▶ M2DS: MCMC and Variational Inference

1 Cours 1: Markov chains, transition kernel, invariant probability measure

(1) Transition kernel, definitions

Multiple CHOICE marked out of 2 penalty 1 Multiple answers allowed Shuffle

Recall that $\mu P(A) = \int \mu(\mathrm{d}x) P(x,\mathrm{d}y) \mathbf{1}_A(y)$ and $Ph(x) = \int P(x,\mathrm{d}y) h(y)$. Let P a Markov kernel and let μ a probability measure on (X, \mathcal{X}) . Let $(X_n)_{n\in\mathbb{N}}$ be a Markov chain with transition kernel P.

Which of the following answers are true?

- a. $A \mapsto P^2(x, A)$ is the law of X_2 given that $X_0 = x$. (20%)
- b. $\mu P^2(A) = \int \cdots \int \mu(dx_0) P(x_0, dx_1) P(x_1, dx_2) \mathbf{1}_A(x_1) (-20\%)$
- c. $\mu P^2(A) = \int \cdots \int \mu(dx_0) P(x_0, dx_1) P(x_1, dx_2) \mathbf{1}_A(x_2)$ (20%)
- d. μP^3 is the law of X_3 given that $X_0 \sim \mu$. (20%)
- e. $\mathbb{E}[h(X_{n+2})|X_n] = P^2h(X_n)$ (20%)
- f. $\mathbb{E}[h(X_n)|X_{n-1}] = Ph(X_n)$ (-20%)
- g. $\mathbb{P}(X_{n+1} \in A|X_n) = P(X_{n+1}, A) \ (-20\%)$
- h. If π is invariant for P and $X_0 \sim \pi$, then the conditional law of X_n given X_0 is π . (-20%)
- i. If π is invariant for P and $X_0 \sim \pi$, then the conditional law of X_n given X_0 is π . (20%)

(2) Expression of a transition kernel

Multiple choice marked out of 2 penalty 1 Multiple answers allowed Shuffle

Let (X_k) be the Markov chain defined by the transition: given X_{k-1} , we draw independently $\epsilon_k \sim N(0,1)$ and a Bernoulli random variable Z_k with success probability α . Then,

- If $Z_k = 0$, we set $X_k = 2X_{k-1} + \epsilon_k$
- If $Z_k = 1$, we set $X_k = -X_{k-1} + 2\epsilon_k$

Denote by P the Markov kernel associated to (X_k) . Let $\phi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$ be the density of a standard normal distribution.

Which of the following answers are true?

a.

$$\mathbb{E}[h(X_k)|X_{k-1} = x] = \alpha \int h(2x+\epsilon)\phi(\epsilon)d\epsilon + (1-\alpha) \int h(-x+2\epsilon)\phi(\epsilon)d\epsilon$$
(-50%)

b.

$$\mathbb{E}[h(X_k)|X_{k-1} = x] = (1-\alpha) \int h(2x+\epsilon)\phi(\epsilon)d\epsilon + \alpha \int h(-x+2\epsilon)\phi(\epsilon)d\epsilon$$
(50%)

c.

$$\mathbb{E}[h(X_k)|X_{k-1}=x] = (1-\alpha)\int \phi(2x+\epsilon)h(\epsilon)\mathrm{d}\epsilon + \alpha\int \phi(-x+2\epsilon)h(\epsilon)\mathrm{d}\epsilon$$

$$(-50\%)$$

d.
$$P(x, dy) = [(1 - \alpha)\phi(y - 2x) + \frac{\alpha}{2}\phi((y + x)/2)] dy$$
 (50%)
e. $P(x, dy) = [(1 - \alpha)\phi(y - 2x) + 2\alpha\phi(y + x)] dy$ (-50%)

e.
$$P(x, dy) = [(1 - \alpha)\phi(y - 2x) + 2\alpha\phi(y + x)] dy (-50\%)$$

(3) Expression of a transition kernel with degeneracy

MULTIPLE CHOICE marked out of 2 penalty 1 Multiple answers allowed

Let (X_k) be the Markov chain defined by the transition: given X_{k-1} , we draw independently $\epsilon_k \sim N(0,1)$ and a Bernoulli random variable Z_k with success probability α . Then,

- If $Z_k = 0$, we set $X_k = 2X_{k-1}$
- If $Z_k = 1$, we set $X_k = -X_{k-1} + 2\epsilon_k$

Denote by P the Markov kernel associated to (X_k) . Let $\phi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$ be the density of a standard normal distribution.

Which of the following answers are true?

a.

$$\mathbb{E}[h(X_k)|X_{k-1} = x] = (1 - \alpha)h(2x) + \alpha \int h(-x + 2\epsilon)\phi(\epsilon)d\epsilon$$
(50%)

b.

$$\mathbb{E}[h(X_k)|X_{k-1} = x] = \alpha h(2x) + (1 - \alpha) \int h(-x + 2\epsilon) \phi(\epsilon) d\epsilon$$

$$(-50\%)$$
c. $P(x, dy) = (1 - \alpha) \delta_{2x}(dy) + \frac{\alpha}{2} \phi(\frac{y+x}{2}) dy \ (50\%)$
d. $P(x, dy) = [(1 - \alpha)\mathbf{1} \{y \neq 2x\} + 2\alpha \phi(y+x)] dy \ (-50\%)$

Total of marks: 6