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Part I

Introduction to Linear
Models





Chapter 1

Simple Linear Regression

1.1 Introduction

Originally, the term “regression” was coined by Sir Francis Galton. In 1885, while
working on heredity, he sought to explain the height of sons in terms of their
fathers. He noted that when a father was taller than mediocrity (average), his
son tended to be shorter than he was, and, inversely, when the father was shorter
than mediocrity, his son tended to be taller than him. These results led him to
consider his theory of regression toward mediocrity. Nevertheless, the analysis of
causality between several variables is much older and dates back from the middle
of the xviiith century. In 1757, R. Boscovich, proposed a method minimizing the
sum of absolute values between a model and observations. Later, Legendre, in his
famous 1805 article “On the Determination of the Orbit of Comets”, introduced
the method of least squares estimation. At the same time, Gauss published his
work on the motion of celestial bodies thus developing the least squares method,
which he argued to have used as early as 1795.
In this chapter, we introduce simple linear regression which can be seen as a sta-
tistical method for modeling a linear relationship between an explanatory variable
(denoted X) and a response variable (denoted Y ). This chapter presents a sim-
ple case of linear regression in order to better understand what is at stake, the
problems raised, and the answers given.
This example uses data provided by UR2PI and CIRAD forest. When foresters
want to assess a forest’s health, they often consider the height of its trees. The
taller the trees, the more productive the forest or plantation and we want to
quantify production by wood volume. We therefore need to know the tree height
in order to calculate the wood volume of the forest. We can do so by using a
“truncated cone” formula. Nevertheless, measuring a 20 meter-tall tree is not
easy and requires a dendrometer which measures the angle between the ground
and the top of the tree. It therefore requires a clear view of the tree top and to be
able to stand back far enough from the tree in order to obtain a precise measure.
In many cases, it is impossible to measure the height because these two conditions
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are not met or the forester may not even have a dendrometer. We therefore need
to estimate the height using a simpler measure, that of the circumference at 1.3
meter from the ground.

We collect data on eucalyptus in a plantation and want to build a model predict-
ing the height from these observations. The planted areas are huge and spending
a lot of time measuring is out of question. Therefore, estimating height by cir-
cumference is a satisfactory method which allows us to predict stand volume. In
this plantation area, we have measured n=1429 pairs of circumference-height. The
first 5 individuals can be found below:

Individual ht circ

1 18.25 36
2 19.75 42
3 16.50 33
4 18.25 39
5 19.50 43

Table 1.1 – Height and circumference (ht and circ) of the first 5 eucalyptus.

We want to explain the height by circumference. The data is plotted prior to
modeling. Each of the points plotted in 1.1 is a circumference/height data pair for
one tree.
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Figure 1.1 – Plot of n = 1429 measured eucalyptus.

To predict the height as a function of circumference, we look for a function f such
as

yi ≈ f(xi)

for each individual i ∈ {1, . . . , 1429}.
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1.2 Mathematical Modeling

In order to quantify the symbol ≈, we are going to choose a class of functions
G. This class represents all the possible functions of fit for modeling height as a
function of circumference. Then we look for the function G which is as close as
possible to the data according to a cost function. This is expressed:

argmin
f∈G

n∑
i=1

l(yi − f(xi)), (1.1)

where n represents the number of individuals to analyze and l(.) is called the loss
function and G a set of given functions. In the following section, we will discuss
how to select the loss function and set G.

1.2.1 Selecting the loss function

There are many loss functions l(.), but the two main ones are as follows:

� l(u) = u2 quadratic loss;

� l(u) = |u| absolute loss.

These two functions are plotted in the following figure:

−2 0−1 1 2

0
1

2
3

4

u

l(u) 

Figure 1.2 – Plot of absolute (dashed line) and quadratic (solid line) cost.

