17 Conditional expectation/distribution

Exercise 17.1. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} = \sigma(\{B_i : i \in I\})$, for $(B_i)_{i \in I}$ pairwise disjoint events and I a countable set. Show that \mathbb{P} -almost surely

$$\mathbb{E}\left[X \mid \mathcal{G}\right] = \sum_{i \in I} \mathbb{1}_{\mathsf{B}_i} \mathbb{E}\left[X \mid \mathsf{B}_i\right] . \tag{169}$$

Hint: First show that $\mathcal{G} = \{A \subset \Omega : \text{there exists } J \subset I \text{ with } A = \sqcup_{j \in J} B_j \}.$

Exercise 17.2. Let $(X_k)_{k\in\mathbb{N}^*}$ be a sequence of i.i.d. random variables valued in \mathbb{N} and integrable. Let $T_n = X_N$ where $N_n \sim \mathrm{U}(\{1,\ldots,n\})$ independent of $(X_k)_{k\in\mathbb{N}^*}$ for any $n \in \mathbb{N}^*$.

(1) Show that for any $i \in \mathbb{N}^*$:

$$\mathbb{P}(T_n = i | X_{1:n}) = \frac{i \sum_{k=1}^n \mathbb{1}\{X_k = i\}}{\sum_{k=1}^n X_k} , \qquad (170)$$

where $X_{1:n} = (X_1, \dots, X_n)$.

(2) Show that for any $i \in \mathbb{N}$, $\lim_{n \to +\infty} \mathbb{P}(T_n = i) = ip_i/m$ denoting $p_i = \mathbb{P}(X_1 = i)$ and $m = \mathbb{E}[X_1]$.

Exercise 17.3. Let $G \subset \mathcal{F}$ be a sub- σ field on $(\Omega, \mathcal{F}, \mathbb{P})$ and X a non-negative random variable. Denote $A = \{\omega : \mathbb{E}[X|G](\omega) > 0\}$.

- (1) Show that $X1_A = 0$ almost surely and deduce that $\{X > 0\} \subset A$. Hint: do not forget that X is supposed to be non-negative.
- (2) Show that A is the smallest set in G (for the inclusion and up to negligeable set) containing $\{X > 0\}$.

Exercise 17.4. Let X be an integrable real random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G}, \mathcal{H} two sub σ -field of \mathcal{F} . Denote by $\mathcal{H} \vee \mathcal{G} = \sigma(\mathcal{H} \cup \mathcal{G})$. Show that if $\sigma(X) \vee \mathcal{H} = \sigma(\sigma(X) \cup \mathcal{H})$ is independent of \mathcal{G} , $\mathbb{E}[X|\mathcal{H} \vee \mathcal{G}] = \mathbb{E}[X|\mathcal{H}]$. [Hint: first take an element of $\mathcal{H} \vee \mathcal{G}$ of the form $A \cup B$. Use the $\pi - \lambda$ -theorem to conclude.]

Exercise 17.5. Let X = F(Y, Z) where Y and Z are two random vectors on $(\Omega, \mathcal{F}, \mathbb{P})$ valued in \mathbb{R}^p and \mathbb{R}^q , respectively, and F is a Borel function. Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -field. Suppose moreover that Y is \mathcal{G} -measurable and Z is independent of \mathcal{G} , then the conditional distribution of X given \mathcal{G} is given by

$$\mathbb{P}^{X|\mathcal{G}}(\omega,\mathsf{A}) = \mathbb{P}(F(Y(\omega),Z) \in \mathsf{A}) \quad \text{for all } \omega \in \Omega \text{ and } \mathsf{A} \in \mathcal{Y} \;.$$

[Hint: first show in the case where $F = \mathbb{1}_{A} \times \mathbb{1}_{B}$ that $\mathbb{E}[X|\mathcal{G}] = \hat{F}(Y)$ where, for all y, $\hat{F}(y) = \mathbb{E}[F(y,Z)]$. Deduce the conditional distribution of (Y,Z) given \mathcal{G} and conclude.]

