PC3. Ecole Polytechnique. MAP 569. Machine Learning II.

Exercise 1 (Elastic-Net) Let $Y \in \mathbb{R}^{n}$ and $\mathbf{X}=\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{p}}\right] \in \mathbb{R}^{n \times p}$. The Elastic-Net estimator involves both a ℓ^{2} and a ℓ^{1} penalty. It is meant to improve the Lasso estimator when the columns of \mathbf{X} are "strongly" correlated. It is defined for $\lambda, \mu \geq 0$ by

$$
\widehat{\beta}_{\lambda, \mu} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} \mathcal{L}(\beta) \quad \text { with } \quad \mathcal{L}(\beta)=\|Y-\mathbf{X} \beta\|^{2}+\lambda\|\beta\|^{2}+\mu|\beta|_{\ell^{1}}
$$

In the following, we assume that the columns of \mathbf{X} have norm 1.

1. Check that the partial derivative of \mathcal{L} with respect to $\beta_{j} \neq 0$ is given by

$$
\partial_{j} \mathcal{L}(\beta)=2\left((1+\lambda) \beta_{j}-R_{j}+\frac{\mu}{2} \operatorname{sign}\left(\beta_{j}\right)\right) \quad \text { with } \quad R_{j}=\mathbf{X}_{j}^{\top}\left(Y-\sum_{k: k \neq j} \beta_{k} \mathbf{X}_{k}\right) .
$$

2. Prove that the minimum of $\beta_{j} \rightarrow \mathcal{L}\left(\beta_{1}, \ldots, \beta_{j}, \ldots, \beta_{p}\right)$ is reached at $\beta^{*}=\left(\beta_{1}^{*}, \ldots, \beta_{p}^{*}\right)$ where

$$
\beta_{j}^{*}=\frac{R_{j}^{*}}{1+\lambda}\left(1-\frac{\mu}{2\left|R_{j}^{*}\right|}\right)_{+}
$$

and $R_{j}^{*}=\mathbf{X}_{j}^{\top}\left(Y-\sum_{k: k \neq j} \beta_{k}^{*} \mathbf{X}_{k}\right)$
3. Propose an algorithm to compute the Elastic-Net estimator.

The Elastic-Net procedure is implemented in the R package glmnet available at http://cran.r-project.org/web/packages/glmnet/.

Exercise 2 (Support Vector Machine (SVM)) Minimization of convex functions: Karush-

 Kuhn-Tucker sufficient conditionsLet $f,-g_{1}, \ldots,-g_{n}$ be \mathcal{C}^{1} convex functions and define the Lagrangian

$$
\mathcal{L}:(x, \lambda) \mapsto f(x)-\sum_{i=1}^{n} \lambda_{i} g_{i}(x)
$$

For any (x, λ), the Karush-Kuhn-Tucker conditions read:

1. $\forall i \in \llbracket 1, n \rrbracket: g_{i}(x) \geq 0$;
2. $\forall i \in \llbracket 1, n \rrbracket: \lambda_{i} \geq 0$;
3. $\nabla_{x} L(x, \lambda)=0$;
4. $\min \left(\lambda_{i}, g_{i}(x)\right)=0$ for $i=1, \ldots, n$.

We know that, under the previous assumptions, KKT conditions are sufficient: if a couple $(\hat{x}, \hat{\lambda})$ fulfills the KKT conditions, then

$$
\hat{x} \in \underset{\forall i \in \llbracket 1, n \rrbracket: g_{i}(x) \geq 0}{\operatorname{argmin}} f(x) \quad \text { and } \quad \hat{\lambda} \in \underset{\lambda \geq 0}{\operatorname{argmax}} \inf _{x} \mathcal{L}(x, \lambda) .
$$

Also, still under the previous assumptions, weak duality holds:

$$
\sup _{\lambda \geq 0} \inf _{x} \mathcal{L}(x, \lambda) \leq \inf _{x} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)=\inf _{\forall i \in \llbracket 1, n \rrbracket: g_{i}(x) \geq 0} f(x) .
$$

Strong duality (i.e. equality holds) under additional assumptions.

