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This course provides a concise introduction to mathematical statistics. We have chosen to focus on the
main results, and proofs are provided when they are straightforward, informative, and not overly techni-
cal. For more in-depth details, explanations, and broader assumptions, you can refer for example to the
following textbooks:

(a) “Mathematical Statistics” by P. Bickel and K. Docksum. Chapman and Hall/CRC.

(b) “Statistique et Apprentissage” by G. Fort, M. Lerasle, and E. Moulines. (in French.) Lecture notes
of the course MAP433 given at Ecole Polytechnique.

The following notation is used throughout the document.

• i.i.d means independent and identically distributed.

• r.v. means random variables.

• For r,s ∈ N such that r ⩽ s, we write [r : s] = {r,r+1, . . . ,s}.

• X |= Y means X and Y are independent random variables.

• X L
= Y means X and Y have the same law.

• If Q is a probability measure, X ∼ Q means that the random variable X follows the distribution Q.
By abuse of notation, if Q has a density q with respect to some dominating measure µ, then when no
ambiguity occurs, we may write X ∼ q instead of X ∼ Q.

• liminfn an = limn→∞ (infk⩾n ak) and similarly, limsupn an = limn→∞

(
supk⩾n ak

)
. Moreover, limn an

exists if and only if liminfn an = limsupn an.

• For any a ∈ R, a+ = max(a,0) and a− = max(−a,0) =−min(a,0) and we have |a|= a++a− and
a = a+−a−.

Other notation will be introduced progressively in the Lecture Notes.
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Preliminary on measure theory and
integration

In this introductory chapter, we offer a concise overview of measure and integration theory, with a specific
emphasis on their application in probability theory.

0.1 Sigma-fields, Measures and Probability
Let us start with the most basic concept in probability: sigma-fields!

Definition 0.1. Let Ω be a given set. We say that a family of sets F ⊂ P (Ω) is a sigma-field on Ω if and
only if the three following properties are satisfied

(i) Ω ∈ F ,

(ii) if A ∈ F then Ā = Ω\A ∈ F ,

(iii) if for all i ∈ N, Ai ∈ F then ∩i∈NAi ∈ F .

We then say that (Ω,F ) is a measurable space.

A sigma-field is stable by complementary sets, countable intersection, countable union and also by
taking the “set difference” \ in the sense that if A,B ∈ F , then A\B ∈ F (indeed, just write A\B = A∩Bc.)

▶Q-0.1. Do those properties have special names?

The second property is often called stability by complementary sets and the last one stability by count-
able intersection. You may also find in the literature some other equivalent definitions:

(i) /0 ∈ F ,

(ii) if A ∈ F then Ā = Ω\A ∈ F ,

(iii) if for all i ∈ N, Ai ∈ F then ∪i∈NAi ∈ F .

But I prefer the way it is expressed in Definition 0.1.

▶Q-0.2. Why do you need these properties?

In the theory of probability, a set A will typically correspond to an event that may occur, it can be ex-
pressed as a constraint with respect to all the possibilities. The fact that we ask stability by complementary
sets or by countable intersections corresponds to considering either the complementary event or the fact
that all the events Ai are satisfied.
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▶Q-0.3. Do you have any examples in mind?

The smallest sigma-field is F = {Ω, /0} and the largest one is P (Ω). Often, sigma-fields we are inter-
ested in, are generated by some family of sets...

▶Q-0.4. What do you mean ?

Say that you are interested in a family of sets C ⊂ P (Ω) but unfortunately, some of the 3 properties that
define sigma-fields are not satisfied for C . In that case, we can still include C into a larger family so that it
is a sigma-field. We can even consider the “smallest” one (in a sense to be defined), which contains all the
sets in C .

Definition 0.2. Let C ⊂ P (Ω). There exists a sigma-field, named σ(C ) which contains C and which is
minimal for the inclusion, that is, any other sigma-field that contains C also contains σ(Ω). We then say that
σ(C ) is the sigma-field generated by C .

A valuable exercise is to prove the property stated in the above definition. This can be achieved by
defining σ(C ) as the collection of all sets that belong to any sigma field containing C . In other words,
define

A = ∩{T : C ⊂ T and T is a sigma-field} .

Although A is defined as an uncountable intersection, you can verify that A is a sigma-field. Furthermore,
this sigma-field contains all the sets in C , and any other sigma-field that contains all the sets in C must
necessarily contain all the sets in A . In conclusion, A is the smallest sigma-field satisfying this property,
and we can refer to it as σ(C ).

▶Q-0.5. What is your favorite example?

An important example is the case of open sets. If Ω is Rk and C is the family of open sets on Ω, then the
sigma-field generated by open sets is called the Borel sigma-field and is noted B(Ω) and any set A ∈ B(Ω)
is called a borelian set.

▶Q-0.6. For different family of sets, if you consider the sigma-fields generated by each of them, do you systematically
find different sigma-fields?

Of course not... In practice, if we have two family of sets C ⊂ P (Ω) and D ⊂ P (Ω) and if we want
to check if σ(C ) = σ(D) then a necessary and sufficient condition for getting that is to check successively
that D ⊂ σ(C ) and C ⊂ σ(D). You can use this property for checking that the sigma-field generated by
open sets (i.e. the Borel sigma-field) is also the sigma-field generated by closed sets.

▶Q-0.7. That’s nice. You can prove it easily?

Yes, please do so. It’s a good way to check that everything is understandable.

Definition 0.3. Let (Ω,F ) be a measurable space. We say that a function µ : F → R̄+ := R+∪{∞} is
a measure if it satisfies the sigma-additivity property, that is for any family of sets (Ai) such that Ai ∈ F for
any i ∈ N and Ai ∩A j = /0 for all i ̸= j, then

µ(∪∞
i=0Ai) =

∞

∑
i=0

µ(Ai) . (1)

We then say that (Ω,F ,µ) is a measured space. Moreover, if µ(Ω) = 1 then we say that µ is a probability
measure.

Note that in the right hand side of (1), we sum quantities in R̄+ that is, we use the convention that if
a ∈ R+, a+∞ = ∞ and ∞+∞ = ∞.

▶Q-0.8. The measure µ evaluated on a set A can be infinite?

Yes of course, µ(A) takes its values between 0 and µ(Ω) actually... But if you consider a measure of
probability (which is nothing but a particular measure), then the values of µ(A) are between 0 and 1.

▶Q-0.9. Some useful properties?
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(i) If A ⊂ B, then µ(A)⩽ µ(B).

(ii) µ(∪∞
i=1Ai)⩽ ∑

∞
i=1 µ(Ai).

(iii) µ(∪∞
i=1Ai) = limn→∞ µ(∪n

i=1Ai).

(iv) If µ(A1)< ∞, then, µ(∩∞
i=1Ai) = limn→∞ µ(∩n

i=1Ai).

▶Q-0.10. What are the typical measures I will deal with?

There are at least two fundamental examples of measures:

(i) The Dirac measure on a which is defined by δa(A) = 0 if a /∈ A and 1 otherwise.

(ii) The Lebesgue measure λ on (R,B(R)) which is defined with the following characterizing property:
it is the only measure such that for any segment A = [a,b], we have λ(A) = b− a. Then, you can
show easily that the Lebesgue measure of any interval (the interval may be closed, open or none of
them) is the length of the interval (which thus may be infinite, take A = [1,∞[ for example).

From these measures, you can construct other measures, for example by multiplying them by some non
negative measurable functions.

0.2 Integrals, random variables, expectation
▶Q-0.11. You said measurable functions?

Yes. The definition is below.

Definition 0.4. If (A,A) and (B,B) are measurable sets. We say that h : A → B is a A/B measurable
function if and only if for any B ∈ B , f−1(B) ∈ A .

Of course, if B = σ(C ), then instead of checking for any B ∈ B , f−1(B) ∈ A , we may only check for
any C ∈ C , f−1(C) ∈ A . For a given measurable function f , we may define σ

{
f−1(B) : B ∈ B

}
, it turns

out that it is a sigma field, called σ( f ). Measurable functions are linked with random variables...

▶Q-0.12. Can you be more precise?

Here is the definition of a random variable.

Definition 0.5. Let (Ω,F ) be a measurable space and consider the measurable space (R,B(R)). A
random variable X : Ω → R is, by definition, a F /B(R) measurable function.

▶Q-0.13. You mean that a random variable is nothing more than a measurable function?

Yes, and it always takes real-valued outcomes. If X takes its values in Rk, we refer to it not as a random
variable but as a random vector, and in some books, it is also referred to as a random element. Now that
we have defined general measures, including the important particular case of probability measures, we can
define the integral associated with a measure µ. If µ is a probability measure, we will define the expectation
of a random variable.

Recall that a measure µ associates a real number µ(A) to a set A ∈ F . Now, we want µ to associate
a real number, denoted µ( f ) or

∫
Ω

f (w)µ(dw), to any real-valued F /B(R)-measurable function f . Here,
there is an abuse of notation. Stricto sensu: µ(A) is well-defined, but µ( f ) is an abuse of notation because,
within the brackets, we have a function f and not a set A. To avoid confusion, most of the time we write∫

f (w)µ(dw) or
∫

f dµ (to avoid w) instead of µ( f ). However, all these notations refer to the same object.
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Actually, it will be not be possible to define µ( f ) for any measurable function... Let us be more precise.
The construction of the integral wrt µ will be done progressively. We start with the µ(1A). By definition,
we set:

µ(1A) = µ(A) .

Then, we define

µ(
n

∑
i=1

αi1Ai) =
n

∑
i=1

αiµ(Ai) .

Then, for any measurable non-negative function f ,

µ( f ) = sup

{
µ(

n

∑
i=1

αi1Ai) :
n

∑
i=1

αi1Ai ⩽ f

}
.

Finally, for any measurable function such that µ(| f |)< ∞, we set

µ( f ) = µ( f+)−µ( f−) .

▶Q-0.14. You always integrate on the whole space?

Yes, but if you integrate a function f on a subset Ω0 ∈ F where Ω0 ⊂ Ω, then by definition, it just
means

∫
f (w)1Ω0(w)µ(dw). That is, you integrate on the whole space but thanks to the indicator function

1Ω0 , only the values of f on Ω0 are meaningful.

▶Q-0.15. You told me that two examples of measures were important.

So what?

▶Q-0.16. What are the integrals associated to those measures?

Our two important examples of integrals constructed from measures µ are

(i) Integrals associated to Dirac measures... We can show that for any a∈Ω and any measurable function
f ,

∫
f (w)δa(dw) = f (a).

(ii) Integrals associated to the Lebesgue measure... This is a common case, and instead of writing∫
f (w)λ(dw), we usually write

∫
f (w)dw.

▶Q-0.17. OK for the construction of the integral but what are the essential properties?

I guess the very essential ones allow to interchange limit and integral. Two of them are essential:

(i) The monotone convergence theorem: if { fn, n ∈ N}n ∈ N is a family of measurable non-negative
functions and fn ⩽ fn+1 for all large enough n, then

∫
limn→∞ fn(w)µ(dw) = limn→∞

∫
fn(w)µ(dw)

(ii) The Lebesgue dominated convergence theorem: if { fn : n ∈ N} is a family of measurable func-
tions such that limn→∞ fn(w) exists for µ-almost all w ∈ Ω and if | fn| ⩽ h where

∫
hdµ < ∞ , then∫

limn→∞ fn(w)µ(dw) = limn→∞

∫
fn(w)µ(dw)

But there are also essential properties: the linearity of the integral, or if f ⩽ g then, µ( f ) ⩽ µ(g), or
|µ( f )|⩽ µ(| f |). Or if µ(| f |)< ∞ then, | f (w)|< ∞ for µ-almost all w ∈ Ω.

▶Q-0.18. Anything else?

Humm, let me think... Yes! The Fatou lemma! It can be quite useful sometimes, especially because
the assumptions are very light. Let { fn : n ∈ N} be a family of non-negative measurable functions. Then,

liminf
n

∫
fn(w)µ(dw)⩾

∫
liminf

n
fn(w)µ(dw) .

▶Q-0.19. You said that when you multiply a non-negative measurable function and a measure, it is a measure...
What do you mean exactly?

If f is a non-negative measurable function, then, the measure f dµ is defined by: A 7→
∫

1A(w) f (w)µ(dw).
Therefore, with the two typical measures (δa and λ), you can define so many different measures f dδ0 or
f dλ by using a non-negative measurable function f .
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▶Q-0.20. You told me there is some link between the expectation operator associated to a probability measure and
the integral associated to a measure.

The expectation is defined in the same way as integrals associated to some measure: it is constructed
from a measured space (Ω,F ,P) and a random variable X (that is a F /B(R)-measurable function). Then,
by definition, E[X ] is just the integral associated to the measure P taken at the random variable X , that is,
E[X ] =

∫
Ω

X(w)P(dw).

Definition 0.6. The law of a random variable X on (Ω,F ,P) is the measure µ on (R,B(R)) defined by:
µ : A 7→ P(X ∈ A).

In this definition, we use P(X ∈ A) which means P(Ω0) where Ω0 = {w ∈ Ω : X(w) ∈ A} := {X ∈ A}.
We also call this measure, the push-forward measure of P through the function X . It defines a measure on
the arrival sigma field.

▶Q-0.21. How do you check that two random vectors are independent?

Actually, two random vectors X ,Y defined on the same probability space (Ω,F ,P) but taking values in
Rp and Rd are independent if and only one the equivalent properties are satisfied:

(i) For all (A,B) ∈ B(Rp)×B(Rd),

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) .

(ii) For all bounded or non-negative B(Rp)/B(R)-measurable functions f :Rp →R and for all B(Rd)/B(R)-
measurable bounded or non-negative functions g : Rd → R, we have

E[ f (X)g(Y )] = E[ f (X)]E[g(Y )] .

(iii) For all (u,v) ∈ Rp ×Rd ,
E[eiuT X+ivT Y ] = E[eiuT X ]E[eivT Y ] .

(iv) For all (u,v) ∈ Rp ×Rd and all (x,y) ∈ R2,

P(uT X ⩽ x,vTY ⩽ y) = P(uT X ⩽ x)P(vTY ⩽ y) .

Also, if X |= Y , then for any measurable functions h0 and h1, we have h0(X) |= h1(Y ) .

▶Q-0.22. Ok, thanks for all these equivalent formulations. Now, in the same spirit, if I want to check that two random
variables have the same law, what are the tools I can use?

We have X L
= Y (where X and Y are two random variables) if and only if any of the following conditions

holds true:

(i) P(X ∈ A) = P(Y ∈ A) for any A ∈ B(R).

(ii) P(X ⩽ t) = P(Y ⩽ t) for any t ∈ R. Note that t 7→ P(X ⩽ t) is the cumulative distribution function
for the random variable X .

(iii) E[eiuX ] = E[eiuY ] for any u ∈ R. Note that u 7→ E[eiuX ] is the characteristic function for the random
variable X .
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Chapter 1
Probability refresher

1.1 A recap on some classical laws.
Let us start with some classical distributions. We put a brief description of these distributions in one place
for future reference.

1.1.1 Some discrete-valued distributions
The Bernoulli distribution

Y follows a Bernoulli distribution with parameter θ ∈ [0,1] (and we write Y ∼ B(θ)) if and only if Pθ(Y =
1) = θ = 1−Pθ(Y = 0). And we have Eθ[Y ] = θ and Varθ(Y ) = θ(1−θ).

The Binomial distribution

Y follows a Binomial distribution with parameter (n, p) (and we write Y ∼ Bin(n, p)) if and only if P(Y =

k) =
(

n
k

)
pk(1− p)n−k. And we have Ep[Y ] = np and Varp(Y ) = np(1− p).

The Geometric distribution

Y follows a Geometric distribution with parameter p (and we write Y ∼ Ge(p)) if and only if Pp(Y = k) =
p(1− p)k−1. And we have Ep[Y ] = 1/p and Varp(Y ) = (1− p)/p2.

The Poisson distribution

Y follows a Poisson distribution with parameter λ (and we write Y ∼ P (λ)) if and only if Pλ(Y = k) =
exp(−λ)λk

k! . And we have Eλ[Y ] = λ and Varλ(Y ) = λ.

1.1.2 Some real-valued distributions
Name Acronym Parameter density function: fX (x)

Normal N (µ,σ2) (µ,σ2) 1√
2πσ2 e−(x−µ)2/(2σ2)

Exponential exp(λ) λ > 0 λe−λx1R+(x)
Gamma Γ(k,θ) (k,θ) ∈

(
R∗
+

)2 xk−1θke−θx

Γ(k) 1R+(x)

In the above description,

(i) if Xi ∼ Γ(ki,θ) and (Xi) are independent, then ∑
n
i=1 Xi ∼ Γ(∑n

i=1 ki,θ).

13
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(ii) The density of the Gamma distribution involves the constant Γ(k). Actually,

Γ(k) =

{∫
∞

0 tk−1e−tdt if k ∈ R∗
+

(k−1)! if k ∈ N.
(▶GAMMA FUNCTION)

Definition 1.1.

• The Chi-square distribution. Let (Xi) be i.i.d. with Xi ∼ N (0,1). Then,

p

∑
i=1

X2
i ∼ χ2(p) (▶THE χ2-DISTRIBUTION WITH p DEGREES OF FREEDOM))

• The Student distribution. Let (U,V ) be independent with U ∼ N (0,1), V ∼ χ2(p). Then,

U√
V
p

∼ T (p) (▶THE t -DISTRIBUTION WITH p DEGREES OF FREEDOM)

• The Fisher distribution. Let (U,V ) be independent where U ∼ χ2(n1), V ∼ χ2(n2). Then,

U/n1

V/n2
∼ F (n1,n2) (▶THE FISHER-DISTRIBUTION WITH (n1,n2) DEGREES OF FREEDOM)

1.2 A brief survey on limit theorems
Unless otherwise stated, all the random variables in this section will be defined on the same probability
space (Ω,F ,P).

In this course, several notions of convergence for random variables will be needed.

Definition 1.2. We say that a sequence of P-a.s. finite random variables {Xn : n ∈ N} converges in
distribution (or converges in law) to a P-a.s. finite random variable X if and only if any of the following
equivalent statements is satisfied.

(a) For all bounded continuous functions h, limnE[h(Xn)] = E[h(X)].

(b) For all A ∈ B(R) such that P(X ∈ ∂A) = 0, limnP(Xn ∈ A) = P(X ∈ A).

(c) For all x ∈ R such that P(X = x) = 0, limnP(Xn ⩽ x) = P(X ⩽ x).

(d) For all u ∈ R, limnE
[
eiuXn

]
= E

[
eiuX

]
.

▶ Notation: In this case, we write Xn
LP⇝ X .

In (b), the notation ∂A means the frontier of A, that is, the set of points x such that any neighborhood of
x contains at least an element of A and an element of Ac, which are different from x.

