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Chapter 1
Atomic Markov chains

Time schedule (Note 1): Session 6

In this chapter, we will examine the properties of Markov kernels that admit atoms (to be formally defined
later). Specifically, we will establish conditions under which the following holds:

lim
n→∞

∥Pn(x, ·)−π∥TV = 0

Additionally, we will briefly discuss how the presence of atoms simplifies the treatment of other properties,
such as the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT). The chapter will provide
an overview of the approaches used to achieve these types of convergence.

We first recall the solidarity lemma, which will be used several times throughout the chapter:

LEMMA 1.1 (▶ The solidarity lemma). Let A,B ∈ X such that infx∈APx(σB < ∞) > 0. Then, for any
probability measure ξ ∈ M1(X),

{NA = ∞} ⊂ {NB = ∞} , Pξ −a.s.

Hence, if for some initial distribution ξ ∈ M1(X), Pξ(NA = ∞) = 1, then we also have Pξ(NB = ∞) = 1.

▶Q-1.1. Sorry, but I don’t remember the notation NA...

It represents the number of visits to the set A. If you’d like, I can provide a brief refresher on the
notation.

▶Q-1.2. It would be so nice of you!!

You’re welcome. Let A∈X . Recall that σ0
A = 1 (by convention) and for n⩾ 1, σn

A = σ
n−1
A +σA ◦θ

σ
n−1
A

.

In words,
{

σn
A : n ⩾ 1

}
are the successive return times to the set A.

Then, NA = ∑
∞
k=0 1A(Xk) = 1A(X0)+∑

∞
n=1 1{σn

A<∞} and we have

U(x,A) = Ex[NA] =
∞

∑
k=0

Pk(x,A) = 1A(x)+
∞

∑
n=1

Px(σ
n
A < ∞)

It consists of several equivalent expressions. However, it is important to keep all of them in mind, as certain
expressions may be more suitable in specific contexts than others.

▶Q-1.3. What is U?

By definition, U = ∑
∞
k=0 Pk, is called the potential kernel. While it is indeed a kernel, note that this

kernel is not finite, since U(x,X) = ∑
∞
k=0 Pk(x,X) = ∞ because P(x,X) = 1. We will not use it frequently

in this course, and in most situations, we will write Ex[NA] (which is more intuitive) instead of the more
abstract expression U(x,A).
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4 CHAPTER 1. ATOMIC MARKOV CHAINS

1.1 Recurrent, transient atoms

In all this chapter, (X,X ) is a measurable space and P is a Markov kernel on X×X .

DEFINITION 1.2 . We say that α ∈X is an atom for P if there exists a probability measure ν ∈M1(X)
such that

P(x, ·) = ν(·) , ∀x ∈ α. (1.1)

▶Q-1.4. Does it happen often?

Usually, no. In most Markov chains on a general space, the condition (1.1) is too stringent and often, it
is replaced by the following. There exist n ∈ N∗, ε > 0, ν ∈ M1(X) such that

Pn(x, ·)⩾ εν(·) , ∀x ∈ α. (1.2)

However, if the latter condition holds, we can show that the initial Markov chain can be extended by
incorporating a carefully chosen additional component, such that the resulting Markov kernel admits an
accessible atom. We then analyze the extended atomic Markov chain and subsequently transfer its prop-
erties to the original chain. This approach is known as the splitting method—but we are getting ahead of
ourselves. For now, we will focus solely on properties of Markov kernels with accessible atoms.

▶Q-1.5. You said accessible atoms? Why accessible?

While any singleton is an atom, in many cases—especially outside discrete state spaces—singletons
are not accessible. Therefore, most of the properties discussed in this chapter rely on the assumption of the
existence of accessible atoms. Now, let us return to the topic of atomic Markov kernels.

In what follows, if for some set α ∈ X , any of Px(A), Ex[Z], P f (x), or Pn(x,B) does not depend
on x ∈ α, we will simply write Pα(A), Eα[Z], P f (α), or Pn(α,B). While this is technically an abuse of
notation, it is often very convenient.

▶Q-1.6. Before you continue, may I ask you another question?

Of course.

▶Q-1.7. When you enter an atom, the next state of the Markov chain is drawn according to some fixed distribution
ν. Does it mean that we forget everything from the past?

You’ve touched on a fundamental property of Markov kernels with atoms. Due to this fixed distribution,
we will see that the excursions between successive visits to an atom are i.i.d. This allows us to leverage
properties of these i.i.d. excursions to derive important results for our Markov chain. To this aim, we need
to clearly understand the behavior of return times to the atom. Let’s delve into that.

LEMMA 1.3 (▶ Maximum principle). For any atom α,

Eα[Nα] = sup
x∈X

Ex[Nα]

PROOF. For any x ∈ X, applying the strong Markov property at the stopping time τα in the second equality below
yields

Ex[Nα] = Ex

[
1{τα<∞}Nα ◦θτα

]
= Px(τα < ∞)Eα[Nα]⩽ Eα[Nα]

which completes the proof. ■

▶Q-1.8. So, you have again some property on the number of visits?
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You seem surprised... That’s everyday life in Markov chain theory. The solidarity lemma and the
maximum principle are often combined to derive elegant results regarding the number of visits.

Now, let us move on to a useful result for verifying the accessibility of a set A when the Markov kernel
P admits accessible atoms.

LEMMA 1.4 . Assume that P admits an accessible atom α.

(i) A is accessible ⇔ Pα(σA < ∞)> 0

(ii) A is not accessible ⇒ Ac is accessible.

PROOF. We start with (i). The implication ⇒ follows since A is accessible. We next show ⇐. Assume Pα(σA <
∞)> 0. For any x ∈ X, the strong Markov property applied to the stopping time σα yields:

Px(σA < ∞)⩾ Px(σα < ∞,σA ◦θσα
< ∞) = Px(σα < ∞)Pα(σA < ∞)

and the rhs is positive as a product of positive numbers. Hence, A is accessible and the proof of (i) is completed.
We now prove (ii) using (i). If A is not accessible, by (i) we deduce that Pα(σA < ∞) = 0 and hence P(α,Ac) =

1 > 0. It implies Pα(σAc < ∞)> 0. Applying again (i) with A replaced by Ac, we get that Ac is accessible. ■

DEFINITION 1.5 . Let α be an atom for P.

(a) α is recurrent if Eα[Nα] = ∞.

(b) α is transient if Eα[Nα]< ∞.

▶Q-1.9. So, an atom is either recurrent or transient?

Yes! Next, I will provide some tools for checking recurrence or transience for atoms. Before that, we
will establish a connection between the expected number of visits starting from α and Pα(σα < ∞). More
specifically, for any n ⩾ 1, by applying the strong Markov property at the stopping time σn−1

α ,

Pα(σ
n
α < ∞) = Pα(σ

n−1
α +σα ◦θ

σ
n−1
α

< ∞) = Pα(σ
n−1
α < ∞, σα ◦θ

σ
n−1
α

< ∞)

= Pα(σ
n−1
α < ∞)Pα(σα < ∞) = Pα(σα < ∞)n (1.3)

Hence, using ∑
∞
k=1 1α(Xk) = ∑

∞
n=1 1{σn

α<∞}, we have the equivalent expressions:

Eα[Nα] =
∞

∑
k=0

Pk(α,α) = 1+
∞

∑
n=1

Pα (σ
n
α < ∞) =

∞

∑
n=0

Pα (σα < ∞)n (1.4)

where we have used (1.3) in the last equality.

▶Q-1.10. The last identity is stunning!

I’m glad to see your enthusiasm. However, I must emphasize that the last identity holds under the
assumption that α is an atom. The following theorem provides several equivalent expressions, any of
which can be used to determine whether a given atom is recurrent or transient.

THEOREM 1.6 . Let α be an atom for P.

(i) α recurrent ⇔ Eα[Nα] = ∞ ⇔ Pα(Nα = ∞) = 1 ⇔ Pα(σα < ∞) = 1.

