)

≤ limsup
k→∞

∫
X×X

dp(x,y)γnk(dxdy)

= limsup
k→∞

Wp
d,p

(
µnk ,νnk

)
= Wp

d,p (µ,ν) .

Letting M tend to ∞, this yields
∫

X×X dp(x,y)γ(dxdy)≤Wp
d,p (µ,ν) which im-

plies that γ is an optimal coupling of µ and ν .

20.4 1. As in the finite dimensional case, a simple recursion shows that Xn can
be expressed as Xn = ΦnX0 +∑

n
k=1 Φn−kZk. To prove the second identity, it

suffices to note that θ nΦnX0 = αnX0 and for k ≥ 1, θ nΦn−kZk = 0.
2. Therefore, for any coupling (Xn,X′n) of Pn(x, ·) and Pn(x′, ·), P(Xn 6=X′n) = 1 if

x 6= x′. By Theorem 19.1.6, this implies that dTV(P
n(x, ·),P(x′, ·)) = 1 if x 6= x′.
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3. Consider now the Wasserstein distance Wd,p with respect to the distance
d2(u,v) =∑

∞
n=0(un−vn)

2. As in the finite dimensional case, consider the simple
coupling (Xn,X′n) = (Φnx+∑

n
k=1 Φn−kZk,Φ

nx′+∑
n
k=1 Φn−kZk). Then,

Wp
d,p

(
P(x, ·),P(x′, ·)

)
≤ E

[
dp(Xn,X′n)

]
= E

[
dp(Φnx,Φnx′)

]
= α

ndp(x,x′) .

Thus ∆d,p (P)≤ α < 1.

20.5 By the Minkowski inequality, we have, for v≥ u≥ 0,

‖F(u,N)−F(v,N)‖1 ≤ |b||u− v|+ |c|
∥∥∥∥log

(
1+N(ev)

1+N(eu)

)∥∥∥∥
1
.

Applying (20.6.2) yields, for x,y≥ 0,

‖F(x,N)−F(y,N)‖1 ≤ (|b|+ |c|)|x− y| ,

and the contraction property (20.3.10) holds with p = 1 if |b|+ |c|< 1.
We now prove (20.6.2). Since N has independent increments, we can write (1+

N(ey))/(1 + N(ex)) = 1 +V/(1 +W ), where V and W are independent Poisson
random variables with respective means ey− ex and ex. The function t 7→ log(1+ t)
is concave, thus, by Jensen’s inequality, we obtain

E
[

log
(

1+N(ey)

1+N(ex)

)]
= E

[
log
(

1+
V

1+W

)]
≤ log

(
1+E

[
V

1+W

])
= log

(
1+(ey− ex)E

[
1

1+W

])
.

The last expectation can be computed and bounded:

E
[

1
1+W

]
= e−ex

∞

∑
k=0

1
1+ k

ekx

k!
= e−xe−ex

∞

∑
k=1

ekx

k!
≤ e−x .

This yields

E
[

log
(

1+N(ey)

1+N(ex)

)]
≤ log

(
1+(ey− ex)e−x)= y− x .

This proves (20.6.2).

20.6 1. Assumption (b) implies that |g(x)−g(y)| ≤ |x− y| for all x,y ∈ Rd , there-
fore,

Wd

(
P(x, ·),P(x′, ·)

)
≤ E

[
d(g(x)+Z0,g(x′)+Z0)

]
= |g(x)−g(x′)|

≤ |x− x′|= d(x,x′) .

2. Assumption (b) implies that
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Wd

(
P(x, ·),P(x′, ·)

)
≤ E

[
d(g(x)+Z0,g(x′)+Z0)

]
= |g(x)−g(x′)| ≤ (1− εK)d(x,x′) .

3. Fix B > 0 such that E
[
ea|Z0|

]
e−aB < 1 and set λ =E

[
ea|Z0|

]
e−aB. Condition (c)

implies that there exists A > 0 such that |x| ≥ A implies |g(x)| ≤ |x|−B. Thus,
for |x| ≥ A, we obtain

PV (x) ={a−1∨1}E
[
ea|g(x)+Z0|

]
≤ {a−1∨1}E

[
ea|Z0|

]
ea|g(x)| ≤ λV (x) .

Since g is locally bounded, define M = sup|x|≤A |g(x)|. Then, for |x| ≤ A,

PV (x)≤ {(2/a)∨1}eaME
[
ea|Z0|

]
.

Setting b = {(2/a)∨1}eaME
[
ea|Z0|

]
yields PV ≤ λV +b.

4. Define K = {V ≤ 2(b+δ )/(1−λ )}. Then

C̄ =
{
(x,y) ∈ Rd : V (x)+V (y)≤ 2(b+δ )/(1−λ )

}
⊂ K×K .

Thus C̄ is a subset of a (d,1,ε)-contracting set hence is itself a (d,1,ε)-
contracting set.

5. Since

|x− y| ≤ |x|+ |y| ≤ 1
a
{ea|x|+ ea|y|} ≤V (x)+V (y) ,

we conclude by applying Theorem 20.4.5.

