Problem

Let

- $\pi(dy) = \pi(y)dy$ be probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. As stressed by the expression $\pi(dy) = \pi(y)dy$, we assume that the measure π has a density on \mathbb{R} with respect to the Lebesgue measure and by abuse of notation, we will also call π this density.
- φ(dy) = φ(y)dy be another probability measure on (ℝ, 𝔅(ℝ)). Again, the expression φ(dy) = φ(y)dy means that we assume that the measure φ has a density on ℝ with respect to the Lebesgue measure and by abuse of notation, we will also call φ this density.

In all the exercise, we assume that we can draw according to ϕ and that there exists a constant $\varepsilon > 0$ such that

(A1)
$$\forall x \in \mathbb{R}, \quad \pi(x) > \varepsilon \phi(x) > 0$$

We now construct a family of random variables $(Z_t)_{t \ge 0}$ in the following way.

input : n output: $Z_0, ..., Z_n$ At t = 0, draw $Z_0 \sim \mu$ where μ is arbitrary for $t \leftarrow 1$ to n do • Draw independently, $U_t \sim \text{Unif}(0, 1)$ and $Y_t \sim \phi$ • Letting $\beta : \mathbb{R} \rightarrow]0, 1[$ be the function $\beta = \epsilon \phi/\pi$, we set $Z_t = \begin{cases} Z_{t-1} & \text{if } U_t > \beta(Z_{t-1}) \\ Y_t & \text{if } U_t \leq \beta(Z_{t-1}) \end{cases}$ and

end

QUESTIONS

- For any bounded measurable function h : ℝ → ℝ, write E[h(Z_t)|Z_{t-1}]. Deduce the expression of the Markov kernel P₁ associated to the Markov chain (Z_k)_{k∈ℕ}.
- 2. Show that the Markov kernel P_1 is π -reversible.
- 3. Show that π is the unique invariant probability measure for P_1 .
- 4. Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded measurable function such that $P_1 h = h$. Then, show that *h* is constant.
- 5. Let $(Z_k)_{k \in \mathbb{N}}$ be a Markov chain with Markov kernel P_1 . Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function such that $\pi(|f|) < \infty$. Define

$$A = \left\{ \lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(Z_k) = \pi(f) \right\}$$

Setting $h(x) = \mathbb{E}_x[\mathbf{1}_{A^c}] = \mathbb{P}_x(A^c)$, we admit that $P_1 h = h$ (it is actually proved in the Lecture Notes). Deduce from the previous question that the Law of Large Numbers holds for $(Z_k)_{k \in \mathbb{N}}$ starting from any initial distribution, i.e. for any probability measure ξ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

$$\lim_{n\to\infty}n^{-1}\sum_{k=0}^{n-1}f(Z_k)=\pi(f),\quad \mathbb{P}_{\xi}-a.s.$$

We now let

- Q(x, dy) = q(x, y)dy be a Markov kernel on $\mathbb{R} \times \mathcal{B}(\mathbb{R})$. Thus, we assume that Q admits the Markov kernel density q with respect to the Lebesgue measure.
- *P*₀ be the Markov kernel associated to a "classical" Metropolis-Hastings algorithm, with proposal kernel *Q* and target distribution π, that is for any *x* ∈ ℝ,

$$P_0(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y)$$

where for any $x, y \in \mathbb{R}$,

$$\alpha(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1\right), \quad \bar{\alpha}(x) = 1 - \int Q(x,dz)\alpha(x,z)$$

In addition to Assumption (A1), we now also assume

$$(A2) \qquad \forall x, y \in \mathbb{R}, \quad q(x, y) > 0$$

We now construct a family of random variables $(X_t)_{t \ge 0}$ in the following way.

input : n output: $X_0, ..., X_n$ At t = 0, draw $X_0 \sim \mu$ where μ is arbitrary for $t \leftarrow 1$ to n do • Draw independently, $X'_t \sim P_0(X_{t-1}, \cdot)$, $U_t \sim \text{Unif}(0, 1)$ and $Y_t \sim \phi$ • Letting $\beta : \mathbb{R} \rightarrow]0, 1[$ be the function $\beta = \epsilon \phi/\pi$, we set $X_t = \begin{cases} X'_t & \text{if } U_k > \beta(X'_k) \\ Y_t & \text{if } U_k \leq \beta(X'_k) \end{cases}$

end

QUESTIONS (CONTINUED)

6. For any bounded measurable function h, write $\mathbb{E}[h(X_t)|X_{t-1}]$ in terms of P_0,β and ϕ . Deduce that there exists functions γ_0 and γ_1 such that the Markov kernel P_2 associated to the Markov chain $(X_k)_{k \in \mathbb{N}}$ can be written as

$$P_2(x, dy) = P_0(x, dy)\gamma_0(y) + \gamma_1(x)\phi(y)dy$$

and give the expressions of the functions γ_0 and γ_1 .

- 7. Check that $P_2 = P_0 P_1$
- 8. Show that π is invariant for the Markov kernel P_2 .
- 9. Can we say that π is the unique invariant probability distribution for P_2 ?
- 10. (More Difficult) Show that the Law of Large Numbers for $(X_t)_{t \ge 0}$ holds starting from any initial distribution ξ .