Exercise 1 (K-means algorithm) The K-means algorithm is a procedure which aims at partitioning a data set into K distinct, non-overlapping clusters. Consider $n \geqslant 1$ observations $\left(X_{1}, \ldots, X_{n}\right)$ taking values in \mathbb{R}^{p}. The K-means algorithm seeks to minimize over all partitions $C=\left(C_{1}, \ldots, C_{K}\right)$ of $\{1, \ldots, n\}$ the following criterion

$$
\operatorname{crit}(C)=\sum_{k=1}^{K} \frac{1}{2\left|C_{k}\right|} \sum_{a, b \in C_{k}}\left\|X_{a}-X_{b}\right\|^{2}
$$

where for all $1 \leqslant i \leqslant n, 1 \leqslant k \leqslant K, i \in C_{k}$ if and only if X_{i} is in the k-th cluster.

Symmetrization

1. Establish that

$$
\operatorname{crit}(C)=\sum_{k=1}^{K} \frac{1}{\left|C_{k}\right|} \sum_{a, b \in C_{k}}\left\langle X_{a}, X_{a}-X_{b}\right\rangle=\sum_{k=1}^{K} \sum_{a \in C_{k}}\left\|X_{a}-\bar{X}_{C_{k}}\right\|^{2}
$$

where

$$
\bar{X}_{C_{k}}=\frac{1}{\left|C_{k}\right|} \sum_{b \in C_{k}} X_{b}
$$

Independent observations

Assume that the observations are random and independent. Write, for all $1 \leqslant a \leqslant n, \mathbb{E}\left[X_{a}\right]=\mu_{a} \in \mathbb{R}^{p}$ so that

$$
X_{a}=\mu_{a}+\varepsilon_{a}
$$

with $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ centered and independent random variables. For all $1 \leqslant a \leqslant n$, define

$$
v_{a}=\operatorname{trace}\left(\operatorname{cov}\left(X_{a}\right)\right)
$$

2. Check that the expected value of the criterion is

$$
\mathbb{E}[\operatorname{crit}(C)]=\frac{1}{2} \sum_{k=1}^{K} \frac{1}{\left|C_{k}\right|} \sum_{a, b \in C_{k}}\left(\left\|\mu_{a}-\mu_{b}\right\|^{2}+v_{a}+v_{b}\right) \mathbb{1}_{a \neq b}
$$

3. What is the value of $\mathbb{E}[\operatorname{crit}(C)]$ when for all $1 \leqslant k \leqslant K$, there exists $m_{k} \in \mathbb{R}^{p}$ such that for all $a \in C_{k}$, $\mu_{a}=m_{k}$?

Mixture model

Assume now that there exists a partition $C^{*}=\left(C_{1}^{*}, \ldots, C_{K}^{*}\right)$ such that there exist $m_{1}^{*}, \ldots, m_{K}^{*}$ in \mathbb{R}^{p} and $\gamma_{1}^{*}, \ldots, \gamma_{K}^{*}$ in \mathbb{R}_{+}^{*} satisfying $\mu_{a}=m_{k}^{*}$ and $v_{a}=\gamma_{k}^{*}$ for all $a \in C_{k}^{*}$ and $k=1, \ldots, K$. This section investigates under which condition the expected value of the K-means criterion is minimum at C^{*}.
4. What is the value of $\mathbb{E}\left[\operatorname{crit}\left(C^{*}\right)\right]$?
5. In the special case where $\gamma_{1}^{*}=\ldots=\gamma_{K}^{*}=\gamma$, which partition $C=\left(C_{1}, \ldots, C_{K}\right)$ minimizes $\mathbb{E}[\operatorname{crit}(C)]$ under the constraint for all $k \in \llbracket 1, K \rrbracket$ and all $a \in C_{k}, v_{a}=\gamma$?
6. Assume now that C^{*} contains $K=3$ groups of size s (with s even),

$$
m_{1}=(1,0,0)^{T}, \quad m_{2}=(0,1,0)^{T}, \quad m_{3}=\left(0,1-\tau, \sqrt{1-(1-\tau)^{2}}\right)^{T}
$$

with $\tau>0$, and

$$
\gamma_{1}=\gamma_{+}, \quad \gamma_{2}=\gamma_{3}=\gamma_{-}
$$

What is the value of $\left\|m_{2}-m_{3}\right\|^{2}$?

7. Compute $\mathbb{E}\left[\operatorname{crit}\left(C^{*}\right)\right]$.

8. Define C^{\prime} obtained by splitting C_{1}^{*} into two groups $C_{1}^{\prime}, C_{2}^{\prime}$ of equal size $s / 2$ and by merging C_{2}^{*} and C_{3}^{*} into a single group C_{3}^{\prime} of size $2 s$. Check that

$$
\mathbb{E}\left[\operatorname{crit}\left(C^{\prime}\right)\right]=s\left(\gamma_{+}+2 \gamma_{-}+\tau\right)-\left(2 \gamma_{+}+\gamma_{-}\right) .
$$

9. Under which assumption $\mathbb{E}\left[\operatorname{crit}\left(C^{*}\right)\right]<\mathbb{E}\left[\operatorname{crit}\left(C^{\prime}\right)\right]$?

Exercise 2 (Expectation Maximization algorithm) In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^{m}$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X and the observed data Y is explicit. For all $\theta \in \mathbb{R}^{m}$, let p_{θ} be the probability density function of (X, Y) when the model is parameterized by θ with respect to a given reference measure μ. The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$
\ell(\theta ; Y)=\log f_{\theta}(Y)=\log \int p_{\theta}(x, Y) \mu(\mathrm{d} x)
$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the t-th iteration for $t \geqslant 0$, then the next iteration of EM is decomposed into two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$
Q\left(\theta, \theta^{(t)}\right)=\mathbb{E}_{\theta^{(t)}}\left[\log p_{\theta}(X, Y) \mid Y\right] .
$$

M step Determine $\theta^{(t+1)}$ by maximizing the function Q :

$$
\theta^{(t+1)} \in \operatorname{argmax}_{\theta} Q\left(\theta, \theta^{(t)}\right) .
$$

1. Prove the following crucial property motivates the EM algorithm. For all $\theta, \theta^{(t)}$,

$$
\ell(Y ; \theta)-\ell\left(Y ; \theta^{(t)}\right) \geqslant Q\left(\theta, \theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right) .
$$

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikelihoods $\left(\ell\left(Y ; \theta^{(t)}\right)\right)_{t}$.

In the following, $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ where $\left\{\left(X_{i}, Y_{i}\right)\right\}_{1 \leqslant i \leqslant n}$ are i.i.d. in $\{-1,1\} \times \mathbb{R}^{d}$. For $k \in\{-1,1\}$, write $\pi_{k}=\mathbb{P}\left(X_{1}=k\right)$. Assume that, conditionally on the event $\left\{X_{1}=k\right\}, Y_{1}$ has a Gaussian distribution with mean $\mu_{k} \in \mathbb{R}^{d}$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$. In this case, the parameter $\theta=\left(\pi_{1}, \mu_{1}, \mu_{-1}, \Sigma\right)$ belongs to the set $\Theta=[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d \times d}$.
2. Write the complete data loglikelihood.
3. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q\left(\theta, \theta^{(t)}\right)$ (tips: use $\omega_{t}^{i}=\mathbb{P}_{\theta^{(t)}}\left(X_{i}=1 \mid Y_{i}\right)$)
4. Compute $\theta^{(t+1)}$.

