
8 Simulation of random variables
and Monte Carlo methods: motiva-
tions

The main topic of these notes are sampling (or simulation) and Monte Carlo methods and
their broad extensions and applications. What we mean by simulation and Monte Carlo
methods are roughly either:

(1) Sampling from a target distribution π on some measurable state space (X,X ) (most
often Rd); or equivalently from a random variable distributed according to π.

(2) Regarding Monte Carlo, we aim at estimating either some integrals with respect to π,R
f dπ, for some function f :X→R; or equivalently we aim at estimating expectations

of f (X ), E[ f (X )].

In addition, we focus here on the case where π admits a density with respect to a reference
σ-finite measure λ (most often the Lebesgue measure on Rd or the counting measure if X is
discrete), still denoted by π in general: for any measurable and bounded function f :X→R,

Z

X
f (x)dπ(x)=

Z

X
f (x)π(x)dλ(x) .

We start these notes with some general introduction to Monte Carlo methods and
provide first generic motivations. Formal definitions of sampling and Monte Carlo methods
are postponed to the next Chapter 9.

8.1 Buffon’s needle problem
Buffon’s needle problem was raised in the 18th century by Georges-Louis Leclerc, Comte
de Buffon:(1)

(1)Histoire de l’Acad. Roy. des. Sciences (1733), 43–45; Histoire naturelle, générale et particulière Supplément
4 (1777), p. 46.
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Chapter 8 Simulation of random variables and MC: motivations

Suppose we have a floor made of parallel vertical strips of wood, each the same
width, and we drop a needle onto the floor. What is the probability that the
needle will lie across a line between two strips?

As we will see, the solution for the sought probability p, in the case l < t, where l is the
needle length and t is the width of the strips, is p = 2l/(πt).

This result can be used to design a Monte Carlo method for approximating the number
π, although that was not the original motivation for de Buffon’s question.(2)

We now present the stochastic model associated with this experiment. We suppose the
wood is represented by [0,1]2. We consider the couple of independent random variables
(X ,Θ). The random variables (X ,Y ) represents the xy-coordinate of the center of the
needle and follows the uniform distribution over [0,1]2 while Θ represents the acute angle
between the needle and one of the vertical line and follows the uniform distribution over
[0,π/2].

Then, if we denote by D =min(X−⌊X /t⌋ t,⌈X /t⌉ t−X ) the distance from the center of the
needle to the closest parallel line, it is easy to show that it follows the uniform distribution
over [0, t/2].

Now there are two cases.

Case 1: Short needle (l ≤ t)
The needle crosses a line if D ≤ (l/2)sinΘ(3).

Integrating the joint probability density function gives the probability that the needle
will cross a line:

p =P(D ≤ (l/2)sinΘ)=
Zπ

2

0

Z l
2 sinθ

0

4
tπ

dx dθ = 2l
tπ

.

Case 2: Long needle (l > t)
The needle crosses a line if D ≤ (l/2)sinΘ again but we need to take into account that
D ≤ t/2. Therefore,

p =P(D ≤ (l/2)sinΘ)=
ÃZarcsin(t/l)

0

Z l
2 sinθ

0

4
tπ

dx dθ

!
+

µZπ
2

arcsin(t/l)

2
π

dθ
¶

= 2l
tπ

− 2
tπ

³p
l2 − t2 + tarcsin(t/l)

´
+1 .