Remark 1.3. Note that (c) corresponds to the convergence of the cumulative distribution functions and
(d) corresponds to the convergence of the characteristic functions.
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Remark 1.4. If Xn
LP⇝ X and if X has a distribution, say N (0,1), we often write, for ease of reading,

Xn
LP⇝N (0,1) instead of Xn

LP⇝ X with X ∼ N (0,1).

▶Q-1.1. Which characterization do you prefer?

None of them. Nevertheless, often, we check (c) or (d) to obtain that Xn
LP⇝ X and conversely, once

Xn
LP⇝ X is established, we often derive other properties by noting that (a) or (b) are then satisfied.
We now need two other notions of convergence. In the next two definitions, all the random variables,

(Xn)n∈N and X , are defined on the same probability space.

Definition 1.5. We say that a sequence of P-a.s. finite random variables {Xn : n ∈ N} converges in
probability to a P-a.s. finite random variable X if and only if

lim
n→∞

P(|Xn −X |> ε) = 0.

▶ Notation: In this case, we write Xn
P−prob−→ X .

Definition 1.6. We say that a sequence of P-a.s. finite random variables {Xn : n ∈ N} converges
almost-surely to X if and only if

P( lim
n→∞

Xn = X) = 1 .

▶ Notation: In this case, we write Xn
P-a.s.−→ X or sometimes, limn→∞ Xn = X , P−a.s.

▶Q-1.2. Three different notions of convergence! Amazing! Are they completely disconnected?

No. Actually, these three notions of convergence are related to each other according to the following
lemma.

Lemma 1.7. Let {Xn : n ∈ N} be a sequence of random variables, X be a random variable, all of them
defined on the same probability space and being P-a.s. finite. Let c be a constant. Then we have the
following implications and equivalence:

Xn
P-a.s.−→ X =⇒ Xn

P−prob−→ X .

Xn
P−prob−→ X =⇒ Xn

LP⇝ X .

Xn
P−prob−→ c ⇐⇒ Xn

LP⇝ c .

In words for the last equivalence, convergence in probability to a constant is equivalent to convergence
in distribution to this constant.

▶Q-1.3. Ok, thanks for all these implications. Now, assuming that you have one of the previous convergence results,
what can we say next? What does it imply?

It may be useful to apply to a function f to the previous convergence results. More precisely, we
already know that if two random variables X ,Y share the same law, i.e. X L

= Y , then for any measurable
function f : R→ R, f (X)

L
= f (Y ). If instead of having the equality in law “X L

= Y ”, we have the limiting
result “Xn converges to X” according to one of the types of convergence just seen before, then we may
wonder whether f (Xn) actually converges to f (X) according to the corresponding type of convergence.
This motivates the following lemma.
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Theorem 1.8 (The continuous mapping theorem). Let {Xn : n ∈ N} be a sequence of random vari-
ables, X be a random variable , all of them defined on the same probability space and being P-a.s. finite.
Let f : R→ R be a continuous function. Then we have the following implications:

Xn
P-a.s.−→ X =⇒ f (Xn)

P-a.s.−→ f (X) . (1.1)

Xn
P−prob−→ X =⇒ f (Xn)

P−prob−→ f (X) . (1.2)

Xn
LP⇝ X =⇒ f (Xn)

LP⇝ f (X) . (1.3)

A practical consequence of this lemma is that from any convergence result in this course, we may obtain
many others by just applying any continuous function (note that this continuous function is not necessarily
bounded). We now move on the Slutsky theorem which be used repeatedly in the sequel.

Theorem 1.9 (The Slutsky Theorem). If Xn
P−prob−→ c where c is a constant and if Zn

LP⇝ Z, then

(Xn,Zn)
LP⇝ (c,Z), that is, for any real-valued continuous function f , we have f (Xn,Zn)

LP⇝ f (c,Z).

PROOF. Under the assumptions of the Lemma, we will show that the random vector (Xn,Zn) converges in
distribution to (c,Z) and the last statement of the lemma would then derive from (1.3) with Xn replaced by (Xn,Zn).
To establish the convergence in law of (Xn,Zn), we will show the convergence of the associated bi-dimensional
characteristic function:

lim
n→∞

E
[
ei(uXn+vZn)

]
= E

[
ei(uc+vZ)

]
. (1.4)

Indeed,

E
[
ei(uXn+vZn)

]
−E

[
ei(uc+vZ)

]
= E[ei(uXn+vZn)− eiuceivZ ] = E[Bn +Cn] . (1.5)

where we have set

Bn = ei(uXn+vZn)− ei(uc+vZn) = ei(uc+vZn)
(

eiu(Xn−c)−1
)

Cn = ei(uc+vZn)− ei(uc+vZ) = eiuc
(

eivZn − eivZ
)
.

Now, define ϕ0 : R→ R and ϕ1 : R→ C where ϕ0(x) = |eiu(x−c)− 1| and ϕ1(x) = eivx. These functions are

continuous and bounded and Xn
LP⇝ c and Zn

LP⇝ Z. Then, by (a) in Definition 1.2,

E[|Bn|]⩽ E
[
|eiu(Xn−c)−1|

]
= E[ϕ0(Xn)]→n→∞ E[ϕ0(c)] = E

[
|eiu(c−c)−1|

]
= 0

|E[Cn]|= |E[eivZn ]−E[eivZ ]|= |E[ϕ1(Zn)]−E[ϕ1(Z)]| →n→∞ |E[ϕ1(Z)]−E[ϕ1(Z)]|= 0 .

Hence limnE[Bn +Cn] = 0. Combining with (1.5) shows (1.4) and the proof is completed. ■

▶Q-1.4. You said that Slutsky’s theorem is an important tool. Could you please provide a simple illustration?

Sure, below is a simple illustration. In this example, we will use the fact that any converging sequence
of real numbers is also a sequence of random variables that converges in probability or almost surely. This
is because a constant is just a particular random variable.

▶Q-1.5. Great! I am looking forward to seeing that.

I am at your service.

Example 1.10 (Illustration of the Slutsky theorem). Assume that there exists a sequence of real num-

bers {rn : n ∈ N} such that limn rn = ∞ and Zn := rn(Xn −a)
LP⇝ Z. Then, we will show that Xn

P−prob−→ a.
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Note that by assumption, Un := 1/rn → 0. In other words, {Un : n ∈ N} is a sequence of real numbers
that converges to 0. Since a constant is a particular random variable, we can always consider {Un : n ∈ N}
as a sequence of random variables and we have Un

P−prob→ 0.

Moreover, by assumption, Zn
LP⇝ Z. Applying Slutsky’s theorem (Theorem 1.9) to the continuous function

f : (u,z) 7→ uz+a is continuous yields

Xn =UnZn +a = f (Un,Z)
LP⇝ f (0,Z) = 0×Z +a = a .

Hence Xn
LP⇝ a, and according to Theorem 1.8, this is equivalent to Xn

P−prob−→ a.

▶Q-1.6. Before going further, say that you have a sequence of non-negative integrable random variables (Xn) that
converges to a random variable X according to one of the types of convergence you recalled. Can you say something
about limnE[Xn]? Does it exist and if so, is it equal to E[X ]?

Excellent question! If Xn converges P− a.s. to X and if there exists an integrable random variable Y
such that 0⩽ Xn ⩽Y , then, the dominated convergence theorem shows that limnE[Xn] =E[limn Xn] =E[X ].
If it is not almost-sure convergence but convergence in law, you can use the following lemma, where (1.6)
below introduces the notion of uniform integrability.

Lemma 1.11. Assume that {Xn : n ∈ N} is a sequence of non-negative and integrable random variables
such that

lim
M→∞

sup
n∈N

E [Xn1Xn⩾M] = 0 . (▶UNIFORM INTEGRABILITY) (1.6)

Then, Xn
LP⇝ X implies that limnE[Xn] = E[X ].

▶Q-1.7. I wonder if uniform integrability is easy to check?

It is not always straightforward, but if you are aiming for uniform integrability, the following approach
can be occasionally fruitful. Since for any α > 0, 1{Xn⩾M} ⩽ Xα

n /Mα, we deduce that

E
[
Xn1{Xn⩾M}

]
⩽ E[X1+α

n ]/Mα .

Hence, if supn∈NE[X1+α
n ]< ∞, then (1.6) is satisfied.

We end up this section by two fundamental results that we state and prove.

Theorem 1.12 (The Strong Law of Large Numbers). Assume that (Xi)i∈N are iid random variables on
the same probability space (Ω,F ,P) such that E[|X1|]< ∞. Then, setting X̄n := n−1

∑
n
i=1 Xi, we have

lim
n→∞

X̄n = E[X1] , P−a.s.

▶ Notation: In what follows, SLLN stands for the Strong Law of Large Numbers.

PROOF. We start with a preliminary result underpinning the proof.

Lemma 1.13. Let (Yi) be iid random variables such that E[|Y1|]< ∞ and E[Y1]> 0, then P-a.s.,

liminf
n

Sn/n⩾ 0 ,

where Sn = ∑
n
i=1 Yi.

▶ (Proof of the lemma.) Set Ln = inf(Sk,k ∈ [1 : n]), L∞ = inf(Sk,k ∈N∗), A= {L∞ =−∞}. Let θ(y1,y2, . . . ,)=
(y2,y3, . . .) be the shift operator. Then, P-a.s.,

Ln = S1 + inf(0,S2 −S1, . . . ,Sn −S1) = Y1 + inf(0,Ln−1 ◦θ)

⩾ Y1 + inf(0,Ln ◦θ) = Y1 −L−
n ◦θ.
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where the inequality follows from the fact that n 7→ Ln is non-increasing. This implies P-a.s. (since L−
n ◦θ is a.s.

finite)
1AY1 ⩽ 1ALn +1AL−

n ◦θ .

Taking the expectation on both sides and then, using P(1A = 1A ◦θ) = 1, and the strong stationarity of the sequence:

E[1AY1]⩽ E[1ALn]+E[1A ◦θ L−
n ◦θ] = E[1ALn]+E[1AL−

n ] = E[1AL+
n ]→ 0 ,

where the right-hand side tends to 0 by the dominated convergence theorem since a.s. limn 1AL+
n = 1AL+

∞ = 0 and
0⩽ 1AL+

n ⩽ Y+
1 . Finally E[1AY1]⩽ 0. Therefore, noting that 1A ◦θ is independent from Y1,

0⩾ E[1AY1] = E[1A ◦θ Y1] = E[1A ◦θ]E[Y1] = E[1A]︸ ︷︷ ︸
⩾0

E[Y1]︸ ︷︷ ︸
>0

.

This implies P(A) = 0 and the lemma is proved.◀
(Proof of the Theorem.) We now turn to the proof of the Theorem. Without loss of generality, we assume that

E[X1] = 0. Applying Lemma 1.13 with Yi = Xi + ε (where ε > 0), we get liminfn n−1
∑

n
i=1 Xi ⩾ −ε, P-a.s. And

applying again Lemma 1.13 with Yi = −Xi + ε, we get P-a.s., limsupn n−1
∑

n
i=1 Xi ⩽ ε which finishes the proof

since ε is arbitrary. ■

▶Q-1.8. This is very elegant. Seeing this proof, it seems that you don’t use much tools.

I only use one: the dominated convergence theorem. And the strong law of large numbers can be
proved! Now let us turn to another very surprising result, the central limit theorem.

▶Q-1.9. Surprising?

Yes. As you will see below, there is no assumption on the law of the random variables Xi, it can be
discrete-valued or continuous-valued random variables. Still, if you consider the empirical mean X̄n :=
n−1

∑
n
i=1 Xi of these iid random variables, and if you conveniently recenter and renormalize, the resulting

random variable will always converge in law to the same normal distribution. This is why I find it very
surprising.

Theorem 1.14 (The central limit theorem). Assume that (Xi)i∈N are iid random variables on the same
probability space (Ω,F ,P) such that E[X2

1 ]< ∞. Then, setting X̄n := n−1
∑

n
i=1 Xi and σ2 = Var(X1),

Zn =
X̄n −E[X1]√

σ2/n
LP⇝N (0,1) ,

Or equivalently,
√

n(X̄n −E[X1])
LP⇝N (0,σ2) .

▶ Notation: In what follows, CLT stands for the Central Limit Theorem.

PROOF. In this proof, for ease of notation, we consider a random variable X such that X L
= X1. Replacing if

necessary Xi by (Xi −E[X ])/σ, we can assume that E[X ] = 0 and σ2 = Var(X) = E[X2] = 1. In such a case, we
only need to prove that

ZN :=
N

∑
i=1

Xi√
N

⇒ N (0,1) .

To this aim, we will show that the characteristic function of ZN , u 7→ E
[
eiuZN

]
tends to the one of N (0,1) that is

u 7→ e−u2/2. Writing ϕ(v) = E
[
eivX ], we have

ϕ(0) = 1 , ϕ
′(0) = i E

[
XeivX

]∣∣∣
ν=0

= iE[X ] = 0 , ϕ
′′(0) =− E

[
X2eivX

]∣∣∣
ν=0

=−E[X2] =−1 .

Then, a second-order Taylor expansion of ϕ yields

ϕ(v) = ϕ(0)+ vϕ
′(0)+

v2

2
ϕ
′′(0)+o(v2) = 1− v2

2
+o(v2) .
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Using first that (Xi) are iid and then the above Taylor expansion, we get

E
[
eiuZN

]
= E

[
eiu∑

N
i=1 Xi/

√
N
]
=
{
E
[
eiuX1/

√
N
]}N

=
[
ϕ(u/

√
N)
]N

=

(
1− u2

2N
+o
(

1
N

))N

→ e−u2/2 = E[eiuZ ] ,

where Z ∼ N (0,1). This completes the proof. ■

To be more familiar with the law of large numbers, the central limit theorem and the Slutsky theorem,
consider the following example.

Example 1.15. Assume that (Xi)i∈N iid with E[X2
1 ]< ∞ and σ2 = Var(X1) ∈ (0,∞). Set

σ̂
2
n =

1
n

n

∑
i=1

X2
i −

(
1
n

n

∑
i=1

Xi

)2

.

Then, we will show that

Z̃n =
X̄n −E[X1]√

σ̂2
n/n

LP⇝N (0,1) .

First note that by the strong law of large numbers, P-a.s.,

lim
n→∞

1
n

n

∑
i=1

X2
i = E[X2

1 ] , and lim
n→∞

1
n

n

∑
i=1

Xi = E[X1] .

Hence, σ̂2
n
P-a.s.−→ σ2, which in turn implies that Un =

√
σ2

σ̂2
n

P−prob−→ 1. Moreover, according to the central limit

theorem,

Zn :=
X̄n −E[X1]√

σ2/n
LP⇝ Z , where Z ∼ N (0,1) .

Applying the Slutsky theorem to the continuous function (u,z) 7→ uz, we finally get:

Z̃n =UnZn
LP⇝ 1×Z = Z ,

and the proof is completed.

1.3 Gaussian vectors
In what follows the notation X ∼ N (µ,σ2) means that X follows the normal distribution with mean µ =
E[X ] and variance σ2 = Var(X). It is equivalent to the fact that the random variable X has the density

x 7→ 1√
2πσ2

e−
(x−µ)2

2σ2 ,

which in turn is equivalent to: for all u ∈ R,

E[eiuX ] = e−u2σ2/2+iuµ .

If µ = 0 and σ = 1, we then say that X follows a standard normal distribution.

Definition 1.16 (Gaussian vector). We say that X is a d-dimensional Gaussian vector if any of the two
following equivalent conditions is satisfied:

(a) For any u ∈ Rd , uT X follows a normal distribution.
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(b) There exist a d × p matrix A and a vector µ ∈ Rd s. t.

X = µ+A

ε1
...

εp

 ,

where (εi)1⩽i⩽p are iid with ε1 ∼ N (0,1).

▶ Notation: In this case, we write X ∼ N (µ,Γ) where µ = E[X ] and

Γ = Var(X) = E[XXT ]−E[X ]E[X ]T

= E
[
(X −E[X ])(X −E[X ])T ] .

▶Q- 1.10. One thing puzzles me. The notation that you use for the distribution of Gaussian random vectors is
N (µ,Γ). It is the same as for the normal distribution ?

Yes, of course! I use the same notation because it is coherent. A Gaussian vector in dimension 1 is just
a random variable with normal distribution.

Now, let us move on to a fundamental property with Gaussian vectors: they remain Gaussian through
any linear mapping. To be specific, let X be a d-dimensional Gaussian random vector, X ∼ N (µ,Γ). Then,
for any B ∈ Rr×d , BX is a Gaussian random vector and

BX ∼ N (Bµ,BΓBT ) . (1.7)

Indeed according to (b) in Definition 1.16, there exist a d × p matrix A and a vector µ ∈ Rd s. t.

X = µ+A

ε1
...

εp

 ,

where (εi)1⩽i⩽p are iid with ε1 ∼ N (0,1). Hence,

BX = Bµ+BA

ε1
...

εp

 .

Therefore, BX satisfies (b) in Definition 1.16 and we conclude that BX is a Gaussian vector so that BX ∼
N (µ̃, Γ̃) where

µ̃ = E[BX ] = BE[X ] = Bµ

Γ̃ = Var(BX) = BVar(X)BT = BΓBT

This concludes the proof of (1.7).
In practice, if we want to check that a given random vector X is a Gaussian vector, we can either show

that it is obtained from another Gaussian vector through a linear mapping as we have just seen here, or we
can also show that the characteristic function is the one of a Gaussian vector or calculate the density and
check that this density is the one of a Gaussian vector. To recognize the characteristic function and density
of a Gaussian vector, recall that if X ∼ N (µ,Γ), then

• for any u ∈ Rd ,

E[eiuT X ] = eiuT µ− uT Γu
2 ,
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• provided that Γ is definite, X has the density

x 7→ fµ,Γ(x) =
1

(2π)d/2
√

det Γ
e−

(X−µ)T Γ−1(X−µ)
2 ,

wrt the Lebesgue measure on Rd .

At this point, there is a classical confusion on which we should draw the attention of the reader.
A random vector such that each component follows a normal distribution is not necessarily a Gaussian

vector. To see this, consider the following example.

Example 1.17. Draw independently X ∼ N (0,1) and Z ∼ B(1/2). If Z = 1, set Y = X . Otherwise, set

Y = −X . We will show that the random vector

(
X
Y

)
is not a Gaussian random vector whereas each of its

components follows a normal distribution.
Indeed, note that for any measurable set A,

P(Y ∈ A) = P(Y ∈ A, Z = 1)+P(Y ∈ A, Z = 0)
= P(X ∈ A, Z = 1)+P(−X ∈ A, Z = 0)
= P(X ∈ A)/2+P(−X ∈ A)/2 = P(X ∈ A) .

Therefore, Y ∼ N (0,1), but
P(X −Y = 0) = P(Z = 1) = 1/2 ,

so that X −Y does not follow a normal distribution. We have thus found a particular linear combination

X −Y of the random vector

(
X
Y

)
which does not follow a normal distribution and we can conclude that this

random vector is not a Gaussian random vector.

