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Exercise 1 (K-means algorithm) The K-means algorithm is a procedure which aims at partitioning
a data set into K distinct, non-overlapping clusters. Consider n > 1 observations (X1, . . . , Xn) taking values
in Rp. The K-means algorithm seeks to minimize over all partitions C = (C1, . . . , CK) of {1, . . . , n} the
following criterion

crit(C) =

K∑
k=1

1

2|Ck|
∑

a,b∈Ck

‖Xa −Xb‖2 ,

where for all 1 6 i 6 n, 1 6 k 6 K, i ∈ Ck if and only if Xi is in the k-th cluster.

Symmetrization

1. Establish that

crit(C) =

K∑
k=1

1

|Ck|
∑

a,b∈Ck

〈Xa, Xa −Xb〉 =

K∑
k=1

∑
a∈Ck

‖Xa − X̄Ck
‖2 ,

where
X̄Ck

=
1

|Ck|
∑
b∈Ck

Xb .

Independent observations

Assume that the observations are random and independent. Write, for all 1 6 a 6 n, E[Xa] = µa ∈ Rp so
that

Xa = µa + εa ,

with (ε1, . . . , εn) centered and independent random variables. For all 1 6 a 6 n, define

va = trace(cov(Xa)) .

2. Check that the expected value of the criterion is

E[crit(C)] =
1

2

K∑
k=1

1

|Ck|
∑

a,b∈Ck

(
‖µa − µb‖2 + va + vb

)
1a 6=b .

3. What is the value of E[crit(C)] when for all 1 6 k 6 K, there exists mk ∈ Rp such that for all a ∈ Ck,
µa = mk ?

Mixture model

Assume now that there exists a partition C∗ = (C∗1 , . . . , C
∗
K) such that there exist m∗1, . . . ,m

∗
K in Rp and

γ∗1 , . . . , γ
∗
K in R∗+ satisfying µa = m∗k and va = γ∗k for all a ∈ C∗k and k = 1, . . . ,K. This section investigates

under which condition the expected value of the K-means criterion is minimum at C∗.

4. What is the value of E[crit(C∗)]?

5. In the special case where γ∗1 = . . . = γ∗K = γ, which partition C = (C1, . . . , CK) minimizes E[crit(C)]
under the constraint for all k ∈ J1,KK and all a ∈ Ck, va = γ?

6. Assume now that C∗ contains K = 3 groups of size s (with s even),

m1 = (1, 0, 0)T , m2 = (0, 1, 0)T , m3 = (0, 1− τ,
√

1− (1− τ)2)T ,

with τ > 0, and
γ1 = γ+, γ2 = γ3 = γ−.

What is the value of ‖m2 −m3‖2?
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7. Compute E[crit(C∗)].

8. Define C ′ obtained by splitting C∗1 into two groups C ′1, C
′
2 of equal size s/2 and by merging C∗2 and C∗3

into a single group C ′3 of size 2s. Check that

E[crit(C ′)] = s(γ+ + 2γ− + τ)− (2γ+ + γ−) .

9. Under which assumption E[crit(C∗)] < E[crit(C ′)]?

Exercise 2 (Expectation Maximization algorithm) In the case where we are interested in
estimating unknown parameters θ ∈ Rm characterizing a model with missing data, the Expectation Maximiza-
tion (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X
and the observed data Y is explicit. For all θ ∈ Rm, let pθ be the probability density function of (X,Y ) when
the model is parameterized by θ with respect to a given reference measure µ. The EM algorithm aims at
computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed
data loglikelihood:

`(θ;Y ) = log fθ(Y ) = log

∫
pθ(x, Y )µ(dx).

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood
estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value θ(0)

and let θ(t) be the estimate at the t-th iteration for t > 0, then the next iteration of EM is decomposed into
two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distri-
bution of the missing data given the observed data parameterized by θ(t):

Q(θ, θ(t)) = Eθ(t) [log pθ(X,Y )|Y ] .

M step Determine θ(t+1) by maximizing the function Q:

θ(t+1) ∈ argmaxθQ(θ, θ(t)) .

1. Prove the following crucial property motivates the EM algorithm. For all θ, θ(t),

`(Y ; θ)− `(Y ; θ(t)) > Q(θ, θ(t))−Q(θ(t), θ(t)) .

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikeli-
hoods

(
`(Y ; θ(t))

)
t
.

In the following, X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where {(Xi, Yi)}16i6n are i.i.d. in {−1, 1}×Rd.
For k ∈ {−1, 1}, write πk = P(X1 = k). Assume that, conditionally on the event {X1 = k}, Y1 has a
Gaussian distribution with mean µk ∈ Rd and covariance matrix Σ ∈ Rd×d. In this case, the parameter
θ = (π1, µ1, µ−1,Σ) belongs to the set Θ = [0, 1]× Rd × Rd × Rd×d.

2. Write the complete data loglikelihood.

3. Let θ(t) be the current parameter estimate. Compute θ 7→ Q(θ, θ(t)) (tips: use ωit = Pθ(t)(Xi = 1|Yi))

4. Compute θ(t+1).
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