Moreover, if any of the above conditions holds, for all x ∈ X, Px(σα < ∞) = Px(Nα = ∞).
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(ii) α transient ⇔ Eα[Nα]< ∞ ⇔ Pα(Nα < ∞) = 1 ⇔ Pα(σα < ∞)< 1.

Moreover, if any of the above conditions holds, Eα[Nα] =
1

1−P(σα<∞) .

PROOF. We start with (i). For convenience, we write

Eα[Nα] = ∞︸ ︷︷ ︸
a

, Pα(Nα = ∞) = 1︸ ︷︷ ︸
b

, Pα(σα < ∞) = 1︸ ︷︷ ︸
c

.

Applying (1.4), a⇔ c. Obviously, b⇒ a. We next show c⇒ b. Assuming c, (1.3) shows that Pα(σ
n
α <∞) = 1. And

hence, 1 = Pα (∩n∈N{σn
α < ∞}) = Pα(Nα = ∞), showing b. Finally, a ⇔ b ⇔ c. Now, if any of these conditions

holds, the strong Markov property applied at σα yields

Px(Nα = ∞) = Px(σα < ∞,Nα = ∞) = Px(σα < ∞,Nα ◦θσα
= ∞) = Px(σα < ∞)Pα(Nα = ∞)︸ ︷︷ ︸

1

We now turn to (ii). For convenience, we write

Eα[Nα]< ∞︸ ︷︷ ︸
d

, Pα(Nα < ∞) = 1︸ ︷︷ ︸
e

, Pα(σα < ∞)< 1︸ ︷︷ ︸
f

Obviously, d ⇒ e. Moreover, e ⇒ b̄ ⇒ c̄ = f (where we use the convention: for γ ∈ {a,b,c,d,e, f}, γ̄ means that γ

is not true). We have f ⇒ c̄ ⇒ ā = d. Finally d ⇒ e ⇒ f ⇒ d and all the equivalences are thus established. If any
of these condtions holds, (1.4) shows U(α,α) = 1

1−P(σα<∞)
. ■

▶Q-1.11. Thanks for these great results! I think I’m almost done learning everything about transience and recur-
rence.

Not so fast! We’ve only just defined recurrent and transient atoms. The definition for general sets is
provided below.

DEFINITION 1.7 (▶ Recurrent set, recurrent kernel).

• A set A ∈ X is recurrent if Ex[NA] = ∞ for all x ∈ A.

• The kernel P is recurrent if any accessible set is recurrent.

DEFINITION 1.8 (▶ Uniformly transient set, transient set, transient kernel).

• A set A ∈ X is uniformly transient if supx∈AEx[NA]< ∞.

• A set A is transient if it is a countable union of uniformly transient sets.

• The kernel P is transient if X is transient.

▶Q-1.12. So, a set cannot be recurrent and uniformly transient at the same time?

Of course not. As for Markov kernels P with accessible atoms, they are always either recurrent or
transient as shown below.

THEOREM 1.9 . If P admits an accessible atom α, then
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(i) P is recurrent if and only if α is recurrent.

(ii) P is transient if and only if α is transient.

PROOF. We start with (i). For convenience, we set

P is recurrent︸ ︷︷ ︸
a

, α is recurrent︸ ︷︷ ︸
b

Since α is accessible, the implication a ⇒ b is obvious. Now assume b. Let A be an accessible set. We must show
that A is recurrent, that is, for any x ∈ X, Ex[NA] = ∞. Since α is an accessible atom and A accessible, we deduce
from Lemma 1.4-(i) that Pα(σA < ∞) > 0. This allows to apply the solidarity lemma –Lemma 1.1– and since α

is recurrent, we get 1 = Pα(Nα = ∞) ⩽ Pα(NA = ∞). Now, for any x ∈ X, using the Markov property with the
stopping time σα in the equality below

Ex[NA]⩾ Ex[1{σα<∞}NA]⩾ Ex[1{σα<∞}NA ◦θσα+1] = Px(σα < ∞)Eα[NA ◦θ]

The rhs is infinite since the first term is positive (because α is accessible) and the second term infinite (because
Pα(NA = ∞) = 1).

We now prove (ii). Assume first that α is transient. Define Xm = {x ∈ X : Px(σα < ∞)⩾ 1/m}. Since α is
accessible, we have that X= ∪m∈N∗Xm. We now show that Xm is uniformly transient. For any x ∈ X,

Ex[NXm ]⩽ Ex[Nα]⩽ Eα[Nα]< ∞

where the first inequality is a consequence of the solidarity lemma (Lemma 1.1), the second follows from the
maximum principle (Lemma 1.3), and the last term is finite because α is transient.

Assume now that P is transient. We will show that α is transient by contradiction. Assume indeed that α is
recurrent. Then, by (i), every accessible set is recurrent. But since P is transient, there exists uniformly transient
sets {Xm : m ∈ N} such that X = ∪m∈NXm. Since P(α,X) = 1, we deduce that there exists some m such that
P(α,Xm) > 0. Hence, Lemma 1.4 applies and Xm is accessible and hence recurrent. This contradicts that Xm is
uniformly transient. Hence, by contradiction, α is transient and the proof is completed. ■

1.2 Period
Let us now turn to periodic properties of Markov kernels.

DEFINITION 1.10 . Let P be a Markov kernel with an atom α. We say that d(α) is the period of α if

d(α) = g.c.d{n > 0 : Pn(α,α)> 0}

with the convention that g.c.d( /0) = ∞.
If d(α) = 1, we say that α is aperiodic.

Define Eα = {n > 0 : Pn(α,α)> 0}.

LEMMA 1.11 . Let α be an atom for P. Then, d(α) = g.c.d{n > 0 : Pα(σα = n)> 0}.

PROOF. Define E ′
α = {n > 0 : Pα(σα = n)> 0} and let d′(α) = g.c.d E ′

α. We must show that d(α) = d′(α). For
any n ∈ E ′

α,
0 < Pα(σα = n)⩽ Pn(α,α)

and thus n ∈ Eα. Consequently, d(α) divides any n ∈ E ′
α, and therefore d(α) divides d′(α).
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Next, let n ∈ Eα. Then,

0 < Pn(α,α) = Pα (Xn ∈ α) =
n

∑
k=1

(
∑

0=s0<s1<s2<···<sk=n
Pα

(
Xsℓ ∈ α for ℓ ∈ [0 : k] ,X j /∈ α for j ∈ [0 : n]\{s0, . . . ,sk}

))

=
n

∑
k=1

(
∑

0=s0<s1<s2<···<sk=n

k

∏
ℓ=1

Pα(σα = sℓ− sℓ−1)

)

Hence, there exist integers n1, . . . ,nk ∈N∗ such that Pα(σα = nℓ)> 0 for any ℓ∈ [1 : k] and n = n1+ . . .+nk. Thus,
d′(α) divides n1, . . . ,nk and also divides n. Since n is arbitrary in Eα, we deduce that d′(α) divides d(α). This
completes the proof. ■

Time schedule (Note 2): Session 7

LEMMA 1.12 . There exists m ∈ N such that for any n ⩾ m, nd(α) ∈ Eα.

