
MAP569 Machine Learning II

PC9: Old exams, and other revisions

Instructions:

Every answer should be explained.

You don’t need to answer all the questions to have a very good grade.

1 (Exam 2019) Problem - Reweighted Learning

In this problem, we study a generic machine learning scheme in which one observe some
independent couples (Xi, Yi) and try to find the best predictor fθ(X̃) according to a given loss
`(Ỹ , f(X̃) and a distribution Q for (X̃, Ỹ ) that may be different from the ones of the (Xi, Yi):

E
[
`(Ỹ , f(X̃))

]
We will assume that we have an algorithm that is able to minimize a weighted loss

1

n

n∑
i=1

wi`
′(Yi, fθ(Xi))

for a loss that is related to ` but not necessarily equal.

1.1 Weighted loss

Assume for that `(Y, fθ(X)) = w(X,Y )`′(Y, fθ(X)) and that the (Xi, Yi) are i.i.d. of law Q.

1. Justify the choice of wi = w(Xi, Yi) in the empirical loss if our goal is to miminize
E [`(Y, fθ(X))].

2. Assume we have a weighted least square algorithm, verify that one can deal with a
relative least square loss

(Y − f)2

Y 2 + ε

but not with a relative least square loss

2(Y − f)2

Y 2 + f2

3. Prove that, in the binary classification setting, starting from the 0/1 loss, `′(Y, f) = 0 if
Y = f and `′(Y, f) = 1 otherwise, one can find the minimizer for any choice of a binary
loss `(Y, f) defined by its four values.

4. Can we extend this result to any loss in a multiclass classification setting?
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1.2 Importance Sampling

1. Assume that (X,Y ) follows a law P with density dP with respect to a measure dλ,
while (X̃, Ỹ ) follows a law Q with density dQ with respect to dλ. Prove that for any
measurable function h

E
[
h(X̃, Ỹ )

]
= E

[
dQ(X,Y )

dP (X,Y )
h(X,Y )

]
as soon as dP (X,Y ) = 0⇒ dQ(X,Y ) = 0.

2. Prove that this formula involves only dQ(X)/dP (X) if P (Y |X) ∼ Q(Y |X).

3. Assume that the observed (Xi, Yi) are independent and such that for any i we assume
that (Xi, Yi) ∼ Pi while we are interested in an expected loss `′(Ỹ , f(X̃)) with respect
to (X̃, Ỹ ) ∼ Q, how to choose the weight wi so that

E

[
1

n

n∑
i=1

wi`
′(Yi, fθ(Xi))

]
= E

[
`′(Ỹ , fθ(X̃))

]
1.3 Stratification, Reweighting and Unbalanced Dataset

We consider the following stratified sampling scenario in a multiclass classification setting.

• we know the probabilities Q(Ỹ = k) in the real world for all the K considered classes.

• the dataset is obtained class by class by sampling uniformly nk samples in each of them.

1. Verify that in any class

E
[
`′(Ỹ , fθ(X̃)

∣∣∣Ỹ = k
]

can be estimated by a unweighted empirical loss.

2. Using the decomposition

E
[
`′(Ỹ , fθ(X̃))

]
=
∑
k

Q
(
Ỹ = k

)
E
[
`′(Ỹ , fθ(X̃)

∣∣∣Ỹ = k
]
,

propose a global weighting scheme to correct the sampling bias.

3. How to adapt this equality if we are interested in

E
[
`(Ỹ , fθ(X̃))

]
with `(Ỹ , f) = C(Ỹ )`′(Ỹ , f)

4. How to use this formula in an unbalanced dataset setting in which

• the proportions of the classes can be very different,
• the proportions in the training dataset do not necessarily correspond to the one in

the real world,
• the cost of an error depends on the true class, i.e. `(Ỹ , f) = C(Ỹ )`′(Ỹ , f)?
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Some complements on Stratification

Let I(h) = E[h(Z)] =
∫
h(z)f(z)dz where the integral is on Rd and f is some density function.

Assume that there exists a partition of Rd intoK regions, D1, . . . , DK . Write µi = E[h(Z)|Z ∈
Di] and σ2i = Var[h(Z)|Z ∈ Di]. Assume that we know αi = P(Z ∈ Di).