Proposition 1.18 (Gaussian vector and independence). Assume that X =

(
X1
X2

)
is a d-dimensional

Gaussian vector, then we have the equivalence

(X1,X2) are independent ⇐⇒ Cov(X1,X2) = 0 . (1.8)

In the above proposition, the covariance matrix, denoted Cov(X1,X2), between two random vectors X1
and X2 (of possibly different dimensions) is defined by the rectangular matrix

Cov(X1,X2) = E[X1XT
2 ]−E[X1]E[X2]

T = E
[
(X1 −E[X1]) (X2 −E[X2])

T
]
.

And we can note that Cov(X2,X1) = Cov(X1,X2)
T .

PROOF. [of Proposition 1.18]

=⇒ If (X1,X2) are independent, then

Cov(X1,X2) = E
[
(X1 −E[X1]) (X2 −E[X2])

T
]
= E [X1 −E[X1]]︸ ︷︷ ︸

0

E
[
(X2 −E[X2])

T
]
= 0 .

⇐= Assume that X =

(
X1
X2

)
∼ N (µ,Γ). Replacing if necessary X by X − µ, we may assume without loss of

generality that µ = 0. For i, j ∈ {0,1}, define Γi, j = Cov(Xi,X j). Then,

Γ := Var(X) =

(
Γ1,1 Γ1,2
Γ2,1 Γ2,2

)
=

(
Γ1,1 0

0 Γ2,2

)
and hence, Γ

−1 =

(
Γ
−1
1,1 0
0 Γ

−1
2,2

)
.
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Decomposing u =

(
u1
u2

)
such that uT X = uT

1 X1 +uT
2 X2, the characteristic function of X then writes:

E
[
eiuT X

]
= E

[
ei(uT

1 X1+uT
2 X2)

]
= e−

1
2 uT Γ−1u = e−

1
2 uT

1 Γ
−1
1,1u1 e−

1
2 uT

2 Γ
−1
2,2u2 = E

[
eiuT

1 X1
]
E
[
eiuT

2 X2
]
,

where we have used that X1 ∼ N (0,Γ1,1) and X2 ∼ N (0,Γ2,2). Hence, Q-0.21-(iii) shows that X1 |= X2 and
the proof is concluded.

■

Theorem 1.19 (The Cochran theorem). Assume that

(a) X ∼ N (0, Id)

(b) P is a d ×d matrix such that P2 = P = PT

Then, setting
Y = PX , and Z = QX

where Q = Id −P, we have

(i)

{
Y ∼ N (0,P)
Z ∼ N (0,Q)

and (Y,Z) are independent

(ii) ∥Y∥2 ∼ χ2
r and ∥Z∥2 ∼ χ2

d−r where r = rank(P) .

Remark 1.20. In Theorem 1.19-(a), in the notation N (0, Id), by abuse of notation, 0 is the d dimensional
null vector and Id is the d ×d identity matrix.

Remark 1.21. Note that since P2 = P = PT , we obtain that P is the orthogonal projection matrix on
F = Span(P1, . . . ,Pd) where (Pi) are the column vectors of P, that is: P = [P1, . . . ,Pd ].

Similarly, Q = Id −P is an orthogonal projection matrix on F⊥ and it can be readily checked that Q2 =
QT = Q.

PROOF. We start with the proof of (i). Since X is a Gaussian random vector, so is PX by (1.7). Moreover,

E[PX ] = PE[X ] = 0 and Var(PX) = PVar(X)PT = PPT = P2 = P .

This implies that Y := PX ∼ N (0,P). Similarly, Z := QX is a Gaussian vector such that

E[QX ] = QE[X ] = 0 and Var(QX) = QVar(X)QT = QQT = Q2 = Q .

Hence, Z ∼ N (0,Q). To complete the proof of (i), it remains to show that Y and Z are independent. Since(
Y
Z

)
=

(
P
Q

)
X , where X ∼ N (0, Id) ,

we get that
(

Y
Z

)
is a Gaussian vector. Moreover, Cov(Y,Z) = Cov(PX ,QX) = PVar(X)QT = P(Id − P)T =

P(Id −P) = P−P2 = 0. Then Proposition 1.18 shows that (Y,Z) are independent and (i) is proved.
We now turn to (ii). We will only show that ∥Y∥2 ∼ χ2

r , where r = rank(P). The case ∥Z∥2 ∼ χ2
d−r is similar

and is omitted for brevity. Recall that P is the orthogonal projection matrix on a space of dimension r. Hence, there

exists a square matrix U satisfying UUT =UTU = Id such that P =U
(

Ir 0
0 0

)
UT . Setting X̃ =UT X , we have

∥Y∥2 = XT PT P︸︷︷︸
P

X = XT PX = XTU
(

Ir 0
0 0

)
UT X = X̃T

(
Ir 0
0 0

)
X̃ =

r

∑
i=1

X̃2
i ∼ χ

2
r ,

since X̃ ∼ N (0,UT VarX︸ ︷︷ ︸
Id

U)∼ N (0,UTU︸ ︷︷ ︸
Id

)

■
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1.4 After studying this chapter...

a) I know the law of large numbers and the central limit theorem and importantly, I remember
under which assumptions these theorems hold.

b) I have a grasp on the Slutsky theorem and understand how to use it.

c) I memorize the definition of a Gaussian vector and I can check independence between
sub-vectors of Gaussian vectors by computing their covariance matrix.

d) I understand the Cochran theorem and understand the interpretation of P satisfying P =
P2 = PT as an orthogonal projection matrix.

1.5 Highlights
Evgeny Slutsky (source: Wikipedia)

Evgeny “Eugen” Evgenievich Slutsky (1880 – 1948) was a Russian and Soviet
mathematical statistician, economist and political economist.

Slutsky is principally known for work in deriving the relationships em-
bodied in the very well known Slutsky equation which is widely used in mi-
croeconomic consumer theory for separating the substitution effect and the
income effect of a price change on the total quantity of a good demanded
following a price change in that good, or in a related good that may have
a cross-price effect on the original good quantity. There are many Slutsky
analogs in producer theory.

He is less well known by Western economists than some of his contemporaries, due to his own changing
intellectual interests as well as external factors forced upon him after the Bolshevik Revolution in 1917.
His seminal paper in Economics, and some argue his last paper in Economics rather than probability theory,
was published in 1915 (Sulla teoria del bilancio del consumatore). Paul Samuelson noted that until 1936,
he had been entirely unaware of Slutsky’s 1915 “masterpiece” due to World War I and the paper’s Italian
language publication. R. G. D. Allen did the most to propagate Slutsky’s work on consumer theory in
published papers in 1936 and 1950.

Vincent Barnett argues:
“A good case can be made for the notion that Slutsky is the most famous of all Russian economists,

even more well-known [than] N. D. Kondratiev, L. V. Kantorovich, or Mikhail Tugan-Baranovsky. There
are eponymous concepts such as the Slutsky equation, the Slutsky diamond, the Slutsky matrix, and the
Slutsky-Yule effect, and a journals-literature search conducted on his name for the years 1980-1995 yielded
seventy-nine articles directly using some aspect of Slutsky’s work... Moreover, many microeconomics
textbooks contain prominent mention of Slutsky’s contribution to the theory of consumer behavior, most
notably the Slutsky equation, christened by John Hicks as the ‘Fundamental Equation of Value Theory’.
Slutsky’s work is thus an integral part of contemporary mainstream economics and econometrics, a claim
that cannot really be made by any other Soviet economist, perhaps even by any other Russian economist.”

The Slutsky Effect. In the 1920s, Slutsky turned to working on probability theory and stochastic pro-
cesses, but in 1927 he published his second famous article on economic theory, “The Summation of Ran-
dom Causes as a Source of Cyclical Processes”. This showed that it was possible for apparently cyclic
behaviour to emerge as the result of random shocks to the economy if the latter were modelled using a
stable stochastic difference equation with certain technical properties. This opened up a new approach
to business cycle theory by hypothesising that the interaction of chance events could generate periodicity
when none existed initially.

Mathematical statistics work. Slutsky’s later work was principally in probability theory and the theory
of stochastic processes. He is generally credited for the result known as Slutsky’s theorem. In 1928 he was
an Invited Speaker of the ICM in Bologna.
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Chapter 2
Estimation

2.1 Main ideas
On one hand, the statistician has access to some data (or observations) (Y1, . . . ,Yn) and on the other hand,
he has a family of possible distributions Q = (P)P∈Q . The observations have been produced according to
some unknown distribution P⋆. When comparing the observations and the family of possible distributions,
the statistician aims to answer questions such as:

• How can P⋆ be approximated using a function of the observations? → estimator.

• Based on the observations, what could be the range of the probabilities P which may have produced
these observations? → confidence intervals/regions.

• Do the observations align with other sources of information that suggest P⋆ is equal to something or
belongs to some subset? → statistical test.

2.2 Statistical model and characteristics

Definition 2.1. A statistical model is defined by a family of probability measures Q := (P)P∈Q on the
space of the observations (Y,F ).

• Y is the state space (or the space of the observations).

• F is a σ-field on Y.

• Q is a family of probability measures.

Typically, if the observations are Y= (Y1, . . . ,Yn) and Yi are p-dimensional random vectors, then Y may
be chosen as Y= Rp × . . .×Rp and F as the associated Borel σ-field, F = σ(Y).

In statistics, the probability P⋆ associated to the observations is not known a priori and one has to get
as many information on P⋆ as possible given that Y = (Y1, . . . ,Yn) ∈ Y have been observed. Note that P⋆

may belong to the family Q or not.

2.2.1 Parametrisation of the model
• If Q = (Pθ)θ∈Θ where Θ is a subset of Rd , then the statistical model is parametric.

• If Q = (Pθ)θ∈Θ1×Θ2 where Θ1 is a subset of Rk, then the statistical model is semi-parametric.

25
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• Otherwise, the statistical model is non-parametric.

In what follows, if we consider a parametric statistical model (Y,F ,Q ), then, we implicitly use the notation
Q = (Pθ)θ∈Θ where Θ is a subset of Rd .

Definition 2.2. A parametric statistical model is identifiable if and only if θ ̸= θ′ implies that Pθ ̸= Pθ′ .

2.2.2 Dominated parametric model

Definition 2.3. A parametric statistical model (Y,F ,Q ) is dominated by a measure µ if and only if
Pθ(dx) = ℓθ(x)µ(dx) for any θ ∈ Θ.

Remark 2.4. The dominating measure µ does not depend on θ. In many examples, µ is the Lebesgue
measure or a linear combination of Dirac measures.

In this course, almost all real-valued random variables have a density with respect to the Lebesgue
measure. However, for an integer-valued random variable, the dominating measure consists of the counting
measure ∑

∞
j=0 δ j. The following lemma provides the exact expression of the density for discrete-valued

random variables with respect to the counting measure.

Lemma 2.5. Let Y be a random variable which takes values in N. Then, Y follows a distribution having a
density f with respect to ν = ∑

∞
j=0 δ j defined by{

f : N→ [0,∞)

i 7→ f (i) = P(Y = i)

PROOF. Denote f such that for all i ∈ N, f (i) = P(Y = i). Then, for any integrable function h,

∫
h(y) f (y)ν(dy)=

∫
h(y) f (y)

[
∞

∑
j=0

δ j(dy)

]
=

∞

∑
j=0

∫
h(y) f (y)δ j(dy)=

∞

∑
j=0

h( j) f ( j)=
∞

∑
j=0

h( j)P(Y = j)=E[h(Y )] .

Thus, E[h(Y )] =
∫

h(y) f (y)ν(dy). So, f is the density of Y with respect to ν. ■

Definition 2.6. An iid parametric statistical model (Y,F ,Q ), where Q = (Pθ)θ∈Θ, is defined as follows:
For all θ ∈ Θ, Y = (Y1, . . . ,Yn) is, under Pθ, an n-tuple of iid random vectors Y1, . . . ,Yn.

In other words, in more mathematical terms (with heavier notation but possibly less ambiguity), if (Yi)
are random vectors taking values on the measurable space (Y1,F1), then we define (Y,F ) = (Yn

1,F
⊗n

1 ).
If we consider that the statistical model is iid, it means that for all θ ∈ Θ, there exists a probability measure
Pθ,1 on (Y1,F1) such that Pθ = P⊗n

θ,1.
In what follows, we will typically consider an iid dominated parametric statistical model where for all

θ ∈ Θ, Pθ(dy) = ∏
n
i=1 ℓθ(yi)µ1(dyi) with y = (y1, . . . ,yn). By abuse of notation, we still denote by ℓθ the

density of the n-tuple wrt µ = µ⊗n
1 , i.e., we write

ℓθ(y1, . . . ,yn) = ℓθ(y1) · · ·ℓθ(yn). (2.1)

▶Q-2.1. Sorry but where exactly is your abuse of notation?

In (2.1), it would be more rigorous to write ℓθ,n(y1, . . . ,yn) = ℓθ,1(y1) · · ·ℓθ,1(yn), but I find it cumber-
some and somewhat distracting. In what follows, I will only keep the parameter θ in the subscript when no
ambiguity occurs.
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2.3 Extracting information from the observations
In all this section, the observations are denoted as Y = (Y1, . . . ,Yn).

2.3.1 Statistic

Definition 2.7. A statistic S is a measurable function from Y to Rk.

A statistic is a “known” function of the observations.

Example 2.8. If (Yi)1⩽i⩽n are iid random variables and Yi ∼ B(p), where p is unknown, recalling that
Y = (Y1, . . . ,Yn),

• Y 7→ ∑
n
i=1 Yi/n is a statistic.

• Y 7→ Y1 is a statistic.

• Y 7→ p is not a statistic since p is unknown.

Definition 2.9 (Sufficient statistic). A statistic S is sufficient with respect to the parametric family Q =
(Pθ)θ∈Θ if and only if the law of Y conditionally to S does not depend on θ.

In some sense, the fact that this conditional law does not depend on θ means that when S is known, the
knowledge of Y does not provide any additional information about θ.

In other words, S(Y) contains all the information about θ.

Proposition 2.10 (Factorization Theorem). For a dominated parametric statistical model, a statistic S
is sufficient if and only if the density of the observations Y, denoted as y 7→ ℓθ(y), admits a decomposition
of the form ℓθ(y) = ψθ(S(y))φ(y), where φ does not depend on θ.

PROOF. We only provide the proof in the discrete case.

• Necessary condition:
Pθ(Y = y) = Pθ(S(Y) = S(y))P(Y = y|S(Y) = S(y)) ,

where the last term does not depend on θ. Thus, the decomposition follows.

• Sufficient condition:

Pθ(Y = y|S(Y) = s) =
Pθ(Y = y and S(Y) = s)

Pθ(S(Y) = s)
=

φ(y)
∑y:S(y)=s φ(y)

,

which does not depend on θ. Thus, S is a sufficient statistic.

■

Definition 2.11 (Exponential model). The parametric statistical model (Y,F ,Q ) is a k-parameter ex-
ponential model if and only if for any θ ∈ Θ,

ℓθ(y) = φ0(y)φ1(θ)eη(θ)T S(y) where η =

η1
. . .
ηk

 . (2.2)

In that case,
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(i) the (ηi) are called the natural parameters.

(ii) S is a k-dimensional sufficient statistic.

(iii) Q is called a k-parameter exponential family.

Example 2.12 (The binomial family). Suppose that Y ∼ Bin(n,θ), where n is known but θ ∈ (0,1) is
not known. We have

ℓθ(y) =
(

n
y

)
θ

y(1−θ)n−y =

(
n
y

)
× en log(1−θ)× ey log( θ

1−θ ) .

▷ One-parameter exponential family with S(y) = y and η(θ) = log
(

θ

1−θ

)
.

Of course, if we can also consider the above family as a degenerate two-parameters family by setting

S(y) =
(

1
y

)
, and η(θ) =

(
n log(1−θ)

log
(

θ

1−θ

) ) .

We call it degenerate because the first component of S does not actually depend on the observations. There-
fore, it is less informative than the one-parameter formulation, and hence, in practice, it is better to stick
with the one-parameter formulation.

▶Q-2.2. In the above example, you consider only one observation?

Exactly, if we consider an iid model with k observations, then,

ℓθ(y1, . . . ,yk) =
k

∏
i=1

ℓθ(yi) =
k

∏
i=1

((
n
yi

)
θ

y(1−θ)n−yi

)
=

(
k

∏
i=1

(
n
yi

))
× enk log(1−θ)× e(∑

k
i=1 yi) log( θ

1−θ )

It is thus a one-parameter exponential family with sufficient statistic S(y1, . . . ,yk) = ∑
k
i=1 yi and natural

parameter η(θ) = log
(

θ

1−θ

)
.

Example 2.13 (The Gaussian family). Suppose that Y ∼ N (µ,σ2) where θ = (µ,σ2) ∈ R×R+
∗ . Then,

ℓθ(y) =
1√

2πσ2
e−(y−µ)2/(2σ2) =

1√
2πσ2

e−µ2/(2σ2)× e−
y2

2σ2 +
yµ
σ2 .

▷ Two-parameters exponential family with S(y) =
(
−y2/2

y

)
and η(θ) =

(
1/σ2

µ/σ2

)
.

▶Q-2.3. May I ask the same question as for the other example? What would it be if we consider an iid model with k
observations?

Similarly to the previous example, we still keep a two-parameters exponential family but with sufficient

statistics S(y) =
(

∑
k
i=1−y2

i /2
∑

k
i=1 yi

)
and natural parameters η(θ) =

(
1/σ2

µ/σ2

)
.

2.3.2 Likelihood, Score function and Information matrix

Definition 2.14 (Log-Likelihood). If (Y,F ,Q ) is a dominated parametric model, then ℓθ(Y), resp.
logℓθ(Y), is the likelihood, resp. the log-likelihood, associated to θ and to the observation Y.

▶Q-2.4. What is the difference between the likelihood and a density function?
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A likelihood ℓθ(Y) is precisely the value of the density ℓθ evaluated at the random element Y. Hence,
a likelihood is actually a random variable.

Example 2.15. The likelihood for an integer-valued observation writes as

ℓθ(Y ) =
∞

∏
i=0

[Pθ(Y = i)]1i(Y ) .

where 1i(Y ) is the indicator function that takes the value 1 when Y = i and 0 otherwise.

Definition 2.16 (Score function). If (Y,F ,Pθ) is a dominated parametric model, then ξθ(Y) =
∂ logℓθ(Y)

∂θ

(when it is well-defined) is the score function.

▶Q-2.5. Can you explain the notation ∂ logℓθ(Y)
∂θ

?

Here, the notation ∂ logℓθ(Y)
∂θ

stands for the gradient (with respect to θ) of the log-likelihood. A score
function is thus a d-dimensional random vector. Actually, in what follows, we use the formal notation ∂

∂θ

and ∂

∂θT as follows

∂

∂θ
=


∂

∂θ1
...
∂

∂θd

 and
∂

∂θT =

(
∂

∂θ1
, . . . ,

∂

∂θd

)
=

(
∂

∂θ

)T

,

and to anticipate, we will use also the notation:

∂2

∂θ∂θT =


∂2

∂θ2
1

· · · ∂2

∂θ1∂θd

...
...