Strong duality: If there exists a x such that $g_{i}(x)>0$ for all $i \in\{1, \ldots, n\}$, then the KKT conditions are also necessary (i.e. $\hat{\lambda}$ exists and KKT conditions are satisfied by $(\hat{x}, \hat{\lambda})$) and

$$
\sup _{\lambda \geq 0} \inf _{x} \mathcal{L}(x, \lambda)=\inf _{x} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Application to SVM

For any $w \in \mathbb{R}^{p}$, define the linear function $f_{w}(x)=\langle w, x\rangle$ from \mathbb{R}^{p} to \mathbb{R}. For a given $R>0$, we consider the set of linear functions $\mathcal{F}=\left\{f_{w}:\|w\| \leq R\right\}$. The aim of this exercise is to investigate the classifier $\widehat{h}_{\varphi, \mathcal{F}}(x)=\operatorname{sign}\left(\widehat{f}_{\varphi, \mathcal{F}}(x)\right)$ where $\widehat{f}_{\varphi, \mathcal{F}}$ is solution to the convex optimisation problem

$$
\widehat{f}_{\varphi, \mathcal{F}} \in \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varphi\left(-y_{i} f\left(x_{i}\right)\right)
$$

with $\varphi(x)=(1+x)_{+}$the hinge loss.

1. From the strong duality, prove that there exists $\lambda \geq 0$ such that

$$
\widehat{f}_{\varphi, \mathcal{F}} \in \operatorname{argmin}_{f_{w}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} f_{w}\left(x_{i}\right)\right)_{+}+\lambda\|w\|^{2}\right\}
$$

2. Prove that $\widehat{f}_{\varphi, \mathcal{F}}=f_{\widehat{w}}$ where \widehat{w} belongs to $V=\operatorname{Span}\left\{x_{i}: i=1, \ldots, n\right\}$.
3. Prove that $\widehat{w}=\sum_{j=1}^{n} \widehat{\beta}_{j} x_{j}$ where $\widehat{\beta}=\left[\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{n}\right]^{\top}$ is solution to

$$
\widehat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i}(K \beta)_{i}\right)_{+}+\lambda \beta^{\top} K \beta\right\},
$$

with K the Gram matrix $K=\left[\left\langle x_{i}, x_{j}\right\rangle\right]_{1 \leq i, j \leq n}$.
4. Check that this minimization problem is equivalent to

$$
\widehat{\beta}=\operatorname{argmin} \arg _{\substack{\beta, \xi \in \mathbb{R}^{n} \text { such that } \\ y_{i}(K \beta)_{i} \geq 1-\xi_{i} \\ \xi_{i} \geq 0}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \beta^{\top} K \beta\right\}
$$

5. Let us assume that K is not singular. From the KKT conditions, check that $\widehat{\beta}_{i}=y_{i} \widehat{\alpha}_{i} /(2 \lambda)$, for $i=1, \ldots, n$ with $\widehat{\alpha}_{i}$ fulfilling $\min \left(\widehat{\alpha}_{i}, y_{i}(K \widehat{\beta})_{i}-\left(1-\widehat{\xi}_{i}\right)\right)=0$ et $\min \left(1 / n-\widehat{\alpha}_{i}, \widehat{\xi}_{i}\right)=0$.
6. Prove the following properties

- if $y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)>1$ then $\widehat{\beta}_{i}=0$;
- if $y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)<1$ then $\widehat{\beta}_{i}=y_{i} /(2 \lambda n)$;
- in any case (in particular if $\left.y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)=1\right), 0 \leq \widehat{\beta}_{i} y_{i} \leq 1 /(2 \lambda n)$.

7. From the strong duality, prove that $\widehat{\alpha}_{i}$ is solution to the dual problem

$$
\widehat{\alpha}=\underset{0 \leq \alpha_{i} \leq 1 / n}{\operatorname{argmax}}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{4 \lambda} \sum_{i, j=1}^{n} K_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\right\} .
$$

