Chapter 9 Exercices Week 7 (Chapter 9+11)

Chapitre 9 and 11

9.1. Let P be a Markov kernel on $X \times \mathscr{X}$. Let π_1, π_2 two invariant probability measures for P.

- 1. Show that $\pi_1 \wedge \pi_2$ is an invariant measure for *P*.
- 2. Deduce that there exists two invariant probability measures for P that are mutually singular.
- 3. If *P* is ϕ -irreducible, show that π_1 dominates ϕ .
- 4. Deduce that if *P* is irreducible, there is at most one invariant probability measure.

9.2. Let $\lambda \in \mathbb{M}_+(\mathscr{X})$ and $\eta \in (0,1)$. Then show that λ is invariant for P if and only if it is invariant for K_{a_n} .

9.3. Let *C* be an accessible small set.

- 1. Show that there exists an integer *m* and a measure μ_0 such that *C* is (m, μ_0) -small set with $\mu_0(C) > 0$.
- 2. Show that C is an accessible $(1,\mu)$ -small set with $\mu(C) > 0$ for the resolvent kernel K_{a_n} for any $\eta > 0$, i.e. *C* is strongly aperiodic for the resolvent kernel.
- 3. Show that $\sum_{n=1}^{\infty} K_{a_{\eta}}^{n} = \frac{1-\eta}{\eta}U$. 4. Deduce that if *C* is recurrent for *P*, then it is also recurrent for $K_{a_{\eta}}$.

9.4. Let *C* be a $(1, \varepsilon v)$ -small set for *P*. Assume that *P* is irreducible and that $M := \sup_{x \in X} \mathbb{E}[\sigma_C] < \infty$. Define $\check{\alpha} = C \times \{1\}$ and $\check{X} = X \times \{0, 1\}$ and $\check{\mathcal{X}} = \mathscr{X} \otimes \mathscr{P}(\{0, 1\})$. Define by $\check{\mathbb{P}}_{\xi}$ the probability induced on the canonical space $(\check{X}^{\mathbb{N}}, \check{\mathscr{X}}^{\otimes\mathbb{N}})$ by the split kernel \check{P} , starting from the probability measure $\check{\xi}$ on $(\check{X}, \check{\mathscr{X}}).$

- 1. Define $r_k = \check{\mathbb{E}}_{\check{\alpha}} \left[\sigma_C^k \mathbb{1} \left\{ d_{X_{\sigma_C^\ell}} = 0, \forall \ell \in [1:k-1] \right\} \right]$ where σ_C^ℓ are the successive visits of (X_n) to the set *C*. Show that $r_k \leq r_{k-1}(1-\varepsilon) + M(1-\varepsilon)^{k-1}$.
- 2. Deduce that $\check{\mathbb{E}}_{\check{\alpha}}[\sigma_{\check{\alpha}}] < \infty$.