These functions are positive and symmetric, therefore producing the same value
as the output whether the error is positive or negative, and canceling each other
out when u is equal to zero. As can be seen in figure 1.2, compared to the absolute
loss, quadratic loss gives greater importance to points which are further from the
line of best fit, the distance being squared.
Despite its non-robust nature, the quadratic cost is the most commonly-used cost
for several reasons: historical, ease of calculation, mathematical properties. In
1800, there were no computers and the quadratic cost made it possible to explicitly
calculate estimates from data. Concerning the use of other cost functions, Gauss
(1809) said: “But of all these principles, least squares is the simplest; with the
others, we would need to carry out more complex calculations”.
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1.2.2 Selecting the set of functions

If the class G is too large, for example the class of continuous functions (C0), then
a large number of these functions minimizes the criterion (1.1). As a result, all the
functions of the class go through all the points (interpolation) and, when possible,
cancel the quantity

∑n
i=1 l(yi − f(xi)). The class of continuous functions may be

too large.
We will start with the straight line and the simplest class G is the set of affine
functions. By abuse of notation, we use the term linear functions. Other classes of
functions can be chosen and this selection is usually given by pre-existing knowl-
edge of the phenomenon and/or examining the data.
Simple linear regression analysis always starts by plotting the data (x, y). This
plot allows us to find out whether a linear model is appropriate.

1.3 Statistical Model

When fiting the data to a straight line, we implicitly assume that

Y = β1 + β2X.

In the tree example, we assume a model where height depends linearly on cir-
conference. We clearly know that not all the observations will lie on the straight
line. We cannot realistically believe that height of an eucalyptus linearly depends
its circonference. The observations depend on instrument precision as well as the
operator, and we may find that for identical values of the variable X, we observe
different values of Y. We thus assume that height depends linearly on circonference
but that this relationship is affected by an “error”. We assume in fact that the
data can be modeled as follows:

Y = β1 + β2X + ε. (1.2)

The equation (1.2) is called a linear regression model and in the case at hand,
a simple linear regression model. βj , the “model parameters” (intercept and
regression coefficient), are fixed but unknown and we want to estimate them. The
quantity denoted ε or, the “error”, is random and unknown.
In order to estimate the unknown model parameters, we measure a single explana-
tory or independent variable X and a response or dependent variable Y as part of
a simple regression. Variable X is often taken to be fixed, unlike Y. We therefore
measure n observations of variable X, denoted xi, where i varies from 1 to n, and
n values of the explanatory variable Y denoted yi.
We assume that we have collected n data pairs (xi, yi) where yi is the realization of
random variable Yi. By abuse of notation, we blur the distinction between random
variable Yi and its realization, observation yi. We also write εi, referring to both
the random variable and its realization. According to the model (1.2), we can
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write

yi = β1 + β2xi + εi, i = 1, · · · , n

where

� xi are known, fixed values;

� model parameters βj , j = 1, 2 are unknown;

� εi are realizations of an unknown random variable;

� yi are observations of a random variable.

1.4 Least Squares Estimators

Definition 1.1 (OLS estimators )
The estimators of β1 and β2, estimators β̂1 and β̂2, are referred to as ordinary
least squares (OLS) estimators, and are obtained by minimizing the expression

S(β1, β2) =

n∑
i=1

(yi − β1 − β2xi)
2 = ∥Y − β11− β2X∥2,

where 1 is a vector in Rn where all the coefficients are equal to 1. The estimators
can also be written as follows:

(β̂1, β̂2) = argmin
(β1,β2)∈R×R

S(β1, β2).

The function S(β1, β2) is strictly convex. If there is a singular point, then it
corresponds to the unique minimum.Solving the partial derivatives to 0, we obtain

∂S(β̂1, β̂2)

∂β1
= −2

n∑
i=1

(yi − β̂1 − β̂2xi) = 0,

∂S(β̂1, β̂2)

∂β2
= −2

n∑
i=1

xi(yi − β̂1 − β̂2xi) = 0.

The first equation yields

β̂1n+ β̂2

n∑
i=1

xi =

n∑
i=1

yi

and we have the estimator for the intercept

β̂1 = ȳ − β̂2x̄, (1.3)
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where x̄ =
∑n

i=1 xi/n. The second equation yields

β̂1

n∑
i=1

xi + β̂2

n∑
i=1

x2
i =

n∑
i=1

xiyi.

Replacing β̂1 by its expression (1.3) we get

β̂2 =

∑
xiyi −

∑
xiȳ∑

x2
i −

∑
xix̄

,

Using that the sum
∑

(xi − x̄) is zero, we get

β̂2 =

∑
xi(yi − ȳ)∑
xi(xi − x̄)

=

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)(xi − x̄)

=

∑
(xi − x̄)yi∑
(xi − x̄)2

. (1.4)

To obtain this result, we assume that there are at least two different xi. This
hypothesis, denoted H1 is formulated as xi ̸= xj , for at least two individuals. This

ensures that the coefficient estimators β̂1, β̂2 are unique.
With β̂1 and β̂2, we can estimate the regression line using the formula

Ŷ = β̂1 + β̂2X.

