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Exercise 1 (Elastic-Net) Let Y ∈ Rn and X = [X1, . . . ,Xp] ∈ Rn×p. The Elastic-Net estimator
involves both a `2 and a `1 penalty. It is meant to improve the Lasso estimator when the columns of X are
"strongly" correlated. It is defined for λ, µ ≥ 0 by

β̂λ,µ ∈ argmin
β∈Rp

L(β) with L(β) = ‖Y −Xβ‖2 + λ‖β‖2 + µ|β|`1 .

In the following, we assume that the columns of X have norm 1.

1. Check that the partial derivative of L with respect to βj 6= 0 is given by

∂jL(β) = 2
(
(1 + λ)βj −Rj +

µ

2
sign(βj)

)
with Rj = X>j

(
Y −

∑
k: k 6=j

βkXk

)
.

2. Prove that the minimum of βj → L(β1, . . . , βj , . . . , βp) is reached at β∗ = (β∗1 , . . . , β
∗
p) where

β∗j =
R∗j

1 + λ

(
1− µ

2|R∗j |

)
+

and R∗j = X>j

(
Y −

∑
k: k 6=j β

∗
kXk

)
3. Propose an algorithm to compute the Elastic-Net estimator.

The Elastic-Net procedure is implemented in the R package glmnet available at
http://cran.r-project.org/web/packages/glmnet/.

Exercise 2 (Support Vector Machine (SVM)) Minimization of convex functions: Karush-
Kuhn-Tucker sufficient conditions

Let f,−g1, . . . ,−gn be C1 convex functions and define the Lagrangian

L : (x, λ) 7→ f(x)−
n∑
i=1

λigi(x).

For any (x, λ), the Karush-Kuhn-Tucker conditions read:

1. ∀i ∈ J1, nK : gi(x) ≥ 0;

2. ∀i ∈ J1, nK : λi ≥ 0;

3. ∇xL(x, λ) = 0;

4. min(λi, gi(x)) = 0 for i = 1, . . . , n.

We know that, under the previous assumptions, KKT conditions are sufficient: if a couple (x̂, λ̂) fulfills
the KKT conditions, then

x̂ ∈ argmin
∀i∈J1,nK:gi(x)≥0

f(x) and λ̂ ∈ argmax
λ≥0

inf
x
L(x, λ) .

Also, still under the previous assumptions, weak duality holds:

sup
λ≥0

inf
x
L(x, λ) ≤ inf

x
sup
λ≥0
L(x, λ) = inf

∀i∈J1,nK:gi(x)≥0
f(x).

Strong duality (i.e. equality holds) under additional assumptions.

Strong duality: If there exists a x such that gi(x) > 0 for all i ∈ {1, . . . , n}, then the KKT conditions
are also necessary (i.e. λ̂ exists and KKT conditions are satisfied by (x̂, λ̂)) and

sup
λ≥0

inf
x
L(x, λ) = inf

x
sup
λ≥0
L(x, λ) .
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Application to SVM

For any w ∈ Rp, define the linear function fw(x) = 〈w, x〉 from Rp to R. For a given R > 0, we consider
the set of linear functions F = {fw : ‖w‖ ≤ R}. The aim of this exercise is to investigate the classifier
ĥϕ,F (x) = sign(f̂ϕ,F (x)) where f̂ϕ,F is solution to the convex optimisation problem

f̂ϕ,F ∈ argminf∈F
1

n

n∑
i=1

ϕ(−yif(xi)) ,

with ϕ(x) = (1 + x)+ the hinge loss.

1. From the strong duality, prove that there exists λ ≥ 0 such that

f̂ϕ,F ∈ argminfw

{
1

n

n∑
i=1

(1− yifw(xi))+ + λ‖w‖2
}
.

2. Prove that f̂ϕ,F = fŵ where ŵ belongs to V = Span{xi : i = 1, . . . , n}.

3. Prove that ŵ =
∑n
j=1 β̂jxj where β̂ = [β̂1, . . . , β̂n]

> is solution to

β̂ = argminβ∈Rn

{
1

n

n∑
i=1

(1− yi(Kβ)i)+ + λβ>Kβ

}
,

with K the Gram matrix K = [〈xi, xj〉]1≤i,j≤n.

4. Check that this minimization problem is equivalent to

β̂ = argmin β, ξ ∈ Rn such that
yi(Kβ)i ≥ 1− ξi
ξi ≥ 0

{
1

n

n∑
i=1

ξi + λβ>Kβ

}
.

5. Let us assume that K is not singular. From the KKT conditions, check that β̂i = yiα̂i/(2λ), for
i = 1, . . . , n with α̂i fulfilling min(α̂i, yi(Kβ̂)i − (1− ξ̂i)) = 0 et min(1/n− α̂i, ξ̂i) = 0.

6. Prove the following properties

• if yif̂ϕ,F (xi) > 1 then β̂i = 0;

• if yif̂ϕ,F (xi) < 1 then β̂i = yi/(2λn);

• in any case (in particular if yif̂ϕ,F (xi) = 1), 0 ≤ β̂iyi ≤ 1/(2λn).

7. From the strong duality, prove that α̂i is solution to the dual problem

α̂ = argmax
0≤αi≤1/n

{ n∑
i=1

αi −
1

4λ

n∑
i,j=1

Ki,jyiyjαiαj

}
.
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