Exercise 17.6. An important application of the projection theorem in Hilbert spaces is the computation of the conditional mean for L^2 random variables. It also provides an easy way to compute the conditional distribution in a Gaussian context, where the following result holds.

Proposition 17.1. The Hilbert space of all \mathbb{R}^p -valued L^2 random variables is endowed with the scalar product

$$\langle U, V \rangle = \mathbb{E} \left[U^\top V \right]$$

In this context, Span $(1, \mathbf{Y})$ is seen as the linear space in L^2 obtained by a linear transformation of the random variables 1 and \mathbf{Y} , that is, we have

$$\operatorname{Span}(1, \mathbf{Y}) = \left\{ a + \mathbf{A} \mathbf{Y} : a \in \mathbb{R}^p, \ \mathbf{A} \in \mathbb{R}^{p \times q} \right\}$$
 (171)

$$= \{ b + \mathbf{A}(\mathbf{Y} - \mathbb{E}[\mathbf{Y}]) : b \in \mathbb{R}^p, \ \mathbf{A} \in \mathbb{R}^{p \times q} \} , \qquad (172)$$

where we set $b = a - \mathbf{A}\mathbb{E}[\mathbf{Y}]$. Let $p, q \geq 1$. Let \mathbf{X} and \mathbf{Y} be two jointly Gaussian vectors, respectively valued in \mathbb{R}^p and \mathbb{R}^q . Then the following assertions hold.

(i) If $Cov(\mathbf{Y})$ is invertible, then $\widehat{\mathbf{X}} := proj(\mathbf{X}|Span(1,\mathbf{Y}))$ is given by

$$\hat{\mathbf{X}} = \mathbb{E}[\mathbf{X}] + \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \operatorname{Cov}(\mathbf{Y})^{-1} (\mathbf{Y} - \mathbb{E}[\mathbf{Y}]),$$

and

$$Cov(\mathbf{X} - \widehat{\mathbf{X}}) = Cov(\mathbf{X}) - Cov(\mathbf{X}, \mathbf{Y}) Cov(\mathbf{Y})^{-1} Cov(\mathbf{Y}, \mathbf{X})$$

where here Span (...) is understood as the space of \mathbb{R}^p -valued L^2 random variables obtained by linear transformations of ... and proj $(\cdot|...)$ is understood as the projection onto this space seen as a (closed) subspace of the Hilbert space of all \mathbb{R}^p -valued L^2 random variables.

(ii) We have

$$\mathbb{E}\left[\left.\mathbf{X}\right|\mathbf{Y}\right] = \operatorname{proj}\left(\left.\mathbf{X}\right|\operatorname{Span}\left(1,\mathbf{Y}\right)\right) \; .$$

(iii) Let $\widehat{\mathbf{X}} = \mathbb{E} [\mathbf{X} | \mathbf{Y}]$. Then

$$\mathrm{Cov}(\mathbf{X} - \widehat{\mathbf{X}}) = \mathbb{E}\left[\mathbf{X}(\mathbf{X} - \widehat{\mathbf{X}})^T\right] = \mathbb{E}\left[(\mathbf{X} - \widehat{\mathbf{X}})\mathbf{X}^T\right]$$

and the conditional distribution of **X** given **Y** is given by $N(\widehat{\mathbf{X}}, Cov(\mathbf{X} - \widehat{\mathbf{X}}))$.

Let \mathbf{X} and \mathbf{Y} be as in Proposition 17.1.

- (1) Use the characterization of the orthogonal projection to prove Proposition 17.1(i).
- (2) In order to prove Proposition 17.1(ii) and (iii), use properties of the conditional distribution and expectation.

17.1 Conditional distribution

Exercise 17.7. Let X and Y be two independent real random variables with distribution $\mathbf{Pn}(\lambda)$ et $\mathbf{Pn}(\mu)$ respectively. Denote S = X + Y.

- (i) Give the distribution of S.
- (ii) For any $s \in \mathbb{N}$ give the conditional distribution of X given S.
- (iii) Give $\mathbb{E}[X|S]$.
- (iv) Check that $Var(\mathbb{E}[X|S]) \leq Var(X)$.

