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Exercise 1 (Refresher on matrices)

1. Let A be a n× d matrix with real entries. Show that range(A) = range(AA>).

2. Let {Uk}1≤k≤r be a family of r orthonormal vectors of Rn. Show that
∑r
k=1 UkU

>
k is the matrix

associated with the orthogonal projection onto H = {
∑r
k=1 αkUk ; α1, . . . , αr ∈ R}. Deduce that if A

is a n× d matrix with real entries such that each column of A is in H, then,(
r∑

k=1

UkU
>
k

)
A = A .

3. Let p < d and B ∈ Rd×p such that B>B = Ip. Let us denote B = (bij) 1≤i≤d
1≤j≤p

the components of B

and for all i ∈ J1, dK, αi =
∑p
j=1 b

2
ij . Show that

∑d
i=1 αi = p and αi ≤ 1.

Exercise 2 (Principal Component Analysis) Principal component analysis is a multivariate
technique which aims at analyzing the statistical structure of high dimensional dependent observations by
representing data using orthogonal variables called principal components. Reducing the dimensionality of the
data is motivated by several practical reasons such as improving computational complexity. Let (Xi)16i6n be
i.i.d. random variables in Rd and consider the matrix X ∈ Rn×d such that the i-th row of X is the observation
X>i . In this exercise, it is assumed that data are preprocessed so that the columns of X are centered. This
means that for all 1 6 k 6 d,

∑n
i=1Xi,k = 0. Let Σn be the empirical covariance matrix:

Σn = n−1
n∑
i=1

XiX
>
i .

Principal Component Analysis aims at reducing the dimensionality of the observations (Xi)16i6n using a
compression matrix U ∈ Rd×p with orthonormal columns with p 6 d so that for each 1 6 i 6 n, U>Xi ia
a low dimensional representation of Xi. The original observation may then be partially recovered using U.
Principal Component Analysis computes U using the least squares approach:

U? ∈ argmin
U∈Rd×p

U>U=Ip

n∑
i=1

‖Xi −UU>Xi‖2 ,

1. Prove that for all matrix A ∈ Rn×d with rank r, there exist σ1 > . . . > σr > 0 such that

A =

r∑
k=1

σkukv
>
k ,

where {u1, . . . , ur} ⊂ Rn and {v1, . . . , vr} ⊂ Rd are two families of orthonormal vectors. The vec-
tors {u1, . . . , ur} (resp. {v1, . . . , vr}) are the left-singular (resp. right-singular) vectors associated
with {σ1, . . . , σr}, the singular values of A. If U denotes the Rn×r matrix with columns given by
{u1, . . . , ur} and V denotes the Rd×r matrix with columns given by {v1, . . . , vr}, then the singular
value decomposition of A may also be written as

A = UDrV
> ,

where Dr = diag(σ1, . . . , σr). Then, A>A and AA> are positive semidefinite such that

A>A = VD2
rV
> and AA> = UD2

rU
> .

In the framwework of this exercise, nΣn = X>X so that diagonalizing nΣn is equivalent to computing
the singular value decomposition of X.

2. Prove that solving the PCA least squares optimization problem boils down to computing

U? ∈ argmax
U∈Rd×p ,U>U=Ip

{Trace(U>ΣnU)} .
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3. Let λ1 > . . . > λd be real numbers and denote f : α ∈ Rd 7→
∑d
i=1 αiλi. Show that

sup

{
f(α) : α ∈ [0, 1]d,

d∑
i=1

αi = p

}
is attained for α? = (1i≤p)1≤i≤d.

4. Let {ϑ1, . . . , ϑd} be orthonormal eigenvectors associated with the eigenvalues λ1 > . . . > λd of Σn.
Prove that a solution to the PCA least squares optimization problem is given by the matrix U? with
columns {ϑ1, . . . , ϑp}.

5. For any dimension 1 6 p 6 d, let Fpd be the set of all vector subpaces of Rd with dimension p. Consider
the linear span Vp defined as

Vp ∈ argmin
V ∈Fp

d

n∑
i=1

‖Xi − πV (Xi)‖2 ,

where πV is the orthogonal projection onto the linear span V . Prove that V1 = span{v1} where

v1 ∈ argmax
v∈Rd ; ‖v‖=1

n∑
i=1

〈Xi, v〉2 .

6. For all 2 6 p 6 d, following the same steps, prove that a solution to the optimization problem is given
by Vp = span{v1, . . . , vp} where

v1 ∈ argmax
v∈Rd ; ‖v‖=1

n∑
i=1

〈Xi, v〉2 and for all 2 6 k 6 p , vk ∈ argmax
v∈Rd ; ‖v‖=1 ;
v⊥v1,...,v⊥vk−1

n∑
i=1

〈Xi, v〉2 . (1)

7. Prove that the vectors {v1, . . . , vk} defined by (1) can be chosen as the orthonormal eigenvectors
associated with the k largest eigenvalues of the empirical covariance matrix Σn.

8. The orthonormal eigenvectors associated with the eigenvalues of Σn allow to define the principal com-
ponents as follows. Then, as Vd = span{ϑ1, . . . , ϑd}, for all 1 6 i 6 n,

πVd
(Xi) =

d∑
k=1

〈Xi, ϑk〉ϑk =

d∑
k=1

(X>i ϑk)ϑk =

d∑
k=1

ck(i)ϑk ,

where for all 1 6 k 6 d, the k-th principal component is defined as ck = Xϑk. Prove that (c1, . . . , cd)
are orthogonal vectors.

Exercise 3 (Kernel Principal Component Analysis) Let (Xi)1≤i≤n be n observations in a
general space X , k : X ×X → R a positive kernel and K = (k(Xi, Xj))16i,j6n. W denotes the Reproducing
Kernel Hilbert Space associated with k and for all x ∈ X , φ(x) denotes the function φ(x) : y → k(x, y). The
aim is now to perform a PCA on (φ(X1), . . . , φ(Xn)). It is assumed that

∑n
i=1 φ(Xi) = 0.

1. Prove that

f1 = argmax
f∈W ; ‖f‖W=1

n∑
i=1

〈φ(Xi), f〉2W

may be written

f1 =

n∑
i=1

α1(i)φ(Xi) , where α1 = argmax
α∈Rn ;α>Kα=1

α>K2α .

2. Prove that α1 = λ
−1/2
1 b1 where b1 is the unit eigenvector associated with the largest eigenvalue λ1 of

K. What about (f2, . . . , fp) defined iteratively as in (1)?

3. Write Hp = span{f1, . . . , fp}. Prove that, for all 1 6 i 6 n,

πHp
(φ(Xi)) =

p∑
j=1

λjαj(i)fj .
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