

3 Brownian motion: Markov property and quadratic variation

If not specified, $(B_t)_{t \geq 0}$ denotes a standard Brownian motion and $(\mathcal{F}_t)_{t \geq 0}$ its natural filtration. In addition, $(S_t)_{t \geq 0}$ is the process defined as

$$S_t = \sup_{s \in [0, t]} B_s, \quad t \geq 0. \quad (14)$$

Exercise 3.1. Let $\tau_a = \inf\{t \geq 0 : B_t = a\}$ for any $a \in \mathbb{R}$.

- (1) Show that $\tau_a < \infty$ almost surely.
- (2) Show that for any $c > 0$, the process $(\tau_a)_{a \in \mathbb{R}_+}$ has the same distribution as $(c^{-2}\tau_{ca})_{a \in \mathbb{R}_+}$.

Exercise 3.2 (Reflection principle). Let $(B_t)_{t \geq 0}$ be a standard Brownian motion and define

$$S_t = \sup_{s \in [0, t]} B_s, \quad t > 0.$$

In addition, define $\tau_a = \inf\{t \geq 0 : B_t = a\}$ for any $a \in \mathbb{R}$.

- (1) Show that $\tau_a < \infty$ almost surely.

Let $a \geq 0$ and $b \leq a$ and $t > 0$.

- (2) Show that

$$\mathbb{P}(S_t \geq a, B_t \leq b) = \mathbb{P}(\tau_a \leq t, \tilde{B}_{t-\tau_a} \leq b - a), \quad (15)$$

where $\tilde{B}_t = B_{t+\tau_a} - B_{\tau_a}$.

- (3) Show that $(\tilde{B}_t)_{t \geq 0}$ is BM independent of τ_a .
- (4) Deduce that $\mathbb{P}(\tau_a \leq t, \tilde{B}_{t-\tau_a} \leq b - a) = \mathbb{P}(\tau_a \leq t, -\tilde{B}_{t-\tau_a} \leq b - a)$.
- (5) Deduce that

$$\mathbb{P}(S_t \geq a, B_t \leq b) = \mathbb{P}(B_t \geq 2a - b). \quad (16)$$

- (6) Deduce that $\mathbb{P}(S_t \geq a) = 2\mathbb{P}(B_t \geq a)$ and therefore the random variables S_t and $|B_t|$ have the same distribution.
- (7) Deduce that the random vector (S_t, B_t) admits a joint density f_{S_t, B_t} with respect to Lebesgue measure on $\mathbb{R}_+ \times \mathbb{R}$, given by

$$f_{S_t, B_t}(a, b) = \frac{2(2a - b)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2a - b)^2}{2t}\right) \mathbb{1}_{\{a > 0, b < a\}}.$$

- (8) Compute $\mathbb{P}(S_t \geq a)$ and show that the density with respect to the Lebesgue measure of τ_a is given by

$$f_{\tau_a}(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right) \mathbb{1}_{\mathbb{R}_+^*}(t). \quad (17)$$

Exercise 3.3. Define

$$\tau_{\geq 1, 0} := \inf\{t \geq 1 : B_t = 0\}, \quad \sigma_{\sup, 1} := \sup\{t \leq 1 : B_t = 0\}.$$

- (1) Is the random variable $\tau_{\geq 1,0}$ a $(\mathcal{F}_t)_{t \geq 0}$ -stopping time?
- (2) Compute the law of $\tau_{\geq 1,0}$ and the law of $\sigma_{\sup,1}$ (hint: use the Markov property and the known formula for the law of τ_x , $x \in \mathbb{R}$).
- (3) Is the random variable $\sigma_{\sup,1}$ a $(\mathcal{F}_t)_{t \geq 0}$ -stopping time?

Exercise 3.4. Let

$$\tau_1 := \inf\{t > 0 : B_t = 1\}, \quad \tau := \inf\{t \geq \tau_1 : B_t = 0\}.$$

- (1) Is τ a stopping time?
- (2) Compute the law of τ .

Exercise 3.5. (1) Analyze the convergence in distribution as $t \rightarrow +\infty$ of the process $(X_t)_{t \geq 0}$ defined as

$$X_t = \frac{\log(1 + B_t^2)}{\log t}.$$

- (2) What can be said about its convergence in probability?
- (3) And its convergence almost sure?