PROOF. First note that Eα is closed under addition. Specifically, if m,n ∈ Eα, then

Pm+n(α,α)⩾ Pm(α,α)︸ ︷︷ ︸
>0

Pn(α,α)︸ ︷︷ ︸
>0

and hence, m+ n ∈ Eα. Next, define d = g.c.d{n > 0 : Pn(α,α)> 0}. There exist n1, . . . ,ns ∈ Eα such that
d = g.c.d(n1, . . . ,ns). Hence, by Bezout’s theorem, there exist a1, . . . ,as ∈ Z such that

d =
s

∑
i=1

aini =
s

∑
i=1

a+i ni︸ ︷︷ ︸
q

−
s

∑
i=1

a−i ni︸ ︷︷ ︸
p

= q− p

where q, p ∈ Eα because Eα is closed under addition. Since p ∈ Eα, there exists k ∈ N such that p = kd and hence
q = d+ p = (k+1)p. Now, let n ⩾ k2, then there exists r ∈ [0 : (k−1)] and m ⩾ k > r such that n = mk+ r. Hence,

nd = (mk+ r)(q− p) = m kq︸︷︷︸
(k+1)p

+rq− p(mk+ r) = (m− r)p︸ ︷︷ ︸
∈Eα

+ rq︸︷︷︸
∈Eα

and the proof is concluded. ■

PROPOSITION 1.13 . If α,β are two accessible atoms, then d(α) = d(β)

PROOF. We will prove that d(α) divides d(β), which, by symmetry upon interchanging α and β, will complete
the proof. For any n ∈ Eβ, Pn(β,β)> 0. Moreover, since α,β are accessible, there exist ℓ,m such that Pℓ(α,β)> 0
and Pm(β,α)> 0. Therefore, the following inequalities holds:

Pℓ+m(α,α)⩾ Pℓ(α,β)Pm(β,α)> 0

Pℓ+n+m(α,α)⩾ Pℓ(α,β)Pn(β,β)Pm(β,α)> 0

These two inequalities imply that d(α) divides both ℓ+m and ℓ+n+m. Consequently, d(α) must divide n. Since
n is arbitrary in Eβ, we conclude that d(α) divides d(β).

■

DEFINITION 1.14 . We say that P has a period d if the period of any accessible atom is d. In the
particular case where d = 1, we say that the Markov kernel P is aperiodic.
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DEFINITION 1.15 . An atom α is said to be:

(i) positive if Eα[σα]< ∞.

(ii) null-recurrent if it is recurrent and Eα[σα] = ∞.

▶Q-1.13. Don’t we call it a positive-recurrent atom? It seems more consistent with the “null-recurrent” terminology,
right?

Actually, we do use that term sometimes. However, Eα[σα]< ∞ implies Pα(σα < 1) = 1. Therefore, a
positive atom is always recurrent. So, saying “positive-recurrent atom” would be somewhat redundant —
“positive atom” suffices.

PROPOSITION 1.16 . Let P be a Markov kernel with an accessible atom α.

• α is positive ⇔ P admits an invariant probability measure π.

Moreover, in that case, the invariant probability measure is unique and, denoting it by π, we have:

π( f ) =
Eα[∑

σα

k=1 f (Xk)]

Eα[σα]
, f ∈ F+(X)

PROOF.
⇒ Assuming that α is positive, we get Pα(σα < ∞) = 1. Define µ ∈ M+(X) by µ( f ) = Eα

[
∑

σα

k=1 f (Xk)
]

for any
f ∈ F+b (X). Then,

µ(P f ) = Eα

[
σα

∑
k=1

P f (Xk)

]
=

∞

∑
k=1

Eα[P f (Xk)1{k⩽σα}]
(1)
=

∞

∑
k=1

Eα[ f (Xk+1)1{k⩽σα}] = Eα

[
σα

∑
k=1

f (Xk+1)

]

= Eα

[
σα

∑
ℓ=2

f (Xℓ)

]
+Eα [ f (Xσα+1)]︸ ︷︷ ︸

Eα[EXσα
[ f (X1)]]

= Eα

[
σα

∑
ℓ=2

f (Xℓ)

]
+Eα[ f (X1)] = µ( f )

Here,
(1)
= follows from the Markov property, and for the underbraced term, the strong Markov property is

applied at the stopping time σα, which is valid since Pα(σα < ∞) = 1. Finally, µ is an invariant measure
for P, and since µ(1X) = Eα[σα]< ∞, we can define π = µ/µ(1X) ∈ M1(X), which is therefore an invariant
probability measure for P.

⇐ Next, assume that πP = π for some π ∈ M1(X). Since α is accessible and hence π-accessible, Kac’s theorem
–Theorem 1.17– shows that for any f ∈ F+b (X),

π( f ) =
∫

α

π(dx)Ex

[
σα

∑
k=1

f (Xk)

]
= π(α)Eα

[
σα

∑
k=1

f (Xk)

]
Taking f = 1, we obtain 1 = π(α)Eα[σα], which implies Eα[σα] < ∞ (and hence, α is positive), provided
that π(α)> 0. However, this follows directly from the fact that α is accessible. Indeed, α being accessible,
we have for all x ∈ X, 0 < ∑

∞
k=0 Pk(x,α). Integrating with respect to the invariant probability measure π

gives

0 <
∫

π(dx)
∞

∑
k=0

Pk(x,α) =
∞

∑
k=0

πPk(α) =
∞

∑
k=0

π(α)

proving that π(α)> 0.
It remains to show the last part of the theorem. From the inspection of the proof of ⇐, we observe that any invariant
probability distribution π for P satisfies:

π( f ) = π(α)Eα

[
σα

∑
k=1

f (Xk)

]
, 1 = π(α)Eα[σα] , f ∈ F+b (X).
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Hence,

π( f ) =
Eα[∑

σα

k=1 f (Xk)]

Eα[σα]

showing that the invariant probability measure is unique. ■

▶Q-1.14. That’s a great result! I really like it!

Yes, and you’ll see that we will often use both implications, ⇒ and ⇐. In particular, according to the
proposition, if you can prove that there exists an invariant probability measure for your Markov kernel,
then all the accessible atoms are positive, which is amazing. The Kac theorem is also remarkable; it’s more
general than in the context of kernels with accessible atoms. Let’s state and prove the theorem, as it will be
very useful in many contexts.

THEOREM 1.17 (▶ Kac’s theorem). Let P be a Markov chain with an invariant probability measure π.
Assume that C is π-accessible, i.e. Px(σC < ∞) for π-almost all x ∈ X. Then,

π = π
0
C = π

1
C

where

π
0
C( f ) =

∫
C

π(dx)Ex

[
σC−1

∑
k=0

f (Xk)

]

π
1
C( f ) =

∫
C

π(dx)Ex

[
σC

∑
k=1

f (Xk)

]

PROOF. We first show that π = π0
C ⇒ π = π1

C. Assume that π = π0
C. Then, π = πP = π0

CP. But for any f ∈ F+b ,

π
0
C(P f ) =

∫
C

π(dx)Ex

[
σC−1

∑
k=0

P f (Xk)

]
=

∫
C

π(dx)
∞

∑
k=0

Ex

[
P f (Xk)1{k<σC}

]
=

∫
C

π(dx)
∞

∑
k=0

Ex

[
f (Xk+1)1{k<σC}

]
=

∫
C

π(dx)Ex

[
σC

∑
ℓ=1

f (Xℓ)

]
= π

1
C( f )

Hence, π = π0
CP = π1

C and we have proved that π = π0
C ⇒ π = π1

C. To complete the proof it only remains to show
π = π0

C. By the last-exit decomposition and the Markov property, for all f ∈ F+b (X) and all n ⩾ 1,

π( f ) = Eπ[ f (Xn)] = Eπ[ f (Xn)1{σC⩽n}]+Eπ[ f (Xn)1{σC>n}]

=
n

∑
ℓ=1

Eπ

[
f (Xn)1c(Xℓ)

n

∏
k=ℓ+1

1cc(Xk)

]
︸ ︷︷ ︸
Eπ[1C(Xℓ)EXℓ [ f (Xn−ℓ)∏

n−ℓ
k=1 1Cc (Xk)]]

+Eπ[ f (Xn)1{σC>n}]

Noting that π is invariant and setting k = n− ℓ, we finally get

π( f ) =
n−1

∑
k=0

∫
C

π(dx)Ex[ f (Xk)1{σC>k}]+Eπ[ f (Xn)1{σC>n}]

=
∫

C
π(dx)Ex

[
(n−1)∧(σC−1)

∑
k=0

f (Xk)

]
+Eπ[ f (Xn)1{σC>n}] .

