Exercise 1 (Ada Boost) Let $\left(x_{i}, y_{i}\right)_{1 \leqslant i \leqslant n} \in(\mathrm{X} \times\{-1,1\})^{n}$ be n observations and $\mathrm{H}=\left\{h_{1}, \ldots, h_{M}\right\}$ be a set of M classifiers, i.e. for all $1 \leqslant i \leqslant M,: h_{i}: \mathrm{X} \rightarrow\{-1,1\}$. It is assumed that for each $h \in \mathrm{H}$ and that there exist $1 \leqslant i \neq j \leqslant n$ such that $y_{i}=h\left(x_{i}\right)$ and $y_{j} \neq h\left(x_{j}\right)$. Let F be the set of all linear combinations of elements of H :

$$
\mathrm{F}=\left\{\sum_{j=1}^{M} \theta_{j} h_{j} ; \theta \in \mathbb{R}^{M}\right\}
$$

Consider the following algorithm. Set $\hat{f}_{0}=0$ and for all $1 \leqslant m \leqslant M$,

$$
\hat{f}_{m}=\hat{f}_{m-1}+\beta_{m} h_{j_{m}} \quad \text { where } \quad\left(\beta_{m}, h_{j_{m}}\right)=\underset{h \in \mathrm{H}, \beta \in \mathbb{R}}{\operatorname{argmin}} n^{-1} \sum_{i=1}^{n} \exp \left\{-y_{i}\left(\hat{f}_{m-1}\left(x_{i}\right)+\beta h\left(x_{i}\right)\right)\right\}
$$

1. Choosing $\omega_{i}^{m}=n^{-1} \exp \left\{-y_{i} \hat{f}_{m-1}\left(x_{i}\right)\right\}$, show that

$$
n^{-1} \sum_{i=1}^{n} \exp \left\{-y_{i}\left(\hat{f}_{m-1}\left(x_{i}\right)+\beta h\left(x_{i}\right)\right)\right\}=\left(\mathrm{e}^{\beta}-\mathrm{e}^{-\beta}\right) \sum_{i=1}^{n} \omega_{i}^{m} \mathbb{1}_{h\left(x_{i}\right) \neq y_{i}}+\mathrm{e}^{-\beta} \sum_{i=1}^{n} \omega_{i}^{m}
$$

2. For all $1 \leqslant m \leqslant M$ and $h \in \mathrm{H}$, define

$$
\operatorname{err}_{m}(h)=\frac{\sum_{i=1}^{n} \omega_{i}^{m} \mathbb{1}_{h\left(x_{i}\right) \neq y_{i}}}{\sum_{i=1}^{n} \omega_{i}^{m}}
$$

Prove that

$$
h_{j_{m}}=\underset{h \in \mathrm{H}}{\operatorname{argmin}} \operatorname{err}_{m}(h) \quad \text { and } \quad \beta_{m}=\frac{1}{2} \log \left(\frac{1-\operatorname{err}_{m}\left(h_{j_{m}}\right)}{\operatorname{err}_{m}\left(h_{j_{m}}\right)}\right) .
$$

3. Propose an algorithm to compute \hat{f}_{M}.

Exercise 2 (Consistency of a simple random forest) Consider a data set $\mathcal{D}_{n}=\left\{\left(X_{i}, Y_{i}\right) \in\right.$ $\left.[0,1]^{d} \times \mathbb{R}, i=1, \ldots, n\right\}$. It is assumed that the $\left(X_{i}, Y_{i}\right)$ are i.i.d. with the same distribution as (X, Y) where

$$
Y=r(X)+\varepsilon
$$

with ε a centered Gaussian noise, independent of X and r a continuous function. Define the following centered random forest estimator:

1. Grow M trees as follows:
(a) Consider the cell $[0,1]^{d}$.
(b) Select uniformly one variable j^{\star} in $\{1, \ldots, d\}$.
(c) Cut the cell at the middle of the j^{\star}-th side, where j^{\star} is the coordinate chosen above.
(d) For each of the two resulting cells, repeat $(b)-(c)$ if the cell has been cut strictly less than k_{n} times.
(e) For a query point x, the m-th tree outputs the average $\hat{r}_{n}\left(x, \Theta_{m}\right)$ of the Y_{i} falling into the same cell as x, where Θ_{m} is the random variable encoding all selected splitting variables in each cell of the m-th tree.
2. For a query point x, the centered forest outputs the average $\hat{r}_{M, n}\left(x, \Theta_{1}, \ldots, \Theta_{M}\right)$ of the predictions given by the M trees.

