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Exercise 1 (Hoeffding’s inequality) Let (Xi)16i6n be n independent random variables such that
for all 1 6 i 6 n, P(ai 6 Xi 6 bi) = 1 where ai, bi are real numbers such that ai < bi. The aim of this
exercise is to prove the following inequality. For all t > 0,
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1. Assume that E[Xi] = 0 for all 1 6 i 6 n. Prove that it is enough to prove that for all t > 0,
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2. Prove that for all s, t > 0,
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4. Prove that this upper bound implies for all s, t > 0,
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and conclude.

Exercise 2 (Excess of risk for a finite class of classifiers) Let (Ω,F ,P) be a probability
space. Assume that (X,Y ) is a couple of random variables defined on (Ω,F ,P) and taking values in X ×
{−1, 1} where X is a given state space. One aim of supervised classification is to define a function h : X →
{−1, 1}, called classifier, such that h(X) is the best prediction of Y in a given context. For instance, the
probability of misclassification of h is

Lmiss(h) = P (Y 6= h(X)) .

Note that E[Y |X] is a random variable measurable with respect to the σ-algebra σ(X). Therefore, there
exists a function η : X → [−1, 1] so that E[Y |X] = η(X) almost surely.

1. Prove that the classifier h?, defined for all x ∈ X , by

h?(x) =

{
1 if η(x) > 0 ,
−1 otherwise ,

is such that
h? ∈ argmin

h:X→{−1,1}
Lmiss(h) .

2. In practice, the minimization of Lmiss holds on a specific set H of classifiers (often called the dictionary),
which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification
risk Lmiss cannot be computed nor minimized, it is instead estimated by the empirical classification risk
defined as
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where (Xi, Yi)16i6n are independent observations with the same distribution as (X,Y ). The classifica-
tion problem then boilds down to solving

ĥnH ∈ argmin
h∈H

L̂n
miss(h) .

Prove that for all set H of classifiers and all n > 1,
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3. Using Hoeffding’s inequality, prove that when H = {h1, . . . , hM} for a given M > 1, then, for all δ > 0,
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Exercise 3 (Cross-validation) Consider the training data set: Dn = ((X1, Y1), . . . , (Xn, Yn)) where
Xi ∈ Rp and Yi ∈ R. Assume that we construct the regressor function f̂ by linear regression: we first define

β̂ = argminβ
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and we set Ŷ =
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 and Ŷi = f̂(Xi) = XT
i β̂ for every

i ∈ {1, . . . , n}.

1. Assume rank(X) = p. Prove that β̂ = (XTX)−1XTY where Y =
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Yn

.

2. For every i ∈ {1, . . . , n}, we leave the i-th data out of the training set, that is, we define

β̂−i = argmin

n∑
j=1,j 6=i
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and we set Ŷ−i = f̂−i(Xi) = XT
i β̂−i. Define the vector Ỹ =
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Ỹn

 where Ỹk = Yk for k 6= i and

Ỹi = Ŷ−i. Show that β̂−i is obtained by linear regression of the vector Ỹ with respect to X. Deduce
the expression of β̂−i in terms of Ỹ and X.

3. Defining the hat matrix H = X(XTX)−1XT = [Hk`]1≤k,`≤n, deduce that

Ŷ−i = Ŷi −HiiYi +HiiŶ−i.

4. Show that the Leave-One-Out cross-validation error is:
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