Goal : For a given function f in some class of functions, approximate

 $\int \pi(\mathrm{d}x) f(x)$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C\tilde{\pi}(x)$ where $x\mapsto\tilde{\pi}(x)$ is known

$$\frac{1}{n}\sum_{i=0}^{n-1} f(X_i) \approx \int \pi(\mathrm{d}x) f(x) , \qquad n \text{ large },$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks.

Goal : For a given function f in some class of functions, approximate

 $\int \pi(\mathrm{d}x) f(x)$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C\tilde{\pi}(x)$ where $x\mapsto\tilde{\pi}(x)$ is known

$$\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\approx\int\pi(\mathrm{d} x)f(x)\;,\qquad n\;\mathrm{large}\;,$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks.

Goal : For a given function f in some class of functions, approximate

 $\int \pi(\mathrm{d}x) f(x)$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C\tilde{\pi}(x)$ where $x\mapsto\tilde{\pi}(x)$ is known

$$\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\approx\int\pi(\mathrm{d} x)f(x)\;,\qquad n\;\mathrm{large}\;,$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). <u>3 weeks</u>.

Goal : For a given function f in some class of functions, approximate

 $\int \pi(\mathrm{d}x) f(x)$

where the target distribution π is known up a multiplicative constant: $\pi(x)=C\tilde{\pi}(x)$ where $x\mapsto\tilde{\pi}(x)$ is known

$$\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\approx\int\pi(\mathrm{d} x)f(x)\;,\qquad n\;\mathrm{large}\;,$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks.

- 2 Markov chains and Markov kernels
- **3** Finite dimensional laws
- **4** The canonical space
- **5** The Markov property

- 2 Markov chains and Markov kernels
- 3 Finite dimensional laws
- 4 The canonical space
- **5** The Markov property

1 Activities

2 Markov chains and Markov kernels

3 Finite dimensional laws

- 4 The canonical space
- **5** The Markov property

Let (X,\mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, P(x, X) = 1 for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}), $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since P(x, ·) is a measure, we also use the infinitesimal notation: P(x, dy). For example,

$$P(x,A) = \int_{\mathsf{X}} \mathbf{1}_A(y) P(x,\mathrm{d}y) = \int_A P(x,\mathrm{d}y) \; .$$

Let (X,\mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, P(x, X) = 1 for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}), $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since P(x, ·) is a measure, we also use the infinitesimal notation: P(x, dy). For example,

$$P(x,A) = \int_{\mathsf{X}} \mathbf{1}_A(y) P(x,\mathrm{d}y) = \int_A P(x,\mathrm{d}y) \; .$$

Let (X,\mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, P(x, X) = 1 for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}) , $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since P(x, ·) is a measure, we also use the infinitesimal notation: P(x, dy). For example,

$$P(x,A) = \int_{\mathsf{X}} \mathbf{1}_A(y) P(x,\mathrm{d}y) = \int_A P(x,\mathrm{d}y) \; .$$

Let (X,\mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, P(x, X) = 1 for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}) , $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since P(x, ·) is a measure, we also use the infinitesimal notation: P(x, dy). For example,

$$P(x,A) = \int_{\mathsf{X}} \mathbf{1}_A(y) P(x,\mathrm{d} y) = \int_A P(x,\mathrm{d} y) \; .$$

Let $\{X_k : k \in \mathbb{N}\}$ be a sequence of random variables on $(\Omega, \mathcal{G}, \mathbb{P})$ and taking values on X.

Definition (of a Markov chain)

We say that $\{X_k : k \in \mathbb{N}\}$ is a Markov chain with Markov kernel P and initial distribution $\nu \in M_1(X)$ if and only if

1 for all $(k, A) \in \mathbb{N} \times \mathcal{X}$, $\mathbb{P}(X_{k+1} \in A | X_{0:k}) = P(X_k, A)$, \mathbb{P} -a.s. **2** $\mathbb{P}(X_0 \in A) = \nu(A)$.

Additional notation

Additional notation

For all $\mu \in M_+(X)$, all Markov kernels P, Q on $X \times X$, and all measurable non-negative or bounded functions on h on X,

1
$$\mu P$$
 is the (positive) measure:
 $A \mapsto \mu P(A) = \int \mu(\mathrm{d}x) P(x, A),$
2 PQ is the Markov kernel: $(x, A) \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) Q(y, A),$
3 Ph is the measurable function $x \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) h(y).$

Example

$$\mu(P(Qh)) = (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h)$$
$$= \int \cdots \int_{X^3} \mu(\mathrm{d}x)P(x,\mathrm{d}y)Q(y,\mathrm{d}z)h(z) = \mu PQh$$

Iterates of a kernel

• define $P^0 = I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_A(x)$

• set for $k \ge 0$, $P^{k+1} = P^k P$.

