EXERCISE 1 (REFRESHER ON MATRICES)

- 1. Let **A** be a $n \times d$ matrix with real entries. Show that range(**A**) = range(**AA**^{\top}).
- 2. Let $\{U_k\}_{1 \le k \le r}$ be a family of r orthonormal vectors of \mathbb{R}^n . Show that $\sum_{k=1}^r U_k U_k^{\top}$ is the matrix associated with the orthogonal projection onto $\mathbf{H} = \{\sum_{k=1}^r \alpha_k U_k; \alpha_1, \ldots, \alpha_r \in \mathbb{R}\}$. Deduce that if \mathbf{A} is a $n \times d$ matrix with real entries such that each column of \mathbf{A} is in \mathbf{H} , then,

$$\left(\sum_{k=1}^{r} U_k U_k^{\top}\right) \mathbf{A} = \mathbf{A}$$

- 3. Let p < d and $\mathbf{B} \in \mathbb{R}^{d \times p}$ such that $\mathbf{B}^{\top}\mathbf{B} = I_p$. Let us denote $\mathbf{B} = (b_{ij})_{\substack{1 \le i \le d \\ 1 \le j \le p}}$ the components of \mathbf{B} and for all $i \in [\![1,d]\!]$, $\alpha_i = \sum_{j=1}^p b_{ij}^2$. Show that $\sum_{i=1}^d \alpha_i = p$ and $\alpha_i \le 1$.
- **EXERCISE 2** (**PRINCIPAL COMPONENT ANALYSIS**) Principal component analysis is a multivariate technique which aims at analyzing the statistical structure of high dimensional dependent observations by representing data using orthogonal variables called *principal components*. Reducing the dimensionality of the data is motivated by several practical reasons such as improving computational complexity. Let $(X_i)_{1 \leq i \leq n}$ be i.i.d. random variables in \mathbb{R}^d and consider the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that the *i*-th row of \mathbf{X} is the observation X_i^{\top} . In this exercise, it is assumed that data are preprocessed so that the columns of \mathbf{X} are centered. This means that for all $1 \leq k \leq d$, $\sum_{i=1}^n X_{i,k} = 0$. Let Σ_n be the empirical covariance matrix:

$$\boldsymbol{\Sigma}_n = n^{-1} \sum_{i=1}^n X_i X_i^\top \,.$$

Principal Component Analysis aims at reducing the dimensionality of the observations $(X_i)_{1 \le i \le n}$ using a *compression* matrix $\mathbf{U} \in \mathbb{R}^{d \times p}$ with orthonormal columns with $p \le d$ so that for each $1 \le i \le n$, $\mathbf{U}^\top X_i$ ia a low dimensional representation of X_i . The original observation may then be partially recovered using \mathbf{U} . Principal Component Analysis computes \mathbf{U} using the least squares approach:

$$\mathbf{U}_{\star} \in \operatorname*{argmin}_{\substack{U \in \mathbb{R}^{d \times p} \\ U^{\top} U = I_{n}}} \sum_{i=1}^{n} \|X_{i} - \mathbf{U}\mathbf{U}^{\top}X_{i}\|^{2},$$

1. Prove that for all matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank r, there exist $\sigma_1 \ge \ldots \ge \sigma_r > 0$ such that

$$\mathbf{A} = \sum_{k=1}^{r} \sigma_k u_k v_k^{\top} \,,$$

where $\{u_1, \ldots, u_r\} \subset \mathbb{R}^n$ and $\{v_1, \ldots, v_r\} \subset \mathbb{R}^d$ are two families of orthonormal vectors. The vectors $\{u_1, \ldots, u_r\}$ (resp. $\{v_1, \ldots, v_r\}$) are the left-singular (resp. right-singular) vectors associated with $\{\sigma_1, \ldots, \sigma_r\}$, the singular values of **A**. If **U** denotes the $\mathbb{R}^{n \times r}$ matrix with columns given by $\{u_1, \ldots, u_r\}$ and **V** denotes the $\mathbb{R}^{d \times r}$ matrix with columns given by $\{v_1, \ldots, v_r\}$, then the singular value decomposition of **A** may also be written as

$$\mathbf{A} = \mathbf{U} \mathbf{D}_r \mathbf{V}^{\top}$$
,

where $\mathbf{D}_r = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$. Then, $\mathbf{A}^\top \mathbf{A}$ and $\mathbf{A} \mathbf{A}^\top$ are positive semidefinite such that

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\mathbf{D}_{r}^{2}\mathbf{V}^{\top}$$
 and $\mathbf{A}\mathbf{A}^{\top} = \mathbf{U}\mathbf{D}_{r}^{2}\mathbf{U}^{\top}$.

In the framwework of this exercise, $n\Sigma_n = \mathbf{X}^{\top}\mathbf{X}$ so that diagonalizing $n\Sigma_n$ is equivalent to computing the singular value decomposition of \mathbf{X} .

