1 Exercise

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable function and $\gamma, c>0$. We consider the following algorithm:

$$
X_{k+1}=X_{k}-\gamma \nabla f\left(X_{k}\right)+c \eta_{k+1}
$$

with $\left(\eta_{k}\right)_{k \geqslant 1}$ being i.i.d. \mathbb{R}^{d}-valued random variables such that $\mathbb{E}\left[\eta_{1}\right]=0$ and $\mathbb{E}\left[\left\|\eta_{1}\right\|^{2}\right]<$ $+\infty$. We assume moreover, that η has a density $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Question 1.1. Write down P the Markov kernel of $\left(X_{k}\right)$
In the following, we will assume that $\nabla f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is L-Lipschitz continuous and that this implies

$$
\forall x, y \in \mathbb{R}^{d} \quad f(y) \leqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Question 1.2. Show that this implies the existence of $K>0$ such that for all $x \in \mathbb{R}^{d}$,

$$
P f(x) \leqslant f(x)-\gamma\|\nabla f(x)\|^{2}+\frac{L}{2} \gamma^{2}\|\nabla f(x)\|^{2}+K
$$

Assume moreover, that there is $\alpha>0$ such that $\|\nabla f(x)\|^{2} \geqslant \frac{1}{2 \alpha}\left(f(x)-f^{*}\right)$, where $f^{*}=\inf _{x \in \mathbb{R}^{d}} f^{*}$ (this happens for instance if f is strongly-convex).
Question 1.3. Show that there are values of (c, γ) such that there is $V: \mathbb{R}^{d} \rightarrow[1,+\infty)$, $\lambda \in(0,1)$ and $b \geqslant 0$ such that the drift inequality from the lecture notes (geometric ergodicity) is true:

$$
P V(x) \leqslant \lambda V(x)+b
$$

Question 1.4. What is a simple condition on V (related to f) and the law of η_{1} to ensure that there is a unique invariant distribution π to which the law of X_{k} converges exponentially fast.

Answer

Question 1.1. Let $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a bounded function and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ a borelian. It holds

$$
\begin{aligned}
\mathbb{E}\left[h\left(X_{1}\right) \mathbb{1}_{A}\left(X_{0}\right)\right] & =\mathbb{E}\left[\mathbb{1}_{A}\left(X_{0}\right) \int_{y \in \mathbb{R}^{d}} h\left(X_{0}-\gamma \nabla f\left(X_{0}\right)+c y\right) g(y) \mathrm{d} y\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A}\left(X_{0}\right) \frac{1}{c^{d}} \int_{z \in \mathbb{R}^{d}} h(z) g\left(\left(z-X_{0}+\gamma \nabla f\left(X_{0}\right)\right) / c\right) \mathrm{d} z\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A}\left(X_{0}\right) \int h(z) P\left(X_{0}, \mathrm{~d} z\right)\right]
\end{aligned}
$$

where we used the change of variable $y \mapsto\left(z-X_{0}+\gamma \nabla f\left(X_{0}\right)\right) / c$ in the penultimate equality and where $P(x, \mathrm{~d} z)=\frac{1}{c^{d}} g((z-x+\gamma \nabla f(x)) / c) \mathrm{d} z$ is the Markov kernel.
Question 1.2. It holds that

$$
\begin{aligned}
P f(x) & =\mathbb{E}_{x}\left[f\left(X_{1}\right)\right] \leqslant \mathbb{E}_{x}\left[f(x)+\left\langle\nabla f(x), X_{1}-x\right\rangle+\frac{L}{2}\left\|X_{1}-x\right\|^{2}\right] \\
& \leqslant f(x)-\gamma \mathbb{E}_{x}\left[\|\nabla f(x)\|^{2}\right]+\gamma c \mathbb{E}_{x}\left[\left\langle f(x), \eta_{1}\right\rangle\right]+\frac{L}{2} \mathbb{E}_{x}\left[\left\|\gamma \nabla f(x)+c \eta_{1}\right\|^{2}\right] \\
& \leqslant f(x)-\gamma\|\nabla f(x)\|^{2}+\frac{L}{2} \gamma^{2} \mathbb{E}_{x}\left[\|\nabla f(x)\|^{2}\right]+\frac{L}{2} c^{2} \mathbb{E}_{x}\left[\left\|\eta_{1}\right\|^{2}\right],
\end{aligned}
$$

where in the first inequality we have used the L-smoothness of ∇f, and in the last the fact that η_{1} is of zero-mean. Since, $\mathbb{E}\left[\left\|\eta_{1}\right\|^{2}\right]<K$ for some $K<+\infty$ the proof is finished.

Question 1.3. Using the inequality shown in the previous question we have:

$$
P\left(f(x)-f^{*}\right)=P f(x)-f^{*} \leqslant f(x)-f^{*}-\gamma\left(1-\frac{L}{2} \gamma\right)\|\nabla f(x)\|^{2}+K
$$

If $\gamma<\frac{2}{L}$, then $\left(1-\frac{L}{2} \gamma\right)>0$ and using the new "strongly-convex" inequality we obtain:

$$
P\left(f(x)-f^{*}\right) \leqslant f(x)-f^{*}-\gamma\left(1-\frac{L}{2} \gamma\right)\left(f(x)-f^{*}\right)+K=\lambda\left(f(x)-f^{*}\right)+K
$$

with $\lambda=\frac{L}{2} \gamma$. Finally, defining $V=f(x)-f^{*}+1$, we obtain

$$
P V(x)=P\left(f(x)-f^{*}\right)+1 \leqslant \lambda\left(f(x)-f^{*}\right)+K+1 \leqslant \lambda V(x)+K+1-\lambda=\lambda V(x)+b,
$$

and so obtain we obtain such an inequality, for any $c \geqslant 0, \gamma \leqslant \frac{L}{2} \gamma$ and $V=f(x)-f^{*}+1$.
Question 1.4. To have geometric ergodicity we also need a minorizing condition: for any $d \geqslant 1$, there is a measure ν_{d} and $\varepsilon_{d}>0$ such that for any $x \in C_{d}:=\left\{x \in \mathbb{R}^{d}: V(x) \leqslant d\right\}$ it holds that $P(x, \cdot) \geqslant c_{d} \nu_{d}$.

Such a condition will be automatically satisfied if g, the density of η, is continuous and C_{d} is compact (for instance $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$). Indeed, in that case:
$\forall x \in \mathbb{R}^{d}, A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \quad P(x, A)=\frac{1}{c^{d}} \int_{z \in A} g((z-x+\gamma \nabla f(x)) / c) \mathrm{d} z \geqslant \frac{1}{c^{d}} \int_{z \in A} \inf _{x \in C_{d}} g((z-x+\gamma \nabla f(x)) / c) \mathrm{d} z$.
Denoting $l(z)=\inf _{x \in C_{d}} g((z-x+\gamma \nabla f(x)) / c)$ we have that $l(z)>0$ by compactness of C_{d}. Therefore, we can define ν_{d} as

$$
\nu_{d}(\mathrm{~d} z)=\frac{l(z) \mathrm{d} z}{\int_{\mathbb{R}^{d}} l(z) \mathrm{d} z}
$$

and we obtain

$$
\forall x \in \mathbb{R}^{d}, A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \quad P(x, A) \geqslant \varepsilon_{d} \nu_{d}(A)
$$

with $\varepsilon_{d}=\frac{\int_{\mathbb{R}^{d}} l(z) \mathrm{d} z}{c^{d}}$.