Exercise 17.8. Let X and Y be two independent real random variables with distribution $\mathbf{Unif}([0,1])$. Denote D=X-Y.

- (i) Find the distribution of D.
- (ii) For any $d \in \mathbb{R}$ find the conditional distribution of X given D = d.
- (iii) Compute $\mathbb{E}[X|D]$.
- (iv) Check that $Var(\mathbb{E}[X|D]) \leq Var(X)$.

Exercice 17.9. Let X and Y be two independent real random variables with distribution $\mathbf{Exp}(\lambda)$, $\lambda > 0$ Denote S = X + Y.

- (i) Find the distribution of S.
- (ii) For any $s \in \mathbb{R}$ find the conditional distribution of X given S = s.
- (iii) Compute $\mathbb{E}[X|S]$.
- (iv) Check that $Var(\mathbb{E}[X|S]) \leq Var(X)$.

Exercise 17.10. Let X and Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that X is valued in \mathbb{N} and Y follows a exponential distribution with parameter 1 on \mathbb{R} . In addition, we assume that the conditional distribution of X given Y = y is the Poisson distribution with parameter y. Give the distribution of (X, Y) and the conditional distribution of Y given X = x.

17.2 Solutions

Solution to Exercise 17.4

Let \mathcal{H} be a σ -field, $\mathcal{H} \subset \mathcal{F}$ and assume that $\sigma(X) \vee \mathcal{H}$ is independent of \mathcal{G} . We want to show that $\mathbb{E}[X|\mathcal{H} \vee \mathcal{G}] = \mathbb{E}[X|\mathcal{H}]$. By ??-??, we just need to prove that for all $A \in \mathcal{H} \vee \mathcal{G}$, we have

$$\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}X\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mathbb{E}\left[X\right|\mathcal{H}\right]\right]. \tag{173}$$

We first consider A of the form $B \cap C$, with $B \in \mathcal{H}$ and $C \in \mathcal{G}$. Indeed, using the assumption, for such measurable set, we get since 1_BX is $\sigma(X) \vee \mathcal{H}$ -measurable, $1_B\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable,

$$\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}X\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{C}}\mathbb{1}_{\mathsf{B}}X\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{C}}\right]\mathbb{E}\left[\mathbb{1}_{\mathsf{B}}X\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{C}}\right]\mathbb{E}\left[\mathbb{1}_{\mathsf{B}}\mathbb{E}\left[X\right|\mathcal{H}\right]\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mathbb{E}\left[X\right|\mathcal{H}\right]\right] . \tag{174}$$

Now consider $\mathcal{E} \subset \mathcal{F}$ and $\mathcal{C} \subset \mathcal{F}$ defined by

$$\mathcal{E} = \{ A \in \mathcal{F} : \mathbb{E} [\mathbb{1}_A X] = \mathbb{E} [\mathbb{1}_A \mathbb{E} [X | \mathcal{H}]] \}, \quad \mathcal{C} = \{ B \cap C : B \in \mathcal{H} \text{ and } C \in \mathcal{G} \}.$$
 (175)

By (174) we get that $\mathcal{C} \subset \mathcal{E}$. It is straightforward to check that \mathcal{C} is stable by finite intersection, contains Ω and $\sigma(\mathcal{C}) = \mathcal{H} \vee \mathcal{G}$. Therefore it is a π -system. Then we just need to show that \mathcal{E} is a λ -system since by the π - λ theorem, it will imply that $\sigma(\mathcal{C}) = \mathcal{H} \vee \mathcal{G} \subset \mathcal{E}$.

