
1 Exercise

Let f : Rd Ñ R be a differentiable function and γ, c ą 0. We consider the following algorithm:

Xk`1 “ Xk ´ γ∇fpXkq ` cηk`1 ,

with pηkqkě1 being i.i.d. Rd-valued random variables such that Erη1s “ 0 and Er∥η1∥2s ă

`8. We assume moreover, that η has a density g : Rd Ñ R.

Question 1.1. Write down P the Markov kernel of pXkq

In the following, we will assume that ∇f : Rd Ñ Rd is L-Lipschitz continuous and that
this implies

@x, y P Rd fpyq ď fpxq ` x∇fpxq, y ´ xy `
L

2
∥y ´ x∥2 .

Question 1.2. Show that this implies the existence of K ą 0 such that for all x P Rd,

Pfpxq ď fpxq ´ γ ∥∇fpxq∥2 `
L

2
γ2 ∥∇fpxq∥2 ` K .

Assume moreover, that there is α ą 0 such that ∥∇fpxq∥2 ě 1
2αpfpxq ´ f˚q, where

f˚ “ infxPRd f˚ (this happens for instance if f is strongly-convex).

Question 1.3. Show that there are values of pc, γq such that there is V : Rd Ñ r1,`8q,
λ P p0, 1q and b ě 0 such that the drift inequality from the lecture notes (geometric ergodicity)
is true:

PV pxq ď λV pxq ` b

Question 1.4. What is a simple condition on V (related to f) and the law of η1 to ensure
that there is a unique invariant distribution π to which the law of Xk converges exponentially
fast.

Answer

Question 1.1. Let h : Rd Ñ R a bounded function and A P BpRdq a borelian. It holds

ErhpX1q1ApX0qs “ E
„

1ApX0q

ż

yPRd

hpX0 ´ γ∇fpX0q ` cyqgpyq dy

ȷ

“ E
„

1ApX0q
1

cd

ż

zPRd

hpzqgppz ´ X0 ` γ∇fpX0qq{cqdz

ȷ

“ Er1ApX0q

ż

hpzqP pX0, dzqs ,

where we used the change of variable y ÞÑ pz ´ X0 ` γ∇fpX0qq{c in the penultimate equality
and where P px,dzq “ 1

cd
gppz ´ x ` γ∇fpxqq{cqdz is the Markov kernel.

Question 1.2. It holds that

Pfpxq “ ExrfpX1qs ď Exrfpxq ` x∇fpxq, X1 ´ xy `
L

2
∥X1 ´ x∥2s

ď fpxq ´ γExr∥∇fpxq∥2s ` γcExrxfpxq, η1ys `
L

2
Exr∥γ∇fpxq ` cη1∥2s

ď fpxq ´ γ ∥∇fpxq∥2 `
L

2
γ2Exr∥∇fpxq∥2s `

L

2
c2Exr∥η1∥2s ,

1



where in the first inequality we have used the L-smoothness of ∇f , and in the last the fact
that η1 is of zero-mean. Since, Er∥η1∥2s ă K for some K ă `8 the proof is finished.

Question 1.3. Using the inequality shown in the previous question we have:

P pfpxq ´ f˚q “ Pfpxq ´ f˚ ď fpxq ´ f˚ ´ γp1 ´
L

2
γq ∥∇fpxq∥2 ` K .

If γ ă 2
L , then p1 ´ L

2 γq ą 0 and using the new "strongly-convex" inequality we obtain:

P pfpxq ´ f˚q ď fpxq ´ f˚ ´ γp1 ´
L

2
γqpfpxq ´ f˚q ` K “ λpfpxq ´ f˚q ` K ,

with λ “ L
2 γ. Finally, defining V “ fpxq ´ f˚ ` 1, we obtain

PV pxq “ P pfpxq ´ f˚q ` 1 ď λpfpxq ´ f˚q ` K ` 1 ď λV pxq ` K ` 1 ´ λ “ λV pxq ` b, ,

and so obtain we obtain such an inequality, for any c ě 0, γ ď L
2 γ and V “ fpxq ´ f˚ ` 1.

Question 1.4. To have geometric ergodicity we also need a minorizing condition: for any
d ě 1, there is a measure νd and εd ą 0 such that for any x P Cd :“ tx P Rd : V pxq ď du it
holds that P px, ¨q ě cdνd.

Such a condition will be automatically satisfied if g, the density of η, is continuous and Cd

is compact (for instance lim∥x∥Ñ`8 fpxq “ `8). Indeed, in that case:

@x P Rd , A P BpRdq P px,Aq “
1

cd

ż

zPA
gppz´x`γ∇fpxqq{cqdz ě

1

cd

ż

zPA
inf
xPCd

gppz´x`γ∇fpxqq{cqdz .

Denoting lpzq “ infxPCd
gppz ´ x ` γ∇fpxqq{cq we have that lpzq ą 0 by compactness of Cd.

Therefore, we can define νd as

νdpdzq “
lpzq dz

ş

Rd lpzqdz

and we obtain
@x P Rd , A P BpRdq P px,Aq ě εdνdpAq ,

with εd “

ş

Rd lpzqdz

cd
.
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