17 Conditional expectation/distribution

Exercise 17.1. Let X € L'(Q, F,P) and G = o ({B; : i € I}), for (B;),, pairwise disjoint events
and | a countable set. Show that P-almost surely

E(X|Gl=) 1sE[X|B]. (169)
i€l
Hint: First show that G = {A C Q : there exists J C | with A = U;¢;B;}.

Exercise 17.2. Let (X )ren+ be a sequence of i.i.d. random variables valued in N and integrable.
Let T,, = Xy where N,, ~ U({1,...,n}) independent of (Xj)gen~ for any n € N*.

(1) Show that for any ¢ € N*:

iy ono Xy =i}
ZZ:1 Xk ’

P(T, = i|X1.n) = (170)
where X7., = (X1,...,Xp).

(2) Show that for any ¢ € N, lim,,—, 4 P(T), = i) = ip;/m denoting p;, = P(X; = ¢) and m =
E[X4].

Exercise 17.3. Let G C F be a sub-c field on (2, F,P) and X a non-negative random variable.
Denote A = {w : E[X|G] (w) > 0}.

(1) Show that X1 = 0 almost surely and deduce that {X > 0} C A. Hint: do not forget that X
is supposed to be non-negative.

(2) Show that A is the smallest set in G (for the inclusion and up to negligeable set) containing
{X > 0}.

Exercise 17.4. Let X be an integrable real random variable on (£2, F,P) and G, H two sub o-field
of F. Denote by HV G = o(H UG). Show that if o(X)VH = o(c(X) UH) is independent of
G, E[X|HVG] =E[X]|H]. [Hint : first take an element of H V G of the form A U B. Use the
7 — A-theorem to conclude.]

Exercise 17.5. Let X = F(Y,Z) where Y and Z are two random vectors on (Q, F,P) valued in
RP and RY, respectively, and F' is a Borel function. Let G C F be a sub o-field. Suppose moreover
that Y is G-measurable and Z is independent of G, then the conditional distribution of X given G
is given by

PXI9(w,A) =P(F(Y(w),Z) €A) forallwe Qand Ac ).

[Hint : first show in the case where F' = 1a x 1g that E[X]|G] = F(Y) where, for all y, F(y) =
E [F(y, Z)]. Deduce the conditional distribution of (Y, Z) given G and conclude.]

Exercise 17.6. An important application of the projection theorem in Hilbert spaces is the
computation of the conditional mean for L2 random variables. It also provides an easy way to
compute the conditional distribution in a Gaussian context, where the following result holds.

Proposition 17.1. The Hilbert space of all RP-valued L? random variables is endowed with the
scalar product
U, V)=E[U"V]

In this context, Span (1,Y) is seen as the linear space in L? obtained by a linear transformation
of the random variables 1 and Y, that is, we have

Span (1,Y) ={a+ AY : a € R’, A € R?*7} (171)
={b+A(Y-E[Y]) : beR?, A e RP*7} | (172)

where we set b = a — AE[Y]. Let p,g > 1. Let X and Y be two jointly Gaussian vectors,
respectively valued in R? and R?. Then the following assertions hold.



(i) If Cov(Y) is invertible, then X = proj (X|Span (1,Y)) is given by
X = E[X] 4 Cov (X,Y) Cov(Y)! (Y —E[Y]),

and
Cov(X — X) = Cov(X) — Cov (X,Y) Cov(Y) 'Cov (Y, X) ,

where here Span (... ) is understood as the space of RP-valued L? random variables obtained
by linear transformations of ... and proj(-|...) is understood as the projection onto this
space seen as a (closed) subspace of the Hilbert space of all RP-valued L? random variables.

(ii) We have
E [X]Y] = proj (X|Span (1,Y)) .

(iii) Let X = E [X|Y]. Then
Cov(X —X) =E [X(X - )A()T} —E [(X - )A()XT}

and the conditional distribution of X given Y is given by N()A(, Cov(X — )A())
Let X and Y be as in Proposition 17.1.