20.7 1. For all x,x′ ∈ {0,1}N , ε ∈ {0,1} and i ∈ {1, . . . ,N},

d(F(x,ε, i),F(x′,ε, i)) = d(x⊕ εei,x′⊕ εei) = d(x,x′) ,

2. Since B1 is independent of I1 and has the same distribution as 1−B1, we get

E
[
g(X ′1)

]
= E

[
g
(

x′⊕B1eI11{xI1=x′I1
}+ x′⊕ (1−B1)eI11{xI1 6=x′I1

}

)]
= E

[
g(x′⊕B1eI1)1{xI1=x′I1

}

]
+E

[
g(x′⊕ (1−B1)eI1)1{xI1 6=x′I1

}

]
= E

[
g(x′⊕B1eI1)1{xI1=x′I1

}

]
+E

[
g(x′⊕B1eI1)1{xI1 6=x′I1

}

]
= E

[
g(x′⊕B1eI1)

]
= Pg(x′) .

3. Since I1 is uniformly distributed on {1, . . . ,N}, P(xI1 = x′I1) = 1− d(x,x′)/N.
Thus,
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E
[
d(X1,X ′1)

]
= d(x,x′)P(xI1 = x′I1)+(d(x,x′)−1)P(xI1 6= x′I1)

= d(x,x′)(1−d(x,x′)/N)+(d(x,x′)−1)d(x,x′)/N

= d(x,x′)(1−1/N) .

This yields, by definition of the Wasserstein distance,

Wd

(
P(x, ·),P(x′, ·)

)
≤ (1−1/N)d(x,x′)

and this proves that ∆d (P)≤ 1−1/N by Lemma 20.3.2.

20.8 1. Applying (20.6.6), we obtain

E
[

dp(Xn,X ′n)
∣∣Fn−1

]
= Kdp(Xn−1,X ′n−1)

≤ dp(Xn−1,X ′n−1){1− ε1C̄(Xn−1,X ′n−1)}p

≤ dp(Xn−1,X ′n−1) .

Defining Zn = dp(Xn,X ′n), this proves that {Zn, n ∈ N} is a supermartingale.
2. Applying the strong Markov property yields

E
[

Zσm+1

∣∣Fσm

]
= E

[
E
[

Zσm+1

∣∣Fσm+1
]∣∣Fσm

]
≤ E [Zσm+1 |Fσm ]≤ (1− ε)pZσm .

Inductively, this yields Eγ [Zσm ]≤ (1− ε)pmEγ [Z0].
3. For n≥ 0, we obtain

Eγ [Zn] = Eγ [Zn1{σm ≤ n}]+Eγ [Zn1{σm > n}]
≤ Eγ [Zσm ]+Eγ [Zn1{ηn−1 < m}]
≤ (1− ε)pmEγ [Z0]+Eγ [Zn1{ηn−1 < m}] . (G.34)

20.9 1. Using straightforward computations, we get

KV̄ (x,y)≤ λV̄ (x,y)+b

= {λV̄ (x,y)+b}1C̄c(x,y)+{λV̄ (x,y)+b}1C̄(x,y)

≤
{

λ +
b(1−λ )

b+δ

}
V̄ (x,y)1C̄c(x,y)+

{
b+

(b+δ )λ

1−λ

}
1C̄(x,y) .

Set λ̄ = λ + b(1− λ )/(b+ δ ) < 1 and b̄ = b+ λ (b+ δ )/(1− λ ) ≥ 1. This
yields

KV̄ ≤ λ̄V̄1C̄c + b̄1C̄ .

2. Using the relation ηn = ηn−1 +1C̄(Xn,X ′n) and V̄ ≥ 1, we obtain



726 G Solutions to selected exercises

E [Sn+1 |Fn] = λ̄
−n−1+ηn b̄−ηnKV̄ (Xn,X ′n)

≤ λ̄
−n−1+ηn b̄−ηn{λ̄V̄ (Xn,X ′n)1C̄c(Xn,X ′n)+ b̄1C̄(Xn,X ′n)}

= λ̄
−n+ηn−1 b̄−ηn−1{V̄ (Xn,X ′n)1C̄c(Xn,X ′n)+1C̄(Xn,X ′n)} ≤ Sn .

Thus {Sn} is a supermartingale.
3. By (20.6.4) we get that Zn ≤ 2V̄ (Xn,X ′n) which implies

Eγ [Zn1{ηn−1<m}]≤ 2λ̄
n−mb̄mEγ [Sn1{ηn−1 < m}]≤ 2λ̄

n−mb̄mEγ [S0] .

4. Plugging this bound into (20.6.7) yields (20.6.9).

20.10 1. We use (20.6.9). Set m = n log λ̄/{log λ̄ − log b̄+ log(1− ε)} and

logτ =
p log(1− ε) log λ̄

log λ̄ − log b̄+ log(1− ε)
< 0 .

This yields, for all x,x′ ∈ X×X

Ex,x′ [d
p(Xn,X ′n)]≤ 4V̄ (x,x′)τn .

If ξ ,ξ ′ are probability measures on X such that ξ (V )+ξ ′(V )< ∞, integrating
the previous bound with respect to γ ∈ C (ξ ,ξ ′) yields (20.6.10).

2. Choosing µ = δx and ν = P(x, ·) yields

Wd,p
(
Pn(x, ·),Pn+1(x, ·)

)
≤ {V (x)+PV (x)}τn ≤ {2V (x)+b}τn .

Since (Sp(X,d),Wd,p) is a complete metric space, this proves that there exists
a probability measure π such that Wd,p (P

n(x, ·),π) = O(τn). Since P is weakly
contracting for Wd,p, this yields Wd,p

(
Pn+1(x, ·),πP

)
≤Wd,p (P

n(x, ·),π) =
O(τn) which implies that π is invariant. By Lemma 14.1.10, this implies that
π(V )< ∞. Let π ′ be another invariant probability measures. Then it also holds
that π ′(V )< ∞ and (20.6.10) yields

Wd,p
(
π,π ′

)
= Wd,p

(
πPn,π ′Pn)≤ 2τ

n{π(V )+π
′(V )} .