= An( f )+Bn( f ) (1.5)

Using first Bn( f )⩾ 0 and then the monotone convergence, we get

π( f )⩾ An( f )→n→∞ π
0
C( f )

Hence, ∆π = π−π0
C is a non-negative measure, i.e. ∆π ∈ M+(X). To obtain ∆π = 0, we only need to show that

∆π(X) = 0. Define h(x) = Px(σC < ∞) and D = {h = 0}.



1.3. EXCURSIONS 11

• By assumption, π(D) = 0 and hence π0
C(D) = 0 since π ⩾ π0

C. This implies ∆π(D) = 0.

• Note that Dc = {h > 0}. We will show that ∆π(Dc) = 0. We have

Bn(h) = Eπ[h(Xn)1{σC>n}] = Eπ[PXn(σC < ∞)1{σC>n}] = Eπ[1{σC◦θn<∞}1{σC>n}]

⩽ Eπ[1{σC<∞}1{σC>n}]→n→∞ Pπ(σC < ∞,σC = ∞) = 0

where we have used the Markov property at time n for the second equality and the monotone convergence
for the last limit. Combining with (1.5) applied to f = h and letting n goes to infinity, we get π(h) = π0

C(h)
and hence ∆π(h) = 0, which, in turn, implies ∆π({h > 0}) = ∆π(Dc) = 0.

Finally, ∆π(X) = ∆π(D)+∆π(Dc) = 0, hence ∆π is the null measure and π = π0
C and the proof is completed.

■

▶Q-1.15. The proof is just a pleasure to follow. Should we use π0
C or π1

C?

In a general context, both are important. However, when C = α is an atom, Ex
[
∑

σα

k=1 f (Xk)
]

does not
depend on x ∈ α. In contrast, Ex[∑

σα−1
k=0 f (Xk)] depends on x ∈ α because the term corresponding to k = 0

in the sum is f (X0) = f (x), which is not expected to be constant for x ∈ α. Therefore, when applying
Kac’s theorem with an atom, we typically prefer to use π1

α rather than π0
α.

1.3 Excursions

Time schedule (Note 3): Session 8

THEOREM 1.18 . If P admits a recurrent atom α. Let Z0, . . . ,Zk be Fσα
-measurable random variables

such that Ex[Zi] does not depend on x ∈ α. Then, for all ξ ∈ M1(X) such that Pξ(σα < ∞) = 1, we have

Eξ

[
k

∏
i=0

Zi ◦θ
σi

α

]
= Eξ[Z0]

k

∏
i=1

Eα[Zi] (1.6)

PROOF. First note that σi
α = σα +σ

i−1
α ◦ θσi . We will prove (1.6) by induction on k. Indeed the case k = 0 is

clear. Next assume that (1.6) holds with k replaced by k−1. Then,

Eξ

[
k

∏
i=0

Zi ◦θσi
α

]
= Eξ

[
Z0

k

∏
i=1

Zi ◦θ
σ

i−1
α

◦θσα

]
(1)
= Eξ

[
Z0Eα

[
k

∏
i=1

Zi ◦θ
σ

i−1
α

]]

= Eξ [Z0]Eα

[
k−1

∏
ℓ=0

Zℓ+1 ◦θσℓ
α

]
(2)
= Eξ[Z0]

k−1

∏
ℓ=0

Eα[Zℓ+1] = Eξ[Z0]
k

∏
i=1

Eα[Zi]

where
(1)
= follows from the strong Markov property at σα, which is valid since Pξ(σα < ∞) = 1 and

(2)
= follows

from the induction assumption at k−1, which is valid since Pα(σα < ∞) = 1 (indeed, the induction assumption is
applied with an initial distribution concentrated on α). ■

▶Q-1.16. It is a bit hard to follow. How do you use this theorem?

We will apply it to get the independence of the excursions between successive visits to the atom.

▶Q-1.17. Could you be more specific?
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Of course. For example, for any f ∈ Fb(X), we can apply the theorem to

Z0 = H0

(
τα

∑
k=0

f (Xk)

)

Zn = Hn

(
σα

∑
k=1

f (Xk)

)
, n ⩾ 1

where {Hi : i ∈ [0 : k]} are arbitrary bounded measurable random variables on R. Then, set ε0(α, f ) =
∑

τα

k=0 f (Xk) and for n ⩾ 1, set

εn(α, f ) = Zn ◦θσn
α
=

σ
n+1
α

∑
k=σn

α+1
f (Xk)

COROLLARY 1.19 . Let P be a Markov kernel with a recurrent atom α.

• Under Pα, the random variables {εn(α, f ) : n ⩾ 1} are i.i.d.

• If µ ∈ M1(X) satisfies Pµ(σα < ∞) = 1, then, under Pµ,

◦ the random variables {εn(α, f ) : n ∈ N} are independent

◦ the random variables {εn(α, f ) : n ⩾ 1} are i.i.d.

▶Q-1.18. I got the idea, now. We can decompose for example ∑
n−1
i=0 f (Xi) into blocks of the form ∑

σn+1
α

k=σn
α+1 f (Xk)

which are iid... So you can easily treat the LLN and the CLT by using properties on iid random variables...

Exactly... But for the moment, let us deal with ∥Pn(x, ·)−π∥TV which is less directly linked with the

blocks ∑
σ

n+1
α

k=σn
α+1 f (Xk). Actually, we will need only that the waiting time between successive visits to α are

iid. This is again obtained from Corollary 1.19 by setting f = 1X. In what follows, define the visit times{
vn

C : n ∈ N
}

to the set C by v0
C = τC and for n ⩾ 1, vn

C = vn−1
C +σC ◦θvn−1

C
, and hence

∆vn
α =

{
v0

C = τC if n = 0
vn

C − vn−1
C = σC ◦θvn−1

C
if n ⩾ 1

(1.7)

1.3.1 Coupling

Define X̄ =X×X and X̄ =X ⊗X . Let P̄ be a Markov kernel on X̄×X̄ such that for any x̄ = (x,x′)∈ X̄
and A ∈ X ,

P̄(x̄,A×X) = P(x,A) , P̄(x̄,X×A) = P(x′,A)

For any ξ̄ ∈ M (X̄), we define P̄
ξ̄

as the probability measure induced on (X̄N,X ⊗N) by the Markov kernel
P̄ and initial distribution ξ̄. For ω = {x̄n = (xn,x′n) : n ∈ N} ∈ X̄N, we define X̄n(ω) = x̄n, Xn(ω) = xn and
X ′

n(ω) = x′n.

LEMMA 1.20 (▶ Coupling inequality for atomic chains). Let P be a Markov kernel on X×X with an
atom α. Then for any ξ,ξ′ ∈ M1(X),

∥ξPn −ξ
′Pn∥TV ⩽ 2P̄ξ⊗ξ′(σᾱ ⩾ n)
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PROOF. Define ᾱ = α×α. Let f be a measurable function such that | f |⩽ 1. Write

|ξPn f −ξ
′Pn f |= |Eξ[ f (Xn)]−Eξ′ [ f (Xn)]|= |Ēξ⊗ξ′

[
f (Xn)− f (X ′

n)
]
|

=

∣∣∣∣∣n−1

∑
k=1

Ēξ⊗ξ′

[
1{σᾱ=k}

(
f (Xn)− f (X ′

n)
)]

+ Ēξ⊗ξ′

[
1{σᾱ⩾n}

(
f (Xn)− f (X ′

n)
)]∣∣∣∣∣

⩽

∣∣∣∣∣n−1

∑
k=1

Ēξ⊗ξ′

[
1{σᾱ=k}

(
Pn−k f (α)−Pn−k f (α)

)]∣∣∣∣∣+ Ēξ⊗ξ′

[
1{σᾱ⩾n}| f (Xn)− f (X ′

n)|
]

⩽ 2P̄ξ⊗ξ′(σᾱ ⩾ n)

The proof is completed. ■

1.4 Residual life time kernel
Define X = N∗ and X = P(X). Let ν ∈ M1(X). Let Q be a Markov kernel on X×X defined by: for
k ∈ N∗

Q(k,k−1) = 1 , if k > 1
Q(1,k) = ν(k)

where by abuse of notation, we write for any kernel Q on a discrete space X, Q(k, ℓ) = Q(k,{ℓ}) for all
k, ℓ ∈ X. Define the independent coupling kernel Q̄(x̄, ȳ) = Q(x,y)Q(x′,y′) for all (x̄, ȳ) ∈ X̄2 where we
have used the notation x̄ = (x,x′), ȳ = (y,y′) and X̄= X×X. We write X̄ = X ⊗X .