(1) Use the characterization of the orthogonal projection to prove Proposition 17.1(i).

(2) In order to prove Proposition 17.1(ii) and (iii), use properties of the conditional distribution
and expectation.

17.1 Conditional distribution

Exercise 17.7. Let X and Y be two independent real random variables with distribution Pn(\)
et Pn(u) respectively. Denote S = X + Y.

(i) Give the distribution of S.

(ii) For any s € N give the conditional distribution of X given S.
(i) Give E[X|S].
(iv) Check that Var (E[X|S]) < Var (X).

Exercise 17.8. Let X and Y be two independent real random variables with distribution Unif ([0, 1]).
Denote D = X — Y.

(i) Find the distribution of D.

(ii) For any d € R find the conditional distribution of X given D = d.
(iii) Compute E[X|D].
(iv) Check that Var (E [X|D]) < Var (X).

Exercice 17.9. Let X and Y be two independent real random variables with distribution Exp(\),
A >0 Denote S =X +Y.

(i) Find the distribution of S.

(ii) For any s € R find the conditional distribution of X given S = s.
(i) Compute E[X|S].
(iv) Check that Var (E [X|S]) < Var (X).

Exercise 17.10. Let X and Y be two random variables on (2, F,P). We assume that X is valued
in N and Y follows a exponential distribution with parameter 1 on R. In addition, we assume that
the conditional distribution of X given Y = y is the Poisson distribution with parameter y. Give
the distribution of (X,Y") and the conditional distribution of Y given X = x.



17.2 Solutions

Solution to Exercise 17.4
Let H be a o-field, H C F and assume that o(X) V A is independent of G. We want to show
that E[X|H V G] = E[X|H]. By ??-7?, we just need to prove that for all A € H V G, we have

E[1aX] = E[1AE [X| H]] . (173)

We first consider A of the form BN C, with B € H and C € G. Indeed, using the assumption, for
such measurable set, we get since 1gX is 0(X) V H-measurable, 1gE [ X| ] is H-measurable,

E[1aX] = E[1c1sX] = E[1c]E[IsX] = E[1c|E[IsE [ X|#]] = E[I.E[X|H]] . (174)
Now consider €& C F and C C F defined by
E={AcF :E[IaX]=E[IAE[X|H]]}, C={BNC:BeHand Ceg}. (175)

By (174) we get that C C £. Tt is straightforward to check that C is stable by finite intersection,
contains Q and o(C) = H V G. Therefore it is a m-system. Then we just need to show that & is a
A-system since by the 7-X theorem, it will imply that o(C) = HV G C £.

Let A € €. Using that E[X] = E[E[X|#H]], we get that A° € £. Consider now a sequence
(Ay)nen € EY such that for all n < p, A, N A, = (). Then for all N € N,

N N
E Loy 2 X] = Y E[laX]= Y ELLE[X|H)=E Ly oE[XIH] . (176)

Setting A = UfﬁVZOAk and using the dominated convergence theorem, we get

E[1xX] = E[LAE [X| H]] . (177)

Therefore A € £ and £ is a A-system. | |

Solution to Exercise 17.5
We first show the result when F is the identity. Namely, for all A € B(RPT9) and all w € 2,
we prove

PN (), A) =P((Y (w), Z) € A) = /Q IA(Y (w), 2)P(dw) - (178)

Consider first A of the form A = B x C, with B € B(R?) and C € B(R?). Then for all D € G, we
have since 1pY is G measurable and Z is independent of G

E[1pIa(Y,Z)] =E[1pls(Y)1c(Z)] = E [1p1s(Y)]E [1c(Z2)]
_E[1p1s(Y)]P(Z € C) = E[Ipls(Y)P(Z € C)] .