This suggests that we could conduct this experiment to estimate π. However, we aim to

(2)Behrends, E. (2014). Buffon: Hat er Stöckchen geworfen oder hat er nicht?.
(3)We can also consider Θ uniform on [0,π] and model the angle from the side of the needle the closest to

a vertical, with that vertical. In that case we obtain two sets of conditions: D ≤ (l/2)sinΘ and Θ ≤ π/2 or
D ≤ (l/2)cosΘ and Θ>π/2 but we verify easily that the two probabilities are equal
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Figure 8.1: Simulation of Bouffon’s Needle Experiment

replace this physical experiments by numerical simulations on a computer, i.e., sampling
from D and Θ! This illustrated in Figure 8.1

8.2 Traffic modeling
We consider a first application of Monte Carlo methods for traffic modeling. We consider
here a very simple model, referred to as the Nagel-Schreckenberg traffic [NS92], of N
vehicles. This model belongs to the class of cellular automaton; . These N vehicles are
described as N couples {(xi,vi)}N

i=1, where xi ∈Zn is the position of the vehicle and vi ∈N is
its velocity. Here Zn =Z/nZ≃ {0, . . . ,n−1} is the the ring of integers modulo n; we refer to
Section 10.A for details on this notation and the related object, in particular congruential
relation. However, we give here the canonical distance on Zn: for x, y inZn,

|x− y|n =min(|x− y| , |n− (x− y)|) . (8.1)

Then, we define a stochastic model which describes the time evolution ({(xi(t),vi(t))}N
i=1)t∈N

of these N vehicles as follows. We first suppose that {(xi(0))}N
i=1 are ordered, i.e., x1(0) <

. . . < xN (0), and vi(0) = 0 for any i ∈ {1, . . . , N}. Given a maximal velocity vm ∈ N and a
deceleration probability p ∈ [0,1], at step t ∈ N, given the current states of the system,
{(xi(t),vi(t))}N

i=1, we define {(xi(t+1),vi(t+1))}N
i=1 as follows: Sequentially on i ∈ {1, . . . , N},

1. We define the potential maximum velocity ṽi(t+1)=min(vi(t)+1,vm,Di(t)−1), where
Di(t)= |xi+1(t)− xi(t)|n is the distance between the i-th vehicles.

2. Then, with probability p, independently from the past, we set vi(t+1)=min(0,vi(t)−
1) and vi(t+1)= ṽi(t+1) otherwise.
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3. Finally, set xi(t+1)= xi(t)+vi(t).

The last step is to update (xN (t+1),vN (t+1)), which is done similarly but the distance
DN (t)= |x1(t+1)− xN (t)|n is computed using the updated position of the first vehicle.

We can comment each step of this simulation. First, in 1, the driver set increases
its velocity to 1 if it is below vm and the distance (minus one) to the next driver to avoid
collision, otherwise it sets its velocity to the minimum of these two quantities. In a second
step 2, randomness appears which is supposed to model any events which may cause traffic
disruption. Here, with probability p, the velocity is reduced by 1 if non-zero. Finally, in 3,
based on the velocity vi(t+1), the i-vehicle moves to xi(t)+vi(t+1).

In Figure 8.2 on the left hand side, one simulation are displayed starting with 100 cars
represented as black dots on the top row. Traffic jams can be noticed, illustrated by the
presence of diagonal bands. The traffic jams move backward as the traffic moves forward.

(a) Simulation of the simple Nagel–
Schreckenberg traffic model. The vehicles
move from left to right, as time increases
from top to bottom.

(b) Simulation of the VDR traffic model

Figure 8.2: Simulation of the two Nagel–Schreckenberg models

There exist several extensions of these two models: including multiple line roads, car
crashes events, traffic lights etc. See [HK12] and the references therein. Based on this
probabilistic modeling, different questions can be addressed: can we find an “optimal”
speed limitation? Does it equilibrium/stationary distribution of the system? Does it exist a
limiting distribution of the average system as N →+∞? All these questions can be solved
empirically by simulating models.

Remark 8.1 (Phase transition). In particular, one important phenomenon can highlighted
and studied using Monte Carlo methods. This phenomenon is called phase transition and
it appears in many fields. Roughly, this phenomenon most often concerns system subject
to external conditions or constraints; for example, for physical systems, theses conditions
may be the initial state of the system, temperature, magnetic fields, force fields... Phase
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transition reflects any abrupt changes in characteristics, also called global observables;
in physics again, these characteristics may be energy, magnetism or density... From the
author’ knowledge, there is no real formal definition of this phenomenon which is not
problem specific and it requires technicalities that we do not want to bother the reader for
the moment. Therefore, we only provide more of a intuitive definition and illustration of
this phenomenon.

