Introduction

Goal : For a given function f in some class of functions, approximate

[ s

where the target distribution 7 is known up a multiplicative constant:
7(z) = C7(x) where x — 7(z) is known
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® We use a Markov chain (X,,)nen such that

n—1

%Zf(Xi) ~ /w(d:v)f(x) , n large ,

i=0
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Introduction

Goal : For a given function f in some class of functions, approximate
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where the target distribution 7 is known up a multiplicative constant:
7(z) = C7(x) where z — 7(x) is known
® We use a Markov chain (X,,)nen such that

n—1

1
L)~ [ R, nlerge.
i=0
® Theory of Markov chains: General definitions, invariant measures,
ergodicity , Law of Large Numbers, geometric ergodicity, Central
Limit theorems. 3 weeks.
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Goal : For a given function f in some class of functions, approximate
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where the target distribution 7 is known up a multiplicative constant:
7(z) = C7(x) where x — 7(z) is known

® We use a Markov chain (X,,)nen such that

n—1

Zﬂ&m/ﬂmmm, n large

i=0
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® Theory of Markov chains: General definitions, invariant measures,

ergodicity , Law of Large Numbers, geometric ergodicity, Central
Limit theorems. 3 weeks.

® Practise of Markov chains: Metropolis-Hastings Markov chains and

variants Pseudo marginal methods, Hamiltonian MCMC. Alternative
methods (Sequential MC, Variational Inference, ABC). 3 weeks .
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Outline

@ Activities

@ Markov chains and Markov kernels
® Finite dimensional laws

@ The canonical space

@ The Markov property
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Outline

@ Markov chains and Markov kernels
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Definitions
Let (X, X) be a measurable space.

Definition (of a Markov kernel)

We say that P : X x X — R is a Markov kernel , if for all
(x,A) e Xx X,

® y— P(y,A) is X/B(R") measurable,

® B+ P(z,B) is a probability measure on (X, X).
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Definition (of a Markov kernel)

We say that P : X x X — R is a Markov kernel , if for all
(x,A) e Xx X,

® y— P(y,A) is X/B(R") measurable,

® B+ P(z,B) is a probability measure on (X, X).

® In particular, P(z,X) =1 for all z € X.
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Definitions
Let (X, X) be a measurable space.

Definition (of a Markov kernel)

We say that P : X x X — R is a Markov kernel , if for all
(x,A) e Xx X,

® y— P(y,A) is X/B(R") measurable,

® B+ P(z,B) is a probability measure on (X, X).

® In particular, P(z,X) =1 for all z € X.

® Recall if v is a measure on (X, X), A — v(A) is well-defined
and we can define the integral associated to v and we use the

notation v(f) = [ f(z)v(dx),
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Definitions
Let (X, X) be a measurable space.

Definition (of a Markov kernel)

We say that P : X x X — R is a Markov kernel , if for all
(x,A) e Xx X,

® y— P(y,A) is X/B(RT) measurable,

® B+ P(z,B) is a probability measure on (X, X).

® In particular, P(z,X) =1 for all z € X.

® Recall if v is a measure on (X, X), A — v(A) is well-defined
and we can define the integral associated to v and we use the
notation v(f) = [ f(z)v(dx),

® Since P(x,-) is a measure, we also use the infinitesimal
notation: P(z,dy) . For example,

P, A) = /X 14(y)P(, dy) = /A Pz, dy) .
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Let {X}% : k € N} be a sequence of random variables on (2, G, P)
and taking values on X.

Definition (of a Markov chain)
We say that {X}, : k € N} is a Markov chain with Markov kernel
P and initial distribution v € M;(X) if and only if
@ forall (k,A) e Nx X, P(Xyy1 € Al Xox) = P(X, A), P-as.
® P(Xy e A) =v(A).
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Additional notation

Additional notation

For all i € M4 (X), all Markov kernels P, @) on X x X, and all
measurable non-negative or bounded functions on / on X,

@® (P is the (positive) measure:

A uP(A) = [ p(dz)P(z, A),
® PQ is the Markov kernel: (z,4) — [ P(x,dy)Q(y, A),
© Ph is the measurable function = — [, P(z,dy)h(y).
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Additional notation

Additional notation

For all i € M4 (X), all Markov kernels P, @) on X x X, and all
measurable non-negative or bounded functions on / on X,

@® (P is the (positive) measure:

A uP(A) = [ p(dz)P(z, A),
® PQ is the Markov kernel: (z,4) — [ P(x,dy)Q(y, A),
© Ph is the measurable function = — [, P(z,dy)h(y).

® Example
W(P(QR)) = (1P)(@Qh) = (u(PQ))h = u((PQ)R)
= [+ [ ntde) P )@ a0l = P @
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Additional notation

Additional notation

For all i € M4 (X), all Markov kernels P, @) on X x X, and all
measurable non-negative or bounded functions on / on X,

@® (P is the (positive) measure:

A uP(A) = [ p(dz)P(z, A),
® PQ is the Markov kernel: (z,4) — [ P(x,dy)Q(y, A),
© Ph is the measurable function = — [, P(z,dy)h(y).

® Example
W(P(QR)) = (uP)(Qh) = ((PQ))h = u((PQ)R)
- [ / (dz) P(z, dy)Q(y, d=)h(z) = uPQh

® |terates of a kernel
e define P° = I where I is the identity kernel: (x, A) — 14(x)
® set for k > 0, PFt1 = pkp.
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Outline

® Finite dimensional laws
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Finite dimensional law

Let {X} : k € N} be a Markov chain with Markov kernel P and
initial distribution v € M; (X)

Lemma (The joint law)

For any n € N, the joint law of Xg.,, is

n

v(dxo) H P(x;—1,dz;)

i=1

(with the convention that [[;_}, = 1). In particular, the law of X,
is vP".
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Outline

@ The canonical space
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@ let P be a Markov kernel on X x X
@ let v € M;(X)

Theorem

(The canonical space) Given (1) and (2), there exists a unique
probability measure P, on the canonical space (XN, X®N) such
that

® under P, the coordinate process {X,, : n € N} is a Markov
chain with Markov kernel P and initial distribution v .
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@® We use the notation: P, =P;s, .
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@® We use the notation: P, =P;s, .
@® For any A € x®(+1)

Py (Xom € A) = /X U(d20)Pay (Xom € A).
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@® We use the notation: P, =P;s, .
@® For any A € x®(+1)

Py (Xom € A) = /X U(d20)Pay (Xom € A).

© We can replace n by co: for all A € X®N,

]P)V(A> = PV(X();OO € A) = /XI/(d{L‘())]P)xO (XO:oo S A)

= / v(dzo) Py, (A).
X
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Outline

@ The Markov property
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Theorem

(The Markov property) For any v € M;(X), any non-negative or
bounded function h on XN and any k € N,

E,, [h(Xkoo)LFk] = Exk [h(XOoo)] y ]P’l, — a.S. (1)

where .Fk = O'(X();k).
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