This proves that Wd,p (π,π
′) = 0 and the invariant probability measure is

unique.

20.11 Since the sequence {Wdn , n ≥ 1} is non decreasing and Wdn ≤ dTV, it holds
that limn→∞ Wdn

(µ,ν) ≤ dTV(µ,ν). Fix an arbitrary L1 > limn→∞ Wdn
(µ,ν). We

will prove that dTV(µ,ν) ≤ L1 which yields dTV(µ,ν) ≤ limn→∞ Wdn
(µ,ν). For

all n ∈ N, there exists γn ∈ C (µ,ν) such that
∫

dn(x,y)γn(dx,dy) ≤ L1. For every
compact sets K1, K2, γn((K1×K2)

c)≤ µ(Kc
1)+ν(Kc

2). Since µ and ν are tight, this
implies that the sequence of probabilities {γn} is tight hence relatively compact by
Prokhorov’s theorem (Theorem C.2.2). Therefore, there exists a subsequence {γnk}
converging weakly to γ∞ ∈ C (µ,ν). For a given n ∈ N, for all k such that n ≤ nk,
we have by assumption dn ≤ dnk , hence
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dn(x,y)γnk(dxdy)≤

∫
dnk(x,y)γnk(dxdy)≤ L1 .

Since dn ≤ 1 for all n and we have assumed that the distances dn are continuous (for
the topology of X), we obtain for every n ∈ N,∫

dn(x,y)γ∞(dxdy) = lim
k→∞

∫
dn(x,y)γnk(dxdy)≤ L1 .

By Theorem 19.1.6, we have dTV(µ,ν) ≤
∫
1{x 6= y}γ∞(dxdy). Since dn(x,y) in-

creases to 1{x 6= y}, the monotone convergence theorem yields

dTV(µ,ν)≤
∫
1{x 6= y}γ∞(dxdy) = lim

n→∞

∫
dn(x,y)γ∞(dxdy)≤ L1 .

Since L1 is arbitrary, this concludes the proof.

20.12 1. By Theorem 1.4.6, we may assume that µ and ν are mutually singular.
2. Let A ∈ Vx∗ . There exists an open set O ⊂ A which is accessible and contain-

ing x∗ (since x∗ is assumed to be reachable). Since µ is invariant, this implies
µ(A)≥ µ(O) = µKaε

(O)> 0. Thus µ(A)> 0 and similarly ν(A)> 0.
3. Because P is asymptotically ultra-Feller, for any ε > 0 there exists a set A ∈ Vx∗

such that

lim
k→∞

sup
x∈A

Wdk
(Pnk(x, ·),Pnk(x∗, ·))≤ ε/2 .

This implies (20.6.12).
4. The probability measures µ and ν being invariant, (20.6.1) and Exercise 20.2

yield, for any distance d on X,

Wd (µ,ν) = Wd (µPn,νPn)

≤ (1−α)Wd (µ̄Pn, ν̄Pn)+αWd (µAPn,νAPn)

≤ (1−α)+α

∫∫
A×A

Wd (P
n(x, ·),Pn(y, ·))µA(dx)νA(dy)

≤ 1−α +α sup
(x,y)∈A×A

Wd (P
n(x, ·),Pn(y, ·)) .

5. Combining (20.6.12) and (20.6.13) and applying Exercise 20.11 (where the as-
sumption that the distances dk are continuous is used) yields

dTV(µ,ν) = limsup
k→∞

Wdk
(µ,ν)≤ 1−α + εα < 1 .

This is a contradiction since µ and ν are mutually singular by assumption.
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Solutions to exercises of Chapter 21

21.1 Note first that for x 6∈ α , Ex
[
∑

τα

k=0 h(Xk)
]
= Ex

[
∑

σα

k=0 h(Xk)
]
. A function h ∈

F(X) is integrable and has zero mean with respect to π if and only if

Eα

[
σα

∑
k=1
|h(Xk)|

]
< ∞ , Eα

[
σα

∑
k=1

h(Xk)

]
= 0 . (G.35)

If x ∈ α , then Ex
[
∑

τα

k=0 h(Xk)
]
= h(x) and

Ex

[
σα

∑
k=0

h(Xk)

]
= h(x)+Ex

[
σα

∑
k=1

h(Xk)

]
= h(x)+Eα [σα ]π(h) = h(x) .

This proves the second equality in (21.5.1) for all x ∈ X. By definition, ĥ(x) = h(x)
for x ∈ α . Applying the Markov property and the identity σα = 1+ τα ◦θ , we get

Pĥ(x) = Ex

[
EX1

[
τα

∑
k=0

h(Xk)

]]
= Ex

[
σα

∑
k=1

h(Xk)

]
.

SinceEα

[
∑

σα

k=1 h(Xk)
]
= 0, we have Pĥ(x)= 0 for x∈α , thus ĥ(x)−Pĥ(x)= ĥ(x)=

h(x). For x 6∈ α ,

Pĥ(x) = Ex

[
σα

∑
k=1

h(Xk)

]
= Ex

[
τα

∑
k=1

h(Xk)

]
= ĥ(x)−h(x) .