∂2

∂θd∂θ1
. . . ∂2

∂θd∂θd

 .

Now, we move on to the main properties of the score function. Introduce the following assumption.

(A1) For µ-almost all y, θ 7→ ℓθ(y) is continuously differentiable on Θ and∫
sup
θ∈Θ

∥∥∥∥∂ℓθ(y)
∂θ

∥∥∥∥µ(dy)< ∞. (2.3)

where ∥·∥ is any norm on Rd .

Proposition 2.17. Assume (A1). Then, for any θ ∈ Θ, the score function ξθ(Y) is centered under Pθ.

PROOF. For any θ ∈ Θ,

Eθ[ξθ(Y)] =
∫

∂ logℓθ(y)
∂θ

ℓθ(y)µ(dy) =
∫

∂ℓθ(y)
∂θ

µ(dy) =
∂

∂θ

∫
ℓθ(y)µ(dy)︸ ︷︷ ︸

1

= 0 ,

where the condition (2.3) allows to interchange integral and derivation wrt θ. ■

Before defining Fisher information matrix, we introduce two assumptions:
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(A2) For µ-almost all y, θ 7→ ℓθ(y) is differentiable on Θ and for any θ ∈ Θ,

Eθ

[∥∥∥∥∂ logℓθ(Y)

∂θ

∥∥∥∥2
]
< ∞ .

(A3) For µ-almost all y, θ 7→ ℓθ(y) is continuously twice-differentiable on Θ and for any θ ∈ Θ,

∫
sup
θ∈Θ

∥∥∥∥∂2ℓθ(y)
∂θ∂θT

∥∥∥∥µ(dy)< ∞ , (2.4)

where by abuse of notation, we again denote by ∥·∥ any norm on Rd×d .

Definition 2.18 (Fisher Information Matrix). Let (Y,F ,Q ) be a dominated parametric model.

(i) Assume (A1), (A2). Then the Fisher information matrix is defined by

Iθ
F(Y) := Varθ(ξθ) = Eθ

[(
∂ logℓθ(Y)

∂θ

)(
∂ logℓθ(Y)

∂θ

)T
]
, (2.5)

where by definition Varθ(U) := Eθ[UUT ]−Eθ[U ]Eθ[U ]T is the covariance matrix of the random
vector U .

(ii) Assume (A1), (A2) and (A3). Then,

Iθ
F(Y) =−Eθ

[
∂2 logℓθ(Y)

∂θ∂θT

]
. (2.6)

PROOF. The second equality in (2.5) comes from the fact that ξθ is centered under Pθ. To prove (2.6), write

−∂2 logℓθ(Y)

∂θ∂θT =
1

ℓθ(Y)

∂2ℓθ(Y)

∂θ∂θT +

(
∂ logℓθ(Y)

∂θ

)(
∂ logℓθ(Y)

∂θ

)T
,

and take the expectation under the parameter θ. The proof is completed noting that

Eθ

[
1

ℓθ(Y)

∂2ℓθ(Y)

∂θ∂θT

]
=

∫
∂2

∂θ∂θT ℓθ(y)ν(dy) =
∂2

∂θ∂θT

∫
ℓθ(y)ν(dy)︸ ︷︷ ︸

1

= 0 ,

where (2.4) allows to interchange integral and second derivatives wrt θ. ■

Remark 2.19. The previous definition involves three different expressions (in (2.5) and (2.6)) of the
Fisher Information matrix. In some statistical models, the second derivatives of the log-likelihood may not
be defined, whereas the first derivatives exist. In such cases, the Fisher Information matrix is defined as the
covariance matrix of the score function (i.e., we use only (2.5) in the previous definition).

Lemma 2.20. For an i.i.d dominated parametric statistical model and under the assumptions of Defini-
tion 2.18, Iθ

F(Y1, . . . ,Yn) = nIθ
F(Y1) for any θ ∈ Θ.
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PROOF. We have for an i.i.d. model, ℓθ(Y1, . . . ,Yn) = ∏
n
i=1 ℓθ(Yi) and thus,

Iθ
F (Y1, . . . ,Yn) = Varθ

[
∂ logℓθ(Y1, . . . ,Yn)

∂θ

]
= Varθ

[
n

∑
i=1

∂ logℓθ(Yi)

∂θ

]
=

n

∑
i=1

Varθ

[
∂ logℓθ(Yi)

∂θ

]
= nIθ

F (Y1) .

■

Before going further, let us recall some expressions of expectation and variance using conditional ex-
pectations or conditional variances.

Lemma 2.21. If U and V are random vectors on the same probability space, then

• if E[∥U∥]< ∞, then E[U ] = E[E[U |V ]],

• if E[∥U∥2]< ∞, then Var(U) = Var(E[U |V ])+E[Var(U |V )].

We now need to use the observations to select a statistical model which may have produced the obser-
vations. We thus consider a function of the observations which approximates a parameter of the model.
This is the notion of estimator. After defining the estimator, we will introduce some characteristics of the
estimator which quantifies how the estimator is close to the parameter.

2.4 Estimator
Recall the notation Y = (Y1, . . . ,Yn).

Definition 2.22 (Estimator). In a parametric statistical model, an estimator Y 7→ δ(Y) of g(θ) is a
statistic that is “supposed” to approximate g(θ).

Example 2.23. If (Yi) are i.i.d and Y1 ∼ N (µ,σ2), then

• Y = (Y1, . . . ,Yn) 7→ ∑
n
i=1 Yi
n := Ȳn is an estimator of E[Y1] = µ.

• If µ is known, then Y = (Y1, . . . ,Yn) 7→ ∑
n
i=1(Yi−µ)2

n is an estimator of Var(Y1) = σ2.

Note that even when (Yi) do not follow the normal distribution, these two statistics are estimators of the
mean and the variance of Y1.

An estimator is thus a “known” function of the observations (a function which does not depend on θ)
that approximates either the parameter or a function of the parameter. Most of the time, g(θ) = θ but it may
happen that the statistician wants to approximate just one component of θ or more generally a function of
θ that we write g(θ).

Of course, this notion needs to be refined by some criterion which states that the approximation is close
enough to the quantity to be approximated. We now introduce the bias, which will quantify in the “mean”
sense the proximity of the estimator to the function of interest g(θ).

Definition 2.24 (Biased and unbiased estimator).

• An estimator δ(Y) of g(θ) is unbiased if and only if for all θ ∈ Θ, Eθ[δ(Y)] = g(θ).

• More generally, the bias is defined for any possibly biased estimator by

bθ(δ,g) = Eθ[δ(Y)]−g(θ) .
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Example 2.25. If (Yi) are i.i.d and Yi ∼ N (µ,σ2). Assume that µ is not known then it can be shown that

Y 7→ ∑
n
i=1(Yi − Ȳn)

2

n−1

is an unbiased estimator of σ2.

More generally, for a possibly biased estimator, the mean-squared error (MSE) is more suitable for
measuring how the estimator is close to the parameter:

MSE2 = Eθ[(δ(Y)−g(θ))2] = bθ(δ,g)2 +Varθ(δ(Y)) .

To diminish the MSE, there is therefore a compromise between the bias and the variance of an estimator.

2.4.1 Improving estimation with sufficient statistics
In this short section, we are provided with an unbiased estimator δ(Y) and by considering some trans-
formation of this estimator using sufficient statistics, we can find an unbiased estimator with a smaller
variance.

Theorem 2.26 (The Rao-Blackwell theorem). If δ(Y) is an unbiased estimator of g(θ) and if S a suffi-
cient statistic, then E[δ(Y)|S] is an unbiased estimator of g(θ) with smaller variance than the one of δ(Y).

PROOF. First, since S is sufficient, Eθ[δ(Y)|S] does not depend on θ, it is thus an estimator and we may thus drop
the dependence on θ, i.e. we only write E[δ(Y)|S]. Moreover, the estimator is unbiased since

Eθ[Eθ[δ(Y))|S]] = Eθ[δ(Y)] = g(θ) ,

where we have used Lemma 2.21. The proof is concluded by noting that

Varθ[E[δ(Y))|S]]⩽ Varθ[E[δ(Y))|S]]+Eθ[Varθ[δ(Y))|S]] = Varθ[δ(Y)] ,

where we used again Lemma 2.21. ■

2.4.2 The Cramér-Rao Bound

Definition 2.27 (MVUB). An estimator δ(Y) of g(θ) ∈ Rk is MVUB (Minimum Variance UnBiased esti-
mator) if and only if

• δ(Y) is unbiased,

• for any other unbiased estimator δ̃(Y), we have

Varθ(δ(Y))⩽ Varθ(δ̃(Y)) ∀θ ∈ Θ .

In this definition, for two k× k symmetric matrices A,B with real entries, A⩽ B means that for all u ∈ Rk,
uT Au⩽ uT Bu.

The uniqueness of such an estimator is given by the following theorem.

Theorem 2.28. If δ(Y),δ′(Y) are two MVUB estimators, then for any θ ∈ Θ, δ(Y) = δ′(Y), Pθ-a.s.
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PROOF. If δ and δ′ are unbiased estimators of minimal variance, then Varθ(δ(Y)) = Varθ(δ
′(Y)). Now, consider

δ′′ = (δ+δ′)/2. We have by definition of δ and δ′, for any θ ∈ Θ,

Varθ(δ(Y))⩽ Varθ(δ
′′(Y)) =

1
4
(Varθ(δ(Y))+Varθ(δ

′(Y))+2Covθ(δ(Y),δ
′(Y))

=
1
2
(
Varθ(δ(Y))+Covθ(δ(Y),δ

′(Y))
)
,

which is equivalent to 0⩽ Varθ(δ(Y)−δ′(Y))⩽ 0. Using that these two estimators are unbiased, we finally have
δ(Y) = δ′(Y), Pθ-a.s. ■

In the previous section, we reduced the variance of an unbiased estimator by utilizing sufficient statis-
tics. However, for any dominated parametric model, sufficient statistics may not always exist. Even in cases
where they do, the computation of E[δ(Y)|S] may not be explicit. In this section, we will demonstrate the
existence of an explicit lower bound for the variance of an unbiased estimator.

Theorem 2.29 (The Cramér-Rao Bound). Assume that (A1), (A2) hold and Iθ
F(Y) is invertible. For any

unbiased “regular” estimator δ(Y) of g(θ), we have

Varθ[δ(Y)]⩾
∂g(θ)
∂θT

[
Iθ
F(Y)

]−1 ∂gT (θ)

∂θ
, (2.7)

where we recall that Y is the generic notation of the observations, ie Y = (Y1, . . . ,Yn).

As a byproduct, any unbiased estimator of g(θ) cannot be too close to g(θ) due to the Cramér-Rao
bound.

PROOF. We first rewrite the covariance matrix between δ(Y) and the score function ξθ(Y) =
∂ logℓθ(Y)

∂θ
, using that

the score is centered under Pθ and that δ is an unbiased estimator of g(θ),

Covθ (δ(Y),ξθ(Y)) =Eθ

[
δ(Y)

∂ logℓθ(Y)

∂θT

]
−0 =

∫
δ(y)

∂ℓθ(y)
∂θT µ(dy) =

∂

∂θT

∫
δ(y)ℓθ(y)µ(dy)︸ ︷︷ ︸

g(θ)

=
∂g(θ)
∂θT . (2.8)

Hence, denoting by Mθ, the rectangular matrix with deterministic entries, Mθ := ∂g(θ)
∂θT

[
Iθ
F (Y)

]−1, we have

0⩽ Varθ [δ(Y)−Mθξθ(Y)] = Varθ[δ(Y)]+MθVarθ[ξθ(Y)]︸ ︷︷ ︸
Iθ
F (Y)

MT
θ −2Covθ(δ(Y),Mθξθ(Y))

= Varθ[δ(Y)]+
∂g(θ)
∂θT

[
Iθ
F (Y)

]−1 ∂g(θ)T

∂θ
−2Covθ (δ(Y),ξθ(Y))MT

θ

= Varθ[δ(Y)]−
∂g(θ)
∂θT

[
Iθ
F (Y)

]−1 ∂g(θ)T

∂θ
,

where the last equality follows from (2.8) and the definition of Mθ. The proof is concluded. ■

▶Q-2.6. Amazing! I only have a question: in the statement of the Cramér-Rao bound, you said that δ(Y) is an
unbiased “regular” estimator of g(θ). If I am not mistaken, I have not seen any definition of “regular” estimators.

You have a keen eye! Actually, I wanted to keep the Cramér-Rao theorem simple, without being too
technical... However, a “regular” estimator is such that it has a second-order moment under Pθ so that
its covariance matrix under Pθ is well-defined and such that we can interchange integration wrt µ and
derivatives wrt θ in the penultimate equality in (2.8). For this property to hold, we can, for example,
assume that ∫

∥δ(y)∥ sup
θ∈Θ

∥∥∥∥∂ℓθ(y)
∂θ

∥∥∥∥µ(dy)< ∞ .
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The Cramér-Rao bound leads to the definition of efficiency. An unbiased estimator which satisfies equal-
ity in (2.9) is said to be efficient. As an immediate consequence of the Cramér-Rao bound, an efficient
estimator is MVUB.

▶Q-2.7. So, efficiency closes the case of estimation? All we have to do is to find efficient estimators?”

Easier said than done... Although finding efficient estimators would be an ultimate goal, there is no
result that guarantees their universal existence. Moreover, upon inspection of the proof, an efficient es-
timator δ(Y) would satisfy: Varθ [δ(Y)−Mθξθ(Y)] = 0, indicating that δ(Y) = Mθξθ(Y)+ g(θ), Pθ-a.s.
Unfortunately, there is no reason to believe that this latter quantity solely depends on the observations Y
and not on the parameter θ (which is essential for estimators).

Nonetheless, you must not be too disappointed. At the very least, it provides a lower bound for the
variance of any unbiased estimator, which could prove to be useful. Furthermore, as we will see later, we
will be able to find some estimators that will be “asymptotically efficient,” in a sense to be defined.

A particular case for the Cramér-Rao bound where g(θ) = θ implies that the bound is equal to the
inverse of the Fisher Information matrix.

Corollary 2.30. For a regular model, if δ is an unbiased regular estimator of g(θ) = θ then

Varθ[δ(Y1, . . . ,Yn)]⩾
[
Iθ
F(Y1, . . . ,Yn)

]−1
. (2.9)

Hence, if in addition the model is i.i.d.,

Varθ[δ(Y1, . . . ,Yn)]⩾
[
nIθ

F(Y1)
]−1

.

Remark 2.31. (About the notation ∂g(θ)
∂θT and ∂gT (θ)

∂θ
). We have

• if g(θ) =

g1(θ)
...

gp(θ)

 then gT (θ) := (g1(θ), . . . ,gp(θ)).

• if θ =

θ1
...

θd

 then ∂

∂θ
:=


∂

∂θ1
...
∂

∂θd

 and ∂

∂θT := ( ∂

∂θ1
, . . . , ∂

∂θd
) and thus

∂gT (θ)

∂θ
:=


∂g1(θ)

∂θ1
. . .

∂gp(θ)
∂θ1

...
...

∂g1(θ)
∂θd

. . .
∂gp(θ)

∂θd

 and
∂g(θ)
∂θT :=


∂g1(θ)

∂θ1
. . . ∂g1(θ)

∂θd
...

...
∂gp(θ)

∂θ1
. . .

∂gp(θ)
∂θd

 .

2.5 Methods of estimation
In this section, given a parametric statistical model and the observations (Yi)1⩽i⩽n, we provide several
methods for obtaining an approximation θ̂n of θ ∈ Rd .

2.5.1 Method of Moments (MOM)

The Method of Moments (MOM) can be split into several steps:
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(i) Choose d functions (T1, . . . ,Td) and set e j(θ) = Eθ[Tj(Y1)].

(ii) Solve with respect to θ = (θ1, . . . ,θd) the d equations

1
n

n

∑
i=1

Tj(Yi) = e j(θ) for j = 1, . . . ,d ,

and call θ̂n this approximation.

To fully understand the methods of moments, three ingredients should be gathered. First, the mapping
ψ : (θ1, . . . ,θd) 7→ (Eθ[T1(Y1)], . . . ,Eθ[Td(Y1)]) should be one-to-one. Second, for j ∈ [1 : d], we replace
Eθ[Tj(Y1)] by n−1

∑
n
i=1 Tj(Yi) for sufficiently large n (this approximation is asymptotically justified by using

the SLLN). Third, we apply ψ−1 to get θ̂n.

▶Q-2.8. Really? How can you apply ψ−1?

This is exactly Step (ii) in the Method of Moments. Solving the d equations in Step (ii) boils down
to applying ψ−1 to the approximations n−1

∑
n
i=1 Tj(Yi). We now invite you to practice the MOM with two

examples.

▶Q-2.9. Oh, with pleasure... thank you so much for your invitation!

You are welcome. Let us start right away.

Example 2.32 (Exponential distribution). In this first example, we consider a one-dimensional method
of moments. If Y1 ∼ exp(θ), then,

Eθ[Y1] =
1
θ

and Eθ[Y 2
1 ] =

2
θ2 .

Here, we provide two ways for applying the method of moments:

1. Choosing T (y) = y,

• Solve n−1
∑

n
i=1 Yi = 1/θ.

• We get θ̂n =
1

n−1 ∑
n
i=1 Yi

.

2. Choosing T (y) = y2,

• Solve n−1
∑

n
i=1 Y 2

i = 2/θ2.

• We get θ̂n =
(

2
n−1 ∑

n
i=1 Y 2

i

)1/2
.

Example 2.33 (Normal distribution). If Y1 ∼ N (m,σ2) then setting θ = (m,σ2), we have

Eθ[Y1] = m and Eθ[Y 2
1 ] = m2 +σ

2 .

Since θ is two-dimensional, we will consider here a two-dimensional method of moments. Choosing T1(y) =
y and T2(y) = y2

• we solve in θ = (m,σ2), the equations{
n−1

∑
n
i=1 Yi = m

n−1
∑

n
i=1 Y 2

i = m2 +σ2

• we obtain {
m̂n = n−1

∑
n
i=1 Yi

σ̂2
n = n−1

∑
n
i=1 Y 2

i − m̂2
n

and we set θ̂n = (m̂n, σ̂
2
n).
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2.5.2 Maximum likelihood estimator

Recall that Y = (Y1, . . . ,Yn) are observed.

Definition 2.34 (Maximum likelihood estimator). We say that θ̂ML
n is the Maximum Likelihood Estimator

(MLE) if the following condition is satisfied:

ℓ
θ̂ML

n
(Y1, . . . ,Yn) = max

θ∈Θ

ℓθ(Y1, . . . ,Yn) ,

or equivalently,
θ̂

ML
n ∈ argmaxθ∈Θℓθ(Y1, . . . ,Yn) .

