MCMC Exam. Answers

25 October

1 Exercise 1.

Let Q_{1}, Q_{2} be two probability kernels on, respectively, $\left(\mathbb{R}^{+}, \mathcal{B}\left(\mathbb{R}^{+}\right)\right)$and $\left(\mathbb{R}_{*}^{-}, \mathcal{B}\left(\mathbb{R}_{*}^{-}\right)\right)$. Let π_{1}, π_{2} be two probability measures on, respectively, $\mathcal{B}\left(\mathbb{R}^{+}\right)$and $\mathcal{B}\left(\mathbb{R}_{*}^{-}\right)$, such that π_{1} is invariant by Q_{1} and π_{2} invariant by Q_{2}.

Question 1.1. Let $Q: \mathbb{R} \times \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ be defined as:

$$
\forall x, A \in \mathbb{R} \times \mathcal{B}(\mathbb{R}), \quad Q(x, A)=\mathbb{1}_{\mathbb{R}^{+}}(x) Q_{1}\left(x, A \cap \mathbb{R}^{+}\right)+\mathbb{1}_{\mathbb{R}_{*}^{-}}(x) Q_{2}\left(x, A \cap \mathbb{R}_{*}^{-}\right)
$$

Show that Q is a probability kernel.
For every $A \in \mathcal{B}(\mathbb{R})$ the function $x \mapsto Q(x, A)$ is measurable as a composition (product/sum ...) of measurable functions. Similarly, for every $x \in \mathbb{R}$, the countable additivity of $Q(x, \cdot)$ is immediate and $Q(x, \mathbb{R})=1$, thus $Q(x, \cdot)$ is indeed a probability measure and Q is a probability kernel.

Define $\tilde{\pi}_{1}, \tilde{\pi}_{2}$ two probability measures on $\mathcal{B}(\mathbb{R})$ as:

$$
\forall A \in \mathcal{B}(\mathbb{R}) \quad \tilde{\pi}_{1}(A)=\pi_{1}\left(A \cap \mathbb{R}^{+}\right) \quad \text { and } \quad \tilde{\pi}_{2}(A)=\pi_{2}\left(A \cap \mathbb{R}_{*}^{-}\right) .
$$

Furthermore, define π_{3} a probability measure on $\mathcal{B}(\mathbb{R})$ as $\pi_{3}=\frac{1}{2} \tilde{\pi}_{1}+\frac{1}{2} \tilde{\pi}_{2}$.
Question 1.2. Show that $\tilde{\pi}_{1}, \tilde{\pi}_{2}, \pi_{3}$ are invariant for the kernel Q. Let $A \in \mathcal{B}(\mathbb{R})$ and denote $A_{+}=A \cap \mathbb{R}_{+}$and $A_{-} \cap \mathbb{R}_{-}^{*}$. It holds that

$$
\begin{aligned}
\tilde{\pi}_{1}(A) & =\tilde{\pi}_{1}\left(A_{+}\right)=\pi_{1}\left(A_{+}\right) \\
& =\pi_{1} Q_{1}\left(A_{+}\right)=\int_{y \in \mathbb{R}_{+}} \pi_{1}(\mathrm{~d} y) Q_{1}\left(y, A_{+}\right)=\int_{y \in \mathbb{R}_{+}} \tilde{\pi}_{1}(\mathrm{~d} y) Q\left(y, A_{+}\right) .
\end{aligned}
$$

Now, notice that for $y \geqslant 0, Q\left(y, A_{+}\right)=Q(y, A)$ and that $\tilde{\pi}\left(\mathbb{R}_{-}^{*}\right)=0$. Hence,

$$
\tilde{\pi}_{1}(A)=\int_{y \in \mathbb{R}_{+}} \tilde{\pi}_{1}(\mathrm{~d} y) Q\left(y, A_{+}\right)=\int_{y \in \mathbb{R}_{+}} \tilde{\pi}_{1}(\mathrm{~d} y) Q(y, A)=\int_{y \in \mathbb{R}} \tilde{\pi}_{1}(\mathrm{~d} y) Q(y, A),
$$

which means that $\tilde{\pi}_{1}$ is indeed invariant for Q. A symmetric reasoning shows that $\tilde{\pi}_{2}$ is invariant. Finally, π_{3} is invariant as a convex combination of invariant measures.

Question 1.3. Give an example of an other probability measure π, invariant for Q.
Any convex combination of $\tilde{\pi}_{1}$ and $\tilde{\pi}_{2}$ works. E.g. $\frac{1}{3} \tilde{\pi}_{1}+\frac{2}{3} \tilde{\pi}_{2}$.

