MCMC Exam

25 October

1 Exercise 1.

Let Q_{1}, Q_{2} be two probability kernels on, respectively, $\left(\mathbb{R}^{+}, \mathcal{B}\left(\mathbb{R}^{+}\right)\right)$and $\left(\mathbb{R}_{*}^{-}, \mathcal{B}\left(\mathbb{R}_{*}^{-}\right)\right)$. Let π_{1}, π_{2} be two probability measures on, respectively, $\mathcal{B}\left(\mathbb{R}^{+}\right)$and $\mathcal{B}\left(\mathbb{R}_{*}^{-}\right)$, such that π_{1} is invariant by Q_{1} and π_{2} invariant by Q_{2}.

Question 1.1. Let $Q: \mathbb{R} \times \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ be defined as:

$$
\forall x, A \in \mathbb{R} \times \mathcal{B}(\mathbb{R}), \quad Q(x, A)=\mathbb{1}_{\mathbb{R}^{+}}(x) Q_{1}\left(x, A \cap \mathbb{R}^{+}\right)+\mathbb{1}_{\mathbb{R}_{*}^{-}}(x) Q_{2}\left(x, A \cap \mathbb{R}_{*}^{-}\right) .
$$

Show that Q is a probability kernel.
Define $\tilde{\pi}_{1}, \tilde{\pi}_{2}$ two probability measures on $\mathcal{B}(\mathbb{R})$ as:

$$
\forall A \in \mathcal{B}(\mathbb{R}) \quad \tilde{\pi}_{1}(A)=\pi_{1}\left(A \cap \mathbb{R}^{+}\right) \quad \text { and } \quad \tilde{\pi}_{2}(A)=\pi_{2}\left(A \cap \mathbb{R}_{*}^{-}\right) .
$$

Furthermore, define π_{3} a probability measure on $\mathcal{B}(\mathbb{R})$ as $\pi_{3}=\frac{1}{2} \tilde{\pi}_{1}+\frac{1}{2} \tilde{\pi}_{2}$.
Question 1.2. Show that $\tilde{\pi}_{1}, \tilde{\pi}_{2}, \pi_{3}$ are invariant for the kernel Q.
Question 1.3. Give an example of an other probability measure π, invariant for Q.
Question 1.4. Let $\left(X_{k}\right)$ be a Markov chain on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, with a transition kernel Q. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded, measurable function. Do we know to what quantity will converge:

$$
\frac{1}{n+1} \sum_{i=0}^{n} h\left(X_{i}\right) .
$$

On what additional information it will depend?
We produce (X_{k}) by Algorithm 1.
Question 1.5. Write down \tilde{Q} the Markov kernel of $\left(X_{k}\right)$.
In the following, assume that π_{1} (respectively π_{2}) is dominated by the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{+}\right)$(respectively on $\mathcal{B}\left(\mathbb{R}_{*}^{-}\right)$). We will denote its density p_{1} (respectively p_{2}). We also assume that for all $x>0, p_{1}(x)=p_{2}(-x)$.

Question 1.6. Show that π_{3} is an invariant probability measure for \tilde{Q}.

Question 1.7. Let $A \in \mathcal{B}\left(\mathbb{R}^{+}\right)$show that for all $x \geqslant 0$ and for all $n \in \mathbb{N}$,

$$
\tilde{Q}^{n}(x, A) \geqslant \frac{1}{2^{n}} Q_{1}^{n}(x, A)
$$

Establish a similar lower bound on $\tilde{Q}^{n}(x, A)$ in the case where $x<0$.
Question 1.8. On what condition on Q_{1} the measure π_{3} will be the unique invariant measure for \tilde{Q} ?

Question 1.9. Propose a modification of the algorithm to sample from $\frac{1}{3} \tilde{\pi}_{1}+\frac{2}{3} \tilde{\pi}_{2}$.

```
Algorithm 1 Input: \(x_{0} \in \mathbb{R}\)
    \(X_{0}=x_{0}\).
    for \(k \geqslant 0\) do
        Sample \(U_{k}\), in an independent manner, with a uniform distribution on \([0,1]\).
        if \(U_{k} \leqslant 1 / 2\) then
            Sample \(X_{k+1}\) from \(Q\left(\left|X_{k}\right|, \cdot\right)\)
        else
            Sample \(X_{k+1}\) from \(Q\left(-\left|X_{k}\right|, \cdot\right)\)
        end if
    end for
```