We start with an illustration of the phase transition phenomenon on a slightly more
complex traffic model than the Nagel–Schreckenberg model. For the Nagel–Schreckenberg
traffic model, there is no phase transition. Somehow, the model is too simple. such a
phenomenon does not appear. We present here a simple generalization which incorporates
a slow-to-start behaviour. by using a velocity-dependent randomization (VDR). We call this
model the VDR model [Bar+98]. This model consists in changing the deceleration probabil-
ity depending on the velocity of the agent. More precisely, we define the time evolution
({(x̄i(t), v̄i(t))}N

i=1)t∈N of these N vehicles as follows. We first suppose that {(x̄i(0))}N
i=1 are

ordered, i.e., x̄1(0)< . . .< x̄N (0), and v̄i(0)= 0 for any i ∈ {1, . . . , N}. Given a maximal velocity
vm ∈N and deceleration probabilities p, p0 ∈ [0,1], at step t ∈N, given the current states of
the system, {(x̄i(t), v̄i(t))}N

i=1, we define {(x̄i(t+1), v̄i(t+1))}N
i=1 as follows: Sequentially on

i ∈ {1, . . . , N},

1. We define the potential maximum velocity ṽ′i(t+1)=min(v̄i(t)+1,vm,Di(t)−1), where
Di(t)= |x̄i+1(t)− x̄i(t)|n is the distance between the i-th vehicles.

2. Then, with probability pi(t+1)= p0� {v̄i(t)= 0}+ p� {v̄i(t)> 0}, independently from
the past, we set v̄i(t+1)=min(0, v̄i(t)−1) and v̄i(t+1)= ṽi(t+1) otherwise.

3. Finally, set x̄i(t+1)= x̄i(t)+ v̄i(t).

The last step is to update (x̄N (t+1), v̄N (t+1)), which is done similarly but the distance
DN (t)= |x̄1(t+1)− x̄N (t)|n is computed using the updated position of the first vehicle.

Note that the only step which differs from the Nagel–Schreckenberg model is the step
2, where as already mentioned, the deceleration probability depends now if the vehicle is
stopped or not. Note that to have a phase transition, it has to be held p < p0.

Simulation of the two introduced Nagel–Schreckenberg models are displayed in Fig-
ure 8.2.

We define the averaged flow of the VDR and Nagel–Schreckenberg traffic models as
J = (nN(tJ − t0))−1 PN

i=1
PtJ
ℓ=t0

vi(tJ), where t0, tJ are prescribed iterations large enough,
and ρ = N/n is the density. In Figure 8.3, the flow of the VDR with respect to ρ are
displayed for two initial states: (1) the homogeneous (hom) case where vehicles are set
to be equidistant to each other; (2) the jammed (jam) case where the initial positions of
the vehicles are set to xi(0)= i for any i ∈ {1, . . . , N}. We can observe that the averaged flow
is not continuous with respect to the density at ρ2 for the homogeneous initialization. In
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Figure 8.3: Flow of the VDR and Nagel–Schreckenberg traffic models with respect to
density ρ for two initial conditions, the jammed condition and the space homogeneous
condition. vm = 5, n = 1000, p = 1/64 and p0 = 0.75, t0 = 10000 and tJ corresponds to
100000 sweeps through the lattice. Credit [Bar+98]

addition, for ρ ∈ £
ρ1,ρ2

¤
, the average flow is different depending on the initial states, while

outside
£
ρ1,ρ2

¤
, the average flow is the same for both initial states.

8.3 Statistical mechanics
We consider now the problem of sampling from a statistical mechanics perspective. One
of the simplest example is the Ising model which is used to model magnets and lattice
gases. We give here an informal presentation of this model, the associated phase transition
problem, and do not aim at being exhaustive.

