Goal : For a given function f in some class of functions, approximate

where the target distribution π is known up a multiplicative constant: $\pi(x) = C\tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

 $\int \pi(\mathrm{d} x)f(x)$

$$
\frac{1}{n}\sum_{i=0}^{n-1} f(X_i) \approx \int \pi(\mathrm{d}x) f(x) , \qquad n \text{ large },
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks .

Goal : For a given function f in some class of functions, approximate

where the target distribution π is known up a multiplicative constant: $\pi(x) = C\tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

 $\int \pi(\mathrm{d} x)f(x)$

$$
\frac{1}{n}\sum_{i=0}^{n-1} f(X_i) \approx \int \pi(\mathrm{d}x) f(x) , \qquad n \text{ large },
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks .

Goal : For a given function f in some class of functions, approximate

where the target distribution π is known up a multiplicative constant: $\pi(x) = C\tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

 $\int \pi(\mathrm{d} x)f(x)$

$$
\frac{1}{n}\sum_{i=0}^{n-1}f(X_i) \approx \int \pi(\mathrm{d}x)f(x) , \quad n \text{ large },
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks .

Goal : For a given function f in some class of functions, approximate

where the target distribution π is known up a multiplicative constant: $\pi(x) = C\tilde{\pi}(x)$ where $x \mapsto \tilde{\pi}(x)$ is known

 $\int \pi(\mathrm{d} x)f(x)$

$$
\frac{1}{n}\sum_{i=0}^{n-1}f(X_i) \approx \int \pi(\mathrm{d}x)f(x) , \quad n \text{ large },
$$

- Theory of Markov chains: General definitions, invariant measures, ergodicity , Law of Large Numbers, geometric ergodicity, Central Limit theorems. 3 weeks.
- Practise of Markov chains: Metropolis-Hastings Markov chains and variants Pseudo marginal methods, Hamiltonian MCMC. Alternative methods (Sequential MC, Variational Inference, ABC). 3 weeks.

- [Markov chains and Markov kernels](#page-6-0)
- [Finite dimensional laws](#page-15-0)
- [The canonical space](#page-17-0)
- [The Markov property](#page-22-0)

- [Markov chains and Markov kernels](#page-6-0)
- [Finite dimensional laws](#page-15-0)
- [The canonical space](#page-17-0)
- [The Markov property](#page-22-0)

[Activities](#page-5-0)

[Markov chains and Markov kernels](#page-6-0)

[Finite dimensional laws](#page-15-0)

[The canonical space](#page-17-0)

[The Markov property](#page-22-0)

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, $P(x, X) = 1$ for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}) , $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal notation: $\overline{P}(x, dy)$. For example,

$$
P(x, A) = \int_{X} \mathbf{1}_{A}(y) P(x, dy) = \int_{A} P(x, dy) .
$$

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, $P(x, X) = 1$ for all $x \in X$.
- Recall if ν is a measure on (X, \mathcal{X}) , $A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x)\nu(\mathrm{d}x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal notation: $P(x, dy)$. For example,

$$
P(x, A) = \int_{X} \mathbf{1}_{A}(y) P(x, dy) = \int_{A} P(x, dy) .
$$

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, $P(x, X) = 1$ for all $x \in X$.
- Recall if ν is a measure on $(X, \mathcal{X}), A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x) \nu(\mathrm{d}x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal notation: $P(x, dy)$. For example,

$$
P(x, A) = \int_{X} \mathbf{1}_{A}(y) P(x, dy) = \int_{A} P(x, dy) .
$$

Let (X, \mathcal{X}) be a measurable space.

Definition (of a Markov kernel)

- $y \mapsto P(y, A)$ is $\mathcal{X}/\mathcal{B}(\mathbb{R}^+)$ measurable,
- $B \mapsto P(x, B)$ is a probability measure on (X, \mathcal{X}) .
- In particular, $P(x, X) = 1$ for all $x \in X$.
- Recall if ν is a measure on $(X, \mathcal{X}), A \mapsto \nu(A)$ is well-defined and we can define the integral associated to ν and we use the notation $\nu(f) = \int f(x) \nu(\mathrm{d}x)$,
- Since $P(x, \cdot)$ is a measure, we also use the infinitesimal notation: $\overline{P(x, dy)}$. For example,

$$
P(x, A) = \int_{\mathsf{X}} \mathbf{1}_A(y) P(x, dy) = \int_A P(x, dy) .
$$

Let $\{X_k : k \in \mathbb{N}\}$ be a sequence of random variables on $(\Omega, \mathcal{G}, \mathbb{P})$ and taking values on X.