2. Prove that solving the PCA least squares optimization problem boils down to computing

$$\mathbf{U}_{\star} \in \operatorname*{argmax}_{\mathbf{U} \in \mathbb{R}^{d \times p}, \mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_{p}} \left\{ \operatorname{Trace}(\mathbf{U}^{\top} \boldsymbol{\Sigma}_{n} \mathbf{U}) \right\}.$$

3. Let $\lambda_1 \ge \ldots \ge \lambda_d$ be real numbers and denote $f : \alpha \in \mathbb{R}^d \mapsto \sum_{i=1}^d \alpha_i \lambda_i$. Show that

$$\sup\left\{f(\alpha):\alpha\in[0,1]^d,\sum_{i=1}^d\alpha_i=p\right\}$$

is attained for $\alpha^{\star} = (\mathbb{1}_{i \leq p})_{1 \leq i \leq d}$.

- 4. Let $\{\vartheta_1, \ldots, \vartheta_d\}$ be orthonormal eigenvectors associated with the eigenvalues $\lambda_1 \ge \ldots \ge \lambda_d$ of Σ_n . Prove that a solution to the PCA least squares optimization problem is given by the matrix \mathbf{U}_{\star} with columns $\{\vartheta_1, \ldots, \vartheta_p\}$.
- 5. For any dimension $1 \leq p \leq d$, let \mathcal{F}_d^p be the set of all vector subpaces of \mathbb{R}^d with dimension p. Consider the linear span V_p defined as

$$V_p \in \underset{V \in \mathcal{F}_d^p}{\operatorname{argmin}} \sum_{i=1}^n \|X_i - \pi_V(X_i)\|^2,$$

where π_V is the orthogonal projection onto the linear span V. Prove that $V_1 = \operatorname{span}\{v_1\}$ where

$$v_1 \in \operatorname*{argmax}_{v \in \mathbb{R}^d ; \|v\|=1} \sum_{i=1}^n \langle X_i, v \rangle^2$$

6. For all $2 \le p \le d$, following the same steps, prove that a solution to the optimization problem is given by $V_p = \operatorname{span}\{v_1, \ldots, v_p\}$ where

$$v_1 \in \operatorname*{argmax}_{v \in \mathbb{R}^d; \|v\|=1} \sum_{i=1}^n \langle X_i, v \rangle^2 \quad \text{and for all } 2 \leqslant k \leqslant p , \quad v_k \in \operatorname*{argmax}_{\substack{v \in \mathbb{R}^d; \|v\|=1; \\ v \perp v_1, \dots, v \perp v_{k-1}}} \sum_{i=1}^n \langle X_i, v \rangle^2 . \tag{1}$$

- 7. Prove that the vectors $\{v_1, \ldots, v_k\}$ defined by (1) can be chosen as the orthonormal eigenvectors associated with the k largest eigenvalues of the empirical covariance matrix Σ_n .
- 8. The orthonormal eigenvectors associated with the eigenvalues of Σ_n allow to define the principal components as follows. Then, as $V_d = \operatorname{span}\{\vartheta_1, \ldots, \vartheta_d\}$, for all $1 \leq i \leq n$,

$$\pi_{V_d}(X_i) = \sum_{k=1}^d \langle X_i, \vartheta_k \rangle \vartheta_k = \sum_{k=1}^d (X_i^\top \vartheta_k) \vartheta_k = \sum_{k=1}^d c_k(i) \vartheta_k \,,$$

where for all $1 \leq k \leq d$, the k-th principal component is defined as $c_k = \mathbf{X}\vartheta_k$. Prove that (c_1, \ldots, c_d) are orthogonal vectors.

- **EXERCISE 3** (KERNEL PRINCIPAL COMPONENT ANALYSIS) Let $(X_i)_{1 \le i \le n}$ be *n* observations in a general space $\mathcal{X}, k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive kernel and $\mathbf{K} = (k(X_i, X_j))_{1 \le i,j \le n}$. \mathcal{W} denotes the Reproducing Kernel Hilbert Space associated with *k* and for all $x \in \mathcal{X}, \phi(x)$ denotes the function $\phi(x) : y \to k(x, y)$. The aim is now to perform a PCA on $(\phi(X_1), \dots, \phi(X_n))$. It is assumed that $\sum_{i=1}^n \phi(X_i) = 0$.
 - 1. Prove that

$$f_1 = \operatorname*{argmax}_{f \in \mathcal{W}; \|f\|_{\mathcal{W}} = 1} \sum_{i=1}^n \langle \phi(X_i), f \rangle_{\mathcal{W}}^2$$

may be written

$$f_1 = \sum_{i=1}^n \alpha_1(i)\phi(X_i) , \quad \text{where} \quad \alpha_1 = \operatorname*{argmax}_{\alpha \in \mathbb{R}^n \, ; \, \alpha^\top \mathbf{K} \alpha = 1} \alpha^\top \mathbf{K}^2 \alpha \; .$$

- 2. Prove that $\alpha_1 = \lambda_1^{-1/2} b_1$ where b_1 is the unit eigenvector associated with the largest eigenvalue λ_1 of **K**. What about (f_2, \ldots, f_p) defined iteratively as in (1)?
- 3. Write $H_p = \operatorname{span}\{f_1, \ldots, f_p\}$. Prove that, for all $1 \leq i \leq n$,

$$\pi_{H_p}(\phi(X_i)) = \sum_{j=1}^{p} \lambda_j \alpha_j(i) f_j$$