Question 1.4. Let $\left(X_{k}\right)$ be a Markov chain on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, with a transition kernel Q. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded, measurable function. Do we know to what quantity will converge:

$$
\frac{1}{n+1} \sum_{i=0}^{n} h\left(X_{i}\right)
$$

On what additional information it will depend?
As we have seen, the markov kernel Q admits more than one invariant probability measure. Typically, the convergence of this sum will depend on the initialization. For instance, if we initialize in \mathbb{R}_{+}and π_{1} is the unique invariant measure of an irreducible kernel Q_{1}, then we will stay forever in \mathbb{R}_{+}and this sum will converge to $\pi_{1}(h)$.

We produce $\left(X_{k}\right)$ by Algorithm 1.
Question 1.5. Write down \tilde{Q} the Markov kernel of $\left(X_{k}\right)$.
The markov kernel is $\tilde{Q}(x, \mathrm{~d} y)=\frac{1}{2} Q(|x|, \mathrm{d} y)+\frac{1}{2} Q(-|x|, \mathrm{d} y)$.
In the following, assume that π_{1} (respectively π_{2}) is dominated by the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{+}\right)$(respectively on $\mathcal{B}\left(\mathbb{R}_{*}^{-}\right)$). We will denote its density p_{1} (respectively p_{2}). We also assume that for all $x>0, p_{1}(x)=p_{2}(-x)$.

Question 1.6. Show that π_{3} is an invariant probability measure for \tilde{Q}.
Let $A \in \mathcal{B}(\mathbb{R})$ and denote $A_{+}=A \cap \mathbb{R}_{+}$and $A_{-}=A \cap \mathbb{R}_{-}$. It holds

$$
\pi_{3} \tilde{Q}(A)=\int_{y \in \mathbb{R}} \pi_{3}(\mathrm{~d} y) \tilde{Q}(y, A)=\frac{1}{2} \int_{y \in \mathbb{R}} \pi_{3}(\mathrm{~d} y) Q(|y|, A)+\frac{1}{2} \int_{y \in \mathbb{R}} \pi_{3}(\mathrm{~d} y) Q(-|y|, A)
$$

Now,

$$
\begin{aligned}
\int_{y \in \mathbb{R}} \pi_{3}(\mathrm{~d} y) Q(|y|, A) & =\frac{1}{2} \int_{y \in \mathbb{R}_{+}} \tilde{\pi}_{1}(\mathrm{~d} y) Q(y, A)+\frac{1}{2} \int_{y \in \mathbb{R}_{-}} \tilde{\pi}_{2}(\mathrm{~d} y) Q(-y, A) \\
& =\frac{1}{2}\left(\int_{y \in \mathbb{R}_{+}} p(y) Q(y, A)+\int_{y \in \mathbb{R}_{-}} p(-y) Q(-y, A)\right) \\
& =\int_{y \in \mathbb{R}_{+}} p(y) Q(y, A) \\
& =\int_{y \in \mathbb{R}_{+}} \tilde{\pi}_{1}(\mathrm{~d} y) Q(y, A) \\
& =\int_{y \in \mathbb{R}} \tilde{\pi}_{1}(\mathrm{~d} y) Q(y, A)=\tilde{\pi}_{1}(A)
\end{aligned}
$$

where for the third equality we have made the change of variables $y \mapsto-y$ in the second integral and in the last equality we have used the invariance of $\tilde{\pi}_{1}$ for Q.
Similar computations show that $\int_{y \in \mathbb{R}} \pi_{3}(\mathrm{~d} y) Q(-|y|, A)=\tilde{\pi}_{2}(A)$. Thus, $\pi_{3} \tilde{Q}(A)=\frac{1}{2} \tilde{\pi}_{1}(A)+$ $\frac{1}{2} \tilde{\pi}_{2}(A)=\pi_{3}(A)$.

