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1 Reminders from probability

1.1 Conditional expectation

Proposition 1.1. Let F = ω(Yi : i → I) where {Yi :, i → I} are random variable valued in (Y,Y).
Then Z a F-measurable random variable is equal to E [X|F ] if and only if for any J ↑ I finite and
{fj}j→J measurable and bounded,
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1.2 Gaussian random variables

Définition 1.2. 1. For any m → R and ω > 0, we denote by N(m,ω2) the Gaussian distribution
on R which has density with respect to the Lebesgue measure given by

x ↓↔ (2ωω2)↑1/2 exp(↗(x↗m)2/(2ω2)) . (2)

We can extend this definition for ω = 0 by setting for any m → R, N(m, 0) = εm, where εm
is the Dirac distribution at m.

2. A real-valued random variable G is said to follow a Gaussian distribution if there exists
m → R and ω ↘ 0, such that G has distribution N(m,ω2).

3. A random variable X on Rd is said to be a Gaussian random variable if for any t → Rd, the
real-valued random variable ≃t,X⇐ follows a Gaussian distribution.

Proposition 1.3. Let G a standard normal random variable. Then, for any x > 0,
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2ε

(
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x
↗ 1

x3

)
e↑x2/2 ⇑ P(G > x) ⇑ 1⇒

2ε

1

x
e↑x2/2 (3)

P(G > x) ⇑ e↑x2/2 . (4)

Théorème 1.4. Let (Gn)n→N be a sequence of random variables such that for any n, Gn is follows
the one-dimensional Gaussian distribution N(mn,ω2

n).

(1) Suppose that that (Gn)n→N converges in distribution to G. Then G is Gaussian.

(2) In addition, if (Gn)n→N converges in probability to G, then it converges in Lp for any p ↘ 1.

Proposition 1.5. The random variable X on Rd is Gaussian if and only if there exists m → Rd

and a semi-definite positive matrix ! such that for any t → Rd, E[ei↓t,X↔] = exp(itm↗(1/2) ≃!t, t⇐).
In that case, m and ! are the mean and covariance matrix of the vector X, i.e. m = E [X] and
! = E

[
XXT

]
. We say then that X follows a d-dimensional Gaussian distribution with mean m

and covariance matrix !, denoted by N(m,!).

Proposition 1.6. Let X be d-Gaussian random variable with distribution N(m,!). Let m → Rn

and M → Rn↗d. Then Y = m+MX is a n-dimensional Gaussian random variable with distribution
N(m+Mm,M!MT).

Proposition 1.7. Let X be d-dimensional Gaussian random variable with distribution N(m,!).
Then if for any i → {1, . . . , d}, Xi is the i-th component of X, the family of one dimensional
random variables (Xi)i→{1,...,d} is independent if and only if !i,j = 0 for i, j → {1, . . . , d}, i ⇓= j.
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Proposition 1.8. Let X be a
∑d

i=1 ni-dimensional Gaussian random variable with distribution
N(m,!). Then for any i → {1, . . . , d}, define Zi = (Xni→1+1, . . . , Xni), where n0 = 0 and Xi is the

i-th component of X for j → {1, . . . ,
∑d

i=1 ni. The family of r.v.s (Zi)i→{1,...,d} are independent if

and only if !i,j = 0 for i, j ⇓→
⋃d

i=1{ni↑1 + 1, . . . ni}.

Proposition 1.9. Let (
X
Y

)
⇔ N

((
µX

µY

)
,

(
!XX !XY

!Y X !Y Y

))
,

where X → Rd, Y → Rp, and !Y Y is invertible. Then, the conditional expectation of X given Y is

E[X | Y ] = µX + !XY !
↑1
Y Y (Y ↗ µY ) .

1.3 Exercises

Exercise 1.1. Show Proposition 1.1.

Exercise 1.2. Let (Gi)i→{1,...,n} be i.i.d. one-dimensional Gaussian random variables with distri-
bution N(0, 1).

1. Show that the n-dimensional vector X = (G1, . . . , Gn) is Gaussian and specify its mean and
covariance matrix.

2. Deduce how to get a random variable with distribution N(m,!) from (Gi)i→{1,...,n}.

Exercise 1.3. Let G be a random variable following the standard Gaussian distribution N (0, 1).

(1) Compute E[G4] and E[|G|].

(2) Compute E[eaG], E[GeaG], and E[eaG2

], where a → R is a real number.

Exercise 1.4. The goal of this exercise is to show Théorème 1.4-(1). As a first step, we show

Proposition 1.10. Let (xn)n→N be a real sequence such that for any t → R, (eitxn)n→N converges,
then (xn)n→N converges.

(1) Suppose that (xn)n→N be a real sequence such that for any t → R, (eitxn)n→N converges but
(xn)n→N does not converge.

(i) Show that (xn)n→N cannot have two limit points and therefore it necessarily diverges.

(ii) Denoting for any t → R, f(t) = limn↘+≃ eitxn , show that

1 =

∫ 1

0
|f(t)|2 dt = lim

n↘≃

∫ 1

0
f(t)eitxndt . (5)

(iii) Recognizing a Fourier transform, show that limn↘≃
∫ 1
0 f(t)eitxndt = 0.

(iv) Deduce Proposition 1.10.

(2) Using Proposition 1.10, show Théorème 1.4-(1).

Exercise 1.5. Show Proposition 1.9.
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