Chapter 2 Exercices Week 2

2.1 (Maximum principle). Let *P* be a Markov kernel on $X \times \mathscr{X}$. Show that for all $x \in X$ and $A \in \mathscr{X}$,

$$U(x,A) \leq \mathbb{P}_x(\tau_A < \infty) \sup_{y \in A} U(y,A)$$

2.2. Show that for every $A \in \mathscr{X}$, the function $x \mapsto \mathbb{P}_x(N_A = \infty)$ is harmonic.

2.3 (The Kac Formula). Let *P* be a Markov kernel on $X \times \mathscr{X}$ with invariant probability measure π . For all $C \in \mathscr{X}$ such that $\mathbb{P}_x(\sigma_C < \infty) > 0$ for π -almost all $x \in X$, define

$$\pi_C^0(f) = \int_C \pi(\mathrm{d}x) \mathbb{E}_x \left[\sum_{k=0}^{\sigma_C - 1} f(X_k) \right], \quad \pi_C^1(f) = \int_C \pi(\mathrm{d}x) \mathbb{E}_x \left[\sum_{k=1}^{\sigma_C} f(X_k) \right]$$

1. Show that for all $f \in \mathbb{F}_+(X)$,

$$\pi(f) = \sum_{\ell=1}^{n} \mathbb{E}_{\pi} \left[\mathbb{1}_{C}(X_{\ell}) \mathbb{E}_{X_{\ell}} \left[f(X_{n-\ell}) \mathbb{1}_{C^{c}}(X_{1}) \dots \mathbb{1}_{C^{c}}(X_{n-\ell}) \right] \right] + \mathbb{E}_{\pi} [f(X_{n}) \mathbb{1} \{ \sigma_{C} > n \}]$$

2. Show that

$$\pi(f) = \pi(f) = \pi_C^0(f) + \lim_{n \to \infty} \mathbb{E}_{\pi}[f(X_n) \mathbb{1}\{\sigma_C > n\}]$$

- 3. Set for $x \in X$, $g(x) = \mathbb{P}_x(\sigma_C < \infty)$. Show that $\lim_{n \to \infty} \mathbb{E}_{\pi}[g(X_n) \mathbb{1}\{\sigma_C > n\}] = 0$. 4. Denote $\Delta \pi = \pi \pi^0$. Show that $\Delta \pi \ll \pi$.
- 5. Show that

$$\pi=\pi_C^0=\pi_C^1$$

2.4. Let *P* be a Markov kernel on $X \times \mathscr{X}$ with invariant probability measure π . If $\mathbb{P}_x(\sigma_C < \infty) > 0$ for π -almost all $x \in X$, then $\mathbb{P}_{\pi}(\sigma_C < \infty) = 1$.

2.5. Let *P* be a Markov kernel on $X \times \mathscr{X}$ with invariant probability measure π . Assume that there exists non-negative functions V and f and a constant d such that

$$PV + f \le V + d$$

Show that $\pi(f) < \infty$.

2.6. Let *P* be a Markov kernel on $X \times \mathscr{X}$. Let $A \in \mathscr{X}$.

(i) Assume that there exists $\delta \in [0,1)$ such that $\sup_{x \in A} \mathbb{P}_x(\sigma_A < \infty) \leq \delta$. Show that for all $p \in \mathbb{N}^*$, $\sup_{x \in A} \mathbb{P}_x(\sigma_A^{(p)} < \infty) \leq \delta^p$ and $\sup_{x \in X} \mathbb{P}_x(\sigma_A^{(p)} < \infty) \leq \delta^{p-1}$. Moreover,

$$\sup_{x \in \mathsf{X}} U(x, A) \le (1 - \delta)^{-1} .$$

$$(2.1)$$

(ii) Assume that $\mathbb{P}_x(\sigma_A < \infty) = 1$ for all $x \in A$. Show that for all $p \in \mathbb{N}^*$, $\inf_{x \in A} \mathbb{P}_x(\sigma_A^{(p)} < \infty) = 1$. Moreover, $\inf_{x \in A} \mathbb{P}_x(N_A = \infty) = 1$ for all $x \in A$.