Let $A \in \mathcal{E}$. Using that $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]]$, we get that $A^c \in \mathcal{E}$. Consider now a sequence $(A_n)_{n \in \mathbb{N}} \in \mathcal{E}^{\mathbb{N}}$ such that for all n < p, $A_n \cap A_p = \emptyset$. Then for all $N \in \mathbb{N}$,

$$\mathbb{E}\left[\mathbb{1}_{\cup_{k=0}^{N}\mathsf{A}_{k}}X\right] = \sum_{n=1}^{N} \mathbb{E}\left[\mathbb{1}_{\mathsf{A}_{k}}X\right] = \sum_{n=1}^{N} \mathbb{E}\left[\mathbb{1}_{\mathsf{A}_{k}}\mathbb{E}\left[X|\mathcal{H}\right]\right] = \mathbb{E}\left[\mathbb{1}_{\cup_{k=0}^{N}\mathsf{A}_{k}}\mathbb{E}\left[X|\mathcal{H}\right]\right]. \tag{176}$$

Setting $A = \bigcup_{k=0}^{N} A_k$ and using the dominated convergence theorem, we get

$$\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}X\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mathbb{E}\left[X|\mathcal{H}\right]\right]. \tag{177}$$

Therefore $A \in \mathcal{E}$ and \mathcal{E} is a λ -system. Back to Exercise 17.4

Solution to Exercise 17.5

We first show the result when F is the identity. Namely, for all $A \in \mathcal{B}(\mathbb{R}^{p+q})$ and all $\omega \in \Omega$, we prove

$$\mathbb{P}^{(Y,Z)|\mathcal{G}}(\omega,\mathsf{A}) = \mathbb{P}((Y(\omega),Z)\in\mathsf{A}) = \int_{\Omega} \mathbb{1}_{\mathsf{A}}(Y(\omega),Z)\mathbb{P}(\mathrm{d}\tilde{\omega}) \ . \tag{178}$$

Consider first A of the form $A = B \times C$, with $B \in \mathcal{B}(\mathbb{R}^p)$ and $C \in \mathcal{B}(\mathbb{R}^q)$. Then for all $D \in \mathcal{G}$, we have since $\mathbb{1}_D Y$ is \mathcal{G} measurable and Z is independent of \mathcal{G}

$$\begin{split} \mathbb{E}\left[\mathbb{1}_{\mathsf{D}}\mathbb{1}_{\mathsf{A}}(Y,Z)\right] &= \mathbb{E}\left[\mathbb{1}_{\mathsf{D}}\mathbb{1}_{\mathsf{B}}(Y)\mathbb{1}_{\mathsf{C}}(Z)\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{D}}\mathbb{1}_{\mathsf{B}}(Y)\right]\mathbb{E}\left[\mathbb{1}_{\mathsf{C}}(Z)\right] \\ &= \mathbb{E}\left[\mathbb{1}_{\mathsf{D}}\mathbb{1}_{\mathsf{B}}(Y)\right]\mathbb{P}\left(Z \in \mathsf{C}\right) = \mathbb{E}\left[\mathbb{1}_{\mathsf{D}}\mathbb{1}_{\mathsf{B}}(Y)\mathbb{P}\left(Z \in \mathsf{C}\right)\right] \;. \end{split}$$

Therefore, we have almost surely

$$\mathbb{P}^{(Y,Z)|\mathcal{G}}(\omega,\mathsf{A}) = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}(Y,Z)|\mathcal{G}\right](\omega) = \mathbb{1}_{\mathsf{B}}(Y(\omega))\mathbb{P}\left(Z\in\mathsf{C}\right) = \int_{\Omega}\mathbb{1}_{\mathsf{A}}(Y(\omega),Z(\tilde{\omega}))\mathbb{P}(\mathrm{d}\tilde{\omega}) \ . \tag{179}$$

Consider now the two set \mathcal{E} and \mathcal{C} contained in $\mathcal{F} = \mathcal{B}(\mathbb{R}^{p+q})$ defined by

$$\mathcal{E} = \left\{ \mathsf{A} \in \mathcal{F} \, : \, \mathbb{P}^{(Y,Z)|\mathcal{G}}(\omega,\mathsf{A}) = \int_{\Omega} \mathbb{1}_{\mathsf{A}}(Y(\omega),Z(\tilde{\omega}))\mathbb{P}(\mathrm{d}\tilde{\omega}) \;, \omega\text{-almost surely} \right\}$$

$$\mathcal{C} = \left\{ \mathsf{B} \cap \mathsf{C} \, : \, \mathsf{B} \in \mathcal{B}(\mathbb{R}^p) \text{ and } \mathsf{C} \in \mathcal{B}(\mathbb{R}^q) \right\} \,.$$

By (179), we get that $\mathcal{C} \subset \mathcal{E}$. It is straightforward to check that \mathcal{C} is stable by finite intersection, contains Ω and $\sigma(\mathcal{C}) = \mathcal{H} \vee \mathcal{G}$. Therefore it is a π -system. Then we just need to show that \mathcal{E} is a λ -system since by the π - λ theorem, it will imply that $\sigma(\mathcal{C}) = \mathcal{H} \vee \mathcal{G} \subset \mathcal{E}$.