Then, Q̄ is a Markov kernel on X̄× X̄ and we define by Q̄
ξ̄

the probability measure induced on
(X̄N,X̄ ⊗N) by the Markov kernel Q̄ and initial distribution ξ̄ on (X̄,X̄ ). As usual, for convenience, for
any x̄ ∈ X̄, we write Q̄x̄ = Q̄δx̄ and Ēx̄ = Ēδx̄ . To alleviate notation, we write σx̄ or Nx̄ for any x̄ ∈ X̄ instead
of σ{x̄} or N{x̄}.

PROPOSITION 1.21 . Assume that

(a) g.c.d{k ∈ N∗ : ν(k) ̸= 0}= 1

(b) mν = ∑
∞
k=1 kν(k)< ∞

Then, for any k̄ ∈ N∗×N∗, Q̄k̄(σ(1,1) < ∞) = 1.

PROOF. Let M = sup{k ∈ N∗ : ν(k)> 0} and define B = [1 : M] and B̄ = B×B. Assume first that

(⋆) any singleton in B̄ is an accessible recurrent atom for Q̄.

Since (1,1) ∈ B̄, the singleton {(1,1)} is accessible by (⋆) and we have Q̄k̄(σ(1,1) < ∞)> 0 for any k̄ = (k,k′) ∈ X̄ .
We can then apply the solidarity lemma (Lemma 1.1), which yields

Q̄k̄(Nk̄ = ∞)⩽ Q̄k̄(N(1,1) = ∞)

If in addition k̄ ∈ B̄, the lhs is equal to 1 since by (⋆), {k̄} is a recurrent atom and we finally have Q̄k̄(N(1,1) =∞)= 1,
which in turn show that

Q̄k̄(σ(1,1) < ∞) = 1 , k̄ ∈ B̄ (1.8)

The rest of the proof consists in showing (⋆) and in extending (1.8) to any k̄ ∈ X̄. We start with (⋆) which will be
proved through several steps.

• Step 1: Q̄ admits an invariant probability measure π̄. Since for any k ∈ N∗, Qk−1(k,1) = 1 > 0, the
singleton {1} is an accessible atom for Q. Moreover,

E1[σ{1}] = E1[X1] =
∞

∑
k=1

kν(k) = mν < ∞
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showing that {1} is positive. According to Proposition 1.16, Q admits a (unique) invariant probability
measure π. It implies that π̄ = π⊗π is an invariant probability measure for the independent coupling kernel
Q̄.

• Step 2: {(1,1)} is an accessible atom for Q̄. Since Q1(σ1 = k) =Q1(X1 = k) = ν(k), assumption (a) and
Lemma 1.11 imply that Q is aperiodic. Then, Lemma 1.12 show that there exists m ∈ N such that for any
n ⩾ m, Qn(1,1) > 0. Moreover, since {1} is accessible for Q, for any (k,k′) ∈ B̄, there exist ℓ,ℓ′ ∈ N such
that Qℓ(k,1)> 0 and Qℓ′(k′,1)> 0. Hence, choosing n,n′ ⩾ m such that ℓ+n = ℓ′+n′, we have

Q̄ℓ+n((k,k′),(1,1)) = Qℓ+n(k,1)Qℓ′+n′(k′,1)⩾ Qℓ(k,1)Qn(1,1)Qℓ′(k′,1)Qn′(1,1)> 0

where the rhs is positive as a product of positive terms.

• Step 3: any singleton in B̄ is an accessible atom for Q̄. Let k̄ = (k,k′) ∈ B̄. Considering Step 2 and
Lemma 1.4, it is sufficient to show that Q̄(1,1)(σk̄ < ∞) > 0. To do so, let k ∈ B, then by definition of M,
there exists ℓ⩾ k such that ν(ℓ)> 0. Hence

Qℓ−k+1(1,k)⩾Q1(X1 = ℓ,Xℓ−k+1 = k) =Q1(X1 = ℓ) = ν(ℓ)> 0.

Hence for any k̄ = (k,k′) ∈ B2, there exist (ℓ,ℓ′) ∈N∗×N∗ such that Qℓ(1,k)> 0 and Qℓ′(1,k′)> 0. Using
again Lemma 1.12 with the aperiodic kernel Q, there exists m ∈ N such that for any n ⩾ m, Qn(1,1) > 0.
Hence, choosing n,n′ ⩾ m such that n+ ℓ= n′+ ℓ′, we obtain

Q̄n+ℓ((1,1), k̄)⩾ Qn+ℓ(1,k)Qn′+ℓ′(1,k′)⩾ Qn(1,1)Qℓ(1,k)Qn′(1,1)Qℓ′(1,k′)> 0

showing that Q̄(1,1)(σk̄ < ∞)> 0 and the proof of Step 3 is completed.

Considering Step 1 and Step 2, Proposition 1.16 applied to P = Q̄ shows that any singleton in B̄ is positive and
hence recurrent. This proves (⋆). To complete the proof, it remains to show that (1.8) holds for all k̄ ∈ X̄.

First note that B is absorbing for Q. Indeed if k ∈ B and k > 1, then k− 1 ∈ B and hence Q(k,B) ⩾ Q(k,k−
1) = 1. Moreover, with k = 1 ∈ B, Q(1,B) = ν(B) = ν(X) = 1. Finally, Q(k,B) = 1 for all k ∈ B and B is
therefore absorbing. Since Qk(k,1) = 1 and 1 ∈ B, we deduce for all n ⩾ k, Qn(k,B) = 1. Hence for all n ⩾ k∨ k′,
Q̄n(k̄, B̄) = 1. This implies (using (1.8)) that for all k̄ ∈ X̄, taking n ⩾ k∨ k′,

Qk̄(σ(1,1) < ∞)⩾Qk̄(X̄n ∈ B̄,σ(1,1) ◦θn < ∞)

= ∑
ℓ̄∈B̄

Q̄n(k̄, ℓ̄)Qℓ̄(σ(1,1) < ∞)︸ ︷︷ ︸
1

= Q̄n(k̄, B̄) = 1

which completes the proof. ■

▶Q-1.19. Amazing! If I understand well, the assumption on the aperiodicity of Q is only used to get accessibility for
the coupling kernel Q̄?

You are perfectly right. If, by a convenient choice of the kernel coupling Q̄, you can obtain that Q̄ is
accessible, then, there is no need of the aperiodicity assumption on Q.