21.2 1. This is Theorem 6.7.1.
2. By the strong Markov property and the identity σα = τα ◦ θi + i on σα ≥ i for
i≥ 1, we have

Eα [σα ]π(|hĥ|) = Eα

[
σα

∑
i=1
|h(Xi)ĥ(Xi)|

]
= Eα

[
σα

∑
i=1
|h(Xi)|EXi

[
σα

∑
j=0
|h(X j)|

]]

= Eα

[
σα

∑
i=1
|h(Xi)|E

[
σα

∑
j=0
|h(X j)| ◦θi

∣∣∣∣∣Fi

]]

= Eα

[
σα

∑
i=1
|h(Xi)|

σα−i

∑
j=0
|h(Xi+ j)|

]
≤ Eα

(σα

∑
i=1
|h(Xi)|

)2
 .

Since

Eα [σα ]π(h2) = Eα

[
σα

∑
i=1

h2(Xi)

]
≤ Eα

(σα

∑
i=1
|h(Xi)|

)2
 ,
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the first claim is proved (and is actually an if and only if). Starting from the last line
without the absolute values, we obtain

2Eα [σα ]π(hĥ) = 2Eα

[
σα

∑
i=1

h(Xi)
σα

∑
j=i

h(X j)

]

= Eα

(σα

∑
i=1

h(Xi)

)2
+Eα

[
σα

∑
i=0

h2(X j)

]
= Eα [σα ]{σ2(h)+π(h2)} .

21.3
∞

∑
k=1

π(hPkh) =
∞

∑
k=1
Eπ [h(X0)h(Xk)]

= Eπ

[
h(X0)

σα

∑
k=1

h(Xk)

]
+

∞

∑
j=1
Eπ

h(X0)
σ
( j+1)
α

∑
k=σ

( j)
α +1

h(Xk)

 .

By the strong Markov property, for j ≥ 1,

Eπ

h(X0)
σ
( j+1)
α

∑
k=σ

( j)
α +1

h(Xk)

= Eπ

h(X0)E

 σ
( j+1)
α

∑
k=σ

( j)
α +1

h(Xk)

∣∣∣∣∣∣Fσ
( j)
α


= Eπ

[
h(X0)Eα

[
σα

∑
k=1

h(Xk)

]]
= 0 .

Therefore,

∞

∑
k=1

π(hPkh) = Eπ [h(X0)
σα

∑
k=1

h(Xk)]

= Eπ

[
h(X0)E

[
σα

∑
k=1

h(Xk)

∣∣∣∣∣F0

]]
= Eπ [h(X0){ĥ(X0)−h(X0)}] = π(hĥ)−π(h2) .

This yields π(h2)+2∑
∞
k=1 π(hPkh) = π(hĥ)−π(h2) = σ2(h) by Exercise 21.2. The

second equality follows from Lemma 21.2.7.

21.5 1. This Markov chain is irreducible and aperiodic, with stationary distribution
given by π(0) = 1/2 and π( j) = π(− j) = c′/ j3 where c′ = ζ (3)/4. Further-
more, π(h) = 0.
Since h( j)+h(− j) = 0 and h(0) = 0, it is easy to see that for n≥ 2, we have
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n−1

∑
i=0

h(Xi) = 1{X0<0}X1 +1{Xn−1>0}Xn−1 .

In particular, ∑
n−1
i=0 h(Xi) ≤ |X0|+ |Xn−1|, and since by stationarity Eπ [|X0|] =

Eπ |Xn−1| = ∑x 6=0 |x|c′|x|−3 < ∞, it follows immediately that n−1/2
∑

n−1
i=0 h(Xi)

converges in distribution to 0, i.e. to N(0, 0) . It also follows that for n≥ 2,

Varπ

(
n−1

∑
i=0

h(Xi)

)
= 2Eπ [X2

01{X0>0}] = 2
∞

∑
j=1

j2(c′/ j3) = ∞.

2. Replace the state space X by X×{−1, 1}, let the first coordinate {Xn, n ∈ N}
evolve as before, let the second coordinate {Yn, n ∈N} evolve independently of
{Xn, n∈N} such that each {Yn, n∈N} is i.i.d. equal to−1 or 1 with probability

1/2 each, and redefine h as h(x, y) = x+y. Then n−1/2
n−1

∑
i=0

h(Xi,Yi) will converge

in distribution to N(0,1).

21.6 1. Let f be a 1-Lipschitz function. Then

E [ f ((x+ ε1)/2)− f ((y+ ε1)/2)]≤ |x− y|/2 .

By the duality theorem this proves that ∆d (P) ≤ 1/2 and thus the exists
a unique invariant probability by Theorem 20.3.4. The invariant measure is
Lebesgue’s measure on [0,1].

2. Since Lebesgue’s measure is invariant for π , it also holds that
∫ 1

0 Pk f (x)dx = 0
for all k ≥ 1. Therefore,

Pk f (x) = 2−k
∑

z∈Dk

f
( x

2k + z
)

= 2−k
∑

z∈Dk

∫ 1

0

[
f
( x

2k + z
)
− f

( y
2k + z

)]
dy .

3. The previous identity yields∥∥∥Pk f
∥∥∥2

2
≤ 2−k

∑
z∈Dk

∫ 1

0

∫ 1

0

[
f
( x

2k + z
)
− f

( y
2k + z

)]2
dydx

≤ 2k
∫∫
|x−y|≤2−k

[ f (x)− f (y)]2dxdy .

4. If f is Hölder continuous then∥∥∥Pk f
∥∥∥2

2
≤ 2k

∫∫
|x−y|≤2−k

[ f (x)− f (y)]2dxdy

≤C2k
∫∫
|x−y|≤2−k

|x− y|2γ dxdy≤C2k(2γ−1) .
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This proves that ∑
∞
k=1

∥∥Pk f
∥∥2

2 < ∞ which implies that (21.4.2) holds.