We plot the original points and the regression line. The regression line goes through
the center of gravity (x̄, ȳ) of the data as shown in equation(1.3).
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Figure 1.3 – Plot of the circumference/height data and the fitted line obtained.

We carried out an experiment and observed n values (xi, yi). From these n values,
we obtained an estimate of β1 and β2. If we carry out another experiment, we
would observe other data pairs (xi, yi) and would obtain another estimate of β1

and β2. Estimators depend on observations and therefore vary with the data. The
true values of β1 and β2 on the other hand are unknown and do not vary.

Definition 1.2 (Estimation/prediction)

With the n values (xi, yi), we estimate β̂1 and β̂2.
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� if we use one xi to calculate ŷi = β̂1 + β̂2xi we say that ŷi is an estimated
value.

� if we use a new x∗ to calculate ŷ∗ = β̂1+ β̂2x
∗ we say that ŷ∗ is an predicted

value.

In average, the estimation error (which will be defined) is smaller than the predic-
tion error.

1.5 Basic properties

In general, statisticians seek to check that the estimators have specific properties
such as:

� is the estimator β̂ unbiased?

� is the estimator β̂ of minimal variance among all the estimators of a defined
class?

To ensure this, we formulate a second hypothesis, H2: the errors are centered, of
the same variance (homoscedasticity) and are uncorrelated with each other. Using
H2, it is possible to derive the statistical properties of the estimators.
H2 : E(εi) = 0, for i = 1, · · · , n and Cov(εi, εj) = δijσ

2, where E(ε) is the
expectation of ε, Cov(εi, εj) is the covariance between εi and εj and δij = 1 when
i = j and δij = 0 when i ̸= j.

Definition 1.3 (Estimator Bias)
The bias of an estimator β̂ of a parameter β is calculated with E(β̂)− β.

Proposition 1.1 (β̂ unbiased)
β̂1 and β̂2 are unbiased estimators of β1 and β2, in other words E(β̂1) = β1 and E(β̂2) =
β2.

Estimators β̂1 and β̂2 being unbiased, we are going to focus on their variance. In
order to show that these estimators are of minimum variance in their class, we
first calculate their variance. We shall see this in the next proposition.

Proposition 1.2 (Variances of β̂1 and β̂2)
The variances and covariances of the estimators are equal to:

V(β̂2) =
σ2∑

(xi − x̄)2

V(β̂1) =
σ2

∑
x2
i

n
∑

(xi − x̄)2

Cov(β̂1, β̂2) = − σ2x̄∑
(xi − x̄)2

.
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This proposition makes it possible to assess the accuracy of the estimates using
the variance. The smaller the variance, the more accurate the estimate. To obtain
small variances, we need a small numerator and (or) a large denominator. The
estimates therefore have small variances when:

� the variance σ2 is small. This means that the variance of Y is small and the
observations are close to the line of fit;

� the quantity
∑

(xi − x̄)2 is large, the observations xi must be spread about
their mean;

� the quantity
∑

x2
i must not be too large, the points must have a small mean

in absolute value. Indeed, we have∑
x2
i∑

(xi − x̄)2
=

∑
x2
i − nx̄2 + nx̄2∑
(xi − x̄)2

= 1 +
nx̄2∑

(xi − x̄)2
.

The equation (1.3) shows that the line of least squares goes through the center
of gravity (x̄, ȳ). Suppose x̄ positive, then if we increase the slope, the intercept
will decrease and vice versa. We therefore find a negative sign for the covariance
between β̂1 and β̂2.
We conclude this section concerning the properties by the Gauss-Markov theorem
which states that, among all linear unbiased estimators, the least squares estimator
has the smallest variance.

Theorem 1.1 (Gauss-Markov)
Among all the linear unbiased estimators in Y , the estimators β̂j have the smallest
variances.

1.6 Residuals and Residual Variance

We have estimated β1 and β2. The variance σ
2 of εi is the last unknown parameter

to be estimated. To do so, we use residuals: they are the estimates of the unknown
errors εi.