Given $A \in \mathscr{X}$, we define, for $n \ge 1$ and $B \in \mathscr{X}$,

$${}_{A}^{n}P(x,B) = \mathbb{P}_{x}(X_{n} \in B, n \le \sigma_{A}).$$

$$(2.2)$$

Thus ${}_{A}^{n}P(x,B)$ is the probability that the chain goes from x to B in n steps without visiting the set A. It is called the *n*-step taboo probability. Note that ${}_{A}^{1}P = P$ and ${}_{A}^{n}P = (PI_{A^{c}})^{n-1}P$ where I_{A} is the kernel defined by $I_{A}f(x) = \mathbb{1}_{A}(x)f(x)$ for any $f \in \mathbb{F}_{+}(X)$

2.7. 1. Show the first-entrance decomposition

$$P^{n}f(x) = {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1} {}_{A}^{j}P(\mathbb{1}_{A} \times P^{n-j}f)(x) .$$
(2.3)

2. Show the last exit decomposition

$$P^{n}f(x) = {}^{n}_{A}Pf(x) + \sum_{j=1}^{n-1} P^{j}(\mathbb{1}_{A} \times {}^{n-j}_{A}Pf)(x) .$$
(2.4)

2 Exercices Week 2

Solutions to exercises

2.1 By the strong Markov property, we get

$$U(x,A) = \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_A(X_n) \right] = \mathbb{E}_x \left[\sum_{n=\tau_A}^{\infty} \mathbb{1}_A(X_n) \mathbb{1} \{ \tau_A < \infty \} \right]$$
$$= \sum_{n=0}^{\infty} \mathbb{E}_x \left[\mathbb{1}_A(X_n \circ \theta_{\tau_A}) \mathbb{1} \{ \tau_A < \infty \} \right]$$
$$= \sum_{n=0}^{\infty} \mathbb{E}_x \left[\mathbb{1} \{ \tau_A < \infty \} \mathbb{E}_{X_{\tau_A}} \left[\mathbb{1}_A(X_n) \right] \right] \le \mathbb{P}_x(\tau_A < \infty) \sup_{y \in A} U(y,A) .$$

2.2 Define $h(x) = \mathbb{P}_x(N_A = \infty)$. Then $Ph(x) = \mathbb{E}_x[h(X_1)] = \mathbb{E}_x[\mathbb{P}_{X_1}(N_A = \infty)]$ and applying the Markov property, we obtain

$$Ph(x) = \mathbb{E}_x[\mathbb{P}_x(N_A \circ \theta = \infty | \mathscr{F}_1)] = \mathbb{P}_x(N_A \circ \theta = \infty) = \mathbb{P}_x(N_A = \infty) = h(x) .$$

2.3 1. By the last-exit decomposition, we have for all measurable nonnegative functions f,

$$\pi(f) = \mathbb{E}_{\pi}[f(X_n)] = \sum_{\ell=1}^n \mathbb{E}_{\pi} \left[f(X_n) \mathbb{1}_C(X_\ell) \mathbb{1}_{C^c}(X_{\ell+1}) \dots \mathbb{1}_{C^c}(X_n) \right] + \mathbb{E}_{\pi}[f(X_n) \mathbb{1} \{ \sigma_C > n \}]$$

= $\sum_{\ell=1}^n \mathbb{E}_{\pi} \left[\mathbb{1}_C(X_\ell) \mathbb{E}_{X_\ell} \left[f(X_{n-\ell}) \mathbb{1}_{C^c}(X_1) \dots \mathbb{1}_{C^c}(X_{n-\ell}) \right] \right] + \mathbb{E}_{\pi}[f(X_n) \mathbb{1} \{ \sigma_C > n \}]$

2. Noting that π is invariant and setting $k = n - \ell$, we get

$$\pi(f) = \sum_{k=0}^{n-1} \int_C \pi(\mathrm{d}x) \mathbb{E}_x[f(X_k) \mathbbm{1} \{ \sigma_C > k \}] + \mathbb{E}_\pi[f(X_n) \mathbbm{1} \{ \sigma_C > n \}]$$
$$= \int_C \pi(\mathrm{d}x) \mathbb{E}_x \left[\sum_{k=0}^{(n-1) \wedge (\sigma_C - 1)} f(X_k) \right] + \mathbb{E}_\pi[f(X_n) \mathbbm{1} \{ \sigma_C > n \}]$$

Thus, $\pi(f) = \pi_C^0(f) + \lim_{n \to \infty} \mathbb{E}_{\pi}[f(X_n) \mathbb{1}\{\sigma_C > n\}].$ 3. We get

$$\begin{split} \mathbb{E}_{\pi}[g(X_n)\mathbb{1}\left\{\sigma_{C} > n\right\}] &= \mathbb{E}_{\pi}[\mathbb{P}_{X_n}(\sigma_{C} < \infty)\mathbb{1}\left\{\sigma_{C} > n\right\}] \\ &= \mathbb{E}_{\pi}[\mathbb{1}\left\{\sigma_{C} \circ \theta^{n} < \infty\right\}\mathbb{1}\left\{\sigma_{C} > n\right\}] \\ &= \mathbb{E}_{\pi}[\mathbb{1}\left\{\sigma_{C} < \infty\right\}\mathbb{1}\left\{\sigma_{C} > n\right\}] \rightarrow_{n \to \infty} 0 \end{split}$$