Magnets are described using spin systems on a graph G= (Vd
n ,Ed

n). We simply choose
here for the set of vertices, the lattice with periodic boundary conditions Vd

n =Zd
n ≃ (Z/nZ)d,

for a dimension d ∈N∗ and a number of spins n ∈N∗. An element i ∈V model the position
of a particle on the lattice Vd

n . In addition, we choose that (i, j) ∈E is and only if |i− j|n,d = 1,
where

|i− j|n,d =
dX
ℓ=1

|iℓ− jℓ|n ,

where |·|n is defined in (8.1), and iℓ, jℓ denoted the ℓ-th component of i, j. In this context, a
choice of a label function ω :V→ {±1}, (ωi)i∈V ∈Ωd

n = {±1}V
d
n is said to be the configuration

or the set of directions of the spins, if ωi = 1, the i spin is said to be up otherwise it is said
down.

To model gases or magnets, statistical mechanics supposes that configurations of the
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system are random and associated with a distribution with density with respect to the
counting measure on Ωd

n: for ω ∈Ωd
n,

πd
n,β(ω)= exp(−Hn,β,h(ω))/ZN ,

where

(1) Hn,β,h(ω) = −βP
(i,j)∈Eωiωj − h

P
i∈Vd

n
ωi is called the energy of ω associated to the

inverse temperature β and magnetic field h;

(2) the quantity Zd
n = P

ω′∈Ωd
n

exp(−Hn,β,h(ω′)) is called the partition function of the
system.

Any random variable σ with distribution πd
n,β,h is called a spin, i.e., P(σ=ω) = πd

n,β,h(ω),

for any ω ∈Ωd
n. At high temperature, physics modeling assumes that up and down spins

have equal probability, whereas as at low temperature, spins are likely either all down or
all up. In the latter case, the material is said to be magnetized. Similar considerations
can also be made for lattice gases, but not formally introduced here; see [Geo11; Kra06].
In this setting, we can also highlight a phase transition phenomenon. Illustrations of the
spin modelling are displayed in Figure 8.4.

(a) Example of a spin config-
uration for a size box n = 8
at low temperature and graph
structure

(b) Example of a spin configu-
ration for a size box n = 8 at
high temperature and graph
structure

(c) Example of a spin configu-
ration for a size box n = 50

Figure 8.4: Examples of spin configurations

Define the magnetization of the system at temperature β as

md
n(β,h)=

Z

Ωd
n





X
i∈Vd

n

ωi



dπd

n,β,h(ω) . (8.2)
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Figure 8.5: Average magnetization

It can be shown that limh↓0 limn→+∞ md
n(β,h)= md

⋆(β) exists and is called the average
magnetization density. If there exists βd

c ∈R∗
+ such that for any 0≤β<βd

c , md
⋆(β)= 0 and

for any βd
c < β, md

⋆(β) > 0, we say that a phase transition of first order occurs. In this
context, the quantity βd

c is the called the critical inverse temperature and estimating it is
of prime interest in statistical mechanics.

There is no phase transition for d = 1 but there is for d ≥ 2. In particular, we can show
that β2

c = 2−1 arcsinh(1)≈ 0.441. For β≤βd
c , we say that the system is paramagnetic and

ferromagnetic otherwise.

As emphasized previously, estimating βd
c is important in physics. To this end, Monte

Carlo methods can be used. A naive but illustrative way is to numerically estimate md
n(βi)

by Monte Carlo for n large and a thin grid, i.e., for an increasing sequence of inverse
temperatures {βi}ℓi=1 such that maxi

¯̄
βi+1 −βi

¯̄
is small, since md

n(βi) is an integral by
(8.2), and observe around which region a discontinuity appears. Result of such approach is
displayed in Figure 8.5. Note that we use here a Metropolis-Hasting algorithm that we
will see in this course.