Definition 1.4 (Residuals)
Residuals are defined as

ε̂i = yi − ŷi

where ŷi is the model fitted value of yi.

We have the following property:

Proposition 1.3
In a simple linear regression model, the sum of the residuals is zero.

We now propose to estimate σ2 and construct an unbiased estimator σ̂2

Proposition 1.4 (Estimator of the error variance)
The statistic σ̂2 =

∑n
i=1 ε̂

2
i /(n− 2) is an unbiased estimator of σ2.



Chapter 2

Multiple Linear Regression

2.1 Introduction

Air quality forecasting is an important issue. Being able to anticipate it, should
allow to adjust public policies in order to prevent possible illnesses. Air Breizh,
while measuring ozone concentration, also measures meteorological variables which
may have an influence on it. A program to collect data to characterize air pollution
has been set up and it was measured at a given point, the concentration of ozone,
temperature, cloudiness, wind speed and wind direction at noon. Some of this
data are given below:

Individual O3 T12 Vx Ne12

1 63.6 13.4 9.35 7
2 89.6 15 5.4 4
3 79 7.9 19.3 8
4 81.2 13.1 12.6 7
5 88 14.1 -20.3 6

Table 2.1 – 5 daily data.

The variable Vx is a synthetic variable which represents wind. Wind is usually
measured in degree (direction) and meter per second (speed). The variable created
is the projection of wind on the east-west axis, and takes into account the direction
and speed. The variable Ne12 represents cloud cover and T12 the temperature
measured at 12 AM.
In order to analyses the relationship between temperature (T12), wind (Vx), cloud
cover (Ne12) and ozone (O3), we are looking for a function f such as

O3i ≈ f(T12i, Vxi, Ne12i).

In order to make the meaning of ≈ more precise, we need to define a positive
criterion which qualifies the quality of the fit of the function f to the data called



14 Multiple Linear Regression

a loss function. Minimizing a loss requires knowledge of the space in which we
minimize, hence the class of functions G in which we assume the true unknown
function lies. The mathematical problem can be written as follows :

argmin
f∈G

n∑
i=1

l(yi − f(xi1, · · · , xip)),

where n represents the number of observations to analyze and l(.) is called the loss
function ans we will consider again the quadratic loss. Concerning the choice of
the class G, we are going to use first the class of linear functions :

G
{
f : f(x1, · · · , xp) =

∑p
j=1 βjxj with βj ∈ R, j ∈ {1, . . . , p}

}
.

2.2 Modeling

The multiple regression model generalizes the simple regression model when the
number of explanatory variables is finite. We therefore suppose that the data
collected is consistent with the following model :

yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, · · · , n (2.1)

where

� The xij are known and fixed numbers. The variable xi1 may be 1 for each i
varying from 1 to n. In this case, β1 represents the intercept. In statistics,
this column of 1 is almost always used;

� the model parameters estimates βj are unknown ;

� the εi are unknown random variables.

In matrix notation (2.1), we obtain the following definition:

Definition 2.1 (Multiple regression model)
A linear regression model is defined by an equation of the form

Yn×1 = Xn×p βp×1 + εn×1. (2.2)

where :
• Y is a random vector of dimension n ;
• X is a matrix of size n× p known, called design matrix, X is the concatenation
of the p variables Xj : X = (X1|X2| . . . |Xp). We write the ith row of the matrix
X by the vector row x′

i = (xi1, . . . , xip) ;
• β is the p dimensional vector of the unknown parameters of the model ;
• ε is the centered n dimensional vector of the errors.

We suppose that the matrix X is of full rank. This hypothesis is formulated as
H1. Since, in general, the number of individuals n is larger than the number of
explanatory variables p, the rank of the matrix X is less or equal than p.
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The preceding description is equivalent to saying that the function relating Y to
the explanatory variables X is an hyperplane as illustrated below (fig. 2.1).
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Figure 2.1 – Geometrical representation of the relation Y = 3X1 + 4X2.

It is natural to assume that there exist in many problems interactions between the
explanatory variables. In the ozone example, we may think that temperature and
wind interact. In order to model this interaction, we generally write the model as
a product between the explanatory variables which interact with each other. So,
for two variables, we have the following model:

yi = β1xi1 + β2xi2 + β3xi1xi2 + εi, i = 1, · · · , n.

