PC3. EcoLE POLYTECHNIQUE. MAP 569. MACHINE LEARNING II.

EXERCISE 1 (ELASTIC-NET) LetY € R" and X = [Xy,...,X] € R"*P. The Elastic-Net estimator
involves both a £2 and a ¢! penalty. It is meant to improve the Lasso estimator when the columns of X are
"strongly" correlated. It is defined for A, > 0 by

Bry € argmin £(8) with £(8) = [IY XB)12 + AlIBI + w8l
ERP

In the following, we assume that the columns of X have norm 1.

1. Check that the partial derivative of £ with respect to 5; # 0 is given by

0,L(B) =2 ((1 +N)B; — R + %sign(ﬂj)) with R; =X <Y -y ﬂk.Xk>.

k:k#j

2. Prove that the minimum of 8; — L(B1,...,B),...,Bp) is reached at * = (87,..., 3;) where

B = B
I T 2[R*|
7+

and R} = X;r (Y — Zk:k# BZX;C)

3. Propose an algorithm to compute the Elastic-Net estimator.
The Elastic-Net procedure is implemented in the R package glmnet available at
http://cran.r-project.org/web/packages/glmnet/.

EXERCISE 2 (SUPPORT VECTOR MACHINE (SVM)) Minimization of convex functions: Karush-

Kuhn-Tucker sufficient conditions

Let f,—g1,...,—gn be C! convex functions and define the Lagrangian
L:(z,A) = f(z) = > Nigila).
i=1

For any (z, \), the Karush-Kuhn-Tucker conditions read:
1. Vie[l,n]: gi(z) > 0;

2. Vie[l,n]: N\ >0;

3. ViL(z,\) =0;

4. min(\;, g;(xz)) =0fori=1,...,n.

We know that, under the previous assumptions, KKT conditions are sufficient: if a couple (i,j\) fulfills
the KKT conditions, then

fe argmin  f(z) and A\ € argmaxinf £(z,\) .
Vie[1,n]:9:(x)>0 A>0 B

Also, still under the previous assumptions, weak duality holds:

supinf L(x, \) < infsup L(z,\) = inf ).
,\zpo @ (@A) z ,\zpo (@A) Vie[[lm]]:gi(w)zof( )

Strong duality (i.e. equality holds) under additional assumptions.
Strong duality: |If there exists a  such that g;(x) > 0 for all i € {1,...,n}, then the KKT conditions
are also necessary (i.e. A exists and KKT conditions are satisfied by (&, \)) and

supinf L(z, \) = infsup L(z, ) .
A>0 @ T A>0



Application to SVM

For any w € RP, define the linear function f,,(z) = (w,x) from R? to R. For a given R > 0, we consider
the set of linear functions F = {fw : JJw|]] < R}. The aim of this exercise is to investigate the classifier
hg, Flz) = S|gn(fg, F(x)) where f%].- is solution to the convex optimisation problem

N . 1
Fovr € argmingcr 3" o(-yif ()
i=1
with p(x) = (1 + x)+ the hinge loss.

1. From the strong duality, prove that there exists A > 0 such that

n

f%]-‘ S argminfw { Z yvfw ‘T’L ++ /\||w2} :

2. Prove that f%; = f& where @ belongs to V' = Span{z; :i=1,...,n}.
3. Prove that @ = )7, Bjxj where B = [B1,...,B,]T is solution to

n

B= argmingegn {711 Z(l —yi(KB)i)+ + )\ﬂTKﬂ} )

i=1
with K the Gram matrix K = [(z;, 2;)]1<i j<n-
4. Check that this minimization problem is equivalent to
~ 1 &
B =argmin g ¢ ¢ " such that {n > oG+ /\ﬁTKﬁ} :

yi(KB)i > 1—¢&; i=1
& 20

5. Let us assume that K is not singular. From the KKT conditions, check that 3; = yi@; /(2X), for
i=1,...,n with a; fulfilling min(a;, y;(KB); — (1 — &)) =0 et min(1/n — @;, &) = 0.
6. Prove the following properties
o if yiﬁ,’}-(xi) > 1 then Bi =0;

o if ylﬁpf(ml) <1 then B; = yi/(2An);
e in any case (in particular if yif%;(xi) =1),0< Biyi <1/(2An).

7. From the strong duality, prove that a; is solution to the dual problem

n
Q = argmax {Zai o Z K,jylyjalaj}
i=1

0<«a;<1/n ij=1