Definition (of a Markov chain)

We say that $\{X_k : k \in \mathbb{N}\}$ is a Markov chain with Markov kernel P and initial distribution $\nu \in M_1(X)$ if and only if

● for all $(k, A) \in \mathbb{N} \times \mathcal{X}$, $\mathbb{P}(X_{k+1} \in A | X_{0:k}) = P(X_k, A)$, $\mathbb{P}\text{-a.s.}$ $\bigcirc \mathbb{P}(X_0 \in A) = \nu(A)$.

Additional notation

Additional notation

For all $\mu \in M_+(\mathsf{X})$, all Markov kernels P, Q on $\mathsf{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X,

\n- **①**
$$
\mu
$$
 P is the (positive) measure: $A \mapsto \mu(P(A) = \int \mu(\mathrm{d}x)P(x, A),$
\n- **②** *PQ* is the Markov kernel: $(x, A) \mapsto \int_X P(x, \mathrm{d}y)Q(y, A),$
\n- **②** *Ph* is the measurable function $x \mapsto \int_X P(x, \mathrm{d}y)h(y).$
\n

• Example

$$
\mu(P(Qh)) = (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h)
$$

$$
= \int \cdots \int_{X^3} \mu(dx)P(x, dy)Q(y, dz)h(z) = \mu PQh
$$

- Iterates of a kernel
	- define $P^0 = I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_A(x)$
	- set for $k \geq 0$, $P^{k+1} = P^k P$.

Randal Douc and Sylvain Le Corff (Télécom SudParis) [M2DS, MCMC theory and applications](#page--1-0) 9 / 16

Additional notation

Additional notation

For all $\mu \in M_+(\mathsf{X})$, all Markov kernels P, Q on $\mathsf{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X,

\n- **①**
$$
\mu
$$
 P is the (positive) measure: $A \mapsto \mu(P(A) = \int \mu(\mathrm{d}x)P(x, A),$
\n- **②** *PQ* is the Markov kernel: $(x, A) \mapsto \int_X P(x, \mathrm{d}y)Q(y, A),$
\n- **②** *Ph* is the measurable function $x \mapsto \int_X P(x, \mathrm{d}y)h(y).$
\n

• Example

$$
\mu(P(Qh)) = (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h)
$$

$$
= \int \cdots \int_{X^3} \mu(dx)P(x, dy)Q(y, dz)h(z) = \mu PQh
$$

- Iterates of a kernel
	- define $P^0 = I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_A(x)$
	- set for $k \geq 0$, $P^{k+1} = P^k P$.

Randal Douc and Sylvain Le Corff (Télécom SudParis) [M2DS, MCMC theory and applications](#page--1-0) 9 / 16

Additional notation

Additional notation

For all $\mu \in M_+(\mathsf{X})$, all Markov kernels P, Q on $\mathsf{X} \times \mathcal{X}$, and all measurable non-negative or bounded functions on h on X,

\n- **①**
$$
\mu
$$
 P is the (positive) measure: $A \mapsto \mu(P(A) = \int \mu(\mathrm{d}x)P(x, A),$
\n- **②** *PQ* is the Markov kernel: $(x, A) \mapsto \int_X P(x, \mathrm{d}y)Q(y, A),$
\n- **②** *Ph* is the measurable function $x \mapsto \int_X P(x, \mathrm{d}y)h(y).$
\n

• Example

$$
\mu(P(Qh)) = (\mu P)(Qh) = (\mu(PQ))h = \mu((PQ)h)
$$

$$
= \int \cdots \int_{X^3} \mu(\mathrm{d}x) P(x, \mathrm{d}y) Q(y, \mathrm{d}z) h(z) = \mu PQh
$$

- Iterates of a kernel
	- define $P^0 = I$ where I is the identity kernel: $(x, A) \mapsto \mathbf{1}_A(x)$

• set for
$$
k \ge 0
$$
, $P^{k+1} = P^k P$.