Products carried out between two variables define interactions of order 2, between
three variables, interactions of order 3, etc. From a geometrical point of view, this
gives (fig. 2.2) :
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Figure 2.2 – Geometrical representation of the relationship Y = X1 + 3X2 +
6X1X2.

Nevertheless, this type of modeling falls perfectly within the framework of multiple
regression. The interaction variables are the product of known variables and are
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therefore known. In the preceding example, the third explanatory variable X3 is
simply the product of X1X2 and we recover once again the model proposed in the
preceding section.

Similarly, other extensions can be used such as polynomial regression. Using our
preceding example with two explanatory variables X1 and X2, we propose the
following polynomial model of degree 2 :

yi = β1xi1 + β2xi2 + β3xi1xi2 + β4x
2
i1 + β5x

2
i2 + εi, i = 1, · · · , n.

This model can be also be subsumed by the framework developed in the preceding
section by setting X3 = X1X2, X4 = X2

1 and X5 = X2
2 . The hypersurface then

looks like (fig. 2.3) :
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Figure 2.3 – Representation of the relationship Y = 10X1 + 8X2 − 6X1X2 +
2X2

1 + 4X2
2 .

In conclusion, any known and fixed transformation of the explanatory vari-
ables (logarithm, exponential, product, etc.) can be used under the multiple regres-
sion model. So, the transformation of an explanatory variable X1 by the function
log for example becomes X̃1 = log(X1) and the model therefore remains a multiple
regression model. On the other hand, a transformation such as exp{−r(X1 − k)}
which is a non linear function of two unknown parameters r and k does not fall
within this framework. In fact, not knowing r and k, it is impossible to calculate
exp{−r(X1 − k)} and therefore to write it as X̃1.

Thus a linear model does not necessarily mean that the relationship between the
explanatory variables and the dependent variable is linear but rather that the
model is linear in the parameters βj .
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2.3 Least squares estimators

Definition 2.2 (OLS estimator)
We call the least squares estimator (OLS) β̂ of β the following value :

β̂ = argmin
β1,··· ,βp

n∑
i=1

yi −
p∑

j=1

βjxij

2

= argmin
β∈Rp

∥Y −Xβ∥2.

Theorem 2.1 (Expression the OLS estimator)
If the hypothesis H1 is verified, the OLS estimator β̂ of β is equal to

β̂ = (X ′X)−1X ′Y.

The following section is entirely devoted to this result.

2.3.1 Calculating and Interpreting β̂

Consider the vectors in the variables space (Rn). Thus, Y , a column vector, defines

in Rn a vector
−−→
OY with origin O and end point Y. This vector has coordinates

(y1, · · · , yn). The design matrix X is formed of p column vectors. Each vector

Xj defines in Rn a vector
−−→
OXj of origin O and end point Xj . This vector has

for coordinates (x1j , · · · , xnj). The p linearly independent vectors (hypothesis H1)
span a subspace of Rn, written from now ℑ(X), of dimension p.

Y

ℑ(X)

ℑ(X)⊥

Xα

Ŷ = Xβ̂

XδXγ

Figure 2.4 – Representation in the variables space.

This space ℑ(X), called image of X, is spanned by the columns of X. It is some-
times called the solution space. All vectors −→v of ℑ(X) are uniquely written as:

−→v = α1
−→
X1 + · · ·+ αp

−→
Xp = Xα,

where α = [α1, · · · , αp]
′. According to the model (2.2), the vector Y is the sum

of an element of ℑ(X) and of an error, an element of Rn, which has no reason to
belong to ℑ(X). Minimizing S(β) is equivalent to looking for an element of ℑ(X)
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which is closest to Y , in Euclidean norm. By definition, this unique element is
called orthogonal projection of Y on ℑ(X). It is written Ŷ = PXY , where PX is
the orthogonal projection matrix on ℑ(X). This matrix is often written H and
called “hat matrix” as it puts a “hat” on Y and we write hij the (i, j) th element

of PX . The element Ŷ of ℑ(X) is given by Xβ̂, where β̂ is the OLS estimator of β.
The space orthogonal to ℑ(X), written ℑ(X)⊥, is often called the residuals space.
The vector Ŷ = PXY contains the model fitted values of Y .

• Calculating β̂ by projection :
Three options for calculating β̂ are given.