THEOREM 1.22 . Let P be a Markov kernel on X×X with an aperiodic, accessible positive atom α.
Then for any ξ ∈ M1(X) such that Pξ(σα < ∞) = 1,

lim
n→∞

∥ξPn −π∥TV = 0

PROOF. Choosing the independent coupling kernel and applying Lemma 1.20, we obtain

∥ξPn −π∥TV ⩽ 2P̄ξ⊗ξ′(σα×α ⩾ n)

Hence, to obtain to that the rhs converges to 0, we will show that P̄ξ⊗ξ′(σα×α < ∞) = 1. The event {σα×α < ∞}
only depend on the visit times of each marginal chain. Denote by

{
vk

α : k ∈ N
}

, resp. {v′kα : k ∈ N}, the visit
times to the set α (see (1.7)) for {Xn : n ∈ N} and {X ′

n : n ∈ N}. Define the residual life-time processes (also
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called the age processes) by

An = inf
{

vk
α : vk

α > n and k ∈ N
}
−n

A′
n = inf

{
v′kα : v′kα > n and k ∈ N

}
−n

Then, under P̄ξ⊗ξ′ , the age processes are independent and each of them is marginally a Markov chain with transition
kernel Q defined by

Q(k,k−1) = 1 , if k > 1

Q(1,k) = Pα(σα = k)

starting from aξ for {An : n ∈ N} and aξ′ for {A′
n : n ∈ N} where aξ is the probability defined on N∗ by aξ(k) =

Pξ(A0 = k) = Pξ(σα = k). Since Xn ∈ α ⇔ An−1 = 1, we obtain that

inf
{

n : (Xn,X ′
n) ∈ α×α

}
= inf

{
k : (Ak,A

′
k) = (1,1)

}
+1

and consequently, P̄ξ⊗ξ′(σα×α < ∞) = Q̄aξ⊗aξ′ (σ(1,1) < ∞) = ∑k̄ aξ ⊗aξ′(k̄)Q̄k̄(σ(1,1) < ∞) = 1. The latter equal-
ity follows from Proposition 1.21, which is applicable because α, being an aperiodic positive atom, satisfies the
following:

(a) g.c.d{k ∈ N∗ : Pα(σα = k) ̸= 0}= 1

(b) ∑
∞
k=1 kPα(σα = k) = Eα[σα]< ∞

The proof is complete. ■
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Chapter 2
Small sets, splitting, irreducibility,
geometric ergodicity

Time schedule (Note 4): Session 9

Let P be a Markov kernel on X×X .

DEFINITION 2.1 . We say that C is a small set for P if there exist a integer n ∈ N∗, a constant ε > 0, a
non-null measure ν ∈ M1(X) such that

Pn(x, ·)⩾ εν(·) , ∀x ∈C. (2.1)

In that case, we also say that C is a n-small set or a (n,εν)-small set for P.

The existence of small sets allows to work with atomic Markov chains by adding a second component to
the Markov chain. This construction is known as the splitting construction. Assume that C is a (1,εν)-small
set, i.e., there exist ε > 0 and ν ∈ M1(X) such that

P(x, ·)⩾ εν(·) , ∀x ∈C.

Let us consider an informal description of the transition associated to the splitting Markov chain on X×
[0,1]: at time n, we have X̌n = (Xn,Un) and we wish to draw X̌n+1 for X̌n. Define for x ∈C

R(x,dy) =
P(x,dy)− εν(dy)

1− ε
.

Then, the transition can be described as below:

Condition Action

X̌n ∈C× [0,ε] Draw X̌n+1 ∼ ν⊗Unif([0,1]).

X̌n ∈C× (ε,1] Draw X̌n+1 ∼ R(Xn, ·)⊗Unif([0,1]).

Xn /∈C Draw X̌n+1 ∼ P(Xn, ·)⊗Unif([0,1]).

Table 2.1: Transition of the splitting chain.

17
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More formally, with the notation x̌ = (x,u) and x̌′ = (x′,u′), we define the Markov kernel P̌ by

P̌(x̌,dx̌′) =
[
1C×[0,ε](x̌)ν(dx′)+1C×(ε,1](x̌)R(x,dx′)+1Cc(x)P(x,dx′)

]
1[0,1](u)du

Obviously, α̌ =C× [0,ε] is an atom for P̌. It is easy to see that when {(Xn,Un) : n ∈ N} is a Markov chain
with Markov kernel P̌ and initial distribution ξ⊗Unif([0,1]), then the sequence {Xn : n ∈ N} is a Markov
chain with Markov kernel P and initial distribution ξ.

▶Q-2.1. Since {(Xn,Un) : n ∈ N} forms an atomic Markov chain, we can leverage all the results from the previous
chapter! This is fantastic.

I couldn’t agree more. The splitting technique allows us to work first with the atomic Markov kernel P̌
and then transfer the derived properties to P. While we won’t delve further into this approach to focus on
other methods, I must admit it is an exceptionally powerful tool.

▶Q-2.2. Before we move on from splitting techniques, what happens if C is an n-small set rather than a 1-small set?

In that case, we work directly with the Markov kernel Pn instead of P, and subsequently transfer the
properties from Pn back to P.

2.1 Irreducibility and uniqueness of the invariant probability mea-
sure.

DEFINITION 2.2 . The Markov kernel P is said to be irreducible if and only if it admits an accessible
small set.

DEFINITION 2.3 . The Markov kernel P is said to be φ-irreducible if and only if φ is a non-null measure
on (X,X ) such that any set A ∈ X such that φ(A)> 0 is accessible for P.

PROPOSITION 2.4 . If X is countably generated, the Markov kernel P is irreducible if and only if there
exists φ ∈ M+(X ) such that P is φ-irreducible.

PROOF. We only prove ⇒. The proof of the other implication ⇐ is more involved and will be admitted in this
course. Assume that P is irreducible. Then, it admits an accessible (n,εν)-small set that we call C. Let A ∈ X
such that ν(A) > 0. We will show that A is accessible. Let x ∈ X. Since C is accessible, there exists m ∈ N∗ such
that Pm(x,C)> 0. Then,

Pm+n(x,A)⩾
∫

Pm(x,dy)1C(y)Pn(y,A)⩾ εPm(x,C)ν(A)

and the rhs is positive as the product of positive terms. Finally, A is accessible and hence, P is ν-irreducible. ■

In what follows, we always assume that X is countably generated.
We now turn to a very simple lemma that will be useful for finding sufficient conditions for uniqueness.

LEMMA 2.5 . If P admits two distinct invariant probability measures, it also admits distinct invariant
probability measures π0 and π1 that are mutually singular, i.e., such that there exists A ∈ X such that
π0(A) = π1(Ac) = 0.
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PROOF. Let ζ0,ζ1 be two distinct invariant probability measures for P. Both have densities with respect to some
common dominating measure (for example, taking ζ = ζ1+ζ2, we have that ζ dominates both ζ0 and ζ1, which can
be seen from the implication ζ(A) = 0 ⇒ (ζ1(A) = 0 and ζ2(A) = 0) for any A ∈ X and according to the Radon
Nikodym theorem, if a measure dominates another one, the latter has a density with respect to the former). Write
then ζ0(dx)= f0(x)ζ(dx) and ζ1(dx)= f1(x)ζ(dx) where f0, f1 are non-negative measurable functions on X. Define
the positive part (ζ1 − ζ0)

+and the negative part (ζ1 −ζ0)
− of the signed measure ζ1 − ζ0 by (ζ1 − ζ0)

+(dx) =
[ f1(x)− f0(x)]+ζ(dx) and (ζ1 −ζ0)

−(dx) = [ f1(x)− f0(x)]−ζ(dx). Then,

(ζ1 −ζ0)
+P1A =

∫
X

ζ(dx)[ f1(x)− f0(x)]+P(x,A)

⩾
∫
X

ζ(dx)[ f1(x)− f0(x)]P(x,A)

⩾ ζ1P(A)−ζ0P(A) = ζ1(A)−ζ0(A) = [ζ1 −ζ0](A).

Hence, setting B = { f1 > f2}, we have

(ζ1 −ζ0)
+(A) = (ζ1 −ζ0)(A∩B)⩽ (ζ1 −ζ0)

+P1A∩B ⩽ (ζ1 −ζ0)
+P1A

Hence, (ζ1 −ζ0)
+ ⩽ (ζ1 −ζ0)

+P. The measure (ζ1 −ζ0)
+P− (ζ1 −ζ0)

+ is therefore non-negative and we have

[(ζ1 −ζ0)
+P− (ζ1 −ζ0)

+](X) =
∫
X
(ζ1 −ζ0)

+(dx)P(x,X)︸ ︷︷ ︸
1

−(ζ1 −ζ0)
+(X) = 0.

