MAP569 Machine Learning II

PC9: Old exams, and other revisions

Instructions:

Every answer should be explained.

You don't need to answer all the questions to have a very good grade.

1 (Exam 2019) Problem - Reweighted Learning

In this problem, we study a generic machine learning scheme in which one observe some independent couples (X_i, Y_i) and try to find the best predictor $f_{\theta}(\tilde{X})$ according to a given loss $\ell(\tilde{Y}, f(\tilde{X}))$ and a distribution Q for (\tilde{X}, \tilde{Y}) that may be different from the ones of the (X_i, Y_i) :

$$\mathbb{E}\left[\ell(\tilde{Y},f(\tilde{X}))\right]$$

We will assume that we have an algorithm that is able to minimize a weighted loss

$$\frac{1}{n}\sum_{i=1}^{n}w_i\ell'(Y_i, f_\theta(X_i))$$

for a loss that is related to ℓ but not necessarily equal.

1.1 Weighted loss

Assume for that $\ell(Y, f_{\theta}(X)) = w(X, Y)\ell'(Y, f_{\theta}(X))$ and that the (X_i, Y_i) are i.i.d. of law Q.

- 1. Justify the choice of $w_i = w(X_i, Y_i)$ in the empirical loss if our goal is to minimize $\mathbb{E}\left[\ell(Y, f_{\theta}(X))\right]$.
- 2. Assume we have a weighted least square algorithm, verify that one can deal with a relative least square loss

$$\frac{(Y-f)^2}{Y^2+\epsilon}$$

but not with a relative least square loss

$$\frac{2(Y-f)^2}{Y^2 + f^2}$$

- 3. Prove that, in the binary classification setting, starting from the 0/1 loss, $\ell'(Y, f) = 0$ if Y = f and $\ell'(Y, f) = 1$ otherwise, one can find the minimizer for any choice of a binary loss $\ell(Y, f)$ defined by its four values.
- 4. Can we extend this result to any loss in a multiclass classification setting?

1.2 Importance Sampling

1. Assume that (X, Y) follows a law P with density dP with respect to a measure $d\lambda$, while (\tilde{X}, \tilde{Y}) follows a law Q with density dQ with respect to $d\lambda$. Prove that for any measurable function h

$$\mathbb{E}\left[h(\tilde{X}, \tilde{Y})\right] = \mathbb{E}\left[\frac{dQ(X, Y)}{dP(X, Y)}h(X, Y)\right]$$

as soon as $dP(X, Y) = 0 \Rightarrow dQ(X, Y) = 0$.

- 2. Prove that this formula involves only dQ(X)/dP(X) if $P(Y|X) \sim Q(Y|X)$.
- 3. Assume that the observed (X_i, Y_i) are independent and such that for any *i* we assume that $(X_i, Y_i) \sim P_i$ while we are interested in an expected loss $\ell'(\tilde{Y}, f(\tilde{X}))$ with respect to $(\tilde{X}, \tilde{Y}) \sim Q$, how to choose the weight w_i so that

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}w_{i}\ell'(Y_{i},f_{\theta}(X_{i}))\right] = \mathbb{E}\left[\ell'(\tilde{Y},f_{\theta}(\tilde{X}))\right]$$

1.3 Stratification, Reweighting and Unbalanced Dataset

We consider the following stratified sampling scenario in a multiclass classification setting.

- we know the probabilities $Q(\tilde{Y} = k)$ in the real world for all the K considered classes.
- the dataset is obtained class by class by sampling uniformly n_k samples in each of them.
- 1. Verify that in any class

$$\mathbb{E}\left[\ell'(\tilde{Y}, f_{\theta}(\tilde{X}) \middle| \tilde{Y} = k\right]$$

can be estimated by a unweighted empirical loss.

2. Using the decomposition

$$\mathbb{E}\left[\ell'(\tilde{Y}, f_{\theta}(\tilde{X}))\right] = \sum_{k} Q\left(\tilde{Y} = k\right) \mathbb{E}\left[\ell'(\tilde{Y}, f_{\theta}(\tilde{X}) \middle| \tilde{Y} = k\right],$$

propose a global weighting scheme to correct the sampling bias.

3. How to adapt this equality if we are interested in

$$\mathbb{E}\left[\ell(\tilde{Y},f_{\theta}(\tilde{X}))\right]$$

with $\ell(\tilde{Y}, f) = C(\tilde{Y})\ell'(\tilde{Y}, f)$

- 4. How to use this formula in an unbalanced dataset setting in which
 - the proportions of the classes can be very different,
 - the proportions in the training dataset do not necessarily correspond to the one in the real world,
 - the cost of an error depends on the true class, i.e. $\ell(\tilde{Y}, f) = C(\tilde{Y})\ell'(\tilde{Y}, f)$?