Let $A \in \mathcal{E}$, A it is clear by definition that $A^c \in \mathcal{E}$. Consider now a sequence $(A_n)_{n \in \mathbb{N}} \in \mathcal{C}^{\mathbb{N}}$ such that for all n < p, $A_n \cap A_p = \emptyset$. Then by defition for all $N \in \mathbb{N}$, we have almost surely

$$\mathbb{P}^{(Y,Z)|\mathcal{G}}\left(\omega, \bigcup_{k=0}^{N} \mathsf{A}_{k}\right) = \int_{\Omega} \mathbb{1}_{\bigcup_{k=0}^{N} \mathsf{A}_{k}}(Y(\omega), Z(\tilde{\omega})) \mathbb{P}(\mathrm{d}\tilde{\omega}) . \tag{180}$$

Therefore almost surely for all $N \in \mathbb{N}$ (note the difference here), we get that (180) holds. Setting $A = \bigcup_{k=0}^{N} A_k$ and using the monotone convergence theorem, we get

$$\mathbb{P}^{(Y,Z)|\mathcal{G}}(\omega,\mathsf{A}) = \int_{\Omega} \mathbb{1}_{\mathsf{A}}(Y(\omega),Z(\tilde{\omega}))\mathbb{P}(\mathrm{d}\tilde{\omega}) . \tag{181}$$

Then $A \in \mathcal{E}$ and \mathcal{E} is a λ -system. So we have shown (178).

Let now $F: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^m$ be a Borel function and X = F(Y, Z). Then for all $A \in \mathcal{B}(\mathbb{R}^m)$ and $B \in \mathcal{G}$, we have

$$\begin{split} \mathbb{E}\left[\mathbbm{1}_{\mathsf{B}}\mathbbm{1}_{\mathsf{A}}(X)\right] &= \mathbb{E}\left[\mathbbm{1}_{\mathsf{B}}\mathbbm{1}_{F^{-1}(\mathsf{A})}(Y,Z)\right] = \int_{\Omega}\mathbbm{1}_{\mathsf{B}}(\omega)\int_{\Omega}\mathbbm{1}_{F^{-1}(\mathsf{A})}(Y(\omega),Z(\tilde{\omega}))\mathbb{P}(\mathrm{d}\tilde{\omega})\mathbb{P}(\mathrm{d}\omega) \\ &= \int_{\Omega}\mathbbm{1}_{\mathsf{B}}(\omega)\int_{\Omega}\mathbbm{1}_{\mathsf{A}}(F(Y(\omega),Z(\tilde{\omega})))\mathbb{P}(\mathrm{d}\tilde{\omega})\mathbb{P}(\mathrm{d}\omega) \;. \end{split}$$

Therefore, we get the expected result for all $A \in \mathcal{B}(\mathbb{R}^m)$ almost surely:

$$\mathbb{P}^{X|\mathcal{G}}(\omega, \mathsf{A}) = \mathbb{P}\left(F(Y(\omega), Z) \in \mathsf{A}\right)$$
.