Exercise 3.6. (1) Let $0 < a < b < c < d$. Show that almost surely,

$$\sup_{t \in [a,b]} B_t \neq \sup_{t \in [c,d]} B_t.$$

- (2) Deduce that almost surely every local maximum of $(B_t)_{t \geq 0}$ is a strict local maximum.

Exercise 3.7. (1) Let $f : [0,1] \rightarrow \mathbb{R}$ be a continuous function and define for $\lambda > 0$, $\psi(\lambda) = \lambda^{-1} \log \int_0^1 e^{\lambda f(t)} dt$. Show that

$$\lim_{\lambda \rightarrow +\infty} \psi(\lambda) = \sup_{[0,1]} f. \quad (18)$$

- (2) Define $Z_t = (\int_0^t e^{B_s} ds)^{1/\sqrt{t}}$ for any $t \geq 0$. Using the scaling property of Brownian motion, deduce that $(Z_t)_{t \geq 0}$ converges in distribution to $e^{|B_1|}$.

Exercise 3.8. Let $a > 0$ and define $\tau_a := \inf\{t > 0 : B_t = a\}$. Recall that

$$\mathbb{P}(\tau_a \leq t) \leq \exp\left(-\frac{a^2}{2t}\right), \quad t > 0.$$

Show that if G is a standard Gaussian random variable, then

$$\mathbb{P}(G \geq x) \leq \frac{1}{2} e^{-x^2/2}, \quad x > 0.$$

Exercise 3.9. Show that $S_2 - S_1$ has the same distribution as $\max\{|G| - |\tilde{G}|, 0\}$, where G and \tilde{G} are independent standard Gaussian random variables.

Exercise 3.10. Show, without using time inversion, but using the law of large numbers and the reflection principle, that $B_t/t \rightarrow 0$ almost surely as $t \rightarrow \infty$.

Exercise 3.11. Show that, almost surely $\int_0^\infty \sin^2(B_t) dt = \infty$.

Exercise 3.12. (1) Show that there exists $c > 0$ such that for all $t \geq 1$,

$$\mathbb{P}\left(\sup_{s \in [0,t]} |B_s| \leq 2\right) \geq e^{-ct}.$$

(2) Show that there exists $c > 0$ such that for all $\varepsilon \in (0, 1]$,

$$\mathbb{P}\left(\sup_{s \in [0,1]} |B_s| \leq \varepsilon\right) \geq e^{-c/\varepsilon^2}.$$

(3) Show that for all $t > 0$ and all $x > 0$,

$$\mathbb{P}\left(\sup_{s \in [0,t]} |B_s| \geq x\right) > 0.$$

Exercise 3.13 (Law of the Iterated Logarithm). Define for any $t > 0$, $h(t) := \sqrt{2t \log \log t}$.

(1) Let $\varepsilon > 0$ and define $t_n := (1 + \varepsilon)^n$. Show that $\sum_n \mathbb{P}(S_{t_{n+1}} \geq (1 + \varepsilon)h(t_n)) < +\infty$ and deduce that

$$\limsup_{t \rightarrow \infty} \frac{S_t}{h(t)} \leq 1 \quad \text{a.s.}$$

(2) Show that almost surely $\limsup_{t \rightarrow \infty} \sup_{s \in [0,t]} |B_s|/h(t) \leq 1$

(3) Let $\theta > 1$ and define $s_n := \theta^n$. Show that for every $\alpha \in (0, \sqrt{1 - \theta^{-1}}]$,

$$\sum_n \mathbb{P}(B_{s_n} - B_{s_{n-1}} \geq \alpha h(s_n)) = +\infty.$$

(4) Deduce that almost surely $\limsup_{t \rightarrow \infty} \frac{B_t}{h(t)} \geq \alpha$

(5) Show that almost surely $\limsup_{t \rightarrow \infty} \frac{B_t}{h(t)} = 1$.

(6) Let $X_t^1 = |B_t|$, $X_t^2 = S_t$ and $X_t^3 = \sup_{s \in [0,t]} |B_s|$. What can be said about

$$\limsup_{t \rightarrow \infty} \frac{X_t^i}{h(t)}, \quad i = 1, 2, 3$$

(7) What can be said about $\liminf_{t \rightarrow \infty} \frac{B_t}{h(t)}$ and $\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{2t \log \log(1/t)}}$?