As a fundamental particular case, consider iid dominated parametric models. Then,

ℓθ(Y1, . . . ,Yn) =
n

∏
i=1

ℓθ(Yi) ,

and thus,

θ̂
ML
n ∈ argmaxθ∈Θ n−1

n

∑
i=1

logℓθ(Yi) .

Asymptotic properties

So far, we have considered a fixed number of observations n. To study the asymptotic properties of the Max-
imum Likelihood Estimator (MLE) as n tends to infinity, we need to consider parametric statistical models
of the form (Y,F ,Q ) = (YN

1 ,F
⊗N

1 ,(Pθ)θ∈Θ). Here, we define an iid dominated parametric statistical
model (Y,F ,Q ) by the property that, for any θ ∈ Θ, under Pθ, the random sequence Y = (Y1, . . . ,Yn, . . .)
is composed of iid random variables {Yi : i ∈ N} with Yi ∼ ℓθ(y1)µ1(dy1).

We say that an iid parametric model associated to the observations (Yi) is well-specified if there exists a
parameter θ⋆ ∈ Θ such that the observations (Yi) are iid according to Pθ⋆ . In what follows, we assume that
the model is well-specified.

Proposition 2.35 (Strong Consistency of the MLE). Assume (A4). Then,

lim
n→∞

θ̂
ML
n = θ⋆ , Pθ⋆ −a.s.

This property shows that the MLE is asymptotically unbiased. Indeed, under the assumptions of Propo-
sition 2.35, the set Θ is compact. Hence,

∥∥θ̂ML
n
∥∥ ⩽ supθ∈Θ ∥θ∥ and the dominated convergence theorem

combined with Proposition 2.35 yields limnEθ⋆ [θ̂
ML
n ] = θ⋆. Hence,

Eθ⋆ [θ̂
ML
n ]≈ θ⋆ for large n.

Proposition 2.36 (Asymptotic normality of the MLE). Assume (A5). Then,

√
n(θ̂ML

n −θ⋆)
LPθ⋆⇝ N

(
0,
[
Iθ⋆
F (Y1)

]−1
)

.
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This property shows that the MLE is asymptotically efficient. Indeed, under mild additional assump-
tions, the above theorem shows that

nEθ⋆

[(
θ̂

ML
n −θ⋆

)2
]
≈
(

Iθ⋆
F (Y1)

)−1
.

Hence, Eθ⋆

[(
θ̂ML

n −θ⋆

)2
]
≈
(

nIθ⋆
F (Y1)

)−1
and thus,

Eθ⋆

[(
θ̂

ML
n −θ⋆

)2
]
≈
(

Iθ⋆
F (Y1, . . . ,Yn)

)−1
.

This asymptotic efficiency is a strong argument for using MLE but of course, we should be careful: when
we say that the MLE is asymptotically efficient, it means that n goes to infinity, we don’t say that it is
efficient for a given finite-sample.

▶Q- 2.10. Ok, for the asymptotic efficiency, but you did not define (A4) or (A5) for the strong consistency or the
asymptotic normality properties.

Yes, I chose to include the statements of these assumptions in the appendix of this chapter, along with
the complete proofs of Proposition 2.35 and Proposition 2.36. By doing so, I hope that the pace of the
reading is not slowed down, and you are not distracted by technicalities, so you can focus more quickly on
the asymptotic efficiency of the MLE.

Still, there is one point I would like to draw your attention to. It is the Kullback-Leibler divergence.

▶Q-2.11. What is it? I’ve never heard of it before.

Let us recall it.

Kullback-Leibler divergence and links with the MLE.

Definition 2.37. Let dP= f dµ and dQ= gdµ be two probability measures on (Y,F ). Then, the Kullback-
Leibler divergence between P and Q is noted KL(P||Q) and is defined by

KL(P||Q) =
∫

f (y) log
f (y)
g(y)

µ(dy) .

Two properties are often used:

• KL(P||Q)⩾ 0 with equality if and only if P = Q.

• KL(P||Q) ̸= KL(Q||P).

We now delve into the connections between the Kullback-Leibler divergence and the Maximum Likelihood
Estimator (MLE). The proof of the strong consistency of the MLE follows a general scheme: θ̂ML

n is defined
as the argmax of n−1

∑
n
i=1 logℓθ(Yi), which is shown to converge almost surely for a fixed θ to the limiting

function Eθ⋆ [logℓθ(Y1)] by the SLLN (Strong Law of Large Numbers). Assuming that this limiting function
achieves its maximum only at θ⋆, it is natural to expect that θ̂ML

n will subsequently converge to the argmax
with respect to θ of the limiting function, i.e., θ⋆.

θ̂ML
n

∈ argmaxθ∈Θ n−1
∑

n
i=1 logℓθ(Yi)

θ⋆
∈ argmaxθ∈Θ Eθ⋆ [logℓθ(Y1)]

SLLN
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Actually, we have the property

Eθ⋆ [logℓθ⋆(Y1)] = max
θ∈Θ

Eθ⋆ [logℓθ(Y1)] .

Indeed
Eθ⋆ [logℓθ⋆(Y1)]−Eθ⋆ [logℓθ(Y1)] = KL(Pθ⋆ ||Pθ)⩾ 0 ,

where we have defined dPθ = ℓθdµ for any θ ∈ Θ. This link with the Kullback-Leibler divergence shows
that if we assume (A4)-(ii), then θ⋆ turns out to be the only argmax of Eθ⋆ [logℓθ(Y1)] that is for any θ ̸= θ⋆,

Eθ⋆ [logℓθ(Y1)]< Eθ⋆ [logℓθ⋆(Y1)] . (2.10)

2.5.3 M-estimators
It turns out that MLEs are just specific instances of M-estimators. Let us provide a brief introduction to
this broader class of estimators, as they are frequently employed in practical applications.

Definition 2.38 (M-estimators). We say that θ̂M
n is an M-estimator if for some family of functions

(ϕθ)θ∈Θ,

θ̂
M
n ∈ argmaxθ∈Θ

1
n

n

∑
i=1

ϕθ(Yi) .

▶Q-2.12. Great! So, if I am not mistaken, the MLE is just an M-estimator with ϕθ(y) = logℓθ(y).
Exactly, but in general, we cannot choose any function ϕθ. We should, at least, have the property

Eθ[ϕθ(Y1)] = maxθEθ[ϕθ(Y1)], which is, of course, satisfied in the particular case: ϕθ(y) = logℓθ(y). Now,
let’s mention the strong consistency and the asymptotic normality properties for M-estimators. As before,
I have decided to postpone the exact statements of the assumptions to the appendix, just to focus on the
results. I have also omitted the proofs, as they are very similar to the MLE case. It would be a valuable
exercise for you to show Proposition 2.39 and Proposition 2.40 on your own, by following the proofs of
Proposition 2.35 and Proposition 2.36 in the general context of M-estimators.

Proposition 2.39 (Strong Consistency for M-estimators). Under (B1),

lim
n→∞

θ̂
M
n = θ⋆ , Pθ⋆ −a.s.

Proposition 2.40 (Asymptotic normality for M-estimators). Under (B2),

√
n(θ̂M

n −θ⋆)
LPθ⋆⇝ N (0,Uθ⋆Gθ⋆U

T
θ⋆
)

where

Uθ⋆ =

(
Eθ⋆

[
∂2ϕθ(Y1)

∂θ∂θT

∣∣∣∣
θ=θ⋆

])−1

=UT
θ⋆

,

Gθ⋆ = Eθ⋆

[
∂ϕθ(Y1)

∂θ

(
∂ϕθ(Y1)

∂θ

)T
∣∣∣∣∣
θ=θ⋆

]
.
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▶Q-2.13. If you have an estimator, let’s say θ̂n, and you are interested in its asymptotic properties, what step-by-step
approach would you recommend?

I would suggest the following approach:

(i) First, check if you have an explicit expression for your estimator θ̂n. Often, Method of Moments
(MOM) estimators, Maximum Likelihood Estimators (MLEs), or M-estimators can be directly ex-
pressed from the observations as a function of n−1

∑
n
i=1 h(Yi), where h is a particular function.

(ii) Next, try to obtain the properties using either the “Law of Large Numbers (LGN)”, “Continuous
Mapping Theorem”, “Central Limit Theorem (CLT)”, “Slutsky’s Theorem” or any other relevant
theorem. Another lemma may be of interest for solving the exercises of this chapter (we will consis-
tently come back to this lemma in the next chapter on confidence intervals):

Lemma 2.41 (The δ-method). Assume that there exist a sequence of random variables{
θ̂n : n ∈ N

}
, a random variable U , a constant θ and a sequence of positive real numbers

{rn : n ∈ N} such that

lim
n

rn = ∞ , and rn(θ̂n −θ)
LP⇝U .

Then, for any measurable function g : R→ R, differentiable at θ, we have

rn(g(θ̂n)−g(θ))
LP⇝ g′(θ)U .

(iii) If your estimator is a MLE, verify if you can apply Proposition 2.35 and Proposition 2.36. For
M-estimators, check if you can apply Proposition 2.39 and Proposition 2.40.

(iv) Combine (iii) and (ii).

(v) If none of the above methods works, try to mimick/extend the proofs in the appendix.

Even if you have a MLE or an M-estimator, try (ii) before (iii); it may be quicker to obtain the results.

2.6 After studying this chapter...

a) I know the definition of a sufficient statistic and I know how to find a sufficient statistic by
using the factorization theorem.

b) I can detect an exponential family and I can find the associated natural parameters.

c) I can calculate a likelihood, a score, a Fisher Information matrix, especially for iid models.

d) I know the definiton of an estimator and I can calculate its bias.

e) I can implement the MOM (Method of Moments), the MLE (Maximum Likelihood Esti-
mator) and more generally, M-estimators and I know their properties (strong consistency
and asymptotic normality). I can try to check its asymptotic properties using the approach
given in Q-2.13.

f) I know the Rao-Blackwell theorem, the Cramér-Rao bound and the definition of MVUE
(Minimum Variance Unbiased Estimators) and efficient estimators.

2.7 Highlights
Harald Cramér (source: Wikipedia)
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Harald Cramér (25 September 1893 – 5 October 1985) was a Swedish mathe-
matician, actuary, and statistician, specializing in mathematical statistics and
probabilistic number theory. John Kingman described him as “one of the gi-
ants of statistical theory”.

Harald Cramér was born in Stockholm, Sweden on 25 September 1893.
Cramér remained close to Stockholm for most of his life. He entered the Uni-
versity of Stockholm as an undergraduate in 1912, where he studied mathe-
matics and chemistry. During this period, he was a research assistant under
the famous chemist, Hans von Euler-Chelpin, with whom he published his
first five articles from 1913 to 1914.Following his lab experience, he began to
focus solely on mathematics. He eventually began his work on his doctoral
studies in mathematics which were supervised by Marcel Riesz at the Univer-
sity of Stockholm. Also influenced by G. H. Hardy, Cramér’s research led to
a PhD in 1917 for his thesis “On a class of Dirichlet series”.

Following his PhD, he served as an Assistant Professor of Mathematics at Stockholm University from
1917 to 1929. Early on, Cramér was highly involved in analytic number theory. He also made some
important statistical contributions to the distribution of primes and twin primes. His most famous paper on
this subject is entitled “On the order of magnitude of the difference between consecutive prime numbers”,
which provided a rigorous account of the constructive role in which probability applied to number theory
and included an estimate for prime gaps that became known as Cramér’s conjecture.

In the late 1920s, Cramér became interested in the field of probability, which at the time was not an
accepted branch of mathematics. Cramér knew that a radical change was needed in this field, and in a
paper in 1926 said, “The probability concept should be introduced by a purely mathematical definition,
from which its fundamental properties and the classical theorems are deduced by purely mathematical
operations.” Cramér took an interest in the rigorous mathematical formulation of probability in the work of
French and Russian mathematicians such as Kolmogorov, Lévy, Bernstein, and Khinchin in the early 1930s.
Cramér also made significant development to the revolution in probability theory. Cramér later wrote his
careful study of the field in his Cambridge publication Random variables and probability distributions
which appeared in 1937 (with a 2nd edition in 1962 and a 3rd edition in 1970). Shortly after World War II,
Cramér went on to publish the influential Mathematical Methods of Statistics in 1946. This text was one
that “showed the way in which statistical practice depended on a body of rigorous mathematical analysis as
well as Fisherian intuition.” His 1955 book Elements of Probability Theory and Some of its Applications
introduces probability theory at a more elementary level than Mathematical Methods of Statistics.

In 1929, Cramér was appointed to a newly created chair in Stockholm University, becoming the first
Swedish professor of Actuarial Mathematics and Mathematical Statistics. Cramér retained this position up
until 1958. During his tenure at Stockholm University, Cramér was a PhD advisor for 10 students, most
notably Herman Wold and Kai Lai Chung. In 1950 he was elected as a Fellow of the American Statistical
Association. Starting in 1950, Cramér took on the additional responsibility of becoming the President of
Stockholm University. In 1958, he was also appointed to be Chancellor of the entire Swedish university
system. Cramér retired from the Swedish university system in 1961.

A large portion of Cramér’s work concerned the field of actuarial science and insurance mathemat-
ics. During the period from 1920 to 1929, he was an actuary for the life insurance company Svenska
livförsäkringsbolaget. His actuarial work during this time led him to study probability and statistics which
became the main area of his research. In 1927 he published an elementary text in Swedish Probability
theory and some of its applications. Following his work for Svenska livförsäkringsbolaget, he went on to
work for Återförsäkringsaktiebolaget Sverige, a reinsurance company, up until 1948. He was also known
for his pioneering efforts in insurance risk theory. After this period, he remained as a consultant actuary to
Sverige from 1949 to 1961. Later in his life, he was elected to be the Honorary President of the Swedish
Actuarial Society.

Cramér remained an active contributor to his professional career for an additional 20 years. Following
his retirement in 1961, he became extremely active in research, which had been slowed due to his Chan-
cellorship. During the years from 1961 to 1983, Cramér traveled throughout the United States and Europe
to continue his research, making significant stops at Berkeley, Princeton, and at the Research Triangle
Institute of North Carolina.
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Cramér received an Honorary Doctorate from Heriot-Watt University in 1972.
His academic career spanned over seven decades, from 1913 to 1982.
Harald Cramér married Marta Hansson in 1918, and they remained together up until her death in 1973.

He had often referred to her as his “Beloved Marta”. Together they had one daughter, Marie-Louise, and
two sons, Tomas and Kim.

2.8 Appendix

2.8.1 Proof of Proposition 2.35
(A4) (i) The set Θ ⊂ Rd is compact.

(ii) for all θ,θ′ ∈ Θ such that θ ̸= θ′, we have Pθ ̸= Pθ′ where we set Pθ(dy1) = ℓθ(y1)µ(dy1).

(iii) Eθ⋆ [supθ∈Θ | logℓθ(Y1)|]< ∞.

(iv) Pθ⋆ −a.s., the function θ 7→ ℓθ(Y1) is upper-semicontinuous.

where we recall that a function f : Θ ⊂ Rd → R is upper-semicontinuous if and only if for any θ0 ∈ Θ,
limθ→θ0 f (θ)⩽ f (θ0). Note that in such a case, f attains its maximum in any compact set.

PROOF. [of Proposition 2.35] For any θ ∈ Θ, assumption (A4)-(iii) allows to apply the SLLN and we have

lim
n→∞

n−1
n−1

∑
k=0

logℓθ(Yk) = Eθ⋆
[logℓθ(Y1)] , Pθ⋆

−a.s. (2.11)

For any ρ > 0 and θ0 ∈ Θ, define B(θ0,ρ) = {θ ∈ Θ : ∥θ−θ0∥< ρ} where ∥·∥ is any norm on Rd . Let K be a
compact subset of Θ. For all θ0 ∈ K, Pθ⋆

−a.s.,

limsup
ρ↘0

limsup
n→∞

sup
θ∈B(θ0,ρ)

n−1
n−1

∑
k=0

logℓθ(Yk)

⩽ limsup
ρ↘0

limsup
n→∞

n−1
n−1

∑
k=0

(
sup

θ∈B(θ0,ρ)
logℓθ(Yk)

)
= limsup

ρ↘0
Eθ⋆

[
sup

θ∈B(θ0,ρ)
logℓθ(Y1)

]
. (2.12)

By the monotone convergence applied to the non-increasing function ρ 7→ supθ∈B(θ0,ρ) logℓθ, we have

limsup
ρ↘0

Eθ⋆

[
sup

θ∈B(θ0,ρ)
logℓθ(Y1)

]
= Eθ⋆

[
limsup

ρ↘0
sup

θ∈B(θ0,ρ)
logℓθ(Y1)

]
⩽ Eθ⋆

[
logℓθ0(Y1)

]
, (2.13)

where the last inequality follows from (A4)-(iv). Combining (2.12) and (2.13), we obtain that for all η > 0 and all
θ0 ∈ K, there exists ρθ0 > 0 satisfying

limsup
n→∞

sup
θ∈B(θ0,ρθ0 )

n−1
n−1

∑
k=0

logℓθ(Yk)⩽ Eθ⋆

[
logℓθ0(Y1)

]
+η⩽ sup

θ∈K
Eθ⋆

[logℓθ(Y1)]+η , Pθ⋆
−a.s.

Since K is a compact subset of Θ, we can extract a finite sub-cover of K from ∪θ0∈KB(θ0,ρ
θ0), so that

limsup
n∈∞

sup
θ∈K

n−1
n−1

∑
k=0

logℓθ(Yk)⩽ sup
θ∈K

Eθ⋆
[logℓθ(Y1)]+η , Pθ⋆

−a.s.

