
Introduction

Goal : For a given function f in some class of functions, approximate∫
π(dx)f(x)

where the target distribution π is known up a multiplicative constant:
π(x) = Cπ̃(x) where x 7→ π̃(x) is known

• We use a Markov chain (Xn)n∈N such that

1

n

n−1∑
i=0

f(Xi) ≈
∫
π(dx)f(x) , n large ,

• Theory of Markov chains: General definitions, invariant measures,
ergodicity , Law of Large Numbers, geometric ergodicity, Central
Limit theorems. 3 weeks.

• Practise of Markov chains: Metropolis-Hastings Markov chains and
variants Pseudo marginal methods, Hamiltonian MCMC. Alternative
methods (Sequential MC, Variational Inference, ABC). 3 weeks .
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Randal Douc and Sylvain Le Corff (Télécom SudParis) M2DS, MCMC theory and applications 3 / 16



Outline

1 Activities

2 Markov chains and Markov kernels

3 Finite dimensional laws

4 The canonical space

5 The Markov property
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Definitions
Let (X,X ) be a measurable space.

Definition (of a Markov kernel)

We say that P : X×X → R+ is a Markov kernel , if for all
(x,A) ∈ X×X ,

• y 7→ P (y,A) is X/B(R+) measurable,

• B 7→ P (x,B) is a probability measure on (X,X ).

• In particular, P (x,X) = 1 for all x ∈ X.
• Recall if ν is a measure on (X,X ), A 7→ ν(A) is well-defined

and we can define the integral associated to ν and we use the
notation ν(f) =

∫
f(x)ν(dx),

• Since P (x, ·) is a measure, we also use the infinitesimal

notation: P (x,dy) . For example,

P (x,A) =

∫
X
1A(y)P (x,dy) =

∫
A
P (x,dy) .
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Let {Xk : k ∈ N} be a sequence of random variables on (Ω,G,P)
and taking values on X.

Definition (of a Markov chain)

We say that {Xk : k ∈ N} is a Markov chain with Markov kernel
P and initial distribution ν ∈ M1(X) if and only if

1 for all (k,A) ∈ N×X , P(Xk+1 ∈ A|X0:k) = P (Xk, A), P-a.s.

2 P(X0 ∈ A) = ν(A).
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Additional notation

Additional notation

For all µ ∈ M+(X), all Markov kernels P , Q on X×X , and all
measurable non-negative or bounded functions on h on X,

1 µP is the (positive) measure:

A 7→ µP (A) =
∫
µ(dx)P (x,A),

2 PQ is the Markov kernel: (x,A) 7→
∫

X P (x,dy)Q(y,A),

3 Ph is the measurable function x 7→
∫

X P (x,dy)h(y).

• Example

µ(P (Qh)) = (µP )(Qh) = (µ(PQ))h = µ((PQ)h)

=

∫
· · ·

∫
X3

µ(dx)P (x,dy)Q(y,dz)h(z) = µPQh

• Iterates of a kernel
• define P 0 = I where I is the identity kernel: (x,A) 7→ 1A(x)
• set for k > 0, P k+1 = P kP .
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Finite dimensional law

Let {Xk : k ∈ N} be a Markov chain with Markov kernel P and
initial distribution ν ∈ M1(X)

Lemma (The joint law)

For any n ∈ N, the joint law of X0:n is

ν(dx0)

n∏
i=1

P (xi−1,dxi)

(with the convention that
∏−1
i=0 = 1). In particular, the law of Xn

is νPn.
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Randal Douc and Sylvain Le Corff (Télécom SudParis) M2DS, MCMC theory and applications 12 / 16



1 let P be a Markov kernel on X×X
2 let ν ∈ M1(X)

Theorem

(The canonical space) Given (1) and (2), there exists a unique

probability measure Pν on the canonical space (XN,X⊗N) such
that

• under Pν , the coordinate process {Xn : n ∈ N} is a Markov
chain with Markov kernel P and initial distribution ν.
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1 We use the notation: Px = Pδx .

2 For any A ∈ X⊗(n+1)

Pν(X0:n ∈ A) =

∫
X
ν(dx0)Px0(X0:n ∈ A).

3 We can replace n by ∞: for all A ∈ X⊗N,

Pν(A) = Pν(X0:∞ ∈ A) =

∫
X
ν(dx0)Px0(X0:∞ ∈ A)

=

∫
X
ν(dx0)Px0(A).
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Theorem

(The Markov property) For any ν ∈ M1(X), any non-negative or
bounded function h on XN and any k ∈ N,

Eν [h(Xk:∞)|Fk] = EXk
[h(X0:∞)] , Pν − a.s. (1)

where Fk = σ(X0:k).
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