� The first consists in knowing the analytic form of PX . The orthogonal pro-
jection matrix on ℑ(X) is given by :

PX = X(X ′X)−1X ′

and, as PXY = Xβ̂, we obtain β̂ = (X ′X)−1X ′Y.

� The second method uses the fact that the vector Y of Rn can be uniquely
decomposed into a part on ℑ(X) and a part on ℑ(X)⊥, we write this as :

Y = PXY + (I − PX)Y.

The quantity (I − PX)Y being an element of ℑ(X)⊥ is orthogonal to any
element v of ℑ(X). Recall that ℑ(X) is the space spanned by the columns
of X. In other words all linear combinations of the variables X1, · · · , Xp are
elements of ℑ(X) or similarly, for all α ∈ Rp, we have Xα ∈ ℑ(X). The two
vectors v and (I−PX)Y being orthogonal, the scalar product between these
two quantities is zero, thus :

⟨v, (I − PX)Y ⟩ = 0 ∀v ∈ ℑ(X)

⟨Xα, (I − PX)Y ⟩ = 0 ∀α ∈ Rp

α′X ′(I − PX)Y = 0

X ′Y = X ′PXY with PXY = Xβ̂

X ′Y = X ′Xβ̂ X of full rank

β̂ = (X ′X)−1X ′Y.

We recover PX = X(X ′X)−1X ′, the orthogonal projection matrix on the
subspace spanned by the columns of X. The main properties of an orthogo-
nal projector (P ′

X = PX and P 2
X = PX) are verified.

� The last way of proceeding is to write that the vector (I−PX)Y is orthogonal
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to each of the columns of X :
⟨X1, Y −Xβ̂⟩ = 0

...

⟨Xp, Y −Xβ̂⟩ = 0

⇔ X ′Y = X ′Xβ̂.

Given PX = X(X ′X)−1X ′ the orthogonal projection matrix on ℑ(X), the orthog-
onal projection matrix on ℑ(X)⊥ is PX⊥ = (I − PX).

• Matrix operations
We can also derive the preceding result analytically by writing the function S(β)
to minimize as follows:

S(β) = ∥Y −Xβ∥2

= Y ′Y + β′X ′Xβ − Y ′Xβ − β′X ′Y

= Y ′Y + β′X ′Xβ − 2Y ′Xβ.

The necessary condition for finding an optimum is that the first derivative with
respect to β is canceled. The derivative here is written as follows:

∂S(β)

∂β
= −2X ′Y + 2X ′Xβ,

whence, if it exists, the optimum, written β̂, verifies

−2X ′Y + 2X ′Xβ̂ = 0

in other words β̂ = (X ′X)−1X ′Y.

To ensure that this point β̂ is indeed a strict minimum, the second derivative must
be a positive definite matrix. Here the second derivative is written

∂2S(β)

∂β2
= 2X ′X,

and X is of full rank so X ′X is invertible and does not have any zero eigenvalue.
The matrix X ′X thus is definite. Furthermore, for ∀z ∈ Rp, we have

z′2X ′Xz = 2⟨Xz,Xz⟩ = 2∥Xz∥2 ≥ 0

(X ′X) is thus positive definite and β̂ is indeed a strict minimum.
We have seen that Ŷ is the projection of Y on the subspace spanned by the columns
of X. This projection exists and is unique even if the hypothesis H1 is not verified.
The hypothesis H1 allows us in fact to obtain a unique β̂. In this case, being
interested in the coordinates of β̂ is meaningful, and these coordinates are the
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coordinates of Ŷ in the coordinate system X1, · · · , Xp. This coordinate system

does not have to be orthogonal and so β̂j is not the coordinate of the projection
of Y on Xj . We have

PXY = β̂1X1 + · · ·+ β̂pXp.

Calculating the projection of Y on Xj . yields

PXj
Y = PXj

PXY

= β̂1PXj
X1 + · · ·+ β̂pPXj

Xp

= β̂jXj +
∑
i ̸=j

β̂iPXj
Xi.

