Quiz 4: MCMC and Variational Inference

M2DS. R. Douc and S. Schechtman

Nom:

Prénom:

Algorithm 1 Input: $x_0 \in \mathbb{R}$, $\sigma > 0$, $a, a' \in \mathbb{R}$, $\alpha \in (0, 1)$.

 $\begin{aligned} X_0 &= x_0. \\ \text{for } k \geq 0 \text{ do} \\ \text{Independently sample } \eta_{k+1} \sim \mathcal{N}(0, \sigma^2) \text{ and } U_{k+1} \text{ from a uniform distribution on } [0, 1]. \\ \text{if } U_{k+1} &\leq \alpha \text{ then} \\ X_{k+1} &= aX_k + \eta_{k+1} \\ \text{else} \\ X_{k+1} &= a'X_k + \eta_{k+1} \\ \text{end if} \\ \text{end for} \end{aligned}$

- **EXERCISE 1** Let (X_k) be a Markov Chain generated by Algorithm 1. We will denote *P* its Markov kernel and $V(x) = x^2 + 1$. Which of the following statements is true?
 - a $\checkmark P$ is irreducible with respect to the Lebesgue measure.
 - b \checkmark For $\alpha = 3/4$, the drift condition on *V* is satisfied for a = 1/2 and a' = 1/2.
 - c For $\alpha = 1/2$, the drift condition on V is satisfied for a = 3/2 and a' = 1/4.
 - d \checkmark For all $a, a' \in \mathbb{R}$ the minorizing condition is satisfied.
 - e For all $a, a' \in \mathbb{R}$, *P* admits an invariant probability measure π such that $\mathbb{E}_{X \sim \pi}[X^2] < +\infty$.