Randal Douc and Sylvain Le Corff (Télécom SudParis) [M2DS, MCMC theory and applications](#page--1-0) 9 / 16

- [Markov chains and Markov kernels](#page-6-0)
- [Finite dimensional laws](#page-15-0)
- [The canonical space](#page-17-0)
- [The Markov property](#page-22-0)

Finite dimensional law

Let $\{X_k : k \in \mathbb{N}\}$ be a Markov chain with Markov kernel P and initial distribution $\nu \in M_1(X)$

Lemma (The joint law)

For any $n \in \mathbb{N}$, the joint law of $X_{0:n}$ is

$$
\nu(\mathrm{d}x_0)\prod_{i=1}^n P(x_{i-1}, \mathrm{d}x_i)
$$

(with the convention that $\prod_{i=0}^{-1}=1)$. In particular, the law of X_n is νP^n .

- [Markov chains and Markov kernels](#page-6-0)
- [Finite dimensional laws](#page-15-0)
- [The canonical space](#page-17-0)
- [The Markov property](#page-22-0)
- **1** let P be a Markov kernel on $X \times X$
- **2** let $\nu \in M_1(X)$

Theorem

(The canonical space) Given (1) and (2) , there **exists a unique** probability measure \mathbb{P}_{ν} on the canonical space $(\mathsf{X}^{\mathbb{N}},\mathcal{X}^{\otimes \mathbb{N}})$ such that

• under \mathbb{P}_{ν} , the coordinate process $\{X_n : n \in \mathbb{N}\}\$ is a Markov chain with Markov kernel P and initial distribution ν.

D We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$.

2 For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$
\mathbb{P}_{\nu}(X_{0:n}\in A)=\int_{\mathsf{X}}\nu(\mathrm{d}x_0)\mathbb{P}_{x_0}(X_{0:n}\in A).
$$

3 We can replace *n* by ∞ : for all $A \in \mathcal{X}^{\otimes N}$,

$$
\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{X} \nu(\mathrm{d}x_{0}) \mathbb{P}_{x_{0}}(X_{0:\infty} \in A)
$$

$$
= \int_{X} \nu(\mathrm{d}x_{0}) \mathbb{P}_{x_{0}}(A).
$$

D We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$. **2** For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$
\mathbb{P}_{\nu}(X_{0:n} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:n} \in A).
$$

3 We can replace *n* by ∞ : for all $A \in \mathcal{X}^{\otimes N}$,

$$
\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{X} \nu(\mathrm{d}x_{0}) \mathbb{P}_{x_{0}}(X_{0:\infty} \in A)
$$

$$
= \int_{X} \nu(\mathrm{d}x_{0}) \mathbb{P}_{x_{0}}(A).
$$

D We use the notation: $\mathbb{P}_x = \mathbb{P}_{\delta_x}$. **2** For any $A \in \mathcal{X}^{\otimes (n+1)}$

$$
\mathbb{P}_{\nu}(X_{0:n} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:n} \in A).
$$

③ We can replace n by ∞ : for all $A \in \mathcal{X}^{\otimes \mathbb{N}}$,

$$
\mathbb{P}_{\nu}(A) = \mathbb{P}_{\nu}(X_{0:\infty} \in A) = \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(X_{0:\infty} \in A)
$$

$$
= \int_{\mathsf{X}} \nu(\mathrm{d}x_0) \mathbb{P}_{x_0}(A).
$$

- [Markov chains and Markov kernels](#page-6-0)
- [Finite dimensional laws](#page-15-0)
- [The canonical space](#page-17-0)
- [The Markov property](#page-22-0)

Theorem

(The Markov property) For any $\nu \in M_1(X)$, any non-negative or bounded function h on $X^{\mathbb{N}}$ and any $k \in \mathbb{N}$,

$$
\mathbb{E}_{\nu}\left[h(X_{k:\infty})|\mathcal{F}_k\right] = \mathbb{E}_{X_k}[h(X_{0:\infty})], \quad \mathbb{P}_{\nu} - a.s.
$$
 (1)

where $\mathcal{F}_k = \sigma(X_{0:k})$.