Finally, (ζ1 − ζ0)
+ = (ζ1 − ζ0)

+P. The probability measure π0 =
(ζ1−ζ0)

+

(ζ1−ζ0)+(X)
is thus an invariant probability

measure for P. Replacing (ζ1−ζ0)
+ by (ζ1−ζ0)

−, we obtain in the same way that π1 =
(ζ1−ζ0)

−

(ζ1−ζ0)−(X)
is an invariant

probability measure. We can easily check that taking A = { f0 ⩾ f1}, we have π0(A) = π1(Ac) = 0, showing that
these probability measures are mutually singular. ■

PROPOSITION 2.6 . Any Markov kernel P that is φ-irreducbile admits at most one invariant probability
measure.

PROOF. The proof is by contradiction. Assume that there exists two distinct invariant probability measures.
According to Lemma 2.5, we can consider two invariant probability measures π1 and π2 that are mutually singular.
Under the assumptions of the Proposition, let A ∈ X such that φ(A)> 0. Then, for any i ∈ {1,2} ,we have

0 <
∫
X

πi(dx)
∞

∑
n=0

Pn(x,A)︸ ︷︷ ︸
>0

=
∞

∑
n=0

πiPn(A) =
∞

∑
n=0

πi(A),

which in turn implies that πi(A)> 0. The contraposed implication gives that if for some i ∈ {1,2}, πi(A) = 0, then
φ(A) = 0. Now, since {πi : i ∈ {1,2}} are mutually singular, there exists A ∈ X such that π1(A) = π2(Ac) = 0
and this shows that φ(A) = φ(Ac) = 0 which is impossible. ■

2.2 Geometric ergodicity

In what follows, we assume that for some measurable function V : X→ [1,∞), we have

(A1) [Minorisation condition] for all d > 0, there exists εd > 0 and a probability measure νd such that

∀x ∈Cd := {V ⩽ d}, P(x, ·)⩾ εdνd(·) (2.2)
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(A2) [Drift condition] there exists a constants (λ,b) ∈ (0,1)×R+ such that for all x ∈ X,

PV (x)⩽ λV (x)+b

Typically, the function V is unbounded (but in particular situations, it can also be bounded) and the
sublevel set {V ⩽ d} is typically compact (when the chain takes value a topological space)... Roughly
speaking, (A1) tells you that wherever x moves in a set Cd , the measure P(x, ·) is lower bounded by the non-
trivial measure εdνd(·). In many cases, X= Rn, and P is dominated by the Lebesgue measure: P(x,dy) =
p(x,y)dy. In that case, we usually take P(x,A)⩾ εdνd(A) where

εd =
∫
X

[
inf

x∈Cd
p(x,y)

]
dy, νd(A) =

∫
A infx∈Cd p(x,y)dy

εd

i.e. we only need to bound from below the kernel density p(x,y) when x ∈Cd . If Cd is compact, then it is
quite easy to check such lower-bound. In the Markov chain terminology, if (2.2) holds, we say that Cd is a
1-small set.

The drift condition (A2) tells you that in the mean sense, the drift function V is shrinked by a factor λ

up to the additive constant b... Intuitively speaking, the Markov kernel P does not bring to regions where
V is too large so that the chain does not go to infinity too quickly (since limited values for V typically
correspond to bounded sets). And we can easily imagine that such chains will have nice ergodic properties.

Before stating the result, we must say that, in practise, for a given Markov kernel P, there is no general
rule for guessing the expression of a drift function V that satisfies (A2), and we have to try different
functions V for checking the assumptions... For example, if Xk+1 = αXk + εk where (εk) are iid and α ∈
(0,1). If we know that E[|ε1|r] < ∞, then we can try a drift function V (x) = |x|r and if E[eβε1 ] < ∞, then
we can try V (x) = eβx. For MH algorithms, we also sometimes use a negative power of the target density.
But once again, the choice of V is very model specific (and in some sense, this is a good opportunity
to be imaginative!!!). We now show that assumptions (A1) and (A2) imply that the Markov kernel P is
“geometrically ergodic” in the following sense.

THEOREM 2.7 (▶ Geometric ergodicity). Assume (A1) and (A2) for some measurable function V ⩾ 1.
Then, there exists a constant ρ ∈ (0,1) such that for all x,x′ ∈ X and all n ∈ N,∥∥Pn(x, ·)−Pn(x′, ·)

∥∥
TV ⩽ ρ

n [V (x)+V (x′)
]
.

REMARK 2.8 . Assume that there exist a constant ε > 0 and a probability measure ν such that for all
x ∈ X, P(x, ·) ⩾ εν(·). In that case, (A1) and (A2) are satisfied with the constant function V (x) = 1 and
Theorem 2.7 then shows that ∥∥Pn(x, ·)−Pn(x′, ·)

∥∥
TV ⩽ 2ρ

n.

for some constant ρ ∈ (0,1). Such a Markov chain is usually said to be uniformly ergodic.

The proof needs several steps. To bound ∥Pn(x, ·)−Pn(x′, ·)∥TV , we will construct a bivariate Markov
chain (Xk,X ′

k) such that first component process (Xk) behaves marginally as a Markov chain starting from
x with Markov kernel P, while the second component process (Xk) behaves marginally as a Markov chain
starting from x′ with Markov kernel P. Let us be more specific... In what follows, we choose d sufficiently
large so that

λ̄ := λ+
2b

1+d
< 1 (2.3)
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Definition of the joint kernel P̄

Define Q(xk,dxk+1) =
P(xk,dxk+1)−εdνd(dxk+1)

1−εd
and set

P̄((xk,x′k),dxk+1dx′k+1) = 1xk=x′k
P(xk,dxk+1)δxk+1(x

′
k+1)

+1xk ̸=x′k
1(xk,x′k)/∈C2

d

[
P(xk,dxk+1)P(x′k,dx′k+1)

]
+1xk ̸=x′k

1(xk,x′k)∈C2
d

[
εdνd(dxk+1)δxk+1(x

′
k+1)+(1− εd)Q(xk,dxk+1)Q(x′k,dx′k+1)

]
Actually, P̄ is a Markov kernel on X2 ×X ⊗2 and it can be easily checked that

P̄((x,x′), ·) ∈ C (P(x, ·),P(x′, ·)) (2.4)

where for µ,ν ∈ M1(X), we write C (µ,ν) for the set of probability measures γ on X×X satifying the
marginal conditions: for any A ∈ X ,

γ(A×X) = µ(A) , and γ(X×A) = ν(A) .

By induction on n ∈ N, we can show that (2.4) implies

P̄n((x,x′), ·) ∈ C (Pn(x, ·),Pn(x′, ·)) (2.5)

Interpretation of the joint kernel P̄

Set X̄k = (Xk,X ′
k) and C̄d =Cc ×Cd . If (X̄k)k∈N is a Markov chain with the Markov kernel P̄, the transition

from X̄k = (xk,x′k) to X̄k+1 = (Xk+1,X ′
k+1) can be seen as follows

• If xk = x′k, draw Xk+1 ∼ P(xk, ·) and set X ′
k+1 = Xk+1.

• Otherwise,

– If (xk,x′k) /∈ C̄d , then

* Draw independently Xk+1 ∼ P(xk, ·) and X ′
k+1 ∼ P(x′k, ·)

– If (xk,x′k) ∈ C̄d , then

* Draw U ∼ Ber(εd).

* If U = 1, draw Xk+1 ∼ νd and set X ′
k+1 = Xk+1.

* If U = 0, draw independently Xk+1 ∼ Q(xk, ·) and X ′
k+1 ∼ Q(x′k, ·).

