EXERCISE 1 (REFRESHER ON MATRICES)

1. Let \mathbf{A} be a $n \times d$ matrix with real entries. Show that $\operatorname{range}(\mathbf{A})=\operatorname{range}\left(\mathbf{A} \mathbf{A}^{\top}\right)$.
2. Let $\left\{U_{k}\right\}_{1 \leq k \leq r}$ be a family of r orthonormal vectors of \mathbb{R}^{n}. Show that $\sum_{k=1}^{r} U_{k} U_{k}^{\top}$ is the matrix associated with the orthogonal projection onto $\mathbf{H}=\left\{\sum_{k=1}^{r} \alpha_{k} U_{k} ; \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}\right\}$. Deduce that if \mathbf{A} is a $n \times d$ matrix with real entries such that each column of \mathbf{A} is in \mathbf{H}, then,

$$
\left(\sum_{k=1}^{r} U_{k} U_{k}^{\top}\right) \mathbf{A}=\mathbf{A}
$$

3. Let $p<d$ and $\mathbf{B} \in \mathbb{R}^{d \times p}$ such that $\mathbf{B}^{\top} \mathbf{B}=I_{p}$. Let us denote $\mathbf{B}=\left(b_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq p}}$ the components of \mathbf{B} and for all $i \in \llbracket 1, d \rrbracket, \alpha_{i}=\sum_{j=1}^{p} b_{i j}^{2}$. Show that $\sum_{i=1}^{d} \alpha_{i}=p$ and $\alpha_{i} \leq 1$.

Exercise 2 (Principal Component Analysis) Principal component analysis is a multivariate technique which aims at analyzing the statistical structure of high dimensional dependent observations by representing data using orthogonal variables called principal components. Reducing the dimensionality of the data is motivated by several practical reasons such as improving computational complexity. Let $\left(X_{i}\right)_{1 \leqslant i \leqslant n}$ be i.i.d. random variables in \mathbb{R}^{d} and consider the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that the i-th row of \mathbf{X} is the observation X_{i}^{\top}. In this exercise, it is assumed that data are preprocessed so that the columns of \mathbf{X} are centered. This means that for all $1 \leqslant k \leqslant d, \sum_{i=1}^{n} X_{i, k}=0$. Let $\boldsymbol{\Sigma}_{n}$ be the empirical covariance matrix:

$$
\boldsymbol{\Sigma}_{n}=n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{\top}
$$

Principal Component Analysis aims at reducing the dimensionality of the observations $\left(X_{i}\right)_{1 \leqslant i \leqslant n}$ using a compression matrix $\mathbf{U} \in \mathbb{R}^{d \times p}$ with orthonormal columns with $p \leqslant d$ so that for each $1 \leqslant i \leqslant n, \mathbf{U}^{\top} X_{i}$ ia a low dimensional representation of X_{i}. The original observation may then be partially recovered using \mathbf{U}. Principal Component Analysis computes \mathbf{U} using the least squares approach:

$$
\mathbf{U}_{\star} \in \underset{\substack{U \in \mathbb{R}^{d \times p} \\ U \top U=I_{p}}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|X_{i}-\mathbf{U} \mathbf{U}^{\top} X_{i}\right\|^{2}
$$

1. Prove that for all matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank r, there exist $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}>0$ such that

$$
\mathbf{A}=\sum_{k=1}^{r} \sigma_{k} u_{k} v_{k}^{\top}
$$

where $\left\{u_{1}, \ldots, u_{r}\right\} \subset \mathbb{R}^{n}$ and $\left\{v_{1}, \ldots, v_{r}\right\} \subset \mathbb{R}^{d}$ are two families of orthonormal vectors. The vectors $\left\{u_{1}, \ldots, u_{r}\right\}$ (resp. $\left\{v_{1}, \ldots, v_{r}\right\}$) are the left-singular (resp. right-singular) vectors associated with $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$, the singular values of \mathbf{A}. If \mathbf{U} denotes the $\mathbb{R}^{n \times r}$ matrix with columns given by $\left\{u_{1}, \ldots, u_{r}\right\}$ and \mathbf{V} denotes the $\mathbb{R}^{d \times r}$ matrix with columns given by $\left\{v_{1}, \ldots, v_{r}\right\}$, then the singular value decomposition of A may also be written as

$$
\mathbf{A}=\mathbf{U} \mathbf{D}_{r} \mathbf{V}^{\top}
$$

where $\mathbf{D}_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Then, $\mathbf{A}^{\top} \mathbf{A}$ and $\mathbf{A A}^{\top}$ are positive semidefinite such that

$$
\mathbf{A}^{\top} \mathbf{A}=\mathbf{V D}_{r}^{2} \mathbf{V}^{\top} \quad \text { and } \quad \mathbf{A} \mathbf{A}^{\top}=\mathbf{U D}_{r}^{2} \mathbf{U}^{\top}
$$

In the framwework of this exercise, $n \boldsymbol{\Sigma}_{n}=\mathbf{X}^{\top} \mathbf{X}$ so that diagonalizing $n \boldsymbol{\Sigma}_{n}$ is equivalent to computing the singular value decomposition of \mathbf{X}.
2. Prove that solving the PCA least squares optimization problem boils down to computing

$$
\mathbf{U}_{\star} \in \underset{\mathbf{U} \in \mathbb{R}^{d \times p}, \mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{p}}{\operatorname{argmax}}\left\{\operatorname{Trace}\left(\mathbf{U}^{\top} \boldsymbol{\Sigma}_{n} \mathbf{U}\right)\right\} .
$$

