MCMC Exam

25 October

1 Exercise 1.

Let Q_1 , Q_2 be two probability kernels on, respectively, $(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+))$ and $(\mathbb{R}^-, \mathcal{B}(\mathbb{R}^-))$. Let π_1 , π_2 be two probability measures on, respectively, $\mathcal{B}(\mathbb{R}^+)$ and $\mathcal{B}(\mathbb{R}^-)$, such that π_1 is invariant by Q_1 and π_2 invariant by Q_2 .

Question 1.1. Let $Q : \mathbb{R} \times \mathcal{B}(\mathbb{R}) \to [0,1]$ be defined as:

$$\forall x, A \in \mathbb{R} \times \mathcal{B}(\mathbb{R}), \quad Q(x, A) = \mathbb{1}_{\mathbb{R}^+}(x)Q_1(x, A \cap \mathbb{R}^+) + \mathbb{1}_{\mathbb{R}^+_*}(x)Q_2(x, A \cap \mathbb{R}^-_*).$$

Show that Q is a probability kernel.

Define $\tilde{\pi}_1, \tilde{\pi}_2$ two probability measures on $\mathcal{B}(\mathbb{R})$ as:

$$\forall A \in \mathcal{B}(\mathbb{R}) \quad \tilde{\pi}_1(A) = \pi_1(A \cap \mathbb{R}^+) \quad \text{and} \quad \tilde{\pi}_2(A) = \pi_2(A \cap \mathbb{R}^-_*).$$

Furthermore, define π_3 a probability measure on $\mathcal{B}(\mathbb{R})$ as $\pi_3 = \frac{1}{2}\tilde{\pi}_1 + \frac{1}{2}\tilde{\pi}_2$.

Question 1.2. Show that $\tilde{\pi}_1, \tilde{\pi}_2, \pi_3$ are invariant for the kernel Q.

Question 1.3. Give an example of an other probability measure π , invariant for Q.

Question 1.4. Let (X_k) be a Markov chain on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, with a transition kernel Q. Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded, measurable function. Do we know to what quantity will converge:

$$\frac{1}{n+1}\sum_{i=0}^n h(X_i)\,.$$

On what additional information it will depend?

We produce (X_k) by Algorithm 1.

Question 1.5. Write down \tilde{Q} the Markov kernel of (X_k) .

In the following, assume that π_1 (respectively π_2) is dominated by the Lebesgue measure on $\mathcal{B}(\mathbb{R}^+)$ (respectively on $\mathcal{B}(\mathbb{R}^-)$). We will denote its density p_1 (respectively p_2). We also assume that for all x > 0, $p_1(x) = p_2(-x)$.

Question 1.6. Show that π_3 is an invariant probability measure for \hat{Q} .

Question 1.7. Let $A \in \mathcal{B}(\mathbb{R}^+)$ show that for all $x \ge 0$ and for all $n \in \mathbb{N}$,

$$\tilde{Q}^n(x,A) \geqslant \frac{1}{2^n} Q_1^n(x,A) \,.$$

Establish a similar lower bound on $\tilde{Q}^n(x, A)$ in the case where x < 0.

Question 1.8. On what condition on Q_1 the measure π_3 will be the unique invariant measure for \tilde{Q} ?

Question 1.9. Propose a modification of the algorithm to sample from $\frac{1}{3}\tilde{\pi}_1 + \frac{2}{3}\tilde{\pi}_2$.

Algorithm	1 Input:	$x_0 \in \mathbb{R}$	
$\overline{X_0 = x_0}.$			

for $k \ge 0$ do
Sample U_k , in an independent manner, with a uniform distribution on $[0, 1]$.
$\mathbf{if} \ U_k \leqslant 1/2 \ \mathbf{then}$
Sample X_{k+1} from $Q(X_k , \cdot)$
else
Sample X_{k+1} from $Q(- X_k , \cdot)$
end if
end for