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1 Reminders from probability

1.1 Conditional expectation

Proposition 1.1. Let F = o(Y; : ¢ € ) where {Y; :,i € |} are random variable valued in (Y, }).
Then Z a F-measurable random variable is equal to E [X|F] if and only if for any J C | finite and
{f;}jes measurable and bounded,

E\X[[H0)| =E|Z][ ()] - (1)
Jjed jed
1.2 Gaussian random variables

Définition 1.2. 1. For any m € R and o > 0, we denote by N(m, 02) the Gaussian distribution
on R which has density with respect to the Lebesgue measure given by

z — (210?) V2 exp(—(x — m)?/(202)) . (2)

We can extend this definition for ¢ = 0 by setting for any m € R, N(m, 0) = d,,, where &,
is the Dirac distribution at m.

2. A real-valued random variable G is said to follow a Gaussian distribution if there exists
m € R and o > 0, such that G has distribution N(m, 2).

3. A random variable X on R? is said to be a Gaussian random variable if for any ¢ € R?, the
real-valued random variable (t, X') follows a Gaussian distribution.

Proposition 1.3. Let G a standard normal random variable. Then, for any = > 0,
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P(G>z)<e ™ /2. (4)

Théoréme 1.4. Let (G,), oy be a sequence of random variables such that for any n, G, is follows
the one-dimensional Gaussian distribution N(m,,, c2).

(1) Suppose that that (G,),y converges in distribution to G. Then G is Gaussian.
(2) In addition, if (Gy,), oy converges in probability to G, then it converges in L? for any p > 1.

Proposition 1.5. The random variable X on R? is Gaussian if and only if there exists m € R?
and a semi-definite positive matrix ¥ such that for any t € RY, E[el(tX)] = exp(itm — (1/2) (3¢, t)).
In that case, m and ¥ are the mean and covariance matrix of the vector X, i.e. m = E[X] and
¥ =E[XX"]. We say then that X follows a d-dimensional Gaussian distribution with mean m
and covariance matrix 3, denoted by N(m, X).

Proposition 1.6. Let X be d-Gaussian random variable with distribution N(m, ). Let m € R”
and M € R"*? Then Y = m+MX is a n-dimensional Gaussian random variable with distribution
N(m + Mm,MXM™).

Proposition 1.7. Let X be d-dimensional Gaussian random variable with distribution N(m, 3).
Then if for any ¢ € {1,...,d}, X; is the i-th component of X, the family of one dimensional
random variables (X;);cq1,...,ap is independent if and only if ¥; ; = 0 for 4, j € {1,...,d}, i # j.
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Proposition 1.8. Let X be a Ele n;-dimensional Gaussian random variable with distribution

N(m, X). Then for any i € {1,...,d}, define Z; = (Xp,,_,+1,--.,Xn,), where ng = 0 and X is the
i-th component of X for j € {1,..., Zle n;. The family of r.v.s (Z;)icq1,...,qy are independent if

and only if 3; ; =0 for 4,j & U?:l{ni—l +1,...n;}.
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where X € R?, Y € RP, and Yyy is invertible. Then, the conditional expectation of X given Y is

Proposition 1.9. Let

EX | Y] =pux + Sxy Iy (Y — py) .

1.3 Exercises
Exercise 1.1. Show Proposition 1.1.
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Exercise 1.2. Let (G});c(1
bution N(0, 1).

n} be ii.d. one-dimensional Gaussian random variables with distri-

1. Show that the n-dimensional vector X = (G1,...,G,) is Gaussian and specify its mean and
covariance matrix.

2. Deduce how to get a random variable with distribution N(m, ) from (G)ieq1,... n}-
Exercise 1.3. Let G be a random variable following the standard Gaussian distribution A(0, 1).
(1) Compute E[G*] and E[|G]].

(2) Compute E[e“C], E[Ge®C], and E[e"®’], where a € R is a real number.
Exercise 1.4. The goal of this exercise is to show Théoréme 1.4-(1). As a first step, we show

Proposition 1.10. Let (x,),cn be a real sequence such that for any ¢ € R, (e*®"),,cy converges,
then (z,)nen converges.

(1) Suppose that (x,)n,en be a real sequence such that for any ¢ € R, (e!*®),cy converges but
(zn)nen does not converge.

(i) Show that (zn)nen cannot have two limit points and therefore it necessarily diverges.

(

ii) Denoting for any ¢ € R, f(t) = lim,,_, 4 o ¢'**», show that

1 1
1= [ |f@®)Pdt= lim [ f(t)e'*™dt. (5)
0 n—oo 0

(iii) Recognizing a Fourier transform, show that lim,, e fol f(t)elt*ndt = 0.
(iv) Deduce Proposition 1.10.

(2) Using Proposition 1.10, show Théoreme 1.4-(1).

Exercise 1.5. Show Proposition 1.9.



