MAP569 Machine Learning II

PC9: Old exams, and other revisions

Instructions:
Every answer should be explained.

You don’t need to answer all the questions to have a very good grade.

1 (Exam 2019) Problem - Reweighted Learning

In this problem, we study a generic machine learning scheme in which one observe some
independent couples (X;,Y;) and try to find the best predictor fy(X) according to a given loss
(Y, f(X) and a distribution @ for (X,Y’) that may be different from the ones of the (Xj,Y;):

E (7, 7(X))]

We will assume that we have an algorithm that is able to minimize a weighted loss
I,
=S Wil (Y (X))
i=1
for a loss that is related to £ but not necessarily equal.

1.1 Weighted loss
Assume for that (Y] fo(X)) = w(X,Y)'(Y, fo(X)) and that the (X;,Y;) are i.i.d. of law Q.
1. Justify the choice of w; = w(X;,Y;) in the empirical loss if our goal is to miminize
E (Y, fo(X))]-

2. Assume we have a weighted least square algorithm, verify that one can deal with a
relative least square loss

Y - f)?
Y2 +e
but not with a relative least square loss
2(Y — f)°
Y2+ f?
3. Prove that, in the binary classification setting, starting from the 0/1 loss, ¢/(Y, f) = 0 if

Y = f and ¢ (Y, f) = 1 otherwise, one can find the minimizer for any choice of a binary
loss £(Y, f) defined by its four values.

4. Can we extend this result to any loss in a multiclass classification setting?
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1.2
1.

1.3

Importance Sampling

Assume that (X,Y) follows a law P with density dP with respect to a measure d\,
while (X,Y) follows a law @ with density d@ with respect to d\. Prove that for any
measurable function h

dQ(X,Y)
dP(X,Y)

as soon as dP(X,Y) =0=dQ(X,Y) =0.

E [h(}?,?)} ~E [ h(X,Y)

Prove that this formula involves only dQ(X)/dP(X) if P(Y|X) ~ Q(Y]X).

Assume that the observed (X;,Y;) are independent and such that for any i we assume
that (X;,Y;) ~ P; while we are interested in an expected loss ¢'(Y, f(X)) with respect
to (X,Y) ~ @, how to choose the weight w; so that

E %Zwie’(n,ﬁg(&)) ZE[E’(?J@(X))}
i=1

Stratification, Reweighting and Unbalanced Dataset

We consider the following stratified sampling scenario in a multiclass classification setting.

1.

we know the probabilities Q(Y = k) in the real world for all the K considered classes.

the dataset is obtained class by class by sampling uniformly nj; samples in each of them.
Verify that in any class

E [e’(f/, fg(X)‘if - k}
can be estimated by a unweighted empirical loss.

Using the decomposition

[0V, fo(X)] =3 Q(V = k) E[£(V. fo(%)
k

ff:k},

propose a global weighting scheme to correct the sampling bias.

How to adapt this equality if we are interested in
E [0V, fo(5))]

with ¢(Y, f) = C(V)¢(Y, f)

. How to use this formula in an unbalanced dataset setting in which

e the proportions of the classes can be very different,

e the proportions in the training dataset do not necessarily correspond to the one in
the real world,

e the cost of an error depends on the true class, i.e. (Y, f)=CY)l' (Y, f)?
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Some complements on Stratification

Let I(h) = E[h(Z)] = [ h(z)f(z)dz where the integral is on R? and f is some density function.
Assume that there exists a partition of R? into K regions, D1, ..., Dx. Write u; = E[h(Z)|Z €
D;] and ¢? = Var[h(Z)|Z € D;]. Assume that we know o; = P(Z € D;).

1. Propose an estimator S,, of I(h) that uses the a.

2. Give the expression of Var(S,). Can we compare it to the rough estimator S, =
n~t3°" | h(Z;) of I(h) where (Z;) are iid according to the common density f?

3. In the case of proportional allocation (n;/n = o), show that Var(S,) < Var(S,,).

4. What is the optimal allocation? Any comments?

(PC8) Expectation Maximization algorithm

In the case where we are interested in estimating unknown parameters # € R characterizing
a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al.
1977) can be used when the joint distribution of the missing data X and the observed data
Y is explicit. For all § € R™, let py be the probability density function of (X,Y) when the
model is parameterized by 6 with respect to a given reference measure u. The EM algorithm
alms at computing iteratively an approximation of the maximum likelihood estimator which
maximizes the observed data loglikelihood:

U(0;Y) = logpe(Y) = 10g/f9($ay)u(d$)-

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the
maximum likelihood estimator by iteratively maximizing the expected complete data loglike-
lihood.

1. Recall the two steps of an iteration of the EM algorithm.
2. Prove that the loglikelihood monotonically increases along EM iterations.

Let M,5 the space of real-valued n x n symmetric positive matrices. We first show that the
function X +— logdetX is concave on M, .

3. Let X,Y € Mt and X € [0,1]. Since X~ 1/2YX~1/2 € M}, it is diagonalisable in some
orthonormal basis and write p1, ..., u, the (possibly repeated) entries of the diagonal.

Show that n
logdet {(1 — A\)X + AY'} > logdetX + A Z log(4;)
i=1
4. Conclude.
In the following, X = (X1,...,Xy) and Y = (Y1,...,Y,) where {(X;,Y)) }1<i<n are i.id. in
{~1,1} xR%. For k € {—1,1}, write 7, = P(X; = k). Assume that, conditionally on the event

{X; =k}, Y1 has a Gaussian distribution with mean y, € R? and covariance matrix ¥ € R4,
In this case, the parameter 6 = (71, 1, t—1, 2) belongs to the set © = [0, 1] x R x R% x R4,
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5. Write the complete data loglikelihood.

6. Let #®) be the current parameter estimate. Compute 6 — Q(6,0®)) (tips: use wi =
Py (X = 1]Y7))

7. Compute #+D.

(PC 7) RKHS

Let (X;)i<i<n be m observations in a general space X and k : X x X — R a positive
kernel. W denotes the Reproducing Kernel Hilbert Space associated with k£ and for all
x € X, ¢(x) denotes the function ¢(z) : y — k(x,y). The aim is now to perform a PCA
n (¢(X1),...,0(Xy)). It is assumed that

Z¢<XZ-) =0.

Define
K = (k(X;, X;))

1<ij<n °

1. Prove that

n

= X)), f)2
f fei‘éf??ﬁ‘jj:l;d’( ) )3y

may be written

fi= Zal(i)qﬁ(Xi) , where oy = argmax ol K2%a.
i=1

a€eR”; aTKa=1

2. Prove that a3 = )\1_1/ 2b1 where b; is the unit eigenvector associated with the largest
eigenvalue A\; of K.

3. Following the same steps, f; may be written f; = > " | o;(i)¢p(z;) with o = )\;1/2bj.
Write H;y = span{ f1,..., fq}. Prove that

d
mr,($(2:)) = ) e () f -
j=1

2  Short Questions

We expect an answer of no more than 2-3 lines for any of those questions.
1. Why is the training error an optimistic estimate of the generalization error?
2. What are the support vectors in a SVM?

What is the principle of the back-prop algorithm?

What is a gradient boosting algorithm?

AR o

Why is the k-means clustering algorithm easy to distribute?