Solutions to exercises of Chapter 22

22.1
P[ f +g](x) = 1A f+g

(x)
∫
{ f (y)+g(y)}P(x,dy)

and
P f (x)+Pg(x) = 1A f

(x)
∫

f (y)P(x,dy)+1Ag

∫
g(y)P(x,dy) .

These two functions coincide on A f ∩Ag and since π(A f ) = 1 and π(Ag) = 1, we
have

P[ f +g](x) = P f (x)+Pg(x) , π−a.e.

22.3 1.

Eν [|π( f )−Sn,n0( f )|2] = 1
n2

n

∑
j=1

n

∑
i=1
Eν [ f (Xn0+ j) f (Xn0+i)]

=
1
n2

n

∑
j=1

∫
Pn0+ j( f 2)(x)ν(dx)+

2
n2

n−1

∑
j=1

n

∑
k= j+1

∫
Pn0+ j( f Pk− j f )(x)ν(dx) .

For h ∈ Lr(π) and ν ∈Mr/(r−1)(π) we have for all i ∈ N that dν

dπ
·Pih is inte-

grable with respect to π . Then for any h ∈ Lr
0(π), we get∫

Pih(x)ν(dx) =
〈

Pih,
dν

dπ

〉
L2(π)

=
〈
Pih,1

〉
L2(π)

+

〈
Pih,

(
dν

dπ
−1
)〉

L2(π)

.

2. Applying Hölder’s inequality with conjugate parameter r and s =
r

r−1
to

Lk(h) =
〈
Pkh, dν

dπ
−1
〉

L2(π)
one has

|Lk(h)| ≤
∥∥∥Pkh

∥∥∥
Lr(π)

∥∥∥∥dν

dπ
−1
∥∥∥∥

Ls(π)

≤ 9Pk9Lr
0(π)

∥∥∥∥dν

dπ
−1
∥∥∥∥

Ls(π)

‖h‖Lr(π) .

The proofs of 2 and 3 follow.

22.4 1. This Markov kernel is irreducible and aperiodic and is reversible with re-
spect to the stationary distribution given by π(x) = c′|x|−3 and π(0) = c′/c,
where c′ = [c−1 +2ζ (3)]−1. Hence the chain is positive recurrent.

2. We use Theorem 6.7.1. We consider the state a = {0}. The sum over a sin-
gle tour, ∑

σα

i=1 Xi, is either Xσα+1, −Xσα+1, or 0. Furthermore, Pα(X1 = y) =
P(0,y) = c|y|−4, so Eα [X2

1 ] = ∑y 6=0 y2c|y|−4 < ∞. This implies that ∑
σα

i=1 Xi has
finite variance, say V . It then follows from Theorem 6.7.1 that
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n−1/2
n

∑
i=0

Xi
Pπ=⇒ N(0, V/Eα [σα ])

where Eα [σα ] = 1/π(0) (by Theorem 6.4.2).
3.

Varπ(X0) = ∑
x∈X

Pπ(X0 = x)x2 = ∑
x∈X

c′|x|−3x2 = ∑
x∈X

c′|x|−1 = ∞ .

4. Pπ(τα ≤ n) = ∑x∈X π(x)Px(τα ≤ n). For x 6= 0, Px(τα ≤ n)∈ (0,1). For n even,
we have Sn = X0 on the event Dc

n because of cancellation.
5.

Eπ [S2
n1Dc

n
] = Eπ [X2

01Dc
n
] = ∑

x∈X

x2
π(x)Pπ(τα > n)

= ∑
x∈X

c′|x|−3(1−|x|−1)nx2 = ∑
x∈X

c′|x|−1(1−|x|−1)n = ∞.

Hence, Varπ(Sn) = Eπ [S2
n] = ∞. In particular, the limit in the definition of

limn→∞ n−1Eπ [S2
n] is either infinite or undefined.

22.5 1. P is a nonnegative kernel since for all x ∈ X and A ∈X ,

P(x,{x}) = 1+P1(x,{x})−P0(x,{x})≥ 0 ,

P(x,A\{x}) = P1(x,A\{x})−P0(x,A\{x})≥ 0 .

Combining with P(x,X) = 1, this implies that P is a Markov kernel.
2.

〈 f ,P0 f 〉−〈 f ,P1 f 〉=
∫∫

π(dx) f (x)(P0(x,dy)−P1(x,dy)) f (y)

=
∫∫

π(dx) f (x)(δx(dy)−P(x,dy)) f (y)

=
∫

π(dx) f 2(x)−
∫∫

π(dx)P(x,dy) f (x) f (y)

=
∫∫

π(dx)P(x,dy)
[

f 2(x)− f 2(y)
2

+ f (x) f (y)
]

where the last inequality follows from the fact that P is clearly π-invariant.
Finally,

〈 f ,P0 f 〉−〈 f ,P1 f 〉=
∫∫

π(dx)P(x,dy)( f (x)− f (y))2 /2≥ 0 .

The proof is completed.

22.6 Assume that the spectral measure of P1 and P2 is not concentrated at −1. Then,
for i ∈ {0,1}, using Proposition 22.5.2 we get
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vi( f ,Pi) =
∫ 1

−1

1+ x
1− x

µ f ,Pi(dx) .