Question 1.7. Let $A \in \mathcal{B}\left(\mathbb{R}^{+}\right)$show that for all $x \geqslant 0$ and for all $n \in \mathbb{N}$,

$$
\tilde{Q}^{n}(x, A) \geqslant \frac{1}{2^{n}} Q_{1}^{n}(x, A)
$$

Establish a similar lower bound on $\tilde{Q}^{n}(x, A)$ in the case where $x<0$.
We prove this fact by induction. For, $n=1$ this equality is immediate by the fact that $\tilde{Q}(x, A)=\frac{1}{2} Q(x, A)+\frac{1}{2} Q(-x, A)(x$ is positive $)$ and the fact that $Q(x, A)=Q_{1}(x, A)(A \in$ $\left.\mathcal{B}\left(\mathbb{R}_{+}\right)\right)$. Assume that it is true for some $n \in \mathbb{N}$. Then,

$$
\tilde{Q}^{n+1}(x, A)=\int_{y \in \mathbb{R}} \tilde{Q}(x, \mathrm{~d} y) \tilde{Q}^{n}(y, A) \geqslant \int_{y \in \mathbb{R}_{+}} \tilde{Q}(x, \mathrm{~d} y) Q^{n}(y, A) \geqslant \frac{1}{2^{n}} \int_{y \in \mathbb{R}_{+}} \tilde{Q}(x, \mathrm{~d} y) Q_{1}^{n}(y, A)
$$

Moreover, since $x>0, \tilde{Q}(x, \mathrm{~d} y)=\frac{1}{2}(Q(x, \mathrm{~d} y)+Q(-x, \mathrm{~d} y)) \geqslant \frac{1}{2} Q(x, \mathrm{~d} y)$ and

$$
\int_{y \in \mathbb{R}_{+}} \tilde{Q}(x, \mathrm{~d} y) Q_{1}^{n}(y, A) \geqslant \frac{1}{2} \int_{y \in \mathbb{R}_{+}} Q(x, \mathrm{~d} y) Q_{1}^{n}(y, A) .
$$

Finally, since the last integral if on \mathbb{R}_{+}we have $Q(x, \mathrm{~d} y)=Q_{1}(x, \mathrm{~d} y)$ which finishes the proof.
If $x<0$ then, $Q(-x, A)=Q_{1}(-x, A)$ and $\tilde{Q}(x, A)=\frac{1}{2}(Q(x, A)+Q(-x, A)) \geqslant \frac{1}{2} Q_{1}(-x, A)$. Thus, for $n \geqslant 1$,

$$
\begin{aligned}
\tilde{Q}^{n}(x, A) & \geqslant \int_{y \in \mathbb{R}_{+}} \tilde{Q}(x, \mathrm{~d} y) \tilde{Q}^{n-1}(y, A) \\
& \geqslant \frac{1}{2} \int_{y \in \mathbb{R}_{+}} Q_{1}(-x, \mathrm{~d} y) \tilde{Q}^{n-1}(y, A) \\
& \geqslant \frac{1}{2^{n}} \int_{y \in \mathbb{R}_{+}} Q_{1}(-x, \mathrm{~d} y) Q_{1}^{n-1}(y, A)=\frac{1}{2^{n}} Q_{1}(-x, A),
\end{aligned}
$$

where in the last equality we have used the result proven in the first part of this question.
Question 1.8. On what condition on Q_{1} the measure π_{3} will be the unique invariant measure for \tilde{Q} ?

If Q_{1} is irreducible (there is ν a measure on $\mathcal{B}\left(\mathbb{R}_{+}\right)$such that for all $A \in \mathcal{B}\left(\mathbb{R}_{+}\right)$such that $\nu(A)>0$ and for all $x \in \mathbb{R}_{+}$, there is $n \in \mathbb{N}$ such that $\left.Q_{1}^{n}(x, A)>0\right)$, then from the inequalities shown in the previous question we see that \tilde{Q} is irreducible (relatively to the measure $\tilde{\nu}$ which is the extension of ν on the whole \mathbb{R}. In that case, we know that \tilde{Q} admits a unique invariant measure and we have already verified that it is π_{3}.

Question 1.9. Propose a modification of the algorithm to sample from $\frac{1}{3} \tilde{\pi}_{1}+\frac{2}{3} \tilde{\pi}_{2}$.
In the if statement sample from $Q\left(\left|X_{k}\right|, \cdot\right)$ is $U_{k} \leqslant 1 / 3$, otherwise sample from $Q\left(-\left|X_{k}\right|, \cdot\right)$

```
Algorithm 1 Input: \(x_{0} \in \mathbb{R}\)
    \(X_{0}=x_{0}\).
    for \(k \geqslant 0\) do
        Sample \(U_{k}\), in an independent manner, with a uniform distribution on \([0,1]\).
        if \(U_{k} \leqslant 1 / 2\) then
            Sample \(X_{k+1}\) from \(Q\left(\left|X_{k}\right|, \cdot\right)\)
        else
            Sample \(X_{k+1}\) from \(Q\left(-\left|X_{k}\right|, \cdot\right)\)
        end if
    end for
```