Back to Exercise 17.5

Solution to Exercise 17.6

1. Note that Span $(1, \mathbf{Y})$ is a finite dimensional linear subspace of H, hence is closed. So by the characterization of the orthogonal projection, $\hat{\mathbf{X}} := \operatorname{proj} (\mathbf{X} | \operatorname{Span} (1, \mathbf{Y}))$ is given by

$$\widehat{\mathbf{X}} = \widehat{b} + \widehat{\mathbf{A}}(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right]) ,$$

with $\hat{b} \in \mathbb{R}^p$, $\hat{\mathbf{A}} \in \mathbb{R}^{p \times q}$ such that

$$\left\langle \mathbf{X} - (\hat{b} + \hat{\mathbf{A}}(\mathbf{Y} - \mathbb{E}[\mathbf{Y}]), b + \mathbf{A}(\mathbf{Y} - \mathbb{E}[\mathbf{Y}]) \right\rangle = 0 \text{ for all } b \in \mathbb{R}^p, \ \mathbf{A} \in \mathbb{R}^{p \times q},$$

which is equivalent to the two conditions

$$\langle \mathbf{X} - \hat{b}, b \rangle = 0, \ \langle \mathbf{X} - \hat{\mathbf{A}} (\mathbf{Y} - \mathbb{E} [\mathbf{Y}]), \mathbf{A} (\mathbf{Y} - \mathbb{E} [\mathbf{Y}]) \rangle = 0 \text{ for all } b \in \mathbb{R}^p, \ \mathbf{A} \in \mathbb{R}^{p \times q}$$
.

This clearly yields $\hat{b} = \mathbb{E}[\mathbf{X}]$ for the first condition and since

$$\mathbb{E}\left[(\mathbf{X} - \hat{\mathbf{A}}(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right])^T \mathbf{A}(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right]) \right] = \operatorname{Trace}\left(\mathbf{A}\mathbb{E}\left[(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right])(\mathbf{X} - \hat{\mathbf{A}}(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right])^T \right] \right) ,$$

the second condition gives

$$\operatorname{Cov}\left(\mathbf{Y}, \mathbf{X} - \hat{\mathbf{A}}\mathbf{Y}\right) = \mathbb{E}\left[\left(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right]\right)\left(\mathbf{X} - \hat{\mathbf{A}}\left(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right]\right)^{T}\right] = 0.$$

which yields $\hat{\mathbf{A}} = \text{Cov}(\mathbf{Y}, \mathbf{X}) \text{Cov}(\mathbf{Y})^{-1}$. Hence, as a result,

$$\hat{\mathbf{X}} = \mathbb{E}[\mathbf{X}] + \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \operatorname{Cov}(\mathbf{Y})^{-1} (\mathbf{Y} - \mathbb{E}[\mathbf{Y}]).$$

Now observe that

$$Cov(\mathbf{X} - \widehat{\mathbf{X}}) = Cov(\mathbf{X} - Cov(\mathbf{X}, \mathbf{Y}) Cov(\mathbf{Y})^{-1} \mathbf{Y})$$
(182)

$$= \operatorname{Cov} \left(\mathbf{X} - \operatorname{Cov} \left(\mathbf{X}, \mathbf{Y} \right) \operatorname{Cov} (\mathbf{Y})^{-1} \mathbf{Y}, \mathbf{X} \right)$$
 (183)

$$= \operatorname{Cov}(\mathbf{X}) - \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \operatorname{Cov}(\mathbf{Y})^{-1} \operatorname{Cov}(\mathbf{Y}, \mathbf{X}) . \tag{184}$$

Hence we have (i) of Proposition 17.1.

2. Let us write

$$\mathbf{X} = \widehat{\mathbf{X}} + \left(\mathbf{X} - \widehat{\mathbf{X}}\right)$$
,

and observe that since (\mathbf{X}, \mathbf{Y}) is Gaussian, so is $(\mathbf{Y}, \left(\mathbf{X} - \widehat{\mathbf{X}}\right))$, which is obtained by a linear transform of it. Moreover since $\operatorname{Cov}\left(\mathbf{Y}, \mathbf{X} - \widehat{\mathbf{X}}\right) = 0$ by definition of $\widehat{\mathbf{X}}$, they are independent. In the above decomposition, $\widehat{\mathbf{X}}$ is $\sigma(\mathbf{Y})$ -measurable and $(\mathbf{X} - \widehat{\mathbf{X}})$ is independent of $\sigma(\mathbf{Y})$. This immediately gives

$$\mathbb{E}\left[\mathbf{X}|\mathbf{Y}\right] = \widehat{\mathbf{X}} = \operatorname{proj}\left(\mathbf{X}|\operatorname{Span}\left(1,\mathbf{Y}\right)\right),$$