1. For all 1≤ `≤ k and all α1, . . . ,αk,〈
f ,Pα1 . . .Pαk f

〉
= (1−α`)

〈
f ,Pα1 . . .Pα`−1P0Pα`+1 . . .Pαk f

〉
+α`

〈
f ,Pα1 . . .Pα`−1P1Pα`+1 . . .Pαk f

〉
,

so that

∂

∂α`

〈
f ,Pα1 . . .Pαk f

〉
=
〈

f ,Pα1 . . .Pα`−1(P1−P0)Pα`+1 . . .Pαk f
〉
,

and thus, we obtain by differentiating α 7→ wλ (α),

dwλ (α)

dα
=

∞

∑
k=0

λ
k

k

∑
i=1

〈
f ,Pi−1

α (P1−P0)Pk−i
α f

〉
.

2. Using that π is reversible for the kernel Pα ,

dwλ (α)

dα
=

∞

∑
i=1

∞

∑
k≥i

λ
k
〈

Pi−1
α f ,(P1−P0)Pk−i

α f
〉

= λ

〈
∞

∑
`=0

λ
`P`

α f ,(P1−P0)
∞

∑
`=0

λ
`P`

α f

〉
≤ 0 ,

which completes the proof.

Solutions to exercises of Chapter 23

23.1 1. Note that by convexity of the exponential function

esx ≤ x−A
B−A

esB +
B− x
B−A

esA , for A≤ x≤ B.

Since E [V |G ] = 0, we get

E
[

esV ∣∣G ]≤ B
B−A

esA− A
B−A

esB

= (1− p+ pes(B−A))e−ps(B−A) = eφ(s(B−A)),

2. The derivative of φ is

φ
′(u) =−p+

p
p+(1− p)e−u
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therefore φ(0) = φ ′(0) = 0. In addition,

φ
′′(u) =

p(1− p)e−u

(p+(1− p)e−u)2 ≤
1
4
.

Thus, by the Taylor-Lagrange Theorem, φ(u) ≤ u2/8 which concludes the
proof.

23.4 1. It follows from Lemma 20.3.2 that if f is a Lipschitz function, then P f is
also Lipschitz and |P f |Lip(d) ≤ ∆d (P) | f |Lip(d). Since π is invariant for P, we
have, for every i≥ 1,

|Pi f (x)−π( f )|= |Pi f (x)−π(Pi f )| ≤
∫

X
|Pi f (x)−Pi f (y)|π(dy)

≤ (1−κ)i
∫

X
d(x,y)π(dy) = (1−κ)iE(x) .

Summing over i yields (23.5.3) since ∑
∞
i=0(1−κ)i = κ−1.

2. By applying question 1, we obtain

Px(|π̂n( f )−π( f )|> t)≤ Px(|π̂n( f )−Ex[π̂n( f )]|+(nκ)−1 | f |Lip(d) diam(X)> t) .

We conclude by applying Theorem 23.4.5 with γi = n−1 | f |Lip(d), i = 0, . . . ,n−
1.

23.5 1. If h is continuously differentiable on Rd , then |∇h|∞ ≤ |h|Lip(d). Thus, for
all x ∈ Rd ,

P(|∇ ft |2)(x) =
t2

4
P
(
|∇h|2 f 2

)
(x)≤

t2 |h|2Lip(d)

4
P
(

f 2
t
)
(x)

2. Applying (23.5.5) and (23.5.6) to ft and the defintion of Λ yields

P
({

th− 1
2

t2C |h|2Lip(d)

}
f 2
t

)
(x)−Λ(t,x) logΛ(t,x)≤

Ct2 |h|2Lip(d)

2
P
(

f 2
t
)
(x) .

This yields

P
({

th−C |h|2Lip(d)

}
f 2
t

)
(x)≤Λ(t,x) logΛ(t,x) .

It is easily checked that the left-hand side is exactly tΛ ′(t,x)−Λ(t,x) logΛ(t,x).
This proves (23.5.7).

3. The inequality (23.5.7) implies that the function t → t−1 logΛ(t,x) is non in-
creasing. Since it vanishes at zero, this yields Λ(t,x)≤ 1 for all t ≥ 0 and x∈Rd .
By definition of Λ , this means that (23.4.5) holds with β 2 =C/4 and δ = ∞.
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Doeblin W (1938) Sur deux problèmes de M. Kolmogoroff concernant les chaı̂nes
dénombrables. Bull Soc Math France 66:210–220, URL http://www.numdam.

org/item?id=BSMF_1938__66__210_0
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109–117

Hairer M, Mattingly JC, Scheutzow M (2011) Asymptotic coupling and a general
form of Harris’ theorem with applications to stochastic delay equations. Probab
Theory Related Fields 149(1-2):223–259

Hall P, Heyde CC (1980) Martingale Limit Theory and its Application. Academic
Press, New York, London

Hall P, Heyde CC (1981) Rates of convergence in the martingale central limit theo-
rem. Ann Probab 9(3):395–404

Harris TE (1956) The existence of stationary measures for certain Markov pro-
cesses. In: Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, 1954–1955, vol. II, University of California Press,
Berkeley and Los Angeles, pp 113–124
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Hervé L, Ledoux J (2016) A computable bound of the essential spectral ra-
dius of finite range Metropolis-Hastings kernels. Statist Probab Lett 117:72–79,

https://doi.org/10.1007/s00440-008-0159-5
https://doi.org/10.1007/s00440-008-0159-5
http://dx.doi.org/10.1007/s00440-004-0390-7
http://dx.doi.org/10.1007/s00440-004-0390-7
http://dx.doi.org/10.1214/ECP.v12-1336
http://dx.doi.org/10.1007/b87874
http://dx.doi.org/10.1007/b87874
http://dx.doi.org/10.1016/j.spa.2013.09.003
http://dx.doi.org/10.1016/j.spa.2013.09.003
http://dx.doi.org/10.1239/aap/1418396242
http://dx.doi.org/10.1239/aap/1418396242


744 References

DOI 10.1016/j.spl.2016.05.007, URL http://dx.doi.org/10.1016/j.spl.