A careful reader may wonder why using Monte Carlo methods since md
n(βi) has an

explicit expression. The main reason is that for n and d large explicitly computing the
partition function Zd

n is computationally impossible since it implies to sum over 2dn terms.

96



Simulation of random variables and MC: motivations Chapter 8

8.4 Mathematical finance
We consider here the discrete formulation of an American option. The price of an asset is
modelled here as a random process (Vn)n∈N defined by induction: given V0,

Vn+1 =Vn exp(Xn+1) ,

where (Xn)n∈N∗ are supposed to be i.i.d. N(m,σ2).
In finance, there exists a product called an American option which allows the buyer

of this option to sell the given asset at price K for any stage n ∈ {0, . . . , N}, for a given
terminal stage N ∈N∗. More precisely, for any n ∈ {0, . . . , N}, the buyer can sell its asset
at price max(K ,Vn) for some K > 0. We set the price of the option also to K for simplicity
here and therefore the potential benefit for the buyer is max(Vn −K ,0). Then, to maximize
its average profit, the buyer aims to estimate argmaxn∈{0,...,N}E[max(Vn −K ,0)]. Set un =
E[max(Vn −K ,0)]. We distinguish two cases

• If m+σ2/2≥ 0. Then using the tower property and the Jensen inequality, we have

un+1 ≥ E[max(VnE[eXn+1 |Fn]−K ,0)] ,

where (Fn)n∈N is the filtration generated by (Xn)n∈N∗ with F0 =σ(V0). By independence,
E[eXn+1 |Fn]= E[eXn+1 ]= em+σ2/2 ≥ 1 and we deduce that (un)n∈{0,...,N} is non-decreasing and
argmaxn∈{0,...,N}E[max(Vn −K ,0)]= N.

• If m+σ2/2 < 0, the problem at hand is much more complex. A naive but illustrative
solution is to estimate numerically the sequence (un)n∈{0,...,N} using Monte Carlo methods
since the un are expectations.

Remark 8.2. Of course, this is a simplified presentation of the problem associated to an
American option. We only mention the more complex problem at hand. Denoting by TF the
set of stopping times associated with (Fn)n∈N. The problem which the buyer aim to solve is
to estimate supτ∈TF E[max(Vτ−K ,0)]. In this setting, we model that the buyer can take its
decision to sell its asset at stage n given all information before.

8.5 Bayesian statistics
In Bayesian statistics that we will present in Chapter 7, the problem of sampling a distribu-
tion π or estimating some integrals with respect to it, is at the core of the inference process.
Here we provide an informal discussion on this subject and refer to the corresponding
chapter of these notes for a more formal introduction.

Recall that in frequentist statistics, based on i.i.d. observations X1, . . . , Xn with density
fθ with respect to some reference measure λ, say the Lebesgue measure, the parameter
θ ∈Θ⊂Rd is supposed to be deterministic and is inferred using a one point estimator, for
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example the maximum likelihood estimator:

θ̂n ∈ argmax
ϑ∈Θ

nY
i=1

fϑ(Xi) .

In Bayesian statistics, θ is not supposed to be deterministic but random. Roughly, it
is suppose that the parameter θ is a realization of a fixed and chosen prior distribution
with density p with respect to the Lebesgue measure. In that situation, we can define the
posterior distribution as the conditional distribution of θ given the observations X1, . . . , Xn.
This conditional distribution has for density (with respect to the Lebesgue measure):

πn(ϑ)= p(ϑ)
nY

i=1
fϑ(Xi)/Zn , Zn =

Z

Rd
p(ϑ)

nY
i=1

fϑ(Xi)dθ .

Note that in most cases of interest, the normalizing constant Zn is intractable which brings
further challenges in the problem of sampling and estimating integrals with respect to πn.
Yet, Bayesian inference is primarily based on integrals with respect to πn. For example,
one estimator for θ is the Bayes estimator defined as the mean of πn:

θ̂B
n =

Z
ϑπn(ϑ)dϑ .

98


