

1 Reminders from probability

1.1 Conditional expectation

Proposition 1.1. Let $\mathcal{F} = \sigma(Y_i : i \in I)$ where $\{Y_i : i \in I\}$ are random variable valued in (Y, \mathcal{Y}) . Then Z a \mathcal{F} -measurable random variable is equal to $\mathbb{E}[X|\mathcal{F}]$ if and only if for any $J \subset I$ finite and $\{f_j\}_{j \in J}$ measurable and bounded,

$$\mathbb{E} \left[X \prod_{j \in J} f_j(Y_j) \right] = \mathbb{E} \left[Z \prod_{j \in J} f_j(Y_j) \right]. \quad (1)$$

1.2 Gaussian random variables

Définition 1.2. 1. For any $m \in \mathbb{R}$ and $\sigma > 0$, we denote by $N(m, \sigma^2)$ the Gaussian distribution on \mathbb{R} which has density with respect to the Lebesgue measure given by

$$x \mapsto (2\pi\sigma^2)^{-1/2} \exp(-(x - m)^2/(2\sigma^2)). \quad (2)$$

We can extend this definition for $\sigma = 0$ by setting for any $m \in \mathbb{R}$, $N(m, 0) = \delta_m$, where δ_m is the Dirac distribution at m .

2. A real-valued random variable G is said to follow a Gaussian distribution if there exists $m \in \mathbb{R}$ and $\sigma \geq 0$, such that G has distribution $N(m, \sigma^2)$.
3. A random variable X on \mathbb{R}^d is said to be a Gaussian random variable if for any $t \in \mathbb{R}^d$, the real-valued random variable $\langle t, X \rangle$ follows a Gaussian distribution.

Proposition 1.3. Let G a standard normal random variable. Then, for any $x > 0$,

$$\frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} \right) e^{-x^2/2} \leq \mathbb{P}(G > x) \leq \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-x^2/2} \quad (3)$$

$$\mathbb{P}(G > x) \leq e^{-x^2/2}. \quad (4)$$

Théorème 1.4. Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random variables such that for any n , G_n is follows the one-dimensional Gaussian distribution $N(m_n, \sigma_n^2)$.

- (1) Suppose that that $(G_n)_{n \in \mathbb{N}}$ converges in distribution to G . Then G is Gaussian.
- (2) In addition, if $(G_n)_{n \in \mathbb{N}}$ converges in probability to G , then it converges in L^p for any $p \geq 1$.

Proposition 1.5. The random variable X on \mathbb{R}^d is Gaussian if and only if there exists $m \in \mathbb{R}^d$ and a semi-definite positive matrix Σ such that for any $t \in \mathbb{R}^d$, $\mathbb{E}[e^{i\langle t, X \rangle}] = \exp(itm - (1/2)\langle \Sigma t, t \rangle)$. In that case, m and Σ are the mean and covariance matrix of the vector X , i.e. $m = \mathbb{E}[X]$ and $\Sigma = \mathbb{E}[XX^T]$. We say then that X follows a d -dimensional Gaussian distribution with mean m and covariance matrix Σ , denoted by $N(m, \Sigma)$.

Proposition 1.6. Let X be d -Gaussian random variable with distribution $N(m, \Sigma)$. Let $m \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times d}$. Then $Y = m + MX$ is a n -dimensional Gaussian random variable with distribution $N(m + Mm, M\Sigma M^T)$.

Proposition 1.7. Let X be d -dimensional Gaussian random variable with distribution $N(m, \Sigma)$. Then if for any $i \in \{1, \dots, d\}$, X_i is the i -th component of X , the family of one dimensional random variables $(X_i)_{i \in \{1, \dots, d\}}$ is independent if and only if $\Sigma_{i,j} = 0$ for $i, j \in \{1, \dots, d\}$, $i \neq j$.

Proposition 1.8. Let X be a $\sum_{i=1}^d n_i$ -dimensional Gaussian random variable with distribution $N(\mu, \Sigma)$. Then for any $i \in \{1, \dots, d\}$, define $Z_i = (X_{n_{i-1}+1}, \dots, X_{n_i})$, where $n_0 = 0$ and X_i is the i -th component of X for $j \in \{1, \dots, \sum_{i=1}^d n_i\}$. The family of r.v.s $(Z_i)_{i \in \{1, \dots, d\}}$ are independent if and only if $\Sigma_{i,j} = 0$ for $i, j \notin \bigcup_{i=1}^d \{n_{i-1} + 1, \dots, n_i\}$.

Proposition 1.9. Let

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix} \right),$$

where $X \in \mathbb{R}^d$, $Y \in \mathbb{R}^p$, and Σ_{YY} is invertible. Then, the conditional expectation of X given Y is

$$\mathbb{E}[X | Y] = \mu_X + \Sigma_{XY} \Sigma_{YY}^{-1} (Y - \mu_Y).$$

1.3 Exercises

Exercise 1.1. Show Proposition 1.1.

Exercise 1.2. Let $(G_i)_{i \in \{1, \dots, n\}}$ be i.i.d. one-dimensional Gaussian random variables with distribution $N(0, 1)$.

1. Show that the n -dimensional vector $X = (G_1, \dots, G_n)$ is Gaussian and specify its mean and covariance matrix.
2. Deduce how to get a random variable with distribution $N(\mu, \Sigma)$ from $(G_i)_{i \in \{1, \dots, n\}}$.

Exercise 1.3. Let G be a random variable following the standard Gaussian distribution $N(0, 1)$.

- (1) Compute $\mathbb{E}[G^4]$ and $\mathbb{E}[|G|]$.
- (2) Compute $\mathbb{E}[e^{aG}]$, $\mathbb{E}[Ge^{aG}]$, and $\mathbb{E}[e^{aG^2}]$, where $a \in \mathbb{R}$ is a real number.

Exercise 1.4. The goal of this exercise is to show Théorème 1.4-(1). As a first step, we show

Proposition 1.10. Let $(x_n)_{n \in \mathbb{N}}$ be a real sequence such that for any $t \in \mathbb{R}$, $(e^{itx_n})_{n \in \mathbb{N}}$ converges, then $(x_n)_{n \in \mathbb{N}}$ converges.

- (1) Suppose that $(x_n)_{n \in \mathbb{N}}$ be a real sequence such that for any $t \in \mathbb{R}$, $(e^{itx_n})_{n \in \mathbb{N}}$ converges but $(x_n)_{n \in \mathbb{N}}$ does not converge.

- (i) Show that $(x_n)_{n \in \mathbb{N}}$ cannot have two limit points and therefore it necessarily diverges.
- (ii) Denoting for any $t \in \mathbb{R}$, $f(t) = \lim_{n \rightarrow +\infty} e^{itx_n}$, show that

$$1 = \int_0^1 |f(t)|^2 dt = \lim_{n \rightarrow \infty} \int_0^1 f(t) e^{itx_n} dt. \quad (5)$$

- (iii) Recognizing a Fourier transform, show that $\lim_{n \rightarrow \infty} \int_0^1 f(t) e^{itx_n} dt = 0$.
- (iv) Deduce Proposition 1.10.

- (2) Using Proposition 1.10, show Théorème 1.4-(1).

Exercise 1.5. Show Proposition 1.9.