4. Thus, $\pi(g) = \pi_C^0(g)$, that is $\Delta \pi(g) = 0$. This implies $\pi = \pi_C^0$ provided that g(x) > 0 for $\Delta \pi$ almost all $x \in X$. But this follows from the assumption since π dominates $\Delta \pi$. Finally, $\pi = \pi_C^0$ and the last equality of the proposition follows from $\pi_C^1 = \pi_C^0 P = \pi P = \pi$.

2.6 (i) For $p \in \mathbb{N}$, $\sigma_A^{(p+1)} = \sigma_A^{(p)} + \sigma_A \circ \theta_{\sigma_A^{(p)}}$ on $\{\sigma_A^{(p)} < \infty\}$. Applying the strong Markov property yields

2 Exercices Week 2

$$\mathbb{P}_{x}(\sigma_{A}^{(p+1)} < \infty) = \mathbb{P}_{x}\left(\sigma_{A}^{(p)} < \infty, \sigma_{A} \circ \theta_{\sigma_{A}^{(p)}} < \infty\right)$$
$$= \mathbb{E}_{x}\left[\mathbb{1}\left\{\sigma_{A}^{(p)} < \infty\right\} \mathbb{P}_{X_{\sigma_{A}^{(p)}}}(\sigma_{A} < \infty)\right] \le \delta \mathbb{P}_{x}(\sigma_{A}^{(p)} < \infty) .$$

By induction, we obtain $\mathbb{P}_x(\sigma_A^{(p)} < \infty) \le \delta^p$ for every $p \in \mathbb{N}^*$ and $x \in A$. Thus, for $x \in A$,

$$U(x,A) = \mathbb{E}_x[N_A] \le 1 + \sum_{p=1}^{\infty} \mathbb{P}_x(\sigma_A^{(p)} < \infty) \le (1 - \delta)^{-1}.$$

Since by **??** for all $x \in X$, $U(x,A) \leq \sup_{y \in A} U(y,A)$, (2.1) follows. (ii) By **??**, $\mathbb{P}_x(\sigma_A^{(n)} < \infty) = 1$ for every $n \in \mathbb{N}$ and $x \in A$. Then,

$$\mathbb{P}_x(N_A = \infty) = \mathbb{P}_x\left(\bigcap_{n=1}^{\infty} \{\sigma_A^{(n)} < \infty\}\right) = 1.$$

2.7 1. Using the Markov property,

$$P^{n}f(x) = \mathbb{E}_{x}[f(X_{n})] = \mathbb{E}_{x}[\mathbb{1}\{n \leq \sigma_{A}\}f(X_{n})] + \sum_{j=1}^{n-1}\mathbb{E}_{x}[\mathbb{1}\{\sigma_{A} = j\}f(X_{n})]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1}\mathbb{E}_{x}\left[\mathbb{1}\{\sigma_{A} = j\}\mathbb{E}_{X_{j}}[f(X_{n-j})]\right]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1}\mathbb{E}_{x}[\mathbb{1}\{\sigma_{A} \geq j\}\mathbb{1}_{A}(X_{j})P^{n-j}f(X_{j})]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1}{}_{A}^{j}P(\mathbb{1}_{A} \times P^{n-j}f)(x) . \qquad (2.5)$$

2. The last exit decomposition is established analogously.

$$P^{n}f(x) = \mathbb{E}_{x}[f(X_{n})]$$

$$= \mathbb{E}_{x}[\mathbb{1}_{\{n \leq \sigma_{A}\}}f(X_{n})] + \sum_{j=1}^{n-1} \mathbb{E}_{x}[\mathbb{1}_{\{X_{j} \in A, X_{j+1} \notin A, \dots, X_{n-1} \notin A\}}f(X_{n})]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1} \mathbb{E}_{x}[\mathbb{1}_{A}(X_{j})\mathbb{E}_{X_{j}}[\mathbb{1}_{\{X_{1} \notin A, \dots, X_{n-j-1} \notin A\}}f(X_{n-j})]]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1} \mathbb{E}_{x}[\mathbb{1}_{A}(X_{j}) {}^{n-j}Pf(X_{j})]$$

$$= {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1} P^{j}(\mathbb{1}_{A} \times {}^{n-j}Pf)(x) . \qquad (2.6)$$