Define the infinite random forest estimate $\hat{r}_{\infty, n}$ by considering the random forest estimate defined above and letting $M \rightarrow \infty$, that is

$$
\hat{r}_{\infty, n}(x)=\mathbb{E}_{\Theta}\left[\hat{r}_{n}(x, \Theta)\right],
$$

where \mathbb{E}_{Θ} is the expectation with respect to Θ only. For a tree built with the randomness Θ, we let $A_{n}(x, \Theta)$ be the cell containing x and $N_{n}(x, \Theta)$ be the number of observations falling into $A_{n}(x, \Theta)$. We want to prove the following theorem:

Theorem 1. Assume that $k_{n} \rightarrow \infty$ is such that $2^{k_{n}} / n \rightarrow 0$, as $n \rightarrow \infty$. Then the random forest fulfills $\mathbb{E}\left[\left(\hat{r}_{\infty, n}(X)-r(X)\right)^{2}\right] \rightarrow 0$, where X is independent of $\left(X_{i}, Y_{i}\right)_{i=1, \ldots, n}$ with the same distribution as the X_{i} on $[0,1]^{d}$.

1. Prove that there exists weights $W_{n i}(x, \Theta)$ and $W_{n i}^{\infty}(x), 1 \leqslant i \leqslant n$, such that

$$
\hat{r}_{n}(x, \Theta)=\sum_{i=1}^{n} W_{n i}(x, \Theta) Y_{i}, \quad \text { and } \quad \hat{r}_{\infty, n}(x)=\sum_{i=1}^{n} W_{n i}^{\infty}(x) Y_{i}
$$

In this context, Stone's Theorem states that the random tree estimate $\hat{r}_{n}(x, \Theta)$ fulfills

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\hat{r}_{n}(X, \Theta)-r(X)\right)^{2}\right]=0
$$

as soon as the two following conditions are satisfied
(i) $\mathbb{E}\left[\operatorname{diam}\left(A_{n}(X, \Theta)\right)\right] \rightarrow 0$, as $n \rightarrow \infty$, where the diameter of any cell A is defined as

$$
\operatorname{diam}(A)=\sup _{x, z \in A}\|x-z\|_{2}
$$

(ii) $N_{n}(X, \Theta) \rightarrow \infty$ in probability, as $n \rightarrow \infty$.
2. Let $x \in[0,1]^{d}$. What is the distribution of the number of cuts along the coordinate $j \in\{1, \ldots, d\}$ in the cell $A_{n}(x, \Theta)$?
3. Check that, for all $x \in[0,1]^{d}$ and $j \in\{1, \ldots, d\}$,

$$
\mathbb{E}\left[\sup _{z \in A_{n}(x, \Theta)} z_{j}-\inf _{z \in A_{n}(x, \Theta)} z_{j}\right]=\left(1-\frac{1}{2 d}\right)^{k_{n}}
$$

4. Prove that (i) holds for a random centered tree.
5. We denote by $A_{1}, \ldots, A_{2^{k_{n}}}$ the $2^{k_{n}}$ cells and by N_{ℓ} the number of points among X, X_{1}, \ldots, X_{n} which fall into A_{ℓ}. Show that for $\ell \in\left\{1, \ldots, 2^{k_{n}}\right\}$,

$$
\mathbb{P}\left(X \in A_{\ell} \mid N_{\ell}, \Theta\right)=\frac{N_{\ell}}{n+1} .
$$

Conclude that for every integer $t>0$,

$$
\mathbb{P}\left(N_{n}(X, \Theta) \leqslant t\right) \leqslant t 2^{k_{n}} /(n+1)
$$

and hence that (ii) holds for a random centered tree.
6. Prove that the infinite centered random forest fulfills $\mathbb{E}\left[\left(\hat{r}_{\infty, n}(X)-r(X)\right)^{2}\right] \rightarrow 0$, as $n \rightarrow \infty$.
7. Assume that the noise ε is Gaussian with variance $\sigma^{2}>0$. Thus,

$$
\mathbb{E}\left[\max _{1 \leqslant i \leqslant n} \varepsilon_{i}^{2}\right] \leqslant \sigma^{2}(1+4 \log n)
$$

Find a condition on the number M_{n} of trees such that the finite centered random forest fulfills

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\hat{r}_{M_{n}, n}\left(X, \Theta_{1}, \ldots, \Theta_{M_{n}}\right)-r(X)\right)^{2}\right]=0
$$