that is, (ii) of Proposition 17.1. Moreover, for all $\omega \in \Omega$ and all $A \in \mathcal{B}(\mathbb{R}^p)$,

$$\mathbb{P}^{\mathbf{X}|\mathbf{Y}}(\mathbf{Y}(\omega), \mathsf{A}) = \int \mathbb{1}_{\mathsf{A}}(\widehat{\mathbf{X}}(\omega) + \mathbf{X}(\omega') - \widehat{\mathbf{X}}(\omega')) \; \mathbb{P}(\mathrm{d}\omega') \; .$$

But since $\mathbf{X} - \widehat{\mathbf{X}}$ is a linear transform of (\mathbf{X}, \mathbf{Y}) , it is a Gaussian vector, moreover it has mean 0, hence, for all $\omega \in \Omega$, the random vector $\omega' \mapsto \widehat{\mathbf{X}}(\omega) + \mathbf{X}(\omega') - \widehat{\mathbf{X}}(\omega')$ is $N(\widehat{\mathbf{X}}, \text{Cov}(\mathbf{X} - \widehat{\mathbf{X}}))$. Hence we obtain (iii) of Proposition 17.1.

Back to Exercise 17.6

Solution to Exercise 17.7

(i) For $s \in \mathbb{N}$, since $\{S = s\} = \bigcup_{x=0}^{s} \{X = x, Y = s - x\}$ with X and Y independent,

$$\mathbb{P}(S=s) = \sum_{x=0}^{s} \mathbb{P}(X=x) \mathbb{P}(Y=s-x) = \frac{e^{-(\lambda+\mu)}}{s!} \sum_{x=0}^{s} \binom{s}{x} \lambda^{x} \mu^{s-x} = \frac{e^{-(\lambda+\mu)}}{s!} (\lambda+\mu)^{s}. \tag{185}$$

Hence $S \sim \mathbf{Pn}(\lambda + \mu)$.

(ii) For $s \in \mathbb{N}$ and $x \in \{0, \dots, s\}$,

$$\mathbb{P}(X=x|S=s) = \frac{\mathbb{P}(X=s,Y=s-x)}{\mathbb{P}(S=s)} = \binom{s}{x} \frac{\lambda^x \mu^{s-x}}{(\lambda+\mu)^s}$$
(186)

so that the conditional law of X given S is the binomial law with parameters $(s, \frac{\lambda}{\lambda + \mu})$.

(iii) The expectation of a binomial random variable being equal to the product of its parameters one deduces that $\mathbb{E}[X|S] = \frac{\lambda}{\lambda + \mu} S$.

(iv) The variance of a Poisson random variable being equal to its parameter,

$$\operatorname{Var}\left(\mathbb{E}\left[X|S\right]\right) = \left(\frac{\lambda}{\lambda + \mu}\right)^{2} \operatorname{Var}\left(S\right) = \frac{\lambda^{2}}{\lambda + \mu} = \frac{\lambda}{\lambda + \mu} \operatorname{Var}\left(X\right) \le \operatorname{Var}\left(X\right).$$

Back to Exercise 17.7

Solution to Exercise 17.8

(i) Since X and Y are independent the density of (X,Y) is the product of their respective marginal densities. Hence, for $\varphi: \mathbb{R}^2 \to \mathbb{R}$ (measurable) bounded, using the change of variable z = x - y in the integral over y, one has

$$\mathbb{E}\left[\varphi(X,D)\right] = \mathbb{E}\left[\varphi(X,X-Y)\right] = \int_{\mathbb{R}^2} \varphi(x,s-y) 1_{\{0 \le x \le 1\}} 1_{\{0 \le y \le 1\}} dx dy \tag{187}$$

$$= \int_{\mathbb{R}} 1_{\{0 \le x \le 1\}} \left(- \int_{x}^{x-1} \varphi(x, z) dz \right) dx \tag{188}$$

$$= \int_{\mathbb{R}^2} 1_{\{\max(0,z) \le x \le \min(1,z+1)\}} \varphi(x,z) dx dz.$$
 (189)

