EXERCISE 1 (*K*-MEANS ALGORITHM) The *K*-means algorithm is a procedure which aims at partitioning a data set into *K* distinct, non-overlapping clusters. Consider $n \ge 1$ observations (X_1, \ldots, X_n) taking values in \mathbb{R}^p . The *K*-means algorithm seeks to minimize over all partitions $C = (C_1, \ldots, C_K)$ of $\{1, \ldots, n\}$ the following criterion

$$\operatorname{crit}(C) = \sum_{k=1}^{K} \frac{1}{2|C_k|} \sum_{a,b \in C_k} \|X_a - X_b\|^2,$$

where for all $1 \leq i \leq n$, $1 \leq k \leq K$, $i \in C_k$ if and only if X_i is in the k-th cluster.

Symmetrization

1. Establish that

$$\operatorname{crit}(C) = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \langle X_a, X_a - X_b \rangle = \sum_{k=1}^{K} \sum_{a \in C_k} \|X_a - \bar{X}_{C_k}\|^2,$$

where

$$\bar{X}_{C_k} = \frac{1}{|C_k|} \sum_{b \in C_k} X_b$$

Independent observations

Assume that the observations are random and independent. Write, for all $1 \leq a \leq n$, $\mathbb{E}[X_a] = \mu_a \in \mathbb{R}^p$ so that

$$X_a = \mu_a + \varepsilon_a \,,$$

with $(\varepsilon_1, \ldots, \varepsilon_n)$ centered and independent random variables. For all $1 \leq a \leq n$, define

$$v_a = \operatorname{trace}(\operatorname{cov}(X_a)).$$

2. Check that the expected value of the criterion is

$$\mathbb{E}[\operatorname{crit}(C)] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\|\mu_a - \mu_b\|^2 + v_a + v_b \right) \mathbb{1}_{a \neq b}.$$

3. What is the value of $\mathbb{E}[\operatorname{crit}(C)]$ when for all $1 \leq k \leq K$, there exists $m_k \in \mathbb{R}^p$ such that for all $a \in C_k$, $\mu_a = m_k$?

Mixture model

Assume now that there exists a partition $C^* = (C_1^*, \ldots, C_K^*)$ such that there exist m_1^*, \ldots, m_K^* in \mathbb{R}^p and $\gamma_1^*, \ldots, \gamma_K^*$ in \mathbb{R}^+_+ satisfying $\mu_a = m_k^*$ and $v_a = \gamma_k^*$ for all $a \in C_k^*$ and $k = 1, \ldots, K$. This section investigates under which condition the expected value of the K-means criterion is minimum at C^* .

- 4. What is the value of $\mathbb{E}[\operatorname{crit}(C^*)]$?
- 5. In the special case where $\gamma_1^* = \ldots = \gamma_K^* = \gamma$, which partition $C = (C_1, \ldots, C_K)$ minimizes $\mathbb{E}[\operatorname{crit}(C)]$ under the constraint for all $k \in [\![1, K]\!]$ and all $a \in C_k$, $v_a = \gamma$?
- 6. Assume now that C^* contains K = 3 groups of size s (with s even),

$$m_1 = (1, 0, 0)^T$$
, $m_2 = (0, 1, 0)^T$, $m_3 = (0, 1 - \tau, \sqrt{1 - (1 - \tau)^2})^T$

with $\tau > 0$, and

 $\gamma_1 = \gamma_+, \quad \gamma_2 = \gamma_3 = \gamma_-.$

What is the value of $||m_2 - m_3||^2$?

- 7. Compute $\mathbb{E}[\operatorname{crit}(C^*)]$.
- 8. Define C' obtained by splitting C_1^* into two groups C'_1, C'_2 of equal size s/2 and by merging C_2^* and C_3^* into a single group C'_3 of size 2s. Check that

$$\mathbb{E}[\operatorname{crit}(C')] = s(\gamma_{+} + 2\gamma_{-} + \tau) - (2\gamma_{+} + \gamma_{-}).$$

- 9. Under which assumption $\mathbb{E}[\operatorname{crit}(C^*)] < \mathbb{E}[\operatorname{crit}(C')]$?
- **EXERCISE 2** (EXPECTATION MAXIMIZATION ALGORITHM) In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X and the observed data Y is explicit. For all $\theta \in \mathbb{R}^m$, let p_{θ} be the probability density function of (X, Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$\ell(\theta; Y) = \log f_{\theta}(Y) = \log \int p_{\theta}(x, Y) \mu(\mathrm{d}x).$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an initial value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the *t*-th iteration for $t \ge 0$, then the next iteration of EM is decomposed into two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left[\log p_{\theta}(X, Y) | Y \right]$$

M step Determine $\theta^{(t+1)}$ by maximizing the function Q:

$$\theta^{(t+1)} \in \operatorname{argmax}_{\theta} Q(\theta, \theta^{(t)})$$
 .

1. Prove the following crucial property motivates the EM algorithm. For all $\theta, \theta^{(t)}$,

$$\ell(Y;\theta) - \ell(Y;\theta^{(t)}) \ge Q(\theta,\theta^{(t)}) - Q(\theta^{(t)},\theta^{(t)}).$$

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikelihoods $(\ell(Y; \theta^{(t)}))_{\star}$.

In the following, $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ where $\{(X_i, Y_i)\}_{1 \le i \le n}$ are i.i.d. in $\{-1, 1\} \times \mathbb{R}^d$. For $k \in \{-1, 1\}$, write $\pi_k = \mathbb{P}(X_1 = k)$. Assume that, conditionally on the event $\{X_1 = k\}$, Y_1 has a Gaussian distribution with mean $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$. In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$.

- 2. Write the complete data loglikelihood.
- 3. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q(\theta, \theta^{(t)})$ (tips: use $\omega_t^i = \mathbb{P}_{\theta^{(t)}}(X_i = 1|Y_i)$)
- 4. Compute $\theta^{(t+1)}$.