2016.05.007

Hobert JP, Geyer CJ (1998) Geometric ergodicity of Gibbs and block Gibbs sam-
plers for a hierarchical random effects model. J Multivariate Anal 67(2):414–430,
DOI 10.1006/jmva.1998.1778, URL http://dx.doi.org/10.1006/jmva.

1998.1778

Hobert JP, Jones G, Presnell B, Rosenthal JS (2002) On the applicability of regen-
erative simulation in Markov chain Monte Carlo. Biometrika 89(4):731–743

Hoeffding W (1963) Probability inequalities for sums of bounded random variables.
J Am Statist Assoc 58(301):13–30

Holmes PT (1967) On non-dissipative Markov chains. Sankhyā Ser A 29:383–390
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Maigret N (1978) Théorème de limite centrale fonctionnel pour une chaı̂ne de
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Λ1, 290
Λ2, 290
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∆ (P), 403
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L2
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BL(H), 524
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Cb(X), 613
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Lipd(X
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M+(X ), 8
M0(X ), 634
M∗1(N), 206
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MV (X ), 637
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µ0

C , 68
µ1
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oscV (·), 637
osc ( f ), 634
φ(A , B), 648
π0
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ρρρd, 629
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σ2
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dTV(·, ·), 633
‖·‖TV, 633
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Dsg({Vn}, f ,r,b,C), 362
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Dsg(V,φ ,b,C), 364
L2(π)-absolute spectral gap, 533, 535–538,

541, 542, 544, 550
L2(π)-exponential convergence, 532
L2(π)-geometric ergodicity, 532, 533, 536,
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L∞(π)-exponential convergence, 540
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analytic function, 566
aperiodicity, 128, 155, 156, 165, 173, 176, 178,

179, 185, 187, 202, 205, 210, 211, 228,
235, 245, 251, 262, 298, 300, 302, 306,
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asymptotic σ -field, 260
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aperiodic, 126, 298, 300, 302, 306
null recurrent, 128, 137
positive, 128, 137
recurrent, 121, 122, 124, 129
transient, 121, 122, 124

Birkhoff’s ergodic theorem, 100, 104, 108
Blackwell’s theorem, 172, 178
bounded difference, 576

canonical filtration, 54
canonical process, 54
central limit theorem, 498, 500, 501, 504, 506,

508, 512–516
atomic, 138

Chapman-Kolmogorov equation, 10
Cheeger’s inequality, 546
Cheegers constant, 545
communication, 148
comparison theorem, 81
concentration inequality, 580, 584, 587, 593,

596, 598
conductance, 545
conjugate

real numbers, 526
convergence

weak*, 627
weak, 627

coordinate process, 54
coupling

distributional, 435, 438
exact, 436, 440
maximal distributional coupling, 437, 440
of probability measures, 422

of two kernels, 427
optimal coupling for the Wasserstein

distance, 456
optimal coupling with respect to a cost

function, 459
optimal coupling for the V -norm, 425
optimal coupling for the total variation dis-

tance, 422, 424
successful, 435
times, 435

coupling inequality, 156, 180, 291, 432, 436
cyclic decomposition, 204

data augmentation, 42
Dirichlet problem, 85
distributional coupling, 435
Dobrushin coefficient, 403

V -Dobrushin coefficient, 410
c-Dobrushin coefficient, 465

Doeblin set
(m,ε)-Doeblin set, 406, 414
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drift condition

condition Dg(V,λ ,b,C) , 316
condition Dg(V,λ ,b) , 316
condition Dsg({Vn}, f ,r,b,C), 362
condition Dsg(V,φ ,b,C), 364
geometric drift toward C, 316

dynamical system, 97
Dynkin formula, 90

eigenvalue, 524, 567
eigenvector, 524
ergodic dynamical system, 102, 104, 107, 109
ergodicity, 102

f -geometric, 339
geometric, 339

ergodicity geometric, 345, 346
event

asymptotic, 260
tail, 260

exact coupling, 436

first-entrance decomposition, 65
first-entrance last-exit decomposition, 64, 176
fixed-point theorem, 401, 402
functions of bounded difference, 576

gluing lemma, 623

Hahn-Jordan decomposition, 631
harmonic function, 75–77, 232
hitting time, 59
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of two measures, 422
of two kernels, 426

invariant
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measure, 16
probability measure, 17
random variable, 99

invariant probability measure, 104, 107, 108,
129, 200, 224, 255, 273, 275–277, 368,
376, 392, 405, 414, 444, 462, 466, 469,
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Jordan
decomposition, 631
set, 632

Kac formula, 71, 248, 249
Kendall’s theorem, 173, 179
kernel

( f ,r)-ergodic, 385, 387
( f ,r)-regular, 370, 374, 376, 380
T -kernel, 270, 271
V uniformly ergodic, 349
V uniformly geometrically ergodic, 349,

350, 412, 414, 441
f -geometrically regular, 321, 324, 326, 331,
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aperiodic, 128, 150, 155, 156, 202, 205, 210,