Hence the density of (X, D) is $p_{(X,D)}(x,d) = 1_{\{\max(0,d) \le x \le \min(1,d+1)\}}$ and the marginal density of D

$$p_D(d) = \int_{\mathbb{R}} 1_{\{\max(0,d) \le x \le \min(1,d+1)\}} dx = \begin{cases} 0 \text{ if } d \in (-\infty,-1] \cup [1,+\infty) \\ \int_0^{d+1} dx = d+1 \text{ if } d \in (-1,0] \\ \int_d^1 dx = 1 - d \text{ if } d \in (0,1) \end{cases}$$
(190)

- (ii) For $d \in (-1,0]$ (resp. $d \in (0,1)$) the conditional density $\frac{p_{(X,D)}(x,d)}{p_D(d)}$ of X given D=d is equal to $\frac{1\{0 \le x \le d+1\}}{d+1}$ (resp. $\frac{1\{d \le x \le 1\}}{1-d}$) so that, conditionally on D=d, X is uniformly distributed on [0,d+1] (resp. [d,1]). Since $\mathbb{P}(D \in (-\infty,-1] \cup [1,+\infty)) = 0$, it is not meaningfull to consider $d \in (-\infty,-1] \cup [1,+\infty)$.
- (iii) The expectation of a random variable uniformly distributed on an interval being equal to the middle of the interval, we deduce that $\mathbb{E}[X|D] = \frac{D+1}{2}$.
- (iv) One has, using that X and Y are i.i.d.,

$$\operatorname{Var}\left(\mathbb{E}\left[X|D\right]\right) = \operatorname{Var}\left(\frac{D+1}{2}\right) = \frac{1}{4}\operatorname{Var}\left(X+Y\right) = \frac{\operatorname{Var}\left(X\right)}{2} \leq \operatorname{Var}\left(X\right).$$

Back to Exercise 17.8

Solution to Exercise 17.10

Let us find first the law of (X,Y). Let $A \subset \mathbb{N}$ and $B \in \mathcal{B}(\mathbb{R}_+)$. Then using that Y is $\sigma(Y)$ -measurable and the conditional distribution of X given Y is a Poisson distribution with parameter Y we get by Fubini's theorem

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{E}\left[\mathbb{1}_{A}(X)\mathbb{1}_{B}(Y)\right] = \mathbb{E}\left[\mathbb{1}_{B}(Y)\mathbb{E}\left[\mathbb{1}_{A}(X)|Y\right]\right] \tag{191}$$

$$= \mathbb{E}\left[\mathbb{1}_{B}(Y)\mathbb{P}^{X|Y}(A)\right] = \mathbb{E}\left[\mathbb{1}_{B}(Y)\mathbb{P}^{X|Y}(A)\right] = \mathbb{E}\left[\mathbb{1}_{B}(Y)e^{-Y}\sum_{x \in A}Y^{x}/(x!)\right]$$

$$= \sum_{x \in A}\mathbb{E}\left[\mathbb{1}_{B}(Y)e^{-Y}Y^{x}/(x!)\right] = \sum_{x \in A}\int_{B}(y^{x}/(x!))e^{-2y}dy.$$
(193)

Therefore the law of (X,Y) has density with respect to $\mu \otimes \lambda$

$$(x,y) \mapsto (y^x/(x!))e^{-2y}$$
, (194)

where μ is the counting measure on \mathbb{N} and λ is the Lebesgue measure on \mathbb{R}_+ .

If we take the marginal with respect to X, we get that the distribution of X has for density

$$x \mapsto 2^{-x-1} \,, \tag{195}$$

therefore X follows a geometric distribution with parameter 1/2.

Finally, the conditional density of Y given X is given by for all $y \geq 0$ and $x \in \mathbb{N}$ by

$$2^{x+1}(y^x/(x!))e^{-2y}. (196)$$

We recognize the Gamma distribution with parameters x + 1 and 1/2. Besides the conditional expectation of Y given X is therefore

$$\mathbb{E}[Y|X] = (X+1)/2. \tag{197}$$

Back to Exercise 17.10