Therefore, we have almost surely

P29 (w, A) = E [1a(Y, 2)|G] (w) = 1g(Y(w))P(Z € C) = / 1a(Y (w), Z(@))P(d@) . (179)
Q
Consider now the two set € and C contained in F = B(RP™?) defined by
£ = {A e F : PYDI9(y A) :/ 1a(Y (w), Z(@))P(dw) , w-almost surely}
Q

C={BNC:BeB[RP)and Ce B(RY)}.



By (179), we get that C C £. Tt is straightforward to check that C is stable by finite intersection,
contains  and o(C) = H V G. Therefore it is a m-system. Then we just need to show that £ is a
A-system since by the m-A theorem, it will imply that o(C) =H VG C &.

Let A € £, A it is clear by definition that A € £. Consider now a sequence (A, ),en € CY such
that for all n < p, A, N A, = 0. Then by defition for all N € N, we have almost surely

N
p2)1o <w, UAk> - /Q LUy a (Y (@), Z(@)B(dS) - (180)
k=0

Therefore almost surely for all N € N (note the difference here), we get that (180) holds. Setting
A= UkN:OAk and using the monotone convergence theorem, we get

P20y ) = /Q LAY (w), Z(&))P(dD) - (181)

Then A € € and € is a A-system. So we have shown (178).
Let now F : R? x R? — R™ be a Borel function and X = F(Y, Z). Then for all A € B(R™)
and B € G, we have

E[1g1a(X)] =E [1glp-1(a)(Y; Z)] = /

15(w) / 1o oy (Y (@), Z(@))P(d2)P(dw)
Q Q

=/ Jls(w)/ IA(F(Y(w), Z(@)))P(dw)P(dw) -
Q Q

Therefore, we get the expected result for all A € B(R™) almost surely:

PXI9(w,A) =P (F(Y (w), Z) € A) .

Solution to Exercise 17.6

1. Note that Span(1,Y) is a finite dimensional linear subspace of H, hence is closed. So by
the characterization of the orthogonal projection, X := proj (X|Span (1,Y)) is given by

X=b+A(Y-E[Y]),
with b € RP, A € RP*7 such that
<x_ (B—l—A(Y—E[Y]),b+A(Y—]E[Y])> —0forall b€ RP, A € RPX7
which is equivalent to the two conditions
<X —b, b> =0, <X —A(Y -E[Y]),A(Y - E [Y])> =0 for all b€ R?, A € RPX7 .
This clearly yields b = I [X] for the first condition and since
E [(X ~A(Y —E[Y)TA(Y - E [Y})} — Trace (AE {(Y “E[Y)(X-A(Y -E [Y])TD ,
the second condition gives

Cov (Y7X —AY) —E [(Y ~E[Y)(X-A(Y -E[Y])’]=0.



which yields A = Cov (Y, X) Cov(Y)~!. Hence, as a result,
X = E[X] 4 Cov (X,Y) Cov(Y)! (Y —E[Y]).

Now observe that

Cov(X — X) = Cov(X — Cov (X, Y) Cov(Y)1Y) (182)
= Cov (X — Cov (X,Y) Cov(Y) Y, X) (183)
= Cov(X) — Cov (X,Y) Cov(Y) 'Cov (Y, X) . (184)

Hence we have (i) of Proposition 17.1.
2. Let us write R R
X=X+ (X-X),
and observe that since (X,Y) is Gaussian, so is (Y, (X - )A()), which is obtained by a
linear transform of it. Moreover since Cov (Y, X - )A() = 0 by definition of )A(, they are

independent. In the above decomposition, X is (Y )-measurable and (X —X) is independent
of 0(Y). This immediately gives

E[X|Y] = X = proj (X|Span (1,Y)) ,
that is, (ii) of Proposition 17.1. Moreover, for all w € Q and all A € B(RP),

PXY(Y(0),A) = [ 1a(R(w) + X() - X)) Bd)

But since X — X is a linear transform of (X,Y), it is a Gaussian vector, moreover it has mean
0, hence, for all w € §, the random vector w’ — X(w) +X(w') — X(w’') is N(X, Cov(X — X)).
Hence we obtain (iii) of Proposition 17.1.