Since η is arbitrary, we obtain

limsup
n∈∞

sup
θ∈K

n−1
n−1

∑
k=0

logℓθ(Yk)⩽ sup
θ∈K

Eθ⋆
[logℓθ(Y1)] , Pθ⋆

−a.s. (2.14)

Moreover, Pθ⋆
−a.s. by (2.13), we get

limsup
ρ↘0

sup
θ∈B(θ0,ρ)

Eθ⋆
[logℓθ(Y1)]⩽ limsup

ρ↘0
Eθ⋆

[
sup

θ∈B(θ0,ρ)
logℓθ(Y1)

]
⩽ Eθ⋆

[
logℓθ0(Y1)

]
.
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This shows that θ 7→ Eθ⋆
[logℓθ(Y1)] is upper-semicontinuous. For all ε > 0, Kε := {θ ∈ Θ : ∥θ−θ⋆∥⩾ ε} is a

compact subset of Θ. Using the upper-semicontinuity of θ 7→ Eθ⋆
[logℓθ(Y1)], there exists θε ∈ Kε such that

sup
θ∈Kε

Eθ⋆
[logℓθ(Y1)] = Eθ⋆

[
logℓθε

(Y1)
]
< Eθ⋆

[logℓθ⋆
(Y1)] ,

where the strict inequality follows from (2.10). Finally, combining this inequality with (2.14), we obtain Pθ⋆
−a.s.,

limsup
n→∞

sup
θ∈Kε

n−1
n−1

∑
k=0

logℓθ(Yk)⩽ sup
θ∈Kε

Eθ⋆
[logℓθ(Y1)]

< Eθ⋆
[logℓθ⋆

(Y1)]
(1)
= lim

n→∞
n−1

n−1

∑
k=0

logℓθ⋆
(Yk)⩽ liminf

n→∞
n−1

n−1

∑
k=0

logℓ
θ̂ML

n
(Yk) ,

where
(1)
= follows from (A4)-(iii) and the SLLN. This property ensures that θ̂ML

n /∈ Kε, hence ∥θ−θ⋆∥ ⩽ ε for all n
larger to some Pθ⋆

−a.s. finite integer-valued random variable. The proof is completed since ε is arbitrary. ■

2.8.2 Proof of Proposition 2.36
(A5) (i) The set Θ ⊂ Rd is compact and θ⋆ ∈ Θ̊ where Θ̊ denotes the interior of Θ.

(ii) Pθ⋆ -a.s., limn θ̂ML
n = θ⋆.

(iii) For µ1-almost all y1, θ 7→ ℓθ(y1) is twice continuously differentiable on Θ and∫
sup
θ∈Θ

∥∥∥∥∂ℓθ(y1)

∂θ

∥∥∥∥µ1(dy1)< ∞ , (2.15)

∫
sup
θ∈Θ

∥∥∥∥∂2ℓθ(y1)

∂θ∂θT

∥∥∥∥µ1(dy1)< ∞ , (2.16)

Eθ⋆

[
sup
θ∈Θ

∥∥∥∥∂2 logℓθ(Y1)

∂θ∂θT

∥∥∥∥]< ∞ , (2.17)

where by abuse of notation ∥·∥ denotes any norm on Rd or Rd×d .

(iv) Iθ⋆
F (Y1) is invertible.

Note that under (A5)-(iii), the score ξθ⋆(Y1) is centered and square-integrable under Pθ⋆ and

Iθ⋆
F (Y1) = Varθ⋆(ξθ⋆(Y1)) =−Eθ⋆

[
∂2 logℓθ(Y1)

∂θ∂θT

∣∣∣∣
θ=θ⋆

]
.

PROOF. [of Proposition 2.36] By (A5)-(i)-(ii), θ̂ML
n is in Θ̊ for n larger to some Pθ⋆

-a.s. finite random integer. Then,
for such n, writing a Taylor expansion with integral reminder yields

∂

∂θ

[
n−1/2

n

∑
k=1

logℓθ(Yk)

]∣∣∣∣∣
θ=θ̂ML

n

= 0

= n−1/2
n

∑
k=1

∂ logℓθ(Yk)

∂θ

∣∣∣∣
θ=θ⋆︸ ︷︷ ︸

In(θ⋆)

+n−1
n

∑
k=1

(∫ 1

0

∂2 logℓθ(Yk)

∂θ∂θT

∣∣∣∣
θ=(1−s)θ⋆+sθ̂ML

n

ds

)
︸ ︷︷ ︸

Jn(θ̂ML
n )

[√
n(θ̂ML

n −θ⋆)
]
,

which implies √
n(θ̂ML

n −θ⋆) =−Jn(θ̂
ML
n )−1In(θ⋆)

Then, provided that we can show that

In(θ⋆)
LPθ⋆⇝ N

(
0, Iθ⋆

F (Y1)
)
, (2.18)

Jn(θ̂
ML
n )

Pθ⋆−prob−→ −Iθ⋆
F (Y1) , (2.19)
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we finally obtain according to the multidimensional Slutsky lemma combined with (A5)-(iv)

√
n(θ̂ML

n −θ⋆)
LPθ⋆⇝ N

(
0,
[
Iθ⋆
F (Y1)

]−1
Iθ⋆
F (Y1)

[
Iθ⋆
F (Y1)

T
]−1

︸ ︷︷ ︸
[Iθ⋆

F (Y1)]
−1

)
.

We now turn to the proof of (2.18) and (2.19). The Central Limit Theorem applied to the sequence of random
vectors {ξθ⋆

(Yk) : k ∈ N} which are centered under Pθ⋆
yields

In = n−1/2
n

∑
k=1

ξθ⋆
(Yk)

LPθ⋆⇝ N (0, Iθ⋆
F (Y1)) .

This shows (2.18). It remains to prove (2.19). Let Vρ = {θ ∈ Θ : ∥θ−θ⋆∥⩽ ρ} and define for any y ∈ Y1,

Hρ(y) = sup
θ∈Vρ

∥∥∥∥∥∂2 logℓθ(y)
∂θ∂θT − ∂2 logℓθ(y)

∂θ∂θT

∣∣∣∣
θ=θ⋆

∥∥∥∥∥ .

Under (A5)-(iii), limρ→0 Hρ(y) = 0 for µ1-almost all y ∈Y1 and |Hρ(y)|⩽ 2supθ∈Θ

∥∥∥ ∂2 logℓθ(y)
∂θ∂θT

∥∥∥. By (2.17), we can
apply the Lebesgue dominated convergence theorem, so that

lim
ρ→0

E[Hρ(Y1)] = 0 .

Hence, for any ε > 0, there exists ρε > 0 sufficiently small such that Eθ⋆

[
Hρε

(Y1)
]
< ε. Then,

Pθ⋆
(
∥∥Jn(θ̂

ML
n )− Jn(θ⋆)

∥∥> ε)⩽ Pθ⋆
(
∥∥Jn(θ̂

ML
n )− Jn(θ⋆)

∥∥> ε, θ̂ML
n ∈Vρε

)+Pθ⋆
(θ̂ML

n /∈Vρε
)

⩽ Pθ⋆
(n−1

n

∑
k=1

Hρε
(Yk)> ε)+Pθ⋆

(
∥∥θ̂

ML
n −θ⋆

∥∥> ε) . (2.20)

By the SLLN, limn n−1
∑

n
k=1 Hρε

(Yk) =Eθ⋆

[
Hρε

(Y1)
]
< ε, Pθ⋆

-a.s. This limiting result combined with θ̂ML
n

Pθ⋆−prob−→

θ⋆ shows that the rhs of (2.20) tends to 0 as n tends to infinity. Hence, Jn(θ̂
ML
n )−Jn(θ⋆)

Pθ⋆−prob−→ 0 and since applying

again the SLLN, Jn(θ⋆)
Pθ⋆ -a.s.−→ −Iθ⋆

F (Y1), we can conclude that (2.19) holds. The proof is completed.
■

2.8.3 Assumptions for the asymptotic properties of M-estimators
(B1) (i) The set Θ ⊂ Rd is compact.

(ii) for all θ ̸= θ⋆, Eθ⋆ [ϕθ(Y1)]< Eθ⋆ [ϕθ⋆(Y1)].

(iii) Eθ⋆ [supθ∈Θ |ϕθ(Y1)|]< ∞.

(iv) Pθ⋆ −a.s., the function θ 7→ ϕθ(Y1) is upper-semicontinuous.

(B2) (i) The set Θ ⊂ Rd is compact and θ⋆ ∈ Θ̊ where Θ̊ denotes the interior of Θ.

(ii) Pθ⋆ -a.s., limn θ̂M
n = θ⋆.

(iii) For µ1-almost all y1, θ 7→ ϕθ(y1) is twice continuously differentiable on Θ and

Eθ⋆

∥∥∥∥∥ ∂ϕθ(Y1)

∂θ

∣∣∣∣
θ=θ⋆

∥∥∥∥∥
2
< ∞ , (2.21)

E
[

sup
θ∈Θ

∥∥∥∥∂2ϕθ(Y1)

∂θ∂θT

∥∥∥∥]< ∞ . (2.22)

(iv) Eθ⋆

[
∂2ϕθ(Y1)

∂θ∂θT

∣∣∣
θ=θ⋆

]
is invertible.
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Chapter 3
Confidence regions

In the previous chapter, given a function of interest θ 7→ g(θ) ∈ Rp and observations Y = (Y1, . . . ,Yn) ∈ Y,
we provided a function of the observation, written as a vector T (Y) which is supposed to approximate g(θ).
By doing so, we have defined the notion of an estimator of g(θ).

We now would like to be more careful and, instead of providing a single function which is supposed to
approximate g(θ), we aim to offer an entire region C (Y)⊂ Rp where our function of interest g(θ) should
lie with a “high” probability. This leads to the notion of confidence regions (when the dimension is p > 1)
and confidence intervals (when the dimension is p = 1).

3.1 Confidence regions for a finite sample

3.1.1 Level of a confidence region
In this section, the function of interest is given θ 7→ g(θ) ∈ Rp and we denote by Y = (Y1, . . . ,Yn) ∈ Y the
observations. We start with a formal definition of confidence regions.

Definition 3.1 (Confidence regions). Let (Y,F ,Q ) be a parametric statistical model i.e. Q = (Pθ)θ∈Θ.
A confidence region C with level 1−α is defined by

Pθ(g(θ) ∈ C (Y))⩾ 1−α, ∀θ ∈ Θ ,

or equivalently,
Pθ(g(θ) /∈ C (Y))⩽ α, ∀θ ∈ Θ .

The level of a confidence region is, therefore, between 0 and 1, and the higher the level, the better the
confidence region. However, a higher level also leads to a larger region, which may become impractical.
As an extreme case, when C (Y) = g(Θ), the level of this region is 1, but its size is the largest possible,
providing no useful information about the location of g(θ). Thus, a good balance between the level of a
confidence region and its size is necessary. It is worth noting that to ensure well-defined probabilities in
Definition 3.1, we must assume that for any θ ∈ Θ,

{y ∈ Y : g(θ) ∈ C (y)} ∈ F .

As a final remark, the notation C (Y) implicitly means that the confidence region is a function of the
observations Y only and does not depend on the parameter θ.

To illustrate the notion of confidence regions, let us first consider a poll example that will be treated
extensively.

45
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Example 3.2 (A poll example). In this example, we have a group of n individuals, and we have collected
their intentions to vote or not vote for a certain candidate, denoted as X . Specifically, let Yi represent the
intention of individual i to vote for candidate X . The variable Yi takes only two values, 0 or 1, and we can
model it as Yi ∼B(θ) under Pθ, where θ∈ (0,1) represents the probability of voting for the candidate. Given
the observed data Y = (Y1, . . . ,Yn), our goal is to construct a confidence interval for θ with level 1−α.

As a numerical example, consider n = 1500, and out of this group, there are 789 individuals who intend
to vote for candidate X . Now, we want to find a confidence interval with a 95% level for the probability of
candidate X winning the election.

Considering Definition 3.1, we aim to construct an interval Iα such that for any θ ∈ [0,1],

Pθ(θ /∈ Iα)⩽ α . (3.1)

We will discuss two methods.

First method

Write θ̂n = ∑
n
i=1 Yi/n. Since E[θ̂n] = E[Y1] = θ, the Bienaymé-Tchebychev inequality yields

∀ε > 0, Pθ(|θ̂n −θ|> ε)⩽
Varθ(θ̂n)

ε2 =
θ(1−θ)

nε2 ⩽
1

4nε2 . (3.2)

The approach consists of rewriting (3.2) as (3.1). To achieve this, we choose ε such that the right-hand
sides in (3.2) and (3.1) coincide. That is, we choose ε such that 1

4nε2 = α, which leads to ε = 1
2
√

nα
. With

this chosen value of ε, we now focus on the left-hand sides of (3.1) and (3.2).
Let Iα be such that {|θ̂n −θ|> ε}= {θ /∈ Iα}. This condition implies that Iα = [θ̂n ± ε] =

[
θ̂n ± 1

2
√

nα

]
.

Finally, (3.1) is proven for the following choice of Iα:

Iα =

[
∑

n
i=1 Yi

n
− 1

2
√

nα
,

∑
n
i=1 Yi

n
+

1
2
√

nα

]
. (3.3)

In other words, this choice of Iα yields a confidence interval for θ with level 1−α.
In the numerical example, we have α = 5%, θ̂n = 789/1500. Then Iα = [0.47,0.58].

Second method

As in the first method, let’s set θ̂n =∑
n
i=1 Yi/n. Using Hoeffding’s inequality for the independent and bounded

random variables (Yi), we obtain for any ε > 0,

Pθ(|θ̂n −θ|> ε)⩽ 2e−2nε2
. (3.4)

As before, we rewrite (3.4) as (3.1). First, we work on the rhs of these two inequalities, and we choose ε such

that 2e−2nε2
= α, ie: ε =

√
− 1

2n log
(

α

2

)
. With this selected ε, we choose a convenient Iα such that the lhs

of (3.4) and (3.1) coincide. Writing
{
|θ̂n −θ|> ε

}
= {θ /∈ Iα} yields Iα = [θ̂n ± ε] = [θ̂n ±

√
− 1

2n log
(

α

2

)
],

which can be expressed as follows:

Iα =

[
∑

n
i=1 Yi

n
−
√
− 1

2n
log
(

α

2

)
,

∑
n
i=1 Yi

n
+

√
− 1

2n
log
(

α

2

)]
. (3.5)

In the previous numerical example where α = 5% and θ̂n = 789/1500, we get Iα = [0.50,0.55].
It is important to note that (3.3) and (3.5) provide confidence intervals for θ with a level of 1−α. However,

if we denote by ℓ1(α) and ℓ2(α) the sizes of the confidence intervals in (3.3) and (3.5), respectively, we
obtain:

ℓ1(α) =
1√
nα

, ℓ2(α) =

√
−2

n
log
(

α

2

)
.

If we wish to have confidence intervals with a level larger than 0.8 (i.e., α < 0.2), it can be readily checked
that ℓ2(α)⩽ ℓ1(α). Hence, in this case, the second method is preferable to the first one.
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▶Q-3.1. Ok, thanks for this nice example on Bernoulli variables... Do you have another example with, for instance,
real-valued random variables?

Sure, let’s consider another example involving Gaussian random variables.

Example 3.3. Assuming that under Pθ, the random variables (Yi)i∈N are independent and identically
distributed, with Y1 ∼ N (θ,σ2), where σ2 is known, we can construct a confidence interval for θ based on
the observations Y = (Y1, . . . ,Yn).

Setting θ̂n = ∑
n
i=1 Yi/n, we have under Pθ,

Zn :=
θ̂n −θ√

σ2/n
∼ N (0,1) .

Now, for any α > 0, pick zα s.t. P(Z /∈ [−zα,zα]) = α where Z ∼ N (0,1). Then,

Pθ (Zn /∈ [−zα,zα]) = α .

Then, {Zn /∈ [−zα,zα]}= {θ /∈ Iα} where

Iα =

[
θ̂n − zα

√
σ2

n
, θ̂n + zα

√
σ2

n

]
.

Hence, Pθ(θ /∈ Iα) = α⩽ α and we can conclude that Iα is a confidence interval for θ with level 1−α.

y = e−x2/2
√

2π

1.96−1.96

Density of Z ∼ N (0,1)

Figure 3.1: For α = 5%, we get zα = 1.96.

3.1.2 Pivot

In Example 3.3, the confidence interval has been constructed using a random variable Zn such that for any
θ ∈ Θ, under Pθ:

Zn =
∑

n
i=1 Yi/n−θ√

σ2/n
= G(Y,θ)∼ N (0,1) .

In other words, the random variable Zn, which depends on both the observations Y and the parameter θ, has
a distribution under Pθ that does not depend on θ. This property shows that G is a pivot, as defined below.
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Definition 3.4 (Pivot). Let (Y,F ,Q ) be a parametric statistical model i.e. Q = (Pθ)θ∈Θ.
A measurable function G : Y× θ → Rp is a pivot if and only if the law of G(Y,θ) under Pθ does not

depend on θ.

Hence, G(Y,θ) has a distribution under Pθ that is free from the parameter θ. In other words, for any
θ ∈ Θ, the distribution of G(Y,θ) under Pθ is the same for all θ ∈ Θ.

In the context of constructing confidence intervals, a pivot is a crucial concept. It allows us to create
a probability statement that holds uniformly for all possible values of the parameter θ. In the case of
Example 3.3, the pivot Zn follows a standard normal distribution under Pθ for all θ ∈ Θ, and this property
ensures that the confidence interval based on Zn will provide a valid confidence interval of level 1−α for
the parameter θ for any value of θ in the parameter space Θ.

More generally, if the function G is a pivot, then for any α > 0, we first choose Dα such that for any
θ ∈ Θ,

Pθ(G(Y,θ) ∈ Dα) = 1−α .

Then,
C (Y) = {θ ∈ Θ ;G(Y,θ) ∈ Dα} (3.6)

is a confidence region for θ of level 1−α. Indeed, for any θ ∈ Θ,

Pθ(θ ∈ C (Y)) = Pθ(G(Y,θ) ∈ Dα) = 1−α .

Note that (3.6) may be rewritten as:

G(Y,θ) ∈ Dα ⇐⇒ θ ∈ C (Y) . (3.7)

▶Q- 3.2. May I interrupt you for a second? Does this equivalence provide the link between pivot functions and
confidence intervals?

Exactly, the explicit expression of C (Y) crucially depends on how G(Y,θ) relates to θ. If you have the
choice between two pivot functions, I would advise you to choose the one where the dependence on θ is as
simple as possible. This will allow you to obtain an explicit confidence region C (Y) more easily.

In any case, in Example 3.2, we used the Bienaymé-Tchebychev inequality or the Hoeffding inequality,
which allows us to bound from above the probability that the absolute value of a centered random variable
|X −E[X ]| exceeds a certain threshold. These inequalities are quite useful tools for obtaining confidence
intervals, and we will recall them in the next section.

3.1.3 Tools: some useful finite-sample inequalities.

Theorem 3.5 (The Bienaymé-Tchebychev inequality). Let X be a random variable on (Ω,F ,P) such
that E[X2]< ∞. Then, for any t > 0,

P(|X −E[X ]|> t)⩽
Var(X)

t2 .

PROOF. We have, P-a.s.,

1{|X−E[X ]|>t} ⩽
|X −E[X ]|2

t2 .

Taking the expectation on both sides of the previous inequality yields:

P(|X −E[X ]|> t) = E
[
1{|X−E[X ]|>t}

]
⩽

Var(X)

t2 .

■
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Theorem 3.6 (The Hoeffding inequality). Let (Xi)1⩽i⩽n be independent random variables such that
for any i ∈ {1, . . . ,n}, there exist constants ai,bi such that

ai ⩽ Xi ⩽ bi , P−a.s.