• Set X̄k+1 = (Xk+1,X ′
k+1).

Therefore, the bivariate Markov chain (X̄k)k∈N = (Xk,X ′
k)k∈N is such that it tries to couple its two compo-

nents with probability εd each time it falls into C̄d and once it couples (ie Xk = X ′
k) then, it stays together for

ever (ie for all n ⩾ k, Xn = X ′
n). Define T = inf

{
k : Xk = X ′

k

}
and let P̄

ξ̄
denote the probability induced on

((X×X)N,(X ⊗X )⊗N) by the Markov kernel P̄ and initial distribution ξ̄ ∈ M1(X×X). The associated
expectation operator is denoted by Ē

ξ̄
and by convention we simply write Ēx,x′ or P̄x,x′ when ξ̄ = δ(x,x′)

Exact coupling inequality

Similarly to Lemma 1.20, the coupling inequality, in this context, writes:∥∥Pn(x, ·)−Pn(x′, ·)
∥∥

TV ⩽ 2P̄x,x′(Xn ̸= X ′
n) = 2Px,x′(T > n) (2.6)

Indeed for any measurable function f such that | f |⩽ 1, we have

|Pn f (x)−Pn f (x′)|= |Ex,x′ [ f (Xn)− f (X ′
n)]|= |Ex,x′ [( f (Xn)− f (X ′

n))1Xn ̸=X ′
n
]|

⩽ 2P̄x,x′(Xn ̸= X ′
n) = 2Px,x′(T > n)

where the last equality follows from the fact that if Xk = X ′
k, then Px,x′ -a.s., Xn = X ′

n for all n ⩾ k.
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Some nice properties of P̄

The following inequalities are immediate:

1. Set ∆(x,x′) = 1x ̸=x′ , then

(a) if (x,x′) ∈ C̄d , P̄∆(x,x′)⩽ (1− εd)∆(x,x′)

(b) if (x,x′) /∈ C̄d , P̄∆(x,x′)⩽ ∆(x,x′)

2. Setting V̄ (x,x′) = (V (x)+V (x′))/2, we have P̄V̄ (x,x′) = 2−1(PV (x)+PV (x′))⩽ λV̄ (x,x′)+b. This
implies

(a) if (x,x′) ∈ C̄d , P̄V̄ (x,x′)⩽ (λ+b)V̄ (x,x′)

(b) if (x,x′) /∈ C̄d , P̄V̄ (x,x′)⩽
(

λ+
2b

1+d︸ ︷︷ ︸
λ̄

)
V̄ (x,x′)

We now have all the tools for proving Theorem 2.7.

PROOF. [of Theorem 2.7]
For any β ∈ (0,1), define

ρβ = max((1− εd)
1−β(λ+b)β, λ̄β) (2.7)

The expression of ρβ may seem a bit complicated (we will understand why we choose ρβ like this in (2.8) below)

but, since λ̄ and 1−εd are both in (0,1), we can always pick β sufficiently small (but positive) so that ρβ ∈ (0,1) .

This ρβ being chosen, set W = ∆1−βV̄ β. Then, using Holder’s inequality and the inequalities in the section Some
nice properties of P̄, we have for all (x,x′) ∈ X2,

P̄W (x,x′) = P̄(∆1−βV̄ β)(x,x′)⩽ (P̄∆(x,x′))1−β(P̄V̄ (x,x′))β

⩽ (∆1−βV̄ β)(x,x′)×

{
(1− εd)

1−β(λ+b)β if (x,x′) ∈C2
d

λ̄β if (x,x′) /∈C2
d

⩽ ρβW (x,x′)

This implies by induction that for all n ∈ N and all (x,x′) ∈ X2,

P̄nW (x,x′)⩽ ρ
n
β
W (x,x′) (2.8)

Then ∥∥Pn(x, ·)−Pn(x′, ·)
∥∥

TV

(1)
⩽ 2P̄n

∆(x,x′)
(2)
⩽ 2P̄nW (x,x′)

(3)
⩽ 2ρ

n
β
W (x,x′)

(4)
⩽ ρ

n
β
(V (x)+V (x′))

where (1) comes from (2.5) and (2.6), (2) from ∆(x,x′) = ∆1−β(x,x′)⩽W (x,x′) because V ⩾ 1, (3) from (2.8) and
(4) from

W (x,x′)⩽
(

V (x)+V (x′)
2

)β

⩽
V (x)+V (x′)

2

since V ⩾ 1 and β ∈ (0,1). ■

COROLLARY 2.9 . Assume that (A1) and (A2) hold for some measurable function V ⩾ 1. Then, the
Markov kernel P admits a unique invariant probability measure π. Moreover, π(V ) < ∞ and there exists
constants (ρ,β) ∈ (0,1)×R+ such that for all µ ∈ M1(X) and all n ∈ N,

∥µPn −π∥TV ⩽ βρ
nµ(V ).
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PROOF. For any µ,ν ∈ M1(X) and any h ∈ F(X) such that |h|⩽ 1, we have, using Theorem 2.7,

|µPnh−νPnh|= |
∫
X2

µ(dx)ν(dy)[Pnh(x)−Pnh(y)]|⩽
∫
X2

µ(dx)ν(dy)|[Pnh(x)−Pnh(y)]|⩽ ρ
n[µ(V )+ν(V )]

Thus,
∥µPn −νPn∥TV ⩽ ρ

n[µ(V )+ν(V )] (2.9)

Replacing µ by δx and ν by P(x, ·), we get for all x ∈ X,∥∥∥Pn(x, ·)−Pn+1(x, ·)
∥∥∥

TV
⩽ ρ

n[V (x)+PV (x)]⩽ ρ
n[(1+λ)V (x)+b]

This implies that {Pn(x, ·)} is a Cauchy sequence and since (M1(X),∥·∥TV ) is complete, it converges to a limit
π ∈ M1(X). Then, for all x ∈ X and all h ∈ F(X) such that |h|⩽ 1, we also have |Ph|⩽ 1 and therefore

π(Ph) = lim
n→∞

Pn(Ph)(x) = lim
n→∞

Pn+1h(x) = π(h)

showing that π is P-invariant. We now show uniqueness of an invariant probability measure. To see this, note
that π actually does not depend on the choice of x. Indeed, replacing µ by δx and ν by δx′ in (2.9), we get that
limn→∞ ∥Pn(x, ·)−Pn(x′, ·)∥TV = 0. Therefore, for all x ∈ X, limn→∞ Pnh(x) = π(h). Let π′ be an invariant proba-
bility measure for P, then

π
′(h) = π

′Pn(h) =
∫

π
′(dx)Pnh(x)︸ ︷︷ ︸

→π(h)

→n→∞ π(h)

where the last equality comes from Lebesgue’s dominated convergence theorem. Since PV ⩽ λV +b, we have by
induction for all n ∈ N,

PnV (x)⩽ λ
nV (x)+b

(
n−1

∑
k=0

λ
k

)
⩽ λ

nV (x)+
b

1−λ

Therefore, for any M > 0, by Jensen’s inequality applied to the convex function u 7→ u∧M, we have Pn(V ∧M)(x)⩽

(PnV (x))∧M ⩽
(

λnV (x)+ b
1−λ

)
∧M. We then integrate wrt π and use π = πPn:

π(V ∧M) = πPn(V ∧M)⩽
∫

π(dx)
(

λ
nV (x)+

b
1−λ

)
∧M

The Lebesgue dominated convergence theorem then shows by letting n to infinity, π(V ∧M) ⩽ b
1−λ

∧M. Then,
letting M to infinity, we get π(V )⩽ b/(1−λ)< ∞. To complete the proof, apply (2.9) with ν = π, we get

∥µPn − πPn︸︷︷︸
π

∥TV ⩽ ρ
n[µ(V )+π(V )]⩽ βρ

n[µ(V )

with β = 1+π(V )< ∞. ■
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