This last quantity is different from β̂jXj except if Xj is orthogonal to all the
other variables. When all the variables are orthogonal, it is clear that (X ′X) is a
diagonal matrix

(X ′X) = diag(∥X1∥2, · · · , ∥Xp∥2). (2.3)

2.3.2 Some Statistical Properties

The statistician wish that the OLS estimators have nice properties in a statistical
sense. Within our framework, this can be summarized into two parts: is the OLS
estimator unbiased and of minimum variance in its class of estimators?
In order to answer these questions, we formulate a second hypothesis, noted H2,
indicating that the errors are centered, of same variance (homoscedasticity) and
uncorrelated with each other. We write this hypothesis as H2 : E(ε) = 0, Σε =
σ2In, with In the identity matrix of order n. This hypothesis enables us to calculate

E(β̂) = E((X ′X)−1X ′Y ) = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β.

The OLS estimator is therefore unbiased. Let us now calculate its variance

V(β̂) = V((X ′X)−1X ′Y ) = (X ′X)−1X ′ V(Y )X(X ′X)−1 = σ2(X ′X)−1.

Proposition 2.1 (β̂ unbiased)
The OLS estimator β̂ is an unbiased estimator of β and its variance is equal to

V(β̂) = σ2(X ′X)−1.

Remark 1
When the variables are orthogonal two by two, the components of β̂ are not corre-
lated with each other since the matrix (X ′X) is a diagonal (2.3) matrix.

The Gauss-Markov theorem, shows that among all the linear unbiased estimators
of β, the OLS estimator has the smallest variance:

Theorem 2.2 (Gauss-Markov)
The OLS estimator is optimal among all the unbiased linear estimators of β.
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2.3.3 Residuals and Residual Variance

The residuals are defined by the following relation:

ε̂ = Y − Ŷ .

It follows from the model, Y = Xβ+ε and the fact thatXβ ∈ ℑ(X), that residuals
can be re-expressed as:

ε̂ = Y −Xβ̂ = Y −X(X ′X)−1X ′Y = (I − PX)Y = PX⊥Y = PX⊥ε.

The residuals therefore belong to ℑ(X)⊥ and this space is also called the residuals
space. The residuals are always orthogonal to Ŷ .

We have the following properties

Proposition 2.2 (Properties of ε̂ and Ŷ )
Under the hypotheses H1 and H2, we have

E(ε̂) = PX⊥E(ε) = 0

V(ε̂) = σ2PX⊥IP ′
X⊥ = σ2PX⊥

E(Ŷ ) = XE(β̂) = Xβ

V(Ŷ ) = σ2PX

Cov(ε̂, Ŷ ) = 0.

The estimates of the residuals ε̂ of ε possess the same expectation than ε. We will
look later at residuals in more details.
We have discussed an estimator of σ2 written σ̂2. A “natural” estimator of the
residual variance is given by

1

n

n∑
i=1

ε̂2i =
1

n
∥ε̂∥2.

But since ∥ε̂∥2 is a scalar expression, then this scalar expression is equal to its
trace, and using the properties of traces, we obtain

E(∥ε̂∥2) = E[tr(ε̂′ε̂)] = E[tr(ε̂ε̂′)] = tr(E[ε̂ε̂′]) = tr(σ2PX⊥) = σ2(n− p).

The last equality comes from the fact that the trace of a projector is equal to
the dimension of the subspace onto which we project. This “natural” estimator is
biased. In order to obtain an unbiased estimator we define

σ̂2 =
∥ε̂∥2

n− p
=

SSR

n− p
,

where SSR is the residuals sum of squares.
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Proposition 2.3 (σ̂2 unbiased)
The statistic σ̂2 is an unbiased estimator of σ2.

From this estimator of the residual variance, we obtain an estimator of the variance
of β̂ in a straightforward way by replacing σ2 by its estimator:

σ̂2
β̂
= σ̂2(X ′X)−1 =

SSR

n− p
(X ′X)−1.

We thus have an estimator of the standard error of the estimator β̂j for each
coefficient of the regression βj

σ̂β̂j
=

√
σ̂2[(X ′X)−1]jj .

2.3.4 Predictions

One of the aims of regression is to provide predictions for the response variable y
when we have new values of x. Given a new value x′

n+1 = (xn+1,1, · · · , xn+1,p), we
can predict yn+1. But

yn+1 = x′
n+1β + εn+1,

with E(εn+1) = 0, V(εn+1) = σ2 and Cov(εn+1, εi) = 0 for i = 1, · · · , n. We can
predict the corresponding value using our fitted model

ŷpn+1 = x′
n+1β̂.

