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Exercise 1 (Linear Discriminant analysis) Let (X,Y ) be a couple of random variables with
values in Rp × {0, 1} and a distribution

P(Y = k) = πk > 0 and P(X ∈ dx|Y = k) = gk(x) dx, k ∈ {0, 1}, x ∈ Rp, (1)

where π0 + π1 = 1 and g0, g1 are two probability densities in Rp.
We define the classifier h∗ : Rp → {0, 1} by

h∗(x) = 1{π1g1(x)>π0g0(x)}, x ∈ Rp.

1. What is the distribution of X?

2. Prove that the classifier h∗ fulfills

P(h∗(X) 6= Y ) = min
h

P(h(X) 6= Y ).

3. We assume in the following that

gk(x) = (2π)−p/2
√

det(Σ−1k ) exp

(
−1

2
(x− µk)>Σ−1k (x− µk)

)
, k = 0, 1,

with Σ0, Σ1 non-singular and µ0, µ1 ∈ Rp, µ0 6= µ1. Prove that when Σ0 = Σ1 = Σ, the condition
π1g1(x) > π0g0(x) is equivalent to

(µ1 − µ0)>Σ−1
(
x− µ1 + µ0

2

)
> log(π0/π1).

Interpret geometrically this result.

4. Assume now that πk, µk,Σ are unknown, but we have a sample (Xi, Yi)i=1,...,n i.i.d. with distribu-
tion (1). When n > p, propose a classifier ĥ : Rp → {0, 1}.

5. We come back to the case where πk, µk,Σ are known. If π1 = π0, check that

P(h∗(X) = 1|Y = 0) = Φ(−d(µ1, µ0)/2)

where Φ is the cumulative distribution function of a standard Gaussian and d(µ1, µ0) is the Mahalanobis
distance defined by d(µ1, µ0)2 = (µ1 − µ0)>Σ−1(µ1 − µ0).

6. When Σ1 6= Σ0, what is the nature of the frontier between {h∗ = 1} and {h∗ = 0}?

Exercise 2 (Logistic Regression) Let (X,Y ) be a couple of random variables with values in Rp ×
{0, 1} and (Xi, Yi)i=1,...,n an i.i.d. sample with same distribution as (X,Y ).

Since the Bayes classifier only depends on the conditional distribution of Y given X, we can avoid to model
the full distribution of X as in the previous exercise. A classical approach is to assume a parametric model for
the conditional probability P[Y = 1|X = x]. The most popular model in Rd is probably the logistic model,
where

P[Y = 1|X = x] =
exp (〈β∗, x〉)

1 + exp (〈β∗, x〉)
for all x ∈ Rp, (2)

with β∗ ∈ Rp. In this case, we have P[Y = 1|X = x] > 1/2 if and only if 〈β∗, x〉 > 0, so the frontier between
{h∗ = 1} and {h∗ = 0} is again an hyperplane, with orthogonal direction β∗.

We can estimate the parameter β∗ by maximizing the conditional likelihood of (Y1, . . . , Yn) given that
(X1, . . . , Xn) = (x1, . . . , xn):

β̂ ∈ argmax
β∈Rd

n∏
i=1

[(
exp (〈β, xi〉)

1 + exp (〈β, xi〉)

)Yi
(

1

1 + exp (〈β, xi〉)

)1−Yi
]
,

and compute the classifier ĥlogistic(x) = 1〈β̂,x〉>0 for all x ∈ Rp.
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1. Check that the gradient and the Hessian Hn(β) of

`n(β) = −
n∑
i=1

[Yi〈xi, β〉 − log(1 + exp(〈xi, β〉))]

are given by

∇`n(β) = −
n∑
i=1

(
Yi −

e〈xi,β〉

1 + e〈xi,β〉

)
xi and Hn(β) =

n∑
i=1

e〈xi,β〉(
1 + e〈xi,β〉

)2 xix>i .
2. We assume Hn(β) to be non-singular. What can we say about the function `n?

In order to select useful features, we estimate β with the penalized criterion

β̂λ ∈ argmin
β∈Rp

{`n(β) + λ|β|1},

where λ > 0 is a regularization parameter.
Building on the Taylor expansion `n(β′) = `n(β) + 〈∇`n(β), β′−β〉+O(‖β′−β‖2), we compute β̂λ with

the following iterations (for a given φ > 0).
INIT: β0 = 0, t = 0
ITERATE (until convergence)

βt+1 ∈ argmin
β∈Rp

{`n(βt) + 〈∇`n(βt), β − βt〉+
φ

2
‖β − βt‖2 + λ|β|1}

t← t+ 1
OUTPUT: βt

3. Check that βt+1 ∈ argmin
β∈Rp

{‖β − βt + φ−1∇`n(βt)‖2 +
2λ

φ
|β|1}.

4. Conclude that βt+1 = Sλ/φ(βt − φ−1∇`n(βt)), where Sµ(x) = [xj(1− µ/|xj |)+]j=1,...,p.
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