Then, for any t > 0,

P

(∣∣∣∣∣ n

∑
i=1

Xi −
n

∑
i=1

E [Xi]

∣∣∣∣∣> t

)
⩽ 2exp

(
−2t2

∑
n
i=1(bi −ai)2

)
. (3.8)

PROOF. Replacing if necessary Xi by Xi −E[Xi], we may assume without loss of generality that E[Xi] = 0 for all
1⩽ i⩽ n. In that case, to obtain (3.8), it is sufficient to show for all t > 0,

P

(
n

∑
i=1

Xi > t

)
⩽ exp

(
−2t2

∑
n
i=1(bi −ai)2

)
. (3.9)

Indeed, assume first that (3.9) holds for any sequence of independent centered bounded random variables. Then
applying (3.9) with Xi replaced by −Xi ∈ [−bi,−ai] we obtain the same upper-bound for P

(
∑

n
i=1 Xi > t

)
and

P
(
−∑

n
i=1 Xi > t

)
. The proof of (3.8) is then completed by using

P

(
|

n

∑
i=1

Xi|> t

)
= P

(
n

∑
i=1

Xi > t

)
+P

(
n

∑
i=1

Xi <−t

)
.

It now remains to prove (3.9). We have for all s > 0,

1{∑
n
i=1 Xi>t} = 1{e−st e∑

n
i=1 sXi>1} ⩽ e−ste∑

n
i=1 sXi .

Taking the expectation on both sides of the inequality and noting that the (Xi) are independent, we get for all s, t > 0,

P

(
n

∑
i=1

Xi > t

)
⩽ e−st

n

∏
i=1

E
[
esXi
]
. (3.10)

In order to bound the rhs of (3.10), define for all 1⩽ i⩽ n, φi(s) = logψi(s) and ψi(s) = E[esXi ]. Since Xi ∈ [ai,bi],
ψi is twice differentiable and ψ

j
i (s) = E[X j

i esXi ] for j ∈ {1,2}. Then, φi is twice differentiable and we have φ′i =
ψ′

i
ψi

and φ′′i =
ψ′′

i
ψi

−
(

ψ′
i

ψi

)2
. Therefore,

φ
′′
i (s) =

E[X2
i esXi ]

E[esXi ]
−
(
E[XiesXi ]

E[esXi ]

)2

= Ṽ(Xi) where Ṽ(Z) = Ẽ[Z2]− Ẽ2[Z] and Ẽ[Z] = E[ZesXi ]
E[esXi ]

.

Setting Ui such that Xi = (bi −ai)Ui +ai, we have Ui ∈ [0,1], and therefore:

Ṽ(Xi) = (bi −ai)
2Ṽ(Ui) = (bi −ai)

2(Ẽ[U2
i ]− Ẽ2[Ui])

⩽ (bi −ai)
2(Ẽ[Ui]− Ẽ2[Ui]) = (bi −ai)

2 Ẽ[Ui]︸ ︷︷ ︸
∈[0,1]

(1− Ẽ[Ui])⩽ (bi −ai)
2/4 .

where we have used p(1− p)⩽ 1/4 for all p ∈ [0,1]. This shows that for all s > 0,

φ
′′
i (s)⩽

(
bi −ai

2

)2
.

Combining with φi(0) = φ′i(0) = 0, we obtain from a Taylor expansion that for all s > 0, φi(s) ⩽ s2(bi − ai)
2/8.

Recalling that E
[
esXi
]
= eφi(s) and plugging this inequality into (3.10) yields for all s, t > 0,

P

(
n

∑
i=1

Xi > t

)
⩽ e−stes2

∑
n
i=1

(bi−ai)
2

8 .

The proof of (3.9) then follows by taking:

s =
t

∑
n
i=1(bi −ai)2/4

,

and straightforward algebra. ■
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Corollary 3.7. Let (Xi)1⩽i⩽n be iid random variables, such that

a⩽ X1 ⩽ b a.s.

Then, for any ε > 0,

P

(∣∣∣∣∣1n n

∑
i=1

Xi −E [X1]

∣∣∣∣∣> ε

)
⩽ 2exp

(
−2nε2

(b−a)2

)
.

PROOF. Define D =
{∣∣ 1

n ∑
n
i=1 Xi −E [X1]

∣∣> ε
}
=
{∣∣∑n

i=1 (Xi −E [Xi])
∣∣> nε

}
. Now, applying the Hoeffding

inequality (3.8) with t = nε, ai = a and bi = b, we then obtain

P(D)⩽ 2exp
(

−2(nε)2

n(b−a)2

)
⩽ 2exp

(
−2nε2

(b−a)2

)
,

and the proof is completed. ■

3.2 Asymptotic confidence regions
So far, the sample size n being fixed, we defined the level of confidence regions constructed from the ob-
servations Y1, . . . ,Yn. Now, we will relax the definition of the level by introducing the notion of “asymptotic
level”. In this context, we still consider confidence regions as functions of Y1, . . . ,Yn, but the constraint on
the level will not be met for a fixed n, but rather asymptotically as n goes to infinity.

To be specific, let’s consider a function of interest g(θ) ∈ Rp. To avoid confusion, we will slightly
redefine notation. Assume that we are given a sequence of observations Y1,Y2, . . ., where each observation
Yi belongs to a measurable set (Y1,F1). Then, Y1:n = (Y1, . . . ,Yn) ∈ Yn

1 represents the first n data points.
In order to approximate g(θ), we wish to provide a sequence of regions Cn(Y1:n)⊂Rp whose relevance

is evaluated asymptotically. This allows us to define asymptotic confidence regions (when the dimension is
p > 1 ) or asymptotic confidence intervals (when the dimension is p = 1).

3.2.1 Asymptotic level

Definition 3.8 (Asymptotic confidence regions). Let (YN
1 ,F

⊗N
1 ,Q ) be a parametric statistical model

i.e. Q = (Pθ)θ∈Θ.
A sequence of confidence regions {Cn : n ∈ N} for g(θ) is with asymptotic level 1−α if and only if

liminf
n→∞

Pθ(g(θ) ∈ Cn(Y1:n))⩾ 1−α, ∀θ ∈ Θ ,

or equivalently
limsup

n→∞

Pθ(g(θ) /∈ Cn(Y1:n))⩽ α, ∀θ ∈ Θ .

As in the previous section, we implicitly assume that for any n ∈ N and any θ ∈ Θ,

{y1:n ∈ Yn
1 : g(θ) ∈ Cn(y1:n)} ∈ F ⊗n

1 ,

so that every probability in Definition 3.8 is well-defined.
Similarly to the non-asymptotic case, constructing confidence regions with a given asymptotic level

will crucially depends on the existence of asymptotically pivotal functions as defined below.
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Definition 3.9 (Asymptotically pivotal functions). Let (YN
1 ,F

⊗N
1 ,Q ) be a parametric statistical model

i.e. Q = (Pθ)θ∈Θ.
A sequence of measurable functions Gn : Yn

1 × θ → Rp is asymptotically pivotal if and only if for any
measurable set A,

limn→∞Pθ(Gn(Y1:n,θ) ∈ A) exists and does not depend on θ.

We now reconsider the poll example and provide several confidence intervals with a given asymptotic
level, these confidence intervals are being constructed from asymptotically pivotal functions.

Example 3.10 (A poll example, revisited). In this example, (Yi) are iid random variables where Yi stands
for the intention of voting for a candidate X for the individual i. In that case, Yi ∼ B(θ) under Pθ and we
observe Y1:n = (Y1, . . . ,Yn) where n ∈N. Here, we are searching for a sequence of confidence intervals In,α
for θ of asymptotic level 1−α i.e. such that

limsup
n→∞

Pθ(θ /∈ In,α)⩽ α .

First method (Wilson’s interval)

Write θ̂n = ∑
n
i=1 Yi/n and note that Eθ[Y1] = θ and Varθ(Y1) = θ(1− θ). Then, the central limit theorem

applies and we have

Zn :=
√

n(θ̂n −θ)√
θ(1−θ)

LPθ⇝ Z where Z ∼ N (0,1) .

In other words, Zn, under Pθ, converges in law to Z which has the distribution N (0,1). Since this distribution
does not depend on θ, we deduce that Zn is asymptotically pivotal.

Now, for any α > 0, pick zα s.t. P(Z /∈ [−zα,zα]) = α. Then,

lim
n→∞

Pθ (Zn /∈ [−zα,zα]) = Pθ (Z /∈ [−zα,zα]) = α .

But, by straightforward algebra, we obtain {Zn /∈ [−zα,zα]}= {θ /∈ In,α} if and only if In,α writes

In,α =

 θ̂n +
z2
α

2n ± zα

√
θ̂n(1−θ̂n)

n + z2
α

4n2

1+ z2
α/n

 . (3.11)

Finally,
lim
n→∞

Pθ (θ /∈ In,α) = lim
n→∞

Pθ (Zn /∈ [−zα,zα]) = α ,

and we conclude that {In,α : n ∈ N} is a sequence of confidence intervals for θ with asymptotic level 1−α.

Second method (Wald’s interval)

Recall that θ̂n = ∑
n
i=1 Yi/n. Slutsky’s theorem combined with the central limit theorem yields

Z̃n :=
√

n(θ̂n −θ)√
θ̂n(1− θ̂n)

LPθ⇝ Z where Z ∼ N (0,1) . (3.12)

The detailed arguments for proving this convergence in law will be explained in Section 3.2.2. For now, let’s
assume that we have (3.12) and we will see how to deduce a confidence interval with an asymptotic level of
1−α. Since the distribution of Z does not depend on θ, we deduce that Z̃n is asymptotically pivotal.

Now, for any α > 0, pick zα s.t. P(Z /∈ [−zα,zα]) = α. Then,

lim
n→∞

Pθ

(
Z̃n /∈ [−zα,zα]

)
= P(Z /∈ [−zα,zα]) = α .
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Moreover,
{

Z̃n /∈ [−zα,zα]
}
=
{

θ /∈ Ĩn,α
}

if and only if Ĩn,α writes

Ĩn,α =

θ̂n ± zα

√
θ̂n(1− θ̂n)

n

 . (3.13)

Finally,
lim
n→∞

Pθ

(
θ /∈ Ĩn,α

)
= lim

n→∞
Pθ

(
Z̃n /∈ [−zα,zα]

)
= α .

Hence,
{

Ĩn,α : n ∈ N
}

is a sequence of confidence intervals for θ with asymptotic level 1 − α. When
comparing Ĩn,α with In,α, we note that

length(In,α)≈ length(Ĩn,α) = 2zα

√
θ(1−θ)

n
+o(1/

√
n) .

To summarize, In,α and Ĩn,α have the same asymptotic level of 1−α, and their lengths are equivalent up
to the first order in 1/

√
n. Therefore, their properties are quite similar, but since the bounds in Ĩn,α are

simpler, it is more commonly used in practice. Note that the expression of Ĩn,α is straightforward because
the dependence of the asymptotic pivotal function Z̃n on θ is very simple. This simplicity is due to Slutsky’s
theorem, which allows us to replace θ(1−θ) in the denominator of Zn with its consistent estimator θ̂n(1−
θ̂n). Because of its significance in the design of confidence regions, we will now provide a section with some
useful tools for obtaining asymptotically pivotal functions.

3.2.2 Tools: the Slutsky theorem and the δ-method
We provide more details for proving (3.12). We have already seen the Slutsky theorem in Theorem 1.9 but
we recall it here for ease of reading:

Theorem 3.11 (The Slutsky theorem). Assume that Xn
P−prob−→ c where c is a constant and if Zn

LP⇝ Z,

then (Xn,Zn)
LP⇝ (c,Z), that is, for any real-valued continuous function f , we have f (Xn,Zn)

LP⇝ f (c,Z).

In the poll example, write

Z̃n =

√
n(θ̂n −θ)√
θ̂n(1− θ̂n)

=

√
θ(1−θ)√

θ̂n(1− θ̂n)︸ ︷︷ ︸
Xn

×
√

n(θ̂n −θ)√
θ(1−θ)︸ ︷︷ ︸

Zn

.

By the central limit theorem, Zn
LPθ⇝ Z where Z ∼ N (0,1). Recall that strong law of large numbers

yields

θ̂n =
n

∑
i=1

Yi/n → Eθ[Y1] = θ , Pθ −a.s.

Hence, by Lemma 1.7, θ̂n
Pθ−prob−→ θ and consequently, applying Theorem 1.8, Xn

Pθ−prob−→ 1. Since in addi-
tion, the function (x,z) 7→ f (x,z) = xz is continuous, we can apply Slutsky’s theorem and deduce that

Z̃n = f (Xn,Zn)
LPθ⇝ f (1,Z) = Z ,

which shows (3.12). Another tool (which is actually a byproduct of the Slutsky theorem) for finding
asymptotically pivotal functions is the δ-method, and we will now state and prove it.
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Lemma 3.12 (The δ-method). Assume that there exist a sequence of random variables
{

θ̂n : n ∈ N
}

,
a random variable U , a constant θ and a sequence of positive real numbers {rn : n ∈ N} such that

lim
n

rn = ∞ , and rn(θ̂n −θ)
LP⇝U .

Then, for any measurable function g : R→ R, differentiable at θ, we have

rn(g(θ̂n)−g(θ))
LP⇝ g′(θ)U .

PROOF. Define

G(x) =

{
g(x)−g(θ)

x−θ
if x ̸= θ

g′(θ) otherwise

Write
rn(g(θ̂n)−g(θ)) = G(θ̂n)× rn

(
θ̂n −θ

)︸ ︷︷ ︸
Un

.

By assumption, Un
LP⇝U . Moreover, θ̂n

P−prob−→ θ (see Example 1.10). Moreover, g being differentiable at θ, we

deduce that G is continuous and hence, by Theorem 1.8, G(θ̂n)
P−prob−→ G(θ) = g′(θ). Then, applying the Slutsky

lemma to the continuous function f (x,u) = xu, we get

rn(g(θ̂n)−g(θ)) = G(θ̂n)Un = f (G(θ̂n),Un)
LP⇝ f (g′(θ),U) = g′(θ)U ,

which concludes the proof. ■

▶Q-3.3. You said that the δ-method can be used for getting asymptotically pivotal functions. Can you tell me more?
Can you explain the δ-method approach for the poll example?

Ok, let us do that. Recalling that θ̂n = ∑
n
i=1 Yi/n, the central limit theorem yields

√
n
(
θ̂n −θ

) LPθ⇝ U , where U ∼ N (0,θ(1−θ)) .

Applying the δ-method, we obtain, for any measurable function g that is differentiable at θ,

Zn =
√

n(g(θ̂n)−g(θ))
LPθ⇝ g′(θ)U ∼ N

(
0,σ2(θ)

)
, where σ

2(θ) = θ(1−θ)g′2(θ) . (3.14)

Now, choose g such that σ2(θ) = 1. Then, for this choice of g,

Zn
LPθ⇝ N (0,1) .

Hence, {Zn : n ∈ N} is asymptotically pivotal, from which we can easily deduce a confidence interval for
θ. Since the choice of g allows to obtain a variance σ2 = 1, we call it a variance-stabilizing method.

▶Q-3.4. Easily ? Can you be more explicit?

Your wishes are my commands. By definition of σ2, the condition σ2(θ) = 1 means

g′(θ) =
1√

θ(1−θ)
.

You can check that the function g : (0,1)→ R defined by g(θ) = 2arcsin(
√

θ) satisfies the above identity.
With this choice of g, (3.14) becomes

Zn =
√

n
(

2arcsin
(
(θ̂ML

n )1/2)−2arcsin
(
θ

1/2)) LPθ⇝ N (0,1) ,

And since Zn is asymptotically pivotal, you can obtain a confidence interval for θ using similar techniques
as in Example 3.10. I’ll leave the rest to you to ensure that you have mastered the course.

▶Q-3.5. Oh... thanks so much. I will do that immediately. Statistics is so exciting !!!
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3.3 After studying this chapter...

a) I know the definition of the level of a confidence region and I can distinguish between
level and asymptotic level.

b) I understand the definition of pivotal functions or asymptotically pivotal functions and
how they are related to confidence regions.

c) I can construct confidence regions with a given level, using the Bienaymé-Tchebychev
inequality or the Hoeffding inequality.

d) I can use Slutsky’s theorem or the δ-method to obtain asymptotically pivotal functions.

3.4 Highlights

Abraham Wald (source: Wikipedia)

Abraham Wald (October 1902 – 13 December 1950) was a Jewish Hungarian
mathematician who contributed to decision theory, geometry and economet-
rics, and founded the field of sequential analysis. One of his well-known
statistical works was written during World War II on how to minimize the
damage to bomber aircraft and took into account the survivorship bias in his
calculations. He spent his research career at Columbia University.

Wald was born on 31 October 1902 in Kolozsvár, Transylvania, in the
Kingdom of Hungary. A religious Jew, he did not attend school on Saturdays,
as was then required by the Hungarian school system, and so he was home-
schooled by his parents until college. His parents were quite knowledgeable
and competent as teachers.

In 1928, he graduated in mathematics from the King Ferdinand I University.In 1927, he had entered
graduate school at the University of Vienna, from which he graduated in 1931 with a Ph.D. in mathematics.
His advisor there was Karl Menger.

Despite Wald’s brilliance, he could not obtain a university position because of Austrian discrimination
against Jews. However, Oskar Morgenstern created a position for Wald in economics. When Nazi Germany
annexed Austria in 1938, the discrimination against Jews intensified. In particular, Wald and his family
were persecuted as Jews. Wald immigrated to the United States at the invitation of the Cowles Commission
for Research in Economics, to work on econometrics research.

The damaged portions of returning planes show locations where they can sustain damage and still return
home; those hit in other places presumably do not survive. During World War II, Wald was a member of
the Statistical Research Group (SRG) at Columbia University, where he applied his statistical skills to
various wartime problems. They included methods of sequential analysis and sampling inspection. One
of the problems that the SRG worked on was to examine the distribution of damage to aircraft returning
after flying missions to provide advice on how to minimize bomber losses to enemy fire. Wald derived a
useful means of estimating the damage distribution for all aircraft that flew from the data on the damage
distribution of all aircraft that returned. His work is considered seminal in the discipline of operational
research, which was then fledgling.

Wald and his wife died in 1950 when the Air India plane (VT-CFK, a DC-3 aircraft) in which they were
traveling crashed near the Rangaswamy Pillar in the northern part of the Nilgiri Mountains, in southern
India, on an extensive lecture tour at the invitation of the Indian government. He had visited the Indian
Statistical Institute at Calcutta and was to attend the Indian Science Congress at Bangalore in January.
Their two children were back at home in the United States.

After his death, Wald was criticized by Sir Ronald A. Fisher FRS. Fisher attacked Wald for being a
mathematician without scientific experience who had written an incompetent book on statistics. Fisher
particularly criticized Wald’s work on the design of experiments and alleged ignorance of the basic ideas
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of the subject, as set out by Fisher and Frank Yates. Wald’s work was defended by Jerzy Neyman the next
year. Neyman explained Wald’s work, particularly with respect to the design of experiments. Lucien Le
Cam credits him in his own book, Asymptotic Methods in Statistical Decision Theory: “The ideas and
techniques used reflect first and foremost the influence of Abraham Wald’s writings.”