3. Let $\lambda_{1} \geqslant \ldots \geqslant \lambda_{d}$ be real numbers and denote $f: \alpha \in \mathbb{R}^{d} \mapsto \sum_{i=1}^{d} \alpha_{i} \lambda_{i}$. Show that

$$
\sup \left\{f(\alpha): \alpha \in[0,1]^{d}, \sum_{i=1}^{d} \alpha_{i}=p\right\}
$$

is attained for $\alpha^{\star}=\left(\mathbb{1}_{i \leq p}\right)_{1 \leq i \leq d}$.
4. Let $\left\{\vartheta_{1}, \ldots, \vartheta_{d}\right\}$ be orthonormal eigenvectors associated with the eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{d}$ of $\boldsymbol{\Sigma}_{n}$. Prove that a solution to the PCA least squares optimization problem is given by the matrix \mathbf{U}_{\star} with columns $\left\{\vartheta_{1}, \ldots, \vartheta_{p}\right\}$.
5. For any dimension $1 \leqslant p \leqslant d$, let \mathcal{F}_{d}^{p} be the set of all vector subpaces of \mathbb{R}^{d} with dimension p. Consider the linear span V_{p} defined as

$$
V_{p} \in \underset{V \in \mathcal{F}_{d}^{p}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|X_{i}-\pi_{V}\left(X_{i}\right)\right\|^{2},
$$

where π_{V} is the orthogonal projection onto the linear span V. Prove that $V_{1}=\operatorname{span}\left\{v_{1}\right\}$ where

$$
v_{1} \in \underset{v \in \mathbb{R}^{d} ;\|v\|=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} .
$$

6. For all $2 \leqslant p \leqslant d$, following the same steps, prove that a solution to the optimization problem is given by $V_{p}=\operatorname{span}\left\{v_{1}, \ldots, v_{p}\right\}$ where

$$
\begin{equation*}
v_{1} \in \underset{v \in \mathbb{R}^{d} ;\|v\|=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} \quad \text { and for all } 2 \leqslant k \leqslant p, v_{k} \in \underset{\substack{v \in \mathbb{R}^{d} ;\|v\|=1 ; \\ v \perp v_{1}, \ldots, v \perp v_{k-1}}}{\operatorname{argmax}} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} . \tag{1}
\end{equation*}
$$

7. Prove that the vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ defined by (1) can be chosen as the orthonormal eigenvectors associated with the k largest eigenvalues of the empirical covariance matrix $\boldsymbol{\Sigma}_{n}$.
8. The orthonormal eigenvectors associated with the eigenvalues of Σ_{n} allow to define the principal components as follows. Then, as $V_{d}=\operatorname{span}\left\{\vartheta_{1}, \ldots, \vartheta_{d}\right\}$, for all $1 \leqslant i \leqslant n$,

$$
\pi_{V_{d}}\left(X_{i}\right)=\sum_{k=1}^{d}\left\langle X_{i}, \vartheta_{k}\right\rangle \vartheta_{k}=\sum_{k=1}^{d}\left(X_{i}^{\top} \vartheta_{k}\right) \vartheta_{k}=\sum_{k=1}^{d} c_{k}(i) \vartheta_{k}
$$

where for all $1 \leqslant k \leqslant d$, the k-th principal component is defined as $c_{k}=\mathbf{X} \vartheta_{k}$. Prove that $\left(c_{1}, \ldots, c_{d}\right)$ are orthogonal vectors.

Exercise 3 (Kernel Principal Component Analysis) Let $\left(X_{i}\right)_{1 \leq i \leq n}$ be n observations in a general space $\mathcal{X}, k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a positive kernel and $\mathbf{K}=\left(k\left(X_{i}, X_{j}\right)\right)_{1 \leqslant i, j \leqslant n} . \mathcal{W}$ denotes the Reproducing Kernel Hilbert Space associated with k and for all $x \in \mathcal{X}, \phi(x)$ denotes the function $\phi(x): y \rightarrow k(x, y)$. The aim is now to perform a PCA on $\left(\phi\left(X_{1}\right), \ldots, \phi\left(X_{n}\right)\right)$. It is assumed that $\sum_{i=1}^{n} \phi\left(X_{i}\right)=0$.

1. Prove that

$$
f_{1}=\underset{f \in \mathcal{W} ;\|f\|_{\mathcal{W}}=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left\langle\phi\left(X_{i}\right), f\right\rangle_{\mathcal{W}}^{2}
$$

may be written

$$
f_{1}=\sum_{i=1}^{n} \alpha_{1}(i) \phi\left(X_{i}\right), \quad \text { where } \quad \alpha_{1}=\underset{\alpha \in \mathbb{R}^{n} ; \alpha^{\top} \mathbf{K} \alpha=1}{\operatorname{argmax}} \alpha^{\top} \mathbf{K}^{2} \alpha .
$$

2. Prove that $\alpha_{1}=\lambda_{1}^{-1 / 2} b_{1}$ where b_{1} is the unit eigenvector associated with the largest eigenvalue λ_{1} of K. What about $\left(f_{2}, \ldots, f_{p}\right)$ defined iteratively as in (1)?
3. Write $H_{p}=\operatorname{span}\left\{f_{1}, \ldots, f_{p}\right\}$. Prove that, for all $1 \leqslant i \leqslant n$,

$$
\pi_{H_{p}}\left(\phi\left(X_{i}\right)\right)=\sum_{j=1}^{p} \lambda_{j} \alpha_{j}(i) f_{j}
$$

