EXERCISE 1 (HOEFFDING'S INEQUALITY) Let $(X_i)_{1 \leq i \leq n}$ be *n* independent random variables such that for all $1 \leq i \leq n$, $\mathbb{P}(a_i \leq X_i \leq b_i) = 1$ where a_i, b_i are real numbers such that $a_i < b_i$. The aim of this exercise is to prove the following inequality. For all t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]\right| > t\right) \leq 2\exp\left(\frac{-2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right)$$

1. Assume that $\mathbb{E}[X_i] = 0$ for all $1 \leq i \leq n$. Prove that it is enough to prove that for all t > 0,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i > t\right) \leqslant \exp\left(\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$
(1)

2. Prove that for all s, t > 0,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i > t\right) \leqslant e^{-st} \prod_{i=1}^{n} \mathbb{E}\left[e^{sX_i}\right] \,.$$

3. Define for all $1 \leq i \leq n$, $\phi_i : s \mapsto \log (\mathbb{E} [e^{sX_i}])$. Prove that for all s > 0,

$$\phi_i''(s) \leqslant \left(\frac{b_i - a_i}{2}\right)^2$$
.

4. Prove that this upper bound implies for all s, t > 0,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i > t\right) \leqslant e^{-st} e^{s^2 \sum_{i=1}^{n} \frac{(b_i - a_i)^2}{8}}$$

and conclude.

EXERCISE 2 (EXCESS OF RISK FOR A FINITE CLASS OF CLASSIFIERS) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Assume that (X, Y) is a couple of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in $\mathcal{X} \times \{-1, 1\}$ where \mathcal{X} is a given state space. One aim of supervised classification is to define a function $h : \mathcal{X} \to \{-1, 1\}$, called *classifier*, such that h(X) is the best prediction of Y in a given context. For instance, the probability of misclassification of h is

$$L_{\text{miss}}(h) = \mathbb{P}(Y \neq h(X))$$
.

Note that $\mathbb{E}[Y|X]$ is a random variable measurable with respect to the σ -algebra $\sigma(X)$. Therefore, there exists a function $\eta : \mathcal{X} \to [-1, 1]$ so that $\mathbb{E}[Y|X] = \eta(X)$ almost surely.

1. Prove that the classifier h_{\star} , defined for all $x \in \mathcal{X}$, by

$$h_{\star}(x) = \begin{cases} 1 & \text{if } \eta(x) > 0, \\ -1 & \text{otherwise}, \end{cases}$$

is such that

$$h_{\star} \in \operatorname*{argmin}_{h:\mathcal{X} \to \{-1,1\}} L_{\mathrm{miss}}(h)$$

2. In practice, the minimization of L_{miss} holds on a specific set \mathcal{H} of classifiers (often called the *dictionary*), which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification risk L_{miss} cannot be computed nor minimized, it is instead estimated by the empirical classification risk defined as

$$\widehat{L}_{\mathrm{miss}}^n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq h(X_i)} \,,$$

where $(X_i, Y_i)_{1 \le i \le n}$ are independent observations with the same distribution as (X, Y). The classification problem then boilds down to solving

$$\widehat{h}_{\mathcal{H}}^n \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}_{\mathrm{miss}}^n(h) \,.$$

Prove that for all set \mathcal{H} of classifiers and all $n \ge 1$,

$$L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leq 2 \sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^{n}(h) - L_{\text{miss}}(h) \right| \,.$$

3. Using Hoeffding's inequality, prove that when $\mathcal{H} = \{h_1, \dots, h_M\}$ for a given $M \ge 1$, then, for all $\delta > 0$,

$$\mathbb{P}\left(L_{\mathrm{miss}}(\widehat{h}_{\mathcal{H}}^{n}) \leqslant \min_{1 \leqslant j \leqslant M} L_{\mathrm{miss}}(h_{j}) + \sqrt{\frac{2}{n} \log\left(\frac{2M}{\delta}\right)}\right) \geqslant 1 - \delta.$$

EXERCISE 3 (CROSS-VALIDATION) Consider the training data set: $\mathcal{D}_n = ((\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n))$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$. Assume that we construct the regressor function \hat{f} by linear regression: we first define

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \sum_{j=1}^{n} (Y_j - \mathbf{X}_j^T \boldsymbol{\beta})^2$$

and we set $\hat{\mathbf{Y}} = \begin{pmatrix} \hat{Y}_1 \\ \vdots \\ \hat{Y}_n \end{pmatrix} = \mathbf{X}\hat{\boldsymbol{\beta}}$ where \mathbf{X} is the $n \times p$ matrix, $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1^T \\ \vdots \\ \mathbf{X}_n^T \end{pmatrix}$ and $\hat{Y}_i = \hat{f}(\mathbf{X}_i) = \mathbf{X}_i^T \hat{\boldsymbol{\beta}}$ for every $i \in \{1, \dots, n\}$.

- 1. Assume $\operatorname{rank}(\mathbf{X}) = p$. Prove that $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ where $\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$.
- 2. For every $i \in \{1, ..., n\}$, we leave the *i*-th data out of the training set, that is, we define

$$\hat{\boldsymbol{\beta}}_{-i} = \operatorname{argmin} \sum_{j=1, j \neq i}^{n} (Y_j - \mathbf{X}_j^T \boldsymbol{\beta})^2$$

and we set $\hat{Y}_{-i} = \hat{f}^{-i}(\mathbf{X}_i) = \mathbf{X}_i^T \hat{\boldsymbol{\beta}}_{-i}$. Define the vector $\tilde{\mathbf{Y}} = \begin{pmatrix} \tilde{Y}_1 \\ \vdots \\ \tilde{Y}_n \end{pmatrix}$ where $\tilde{Y}_k = Y_k$ for $k \neq i$ and

 $\tilde{Y}_i = \hat{Y}_{-i}$. Show that $\hat{\beta}_{-i}$ is obtained by linear regression of the vector $\tilde{\mathbf{Y}}$ with respect to \mathbf{X} . Deduce the expression of $\hat{\beta}_{-i}$ in terms of $\tilde{\mathbf{Y}}$ and \mathbf{X} .

3. Defining the hat matrix $H = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = [H_{k\ell}]_{1 \le k, \ell \le n}$, deduce that

$$\hat{Y}_{-i} = \hat{Y}_i - H_{ii}Y_i + H_{ii}\hat{Y}_{-i}.$$

4. Show that the Leave-One-Out cross-validation error is:

$$\mathcal{R}_n^{LOO}(\hat{f}) = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_{-i})^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{Y_i - \hat{Y}_i}{1 - H_{ii}} \right)^2.$$