He was the father of the noted American physicist Robert Wald.
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Chapter 4
Statistical Tests

4.1 Terminology and principles of statistical tests
In what follows,

• Y = (Y1, . . . ,Yn) are the observations.

• Y ∼ P⋆ where P⋆ belongs to a family of possible distributions Q .

Definition 4.1 (Statistical hypothesis test).

• We split Q into two disjoint subsets Q0 and Q1.

• Based on Y, we decide between two hypothesis:

H0 : P⋆ ∈ Q0 versus H1 : P⋆ ∈ Q1

where H0 is called the null hypothesis and H1 the alternative hypothesis.

Definition 4.2 (Simple hypothesis). An hypothesis H0 (resp. H1) is called simple if and only if

Q0 (resp. Q1) contains exactly one element.

When the data Y= (Y1, . . . ,Yn) is observed, the statistician chooses between the two hypothesis accord-
ing to T (Y) ∈ {0,1} where

• 0 is the decision of accepting H0

• 1 is the decision of rejecting H0

Note in practice, when T (Y) = 1, we often say that we reject H0 instead of saying that we accept H1. This
is because we often choose for H0 the hypothesis which seems the most commonly accepted by now or the
most simple hypothesis.

Remark 4.3. A statistical test is therefore defined by the function T which is called the statistic of the
test. Note that T (Y) = 1W (Y) for some region W , which is called the rejection region or critical region.
Thus,

Y ∈W ⇐⇒ T (Y) = 1 .

57
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Definition 4.4 (Type-I and Type-II errors). Two types of errors are associated to a statistical test T (Y):

(i) rejecting H0 when H0 is true (Type-I error).

(ii) accepting H0 when H0 is false (Type-II error).

Remark 4.5. These two errors are respectively associated to the probabilities:

Type-I error: P(T (Y) = 1) with P ∈ Q0 ,

Type-II error: P(T (Y) = 0) with P ∈ Q1 .

Definition 4.6.

(i) The power function of T (Y) is defined by

P 7→ βT (P) = P(T (Y) = 1), P ∈ Q .

(ii) The size of T is by definition supP∈Q 0
βT (P).

(iii) A test T is of (significance) level α if its size is less than α.

▶Q- 4.1. So, if I understand correctly, the size and level are linked with Type I-errors. You never consider Type
II-errors?

Thanks for this excellent question, as it smoothly transitions to the notion of uniformly most powerful
tests where Type-I and Type-II errors come into play.

Definition 4.7 (UMP). A test T∗ of size α is a uniformly most powerful (UMP) test if and only if

If Type-I error (T ) ⩽ Type-I error (T∗) Then Type-II error (T ) ⩾ Type-II error (T∗),

or equivalently, for any test T of level α,

βT∗(P)⩾ βT (P) , ∀P ∈ Q1 .

▶Q-4.2. There always exist UMP tests?

I don’t know, but if you find any, I advise you to use it because you can be assured that there is no other
test that can achieve both better Type I and Type II errors.

4.2 The Neyman-Pearson lemma
We now consider a dominated parametric statistical model

• Q = {Pθ0 ,Pθ1} where Pθi(dy) = ℓθi(y)µ(dy) and ℓθi(·)> 0.

Consider the following hypothesis

H0 : θ = θ0 versus H1 : θ = θ1
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Lemma 4.8 (The Neyman-Pearson lemma). Assume that for any λ > 0, Pθ0

(
ℓθ1 (Y)

ℓθ0 (Y)
= λ

)
= 0.

Then, for any α ∈ [0,1], there exists cα such that the test

T∗(Y) =

1 if
ℓθ1 (Y)

ℓθ0 (Y)
> cα

0 otherwise

is a UMP test of size α.

PROOF. Under the assumptions of the Theorem, the function λ 7→ Pθ0 [ℓθ1(Y)> λℓθ0(Y)] is continuous, is equal
to 1 if λ = 0 and converges to 0 as λ goes to infinity. This implies that there exists a constant c such that

Pθ0 [ℓθ1(Y)> cℓθ0(Y)] = α .

Consider now T∗(Y) = 1{ℓθ1 (Y)>cℓθ0 (Y)}. The previous equation shows that it is a test of size α. Consider now a
test T of level α, it remains to show that βT∗(θ1)⩾ βT (θ1). It can be easily checked that

∀y, [T∗(y)−T (y)](ℓθ1(y)− cℓθ0(y))⩾ 0 ,

which gives, by integrating with respect to µ,

Pθ1(T∗(Y) = 1)−Pθ1(T (Y) = 1)− c
[
Pθ0(T∗(Y) = 1)−Pθ0(T (Y) = 1)

]
⩾ 0 .

This is equivalent to:
βT∗(θ1)−βT (θ1)⩾ c(α−βT (θ0))⩾ 0 .

And the proof is concluded. ■

▶Q-4.3. Great! So it’s an example where you can be sure to find a UMP test.

You are right, but you must pay attention to the assumptions. The null and alternative hypotheses must
be simple. Anyway, this test is based on a critical region which can be expressed in terms of the likelihood
ratio ℓθ1(Y)/ℓθ0(Y). That’s why it is sometimes called a likelihood ratio test, which is a type of test often
used in practice.

Sufficient statistics

Lemma 4.9. Assume that there is a sufficient statistic S for θ, i.e., the likelihood writes

ℓθ(y) = ψθ(S(y))φ(y) .

Then the critical region only depends on S.

PROOF. According to the Neyman-Pearson lemma,

T∗(Y) =

1 if
ℓθ1 (Y)

ℓθ0 (Y)
=

ψθ1 (S(Y))φ(Y)
ψθ0 (S(Y))φ(Y)

=
ψθ1 (S(Y))
ψθ0 (S(Y))

> cα

0 otherwise

And the critical region only depends on S which concludes the proof.
■
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4.3 Some classical parametric tests
We now describe some usual parametric tests of size α. Some of these statistical tests are UMP but most
of the time, the only requirement concerns the Type-I error: the test is of size α.

(i) For a single set of normal observations:

• testing the mean.

• testing the variance.

(ii) For two sets of normal observations:

• testing if their variance coincide.

• if so, testing if their mean coincide.

4.3.1 Testing the mean of the distribution N (m,σ2)

Mean of the distribution N (m,σ2) when σ2 is known

Consider (Yi)1⩽i⩽n iid and Yi ∼ N (m,σ2). Write Ȳn =
∑

n
i=1 Yi
n .

H0 : m = m0 versus H1 : m = m1 (with m1 > m0) .

Let

• S = Ȳn−m0√
σ2
n

,

• cα be such that P(Z > cα) = α with Z ∼ N (0,1).

Lemma 4.10. The test defined by the critical region:{
S⩽ cα → H0 is accepted

S > cα → H0 is rejected

is an UMP test of size α. Moreover, under H0, S ∼ N (0,1).

This is called a one-sided test (or one-tailed test), since the decision depends on whether the test statistic
is larger or less than a given threshold. The proof follows from the Neyman-Pearson lemma. Note that
under H0, S is distributed according to N (0,1). Hence, PH0(S > cα) = P(Z > cα) = α. Conversely, under
H1, S is distributed according to N (m1 −m0,1) with m1 > m0 by assumption. In Fig. 4.1, we summarize
how the statistical test works with a graphic interpretation of Type-I and Type-II errors.

▶Q-4.4. If I understand correctly, the result of the test is very linked to the size α that you choose a priori. Is there any
indicator from the observations that allows you to say that the hypothesis H0 is more likely to be accepted (or rejected)
without choosing beforehand the size of the test?

The p-value, denoted by pval in this course, may answer to your question. It allows to quantify the
statistical significance of the observed statistic under the null hypothesis. Mathematically speaking, for
this one-sided test, it is defined by: pval = F(S) where F(t) = PH0(S > t). It is a random variable between
0 and 1 which satisfies: {α ⩽ pval} ⇔ {H0 accepted} ⇔ {S ⩽ cα} which can be seen in Fig. 4.2 and
Fig. 4.3. Usually, if the p-value falls below 0.05, the null hypothesis is rejected.
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f g

cαH0 is accepted H0 is rejected

(a)

Type-I error (H0 is true)

f g

cαH0 is accepted H0 is rejected

(b)

Type-II error (H0 is false)

Figure 4.1: The test statistic S takes values on the x-axis. If S ⩽ cα, H0 is accepted, and if S > cα, H0 is rejected.
Let f be the density of N (0,1) and g be the density of N (m2 −m1,1). Then, under H0 and H1 respectively, the test
statistic S has densities f and g. In the left panel, the Type-I error corresponds to the area of the hashed region and is
equal to α. In the right panel, the Type-II error corresponds to the area of the dotted region.

f g

S

Graphical interpretation of the p-value for one-sided tests

Figure 4.2: The p-value is defined as the area of the hashed region. Even though it corresponds to the situation of Fig.
4.1-(a), where cα is replaced by S, you must pay attention that S is a random variable. In this example, we can see that
the hashed area here is larger than the hashed area in Fig. 4.1-(a), showing that the pval ⩾ α, whereas S⩽ cα.

10

H0 rejected

pval

Possible values for α

H0 accepted

Figure 4.3: The size α of the test may take values between 0 and 1 on the x-axis.

Mean of the distribution N (m,σ2) when σ2 is unknown

Consider (Yi) iid and Yi ∼ N (m,σ2). Write Ȳn =
∑

n
i=1 Yi
n .

H0 : m = m0 versus H1 : m ̸= m0



62 CHAPTER 4. STATISTICAL TESTS

Let

• T = Ȳn−m0√
σ̃2
n

where σ̃2 = 1
n−1 ∑

n
i=1(Yi − Ȳn)

2,

• cα be such that P(|Z| > cα) = α where Z ∼ T (n− 1) i.e. Z follows the t-distribution with n− 1
degrees of freedom.

Lemma 4.11. The test defined by the critical region:{
|T |⩽ cα → H0 is accepted

|T |> cα → H0 is rejected

is of level α. Moreover, under H0, T ∼ T (n−1).

We call it a two-sided test (or two-tailed test) because the rejection region corresponds to T > cα or
T <−cα. The p-value is then defined in Fig. 4.4.

f

T−T

Graphical interpretation of the p-value for two-sided tests

Figure 4.4: Let f be the density of T (n−1). Under H0, the test statistic T has density f . The p-value of this two-sided
test is then defined by the area of the hashed region. It corresponds to the area associated to the critical region where
the threshold cα is replaced by the observed statistic T . The dotted lines represent the possible densities for T under
H1.

4.3.2 Testing the variance of the distribution N (m,σ2)

Variance of the distribution N (m,σ2) when m is known

Consider (Yi) iid and Yi ∼ N (m,σ2).

H0 : σ
2 = σ

2
0 versus H1 : σ

2 = σ
2
1 (with σ2

1 > σ2
0) .

Let

• D = ∑
n
i=1

(Yi−m)2

σ2
0

.



4.3. SOME CLASSICAL PARAMETRIC TESTS 63

• cα be such that P(Z > cα) = α where Z ∼ χ2(n) i.e. Z follows the χ2 distribution with n degrees of
freedom.

Lemma 4.12. The test defined by the critical region{
D⩽ cα → H0 is accepted ,

D > cα → H0 is rejected .

is of level α. Moreover, under H0, D ∼ χ2(n).

Variance of the distribution N (m,σ2) when m is unknown

Consider (Yi) iid and Yi ∼ N (m,σ2).

H0 : σ
2 = σ

2
0 versus H1 : σ

2 = σ
2
1 (with σ2

1 > σ2
0).

Let

• D = ∑
n
i=1

(Yi−Ȳn)
2

σ2
0

.

• cα be such that P(Z > cα) = α with Z ∼ χ2(n−1).

Lemma 4.13. The test defined by the critical region{
D⩽ cα → H0 is accepted ,

D > cα → H0 is rejected .

is of level α. Moreover, under H0, D ∼ χ2(n−1).

4.3.3 Comparing two normal distributions N (m0,σ
2
0) and N (m1,σ

2
1)

Assume that the observations are divided into two independent subsets (Y0,1, . . . ,Y0,n0) and (Y1,1, . . . ,Y1,n1)
and assume that {

(Y0,i)1⩽i⩽n0 are iid and Y0,i ∼ N (m0,σ
2
0) ,

(Y1,i)1⩽i⩽n1 are iid and Y1,i ∼ N (m1,σ
2
1) .

Comparing two normal distributions. To decide whether these two normal distributions are the same,
we usually use a two-level test:

• We start by using an hypothesis test for deciding whether σ2
0 and σ2

1 are equal or not.

• Assume that the first test concludes that σ2
0 = σ2

1. Then we use a second hypothesis test to decide
whether m0 = m1 or not.
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Testing the equality of the variance

H0 : σ
2
0 = σ

2
1 versus H1 : σ

2
0 ̸= σ

2
1

Write

Ȳ0,n0 =
n0

∑
i=1

Y0,i/n0 , Ȳ1,n1 =
n1

∑
i=1

Y1,i/n1 .

• Define R =
∑

n0
i=1(Y0,i−Ȳ0,n0 )

2/(n0−1)

∑
n1
i=1(Y1,i−Ȳ1,n1 )

2/(n1−1)
.

• Letting Z ∼ F(n0 −1,n1 −1), define cα and dα with

P(Z ⩽ cα) = α/2, P(Z ⩾ dα) = α/2 .

Lemma 4.14. The test defined by the critical region{
R ∈ [cα,dα] → H0 is accepted ,

R /∈ [cα,dα] → H0 is rejected .

is of level α. Moreover, under H0, R ∼ F(n0 −1,n1 −1).

Testing the equality of the mean when the variances are equal

H0 : m0 = m1 versus H1 : m0 ̸= m1

Write

• S =
Ȳ0,n0−Ȳ1,n1√(

1
n0

+ 1
n1

)
1

n0+n1−2 (∑
n0
i=1(Y0,i−Ȳ0,n0 )

2+∑
n1
i=1(Y1,i−Ȳ1,n1 )

2)

• cα is defined by P(|Z|> cα) = α where Z ∼ T (n0 +n1 −2).

Lemma 4.15. The test defined by the critical region{
|S|⩽ cα → H0 is accepted ,

|S|> cα → H0 is rejected .

is of level α. Moreover, under H0, S ∼ T (n0 +n1 −2).

4.4 After studying this chapter...

a) I understand Statistical Hypothesis Testing,

b) I can distinguish Type-I and Type-II errors,

c) I know the definitions of the size, level, power of the test, UMP tests,

d) From the Neyman-Pearson Theorem, I can understand the likelihood ratio test.

e) For normal samples, I can choose between all the different classical hypothesis tests.
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4.5 Highlights

4.5.1 Jersy Neyman (source: Wikipedia)
Jerzy Neyman (April 16, 1894 – August 5, 1981; born Jerzy Spława-Neyman)
was a Polish mathematician and statistician who spent the first part of his
professional career at various institutions in Warsaw, Poland and then at Uni-
versity College London, and the second part at the University of California,
Berkeley. Neyman first introduced the modern concept of a confidence in-
terval into statistical hypothesis testing and co-revised Ronald Fisher’s null
hypothesis testing (in collaboration with Egon Pearson).

He was born into a Polish family in Bendery, in the Bessarabia Gover-
norate of the Russian Empire, the fourth of four children of Czesław Spława-
Neyman and Kazimiera Lutosławska. His family was Roman Catholic, and
Neyman served as an altar boy during his early childhood. Later, Neyman
would become an agnostic. Neyman’s family descended from a long line of
Polish nobles and military heroes. He graduated from the Kamieniec Podol-
ski gubernial gymnasium for boys in 1909 under the name Yuri Cheslavovich
Neyman. He began studies at Kharkiv University in 1912, where he was
taught by Ukrainian probabilist Sergei Natanovich Bernstein. After he read ’Lessons on the integration
and the research of the primitive functions’ by Henri Lebesgue, he was fascinated with measure and inte-
gration.

In 1921, he returned to Poland in a program of repatriation of POWs after the Polish-Soviet War. He
earned his Doctor of Philosophy degree at University of Warsaw in 1924 for a dissertation titled “On the
Applications of the Theory of Probability to Agricultural Experiments”. He was examined by Wacław
Sierpiński and Stefan Mazurkiewicz, among others. He spent a couple of years in London and Paris on a
fellowship to study statistics with Karl Pearson and Émile Borel. After his return to Poland, he established
the Biometric Laboratory at the Nencki Institute of Experimental Biology in Warsaw.

He published many books dealing with experiments and statistics, and devised the way which the FDA
tests medicines today.

Neyman proposed and studied randomized experiments in 1923. Furthermore, his paper “On the Two
Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of
Purposive Selection”, given at the Royal Statistical Society on 19 June 1934, was the groundbreaking event
leading to modern scientific sampling. He introduced the confidence interval in his paper in 1937. Another
noted contribution is the Neyman–Pearson lemma, the basis of hypothesis testing.

He was an Invited Speaker of the ICM in 1928 in Bologna and a Plenary Speaker of the ICM in 1954
in Amsterdam.

In 1938, he moved to Berkeley, where he worked for the rest of his life. Thirty-nine students received
their Ph.Ds under his advisorship. In 1966, he was awarded the Guy Medal of the Royal Statistical Society
and three years later the U.S. National Medal of Science. He died in Oakland, California in 1981.
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continous mapping theorem, 16
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in law or in distribution, 14
almost surely, 15
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Cramér-Rao bound, 33
critical region, 57

distribution
Bernoulli, 13
binomial, 13
Chi-square, 14
exponential, 13

Fisher, 14
gamma, 13
geometric, 13
Normal, 13
Poisson, 13
Student, 14

dominating measure, 26

efficient, 33
estimator, 31
exponential family, 28
exponential model, 27

factorization theorem, 27
Fisher information matrix, 30

i.i.d. model, 30

Gaussian vector, 19

Hoeffding’s inequality, 49
hypothesis test, 57

identifiability, 26

Kullback-Leibler divergence, 37

likelihood, 28
log-likelihood, 28

maximum likelihood estimator, 36
Mean-squared error, 32
measure, 8

of probability, 8
Method of Moments, 34
MLE, 36
MOM, 34
MSE, 32
MVUB (Minimum Variance UnBiased estimator),

32

natural parameter, 28
Neyman-Pearson’s lemma, 59
null hypothesis, 57
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pivot, 48
power function, 58

Rao Blackwell’s theorem, 32

score function, 29
sigma-field

definition, 7
generated by a family of sets, 8

simple hypothesis, 57
Slutsky’s theorem, 16, 52
statistic, 27
statistical model, 25

dominated, 26
nonparametric, 26
parametric, 26
semiparametric, 26

Strong law of large numbers, 17
sufficient statistic, 27, 59

type I, type II errors, 58

UMP (Uniformly Most Powerful), 58
unbiased estimator, 31
uniform integrability, 17

variance-stabilizing method, 53

well-specified model, 36
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