Additional notation

Additional notation

For all $\mu \in M_+(X)$, all Markov kernels P, Q on $X \times X$, and all measurable non-negative or bounded functions on h on X,

1
$$\mu P$$
 is the (positive) measure:
 $A \mapsto \mu P(A) = \int \mu(\mathrm{d}x) P(x, A),$
2 PQ is the Markov kernel: $(x, A) \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) Q(y, A),$
3 Ph is the measurable function $x \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) h(y).$

Example

$$\begin{split} \mu(P(Qh)) &= (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h) \\ &= \int \cdots \int_{\mathsf{X}^3} \mu(\mathrm{d}x) P(x,\mathrm{d}y) Q(y,\mathrm{d}z)h(z) = \mu PQh \end{split}$$

Iterates of a kernel
define P⁰ = I where I is the identity kernel: (x, A) → 1_A(x)
set for k ≥ 0, P^{k+1} = P^kP.

Additional notation

Additional notation

For all $\mu \in M_+(X)$, all Markov kernels P, Q on $X \times X$, and all measurable non-negative or bounded functions on h on X,

1
$$\mu P$$
 is the (positive) measure:
 $A \mapsto \mu P(A) = \int \mu(\mathrm{d}x) P(x, A),$
2 PQ is the Markov kernel: $(x, A) \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) Q(y, A),$
3 Ph is the measurable function $x \mapsto \int_{\mathsf{X}} P(x, \mathrm{d}y) h(y).$

• Example

$$\mu(P(Qh)) = (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h)$$
$$= \int \cdots \int_{\mathsf{X}^3} \mu(\mathrm{d}x)P(x,\mathrm{d}y)Q(y,\mathrm{d}z)h(z) = \mu PQh$$

- Iterates of a kernel
 - define $P^0 = I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_A(x)$

• set for
$$k \ge 0$$
, $P^{k+1} = P^k P$.

- 2 Markov chains and Markov kernels
- **3** Finite dimensional laws
- 4 The canonical space
- **5** The Markov property

Finite dimensional law

Let $\{X_k : k \in \mathbb{N}\}$ be a Markov chain with Markov kernel P and initial distribution $\nu \in M_1(X)$

Lemma (The joint law)

For any $n \in \mathbb{N}$, the joint law of $X_{0:n}$ is

$$\nu(\mathrm{d}x_0)\prod_{i=1}^n P(x_{i-1},\mathrm{d}x_i)$$

(with the convention that $\prod_{i=0}^{-1} = 1$). In particular, the law of X_n is νP^n .

- 2 Markov chains and Markov kernels
- 3 Finite dimensional laws
- 4 The canonical space
- **5** The Markov property

$$\bullet \ \ \, \text{let} \ \ P \ \ \, \text{be a Markov kernel on } \mathsf{X}\times\mathcal{X}$$

2 let
$$\nu \in M_1(X)$$

Theorem

(The canonical space) Given (1) and (2), there exists a unique probability measure \mathbb{P}_{ν} on the canonical space $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$ such that

• under \mathbb{P}_{ν} , the coordinate process $\{X_n : n \in \mathbb{N}\}$ is a Markov chain with Markov kernel P and initial distribution ν .

1 We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$.

2 For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$\mathbb{P}_{\nu}(X_{0:n} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:n} \in A).$$

③ We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

$$\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:\infty} \in A)$$
$$= \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(A).$$

We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$.
2 For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$\mathbb{P}_{\nu}(X_{0:n} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:n} \in A).$$

③ We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

$$\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:\infty} \in A)$$
$$= \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(A).$$

1 We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$. **2** For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$\mathbb{P}_{\nu}(X_{0:n} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:n} \in A).$$

3 We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

$$\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:\infty} \in A)$$
$$= \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(A).$$

- 2 Markov chains and Markov kernels
- 3 Finite dimensional laws
- **4** The canonical space
- **5** The Markov property

Theorem

(The Markov property) For any $\nu \in M_1(X)$, any non-negative or bounded function h on $X^{\mathbb{N}}$ and any $k \in \mathbb{N}$,

$$\mathbb{E}_{\nu}\left[h(X_{k:\infty})|\mathcal{F}_k\right] = \mathbb{E}_{X_k}\left[h(X_{0:\infty})\right], \quad \mathbb{P}_{\nu} - a.s.$$
(1)

where $\mathcal{F}_k = \sigma(X_{0:k})$.