PC2. EcoLE POLYTECHNIQUE. MAP 569. MACHINE LEARNING II.

EXERCISE 1 (LINEAR DISCRIMINANT ANALYSIS) Let (X,Y) be a couple of random variables with

values in R? x {0,1} and a distribution
P(Y=k)=m,>0 and P(X €dz|Y =k)=gx(z)dz, ke {0,1}, x € RP, (1)

where my + 71 = 1 and gg, g1 are two probability densities in RP.
We define the classifier h, : R? — {0,1} by

ha(@) = Lim g1 (@)>m0g0 (@)} T € RP.
1. What is the distribution of X7?
2. Prove that the classifier h, fulfills

P(h.(X)#Y) = mhinIP’(h(X) #Y).
3. We assume in the following that

gr() = (2m) /2 [det(S ) exp (;@s ) TS - m) k=01,

with g, 31 non-singular and pg, 1 € RP, pg # p1. Prove that when ¥y = ¥, = ¥, the condition
m191(x) > mogo(x) is equivalent to

_ +
(= )75 (1= ) > (/)

Interpret geometrically this result.

4. Assume now that my, pux, X are unknown, but we have a sample (X;,Y;);=1,. , i.i.d. with distribu-
tion (1). When n > p, propose a classifier i : R? — {0, 1}.

5. We come back to the case where 7y, ug, 2 are known. If m; = mg, check that
P(h(X) = 1Y = 0) = ®(—d(p1, 10)/2)

where @ is the cumulative distribution function of a standard Gaussian and d(p1, f10) is the Mahalanobis
distance defined by d(u1, 110)? = (111 — po) " X7 (i1 — po)-

6. When ¥, # ¥, what is the nature of the frontier between {h. = 1} and {h, = 0}7

EXERCISE 2 (LoGgIsTIC REGRESSION) Let (X,Y") be a couple of random variables with values in R x

{0,1} and (X;,Y;)i=1,...n an i.i.d. sample with same distribution as (X,Y").

Since the Bayes classifier only depends on the conditional distribution of Y given X, we can avoid to model
the full distribution of X as in the previous exercise. A classical approach is to assume a parametric model for
the conditional probability P[Y = 1|X = x]. The most popular model in R? is probably the logistic model,

where
exp ({(8*,2))

" 1+exp (8%, 7))

with 8* € RP. In this case, we have P[Y = 1|X = z] > 1/2 if and only if (8*,x) > 0, so the frontier between
{h« =1} and {h, = 0} is again an hyperplane, with orthogonal direction *.

PY = 1|X = z] for all z € RP, (2)

We can estimate the parameter 3* by maximizing the conditional likelihood of (Y7,...,Y},) given that

(X1, Xn) = (€100, T):
(rltiss) (emtmen) |

and compute the classifier Ebgistic(w) = 1<§7I>>0 for all x € RP.
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1. Check that the gradient and the Hessian H,,(8) of

n

n(B) = = [Yilwi, B) — log(1 + exp((w;, 5)))]

i=1
are given by

n (@i B) N eiB)

Vi (B) = —Z <Y; B e<%3>> r; and Hp( Z
i=1

;X
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2. We assume H,,(8) to be non-singular. What can we say about the function ¢,,?

In order to select useful features, we estimate 3 with the penalized criterion

By € argmin{£,(8) + A|B|1},
BERP

where A > 0 is a regularization parameter. N
Building on the Taylor expansion £,,(8') = £,(8) + (V£.(8), 8 — B) + O(||3' — B||?), we compute 3 with
the following iterations (for a given ¢ > 0).
INIT: 3°=0,t=0
ITERATE (until convergence)
8141 € angmin{£, () + (V0u(8). 5 = 8') + 518 = 517 + M3l)
E p
t—t+1

OUTPUT: ¢
t+1 : t —1 t\]12 2\
3. Check that """ € argmin{||8 — 8" + ¢~ V£, (8°)[I* + EW}-
BERP

4. Conclude that g+ = S, /(8" — ¢~V L, (8")), where Sy, (z) = [z;(1 — p/]z;|)+]j=1,...p-