Solution to Exercise 17.7

(i) For s € N, since {S = s} =J,_o{X =2,Y = s — 2} with X and Y independent,

s —(\Fp) 8 —(A+p)
P(S =s) = ;P(X =z)P(Y =s—x) = c . ZZ:;J (i))\zus_m =5 m (A+p)®.
(185)
Hence S ~ Pn(A + p).
(ii) For s € Nand z € {0,...,s},
P(X = ]S = 5) = DX _Pfsi_s)s —2) _ <;) (AAjL-u) (186)
so that the conditional law of X given S is the binomial law with parameters (s, )\i—u)

(iii) The expectation of a binomial random variable being equal to the product of its parameters

one deduces that E[X|S] = ﬁS.



(iv) The variance of a Poisson random variable being equal to its parameter,

N —LVar(X)<Var(X)
A Atp - '

Var (E [X|S]) = (Aiu)Qvar (S) =

Solution to Exercise 17.8

(i) Since X and Y are independent the density of (X,Y") is the product of their respective
marginal densities. Hence, for ¢ : R?> — R (measurable) bounded, using the change of
variable z = x — y in the integral over y, one has

E [(10<X7 D)] =K [(p(X7 X — Y)] = /]R2 (P($7 s — y)1{0§x§1}1{0§y§1}dxdy (187)
r—1
= / L{o<a<1} (/ o(z, z)dz) dx (188)
R T
= /2 1{max(0,z)Szgmin(l,z+1)}(p(xaZ)dmdz~ (189)
R

Hence the density of (X, D) is p(x,p)(z,d) = l{max(0,d)<z<min(1,d+1)} and the marginal
density of D

0ifd e (—o0, —1] U[1, +00)

pp(d) = / 1 {max(0,d)<z<min(1,d+1)}dT = 0d+1 dr=d+1ifde(-1,0 . (190)
R

[jde=1-difde (0,1)

(ii) For d € (—1,0] (resp. d € (0,1)) the conditional density p();’]?i)(g’d) of X given D = d is equal

resp. so that, conditionally on D = d, X is uniformly distributed
on [0,d + 1] (resp. [d,1]). Since P(D € (—o0,—1] U [1,+00)) = 0, it is not meaningfull to
consider d € (—oo, —1] U [1, +00).

" lio<z<dy1y ( 1{d§w§1})
1—d

(iii) The expectation of a random variable uniformly distributed on an interval being equal to
the middle of the interval, we deduce that E[X|D] = £+,

(iv) One has, using that X and Y are i.i.d.,

D+1
2

Var (X)

Var(IE[X|D]):Var( ):iVar(X—i—Y): < Var (X).

Solution to Exercise 17.10

Let us find first the law of (X,Y). Let A C N and B € B(R;). Then using that Y is o(Y)-
measurable and the conditional distribution of X given Y is a Poisson distribution with parameter
Y we get by Fubini’s theorem

P(X €AY € B) =E[La(X)15(Y)] = E[1p(Y)E[14(X)| Y] (191)

_E {13(5/) PXIY(A)} —E [13(1/) PXIY(A)} —E|13(¥)e " 3 Y*/(a))

z€A

(192)
= SRV @] = 3 [ 7/ @)y (198)

r€A T€A



Therefore the law of (X,Y) has density with respect to u ® A

(z,y) = (y/ (a!))e™ (194)

where p is the counting measure on N and A is the Lebesgue measure on R .
If we take the marginal with respect to X, we get that the distribution of X has for density

s ool (195)

therefore X follows a geometric distribution with parameter 1/2.
Finally, the conditional density of Y given X is given by for all y > 0 and z € N by

27 (y"/ (al))e™ . (196)

We recognize the Gamma distribution with parameters « + 1 and 1/2. Besides the conditional
expectation of Y given X is therefore

E[Y|X] = (X +1)/2. (197)