211, 228, 235, 251, 262, 328, 331, 341,
344, 345, 350, 354, 377, 380, 387, 390,
392, 397, 407, 497, 501, 543, 587

bounded, 6
continuous component, 270
coupling, 427, 428, 459
density, 7
Feller, 266, 269, 279
geometrically ergodic, 345, 346
geometrically uniformly ergodic, 354
Harris recurrent, 229, 230, 232, 233
homogeneous, 12
induced, 63
irreducible, 145, 194, 196, 200, 205, 233
Markov, 6
null, 250
null-recurrent, 147
optimal coupling, 428
positive, 16, 147, 153, 250, 381
potential, 77
recurrent, 124, 146, 152, 221, 223, 224
regular, 381
resolvent, 11
sampled, 11
split, 241, 381

strong Feller, 266
strongly aperiodic, 202
strongly irreducible, 145
transient, 124, 146, 151, 222, 223, 227, 232
uniformly ergodic, 349
uniformly geometrically ergodic, 349, 406

last-exit decomposition, 65
Lyapounov function, 316

m-skeleton, 11
Mac Diarmid’s inequality, 580, 584, 587
Markov chain

canonical, 56
homogeneous, 12
order p, 15
reversible, 18
stationary, 57

Markov property, 61
martingale, 640

difference, 640
regular, 643
submartingale, 640
supermartingale, 640

maximum principle, 78, 120
measure
( f ,r)-regular, 370, 380
f -geometrically regular, 321, 323, 326, 331
image, 616
inner regular, 619
invariant, 16, 129, 249, 415
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maximal irreducibility, 200, 226, 249, 269,

415
outer regular, 619
Radon, 619
spread out, 280
subinvariant, 16
topological support, 618

measure invariant, 147
mixing coefficient

α , 647
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φ , 648
ρ , 648

Models
AR(p), 28, 281
AR(1), 28, 196
ARCH(p), 30
ARMA((p,q), 29
bilinear process, 470
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deterministic updating Gibbs sampler, 45
EGARCH, 36
FAR, 29, 257, 279, 352
Galton-Watson process, 141
gambler’s ruin, 93
GARCH, 36
GARCH(1,1), 50
hit-and-run algorithm, 48
Hit and Run sampler, 551
INAR process, 334
independent Metropolis-Hasting sampler,

407
independent Metropolis-Hastings sampler,

40, 214, 355, 357, 394, 549
Langevin diffusion, 41
log-Poisson autoregression, 37, 283, 481
Metropolis-Hastings algorithm, 39, 113,

212–214, 236, 237, 283, 355, 356
observation driven models, 35
random iterative functions, 27
random scan Gibbs sampler, 46
random walk, 28
random walk Metropolis algorithm, 40, 214,
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random walk on R+, 237
RCA, 32, 51
SETAR, 31
slice sampler, 44
TGARCH, 37
two-stage Gibbs sampler, 45, 358
vector autoregressive process, 28, 272, 273,

282
monotone class, 615

number of visits, 77

Observation driven model, 35
operator

adjoint, 527
conductance, 545
positive, 550
self-adjoint, 569

period
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of an irreducible kernel, 202
of an atom, 126
of an atomic kernel, 128
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petite set, 206
point

( f ,r)-regular, 370, 374
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point spectrum, 567
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time inhomogeneous, 88

Poisson equation, 496, 498
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Prohorov
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theorem, 628

proper space, 567

random iterative functions, 27
random variable

asymptotic, 260
tail, 260

random walk
simple, 91

reachable point, 273, 278
recurrence
( f ,r)-recurrence, 361
( f ,r)-recurrent set, 361
f -geometric, 313

regular point, 566
renewal process, 165

aperiodic, 166
delay distribution, 166
delayed, 166, 167
epochs, 166
pure, 166, 167
renewals, 166
waiting time distribution, 166
zero delayed, 166

resolvent, 524
equation, 503
kernel, 11

resolvent set, 566
return time, 59
reversibility, 18
Riesz-Thorin interpolation theorem, 563
Riesz decomposition, 89

self-ajdoint on L2(π), 530
semi-continuous

lower, 612
upper , 612

separately Lipschitz functions, 594
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log-subbaditive, 290, 362
set
( f ,r)-recurrent, 361, 373, 387
( f ,r)-regular, 370, 373, 374, 380
f -geometrically recurrent, 322
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accessible, 66, 192, 322, 373
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Harris recurrent, 67, 229
maximal absorbing, 230
petite, 322, 373
recurrent, 124, 221
transient, 124, 222
uniformly transient, 124, 222

shift operator, 58
skeleton, 11
small set, 191

Harris recurrent, 192
positive, 192
strongly aperiodic, 192

space
locally compact metric, 613
Polish, 612
separable measurable, 614

spectral gap, 545
spectral measure, 573
spectral radius, 567
spectrum, 524

point, 524
splitting construction, 241
stopping time, 59
strong Markov property, 62
subgeometric

drift condition, 364

ergodicity, 397, 444, 478
sequences, 289, 366

superharmonic function, 75–77, 233
support of a continuous function, 613

tightness, 628
Toeplitz lemma, 447
topological recurrence, 277
total variation

f -norm, 305
distance, 154, 423, 424, 633
norm, 633

total variation of a measure, 631

uniform accessibility, 209
uniform Doeblin condition, 406
uniform integrability, 641

Wasserstein
distance, 456, 457, 459, 460, 478, 485, 515,
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distance of order p, 460, 486
space, 460

weak*-convergence, 627

Young functions, 396
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