Some complements on Stratification

Let $I(h) = \mathbb{E}[h(Z)] = \int h(z)f(z)dz$ where the integral is on \mathbb{R}^d and f is some density function. Assume that there exists a partition of \mathbb{R}^d into K regions, D_1, \ldots, D_K . Write $\mu_i = \mathbb{E}[h(Z)|Z \in D_i]$ and $\sigma_i^2 = \operatorname{Var}[h(Z)|Z \in D_i]$. Assume that we know $\alpha_i = P(Z \in D_i)$.

- 1. Propose an estimator \tilde{S}_n of I(h) that uses the α_i .
- 2. Give the expression of $\operatorname{Var}(\tilde{S}_n)$. Can we compare it to the rough estimator $S_n = n^{-1} \sum_{i=1}^n h(Z_i)$ of I(h) where (Z_i) are iid according to the common density f?
- 3. In the case of proportional allocation $(n_i/n = \alpha_i)$, show that $\operatorname{Var}(\tilde{S}_n) \leq \operatorname{Var}(S_n)$.
- 4. What is the optimal allocation? Any comments?

(PC8) Expectation Maximization algorithm

In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X and the observed data Y is explicit. For all $\theta \in \mathbb{R}^m$, let p_{θ} be the probability density function of (X, Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$\ell(\theta; Y) = \log p_{\theta}(Y) = \log \int f_{\theta}(x, Y) \mu(\mathrm{d}x).$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglike-lihood.

- 1. Recall the two steps of an iteration of the EM algorithm.
- 2. Prove that the loglikelihood monotonically increases along EM iterations.

Let M_n^+ the space of real-valued $n \times n$ symmetric positive matrices. We first show that the function $X \mapsto \log \det X$ is concave on M_n^+ .

3. Let $X, Y \in M_n^+$ and $\lambda \in [0, 1]$. Since $X^{-1/2}YX^{-1/2} \in M_n^+$, it is diagonalisable in some orthonormal basis and write μ_1, \ldots, μ_n the (possibly repeated) entries of the diagonal. Show that

$$\log \det \{(1-\lambda)X + \lambda Y\} \ge \log \det X + \lambda \sum_{i=1}^{n} \log(\mu_i)$$

4. Conclude.

In the following, $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ where $\{(X_i, Y_i)\}_{1 \le i \le n}$ are i.i.d. in $\{-1, 1\} \times \mathbb{R}^d$. For $k \in \{-1, 1\}$, write $\pi_k = \mathbb{P}(X_1 = k)$. Assume that, conditionally on the event $\{X_1 = k\}, Y_1$ has a Gaussian distribution with mean $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$. In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$.

- 5. Write the complete data loglikelihood.
- 6. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q(\theta, \theta^{(t)})$ (tips: use $\omega_t^i = \mathbb{P}_{\theta^{(t)}}(X_i = 1|Y_i)$)
- 7. Compute $\theta^{(t+1)}$.

(PC 7) RKHS

Let $(X_i)_{1 \leq i \leq n}$ be *n* observations in a general space \mathcal{X} and $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive kernel. \mathcal{W} denotes the Reproducing Kernel Hilbert Space associated with *k* and for all $x \in \mathcal{X}, \phi(x)$ denotes the function $\phi(x) : y \to k(x, y)$. The aim is now to perform a PCA on $(\phi(X_1), \ldots, \phi(X_n))$. It is assumed that

$$\sum_{i=1}^n \phi(X_i) = 0.$$

Define

$$\mathbf{K} = \left(k(X_i, X_j)\right)_{1 \leq i, j \leq n}$$

1. Prove that

$$f_1 = \operatorname*{argmax}_{f \in \mathcal{W}; \|f\|_{\mathcal{W}} = 1} \sum_{i=1}^n \langle \phi(X_i), f \rangle_{\mathcal{W}}^2$$

may be written

$$f_1 = \sum_{i=1}^n \alpha_1(i)\phi(X_i)$$
, where $\alpha_1 = \operatorname*{argmax}_{\alpha \in \mathbb{R}^n; \, \alpha^T \mathbf{K} \alpha = 1} \alpha^T \mathbf{K}^2 \alpha$

- 2. Prove that $\alpha_1 = \lambda_1^{-1/2} b_1$ where b_1 is the unit eigenvector associated with the largest eigenvalue λ_1 of **K**.
- 3. Following the same steps, f_j may be written $f_j = \sum_{i=1}^n \alpha_j(i)\phi(x_i)$ with $\alpha_j = \lambda_j^{-1/2}b_j$. Write $H_d = \operatorname{span}\{f_1, \ldots, f_d\}$. Prove that

$$\pi_{H_d}(\phi(x_i)) = \sum_{j=1}^d \lambda_j \alpha_j(i) f_j \; .$$

2 Short Questions

We expect an answer of no more than 2-3 lines for any of those questions.

- 1. Why is the training error an optimistic estimate of the generalization error?
- 2. What are the support vectors in a SVM?
- 3. What is the principle of the back-prop algorithm?
- 4. What is a gradient boosting algorithm?
- 5. Why is the k-means clustering algorithm easy to distribute?