1. Propose an estimator S̃n of I(h) that uses the αi.

2. Give the expression of Var(S̃n). Can we compare it to the rough estimator Sn =
n−1

∑n
i=1 h(Zi) of I(h) where (Zi) are iid according to the common density f?

3. In the case of proportional allocation (ni/n = αi), show that Var(S̃n) ≤ Var(Sn).

4. What is the optimal allocation? Any comments?

(PC8) Expectation Maximization algorithm

In the case where we are interested in estimating unknown parameters θ ∈ Rm characterizing
a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al.
1977) can be used when the joint distribution of the missing data X and the observed data
Y is explicit. For all θ ∈ Rm, let pθ be the probability density function of (X,Y ) when the
model is parameterized by θ with respect to a given reference measure µ. The EM algorithm
aims at computing iteratively an approximation of the maximum likelihood estimator which
maximizes the observed data loglikelihood:

`(θ;Y ) = log pθ(Y ) = log

∫
fθ(x, Y )µ(dx) .

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the
maximum likelihood estimator by iteratively maximizing the expected complete data loglike-
lihood.

1. Recall the two steps of an iteration of the EM algorithm.

2. Prove that the loglikelihood monotonically increases along EM iterations.

Let M+
n the space of real-valued n × n symmetric positive matrices. We first show that the

function X 7→ log detX is concave on M+
n .

3. Let X,Y ∈M+
n and λ ∈ [0, 1]. Since X−1/2Y X−1/2 ∈M+

n , it is diagonalisable in some
orthonormal basis and write µ1, . . . , µn the (possibly repeated) entries of the diagonal.
Show that

log det {(1− λ)X + λY } ≥ log detX + λ
n∑
i=1

log(µi)

4. Conclude.

In the following, X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where {(Xi, Yi)}16i6n are i.i.d. in
{−1, 1}×Rd. For k ∈ {−1, 1}, write πk = P(X1 = k). Assume that, conditionally on the event
{X1 = k}, Y1 has a Gaussian distribution with mean µk ∈ Rd and covariance matrix Σ ∈ Rd×d.
In this case, the parameter θ = (π1, µ1, µ−1,Σ) belongs to the set Θ = [0, 1]×Rd×Rd×Rd×d.
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5. Write the complete data loglikelihood.

6. Let θ(t) be the current parameter estimate. Compute θ 7→ Q(θ, θ(t)) (tips: use ωit =
Pθ(t)(Xi = 1|Yi))

7. Compute θ(t+1).

(PC 7) RKHS

Let (Xi)1≤i≤n be n observations in a general space X and k : X × X → R a positive
kernel. W denotes the Reproducing Kernel Hilbert Space associated with k and for all
x ∈ X , φ(x) denotes the function φ(x) : y → k(x, y). The aim is now to perform a PCA
on (φ(X1), . . . , φ(Xn)). It is assumed that

n∑
i=1

φ(Xi) = 0 .

Define
K = (k(Xi, Xj))16i,j6n .

1. Prove that

f1 = argmax
f∈W ; ‖f‖W=1

n∑
i=1

〈φ(Xi), f〉2W

may be written

f1 =
n∑
i=1

α1(i)φ(Xi) , where α1 = argmax
α∈Rn ;αTKα=1

αTK2α .

2. Prove that α1 = λ
−1/2
1 b1 where b1 is the unit eigenvector associated with the largest

eigenvalue λ1 of K.

3. Following the same steps, fj may be written fj =
∑n

i=1 αj(i)φ(xi) with αj = λ
−1/2
j bj .

Write Hd = span{f1, . . . , fd}. Prove that

πHd
(φ(xi)) =

d∑
j=1

λjαj(i)fj .

2 Short Questions

We expect an answer of no more than 2-3 lines for any of those questions.

1. Why is the training error an optimistic estimate of the generalization error?

2. What are the support vectors in a SVM?

3. What is the principle of the back-prop algorithm?

4. What is a gradient boosting algorithm?

5. Why is the k-means clustering algorithm easy to distribute?