Two types of error are going to taint our prediction, the first due to the uncer-
tainty surrounding εn+1 and the other due to the estimates. Let us calculate the
prediction error

V
(
yn+1 − ŷpn+1

)
= V(x′

n+1β + εn+1 − x′
n+1β̂) = σ2 + x′

n+1V (β̂)xn+1

= σ2(1 + x′
n+1(X

′X)−1xn+1).

We thus recover the uncertainty due to the errors σ2.

Remark 2
Since the estimator β̂ is an unbiased estimator of β and the expectation of ε is
equal to zero, then the expectations of yn+1 and ŷpn+1 are identical. The variance
of the prediction error is written:

V
(
yn+1 − ŷpn+1

)
=E

[
yn+1−ŷpn+1−E(yn+1)+E(ŷ

p
n+1)

]2
=E(yn+1 − ŷpn+1)

2.
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2.4 Geometrical Interpretation

The following equality is directly derived from the Pythagoras theorem :

∥Y ∥2 = ∥Ŷ ∥2 + ∥ε̂∥2

= ∥Xβ̂∥2 + ∥Y −Xβ̂∥2.

If a constant is part of the model, then we still have according to the Pythagoras
theorem

∥Y − ȳ1∥2 = ∥Ŷ − ȳ1∥2 + ∥ε̂∥2

total SS = SS explained by the model + residual SS

SST = SSE+SSR .

Definition 2.3 (R2)
The (multiple) coefficient of determination R2 is defined by

R2 =
∥Ŷ ∥2

∥Y ∥2
= cos2 θ0

and if a constant is part of ℑ(X) by

R2 =
V. explained by the model

Total variation
=
∥Ŷ − ȳ1∥2

∥Y − ȳ1∥2
= cos2 θ.

R2 can also be written as a function of the residuals:

R2 = 1− ∥ε̂∥2

∥Y − ȳ1∥2
.

This coefficient measures the cosine squared of the angle between the vectors Y
and Ŷ at the origin or at ȳ (seefig. 2.5). This latter angle is always larger than
the first and R2 calculated when the constant is part of ℑ(X) is therefore smaller
than R2 directly calculated.

1

Y

Ŷ = Xβ̂

ε̂

ȳ

θ

θ0

ℑ(X)

ℑ(X)⊥

Figure 2.5 – Representation of the variables and geometrical interpretation of
R2 .
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However, this coefficient does not take into account the dimension of ℑ(X), ad-
justed R2 is thus defined :

Definition 2.4 (Ajusted R2)
The adjusted coefficient of determination R2

a is defined by

R2
a = 1− n

n− p

∥ε̂∥2

∥Y ∥2

and, if the constant is part of ℑ(X), by

R2
a = 1− n− 1

n− p

∥ε̂∥2

∥Y − ȳ1∥2
.

The adjustment corresponds to the division of the norms squared by their respec-
tive degrees of freedom (or the sub-space dimension to which the vector belongs).



Chapter 3

Model Diagnostic

3.1 Introduction

Let us remind the context, we supposed that

Yn×1 = Xn×p βp×1 + εn×1,

under the hypotheses

� H1 : rank(X) = p.

� H2 : E(ε) = 0, V(ε) = σ2In.

The different stages of a regression analysis can be summarized as follows :

1. Modelisation: we assume the regression model Y = Xβ + ε;

2. Estimation: using the data, we estimate β;

3. Validation: which is the the objective of this chapter.

3.2 Residuals Analysis

Analyzing the residuals is an essential stage in linear regression. This stage is
mainly based on graphical methods, and it is therefore difficult to have precise
decision rules. The objective of this section is to present these graphical methods.
Let us first recall the definitions of the different residuals.

3.2.1 Residuals

We estimate εi by ε̂i = yi − ŷi. We have
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Assumptions Estimation

E(εi) = 0 E(ε̂i) = 0

V(ε) = σ2In V(ε̂) = σ2(I − PX)

In order to have the same variance for each residual, we use the normalized resid-
uals defined by

ri =
ε̂i

σ
√
1− hii

,

where hij is the (i, j) component of the matrix PX . However σ is unknown, we
replace σ by σ̂, and obtain the standardized residuals

ti =
ε̂i

σ̂
√
1− hii

.

Their distribution is difficult to evaluate since the numerator and denominator are
correlated. They possess the same unit variance, they are therefore useful to detect
large residual values. Nevertheless, we prefer to use the studentized residuals by
cross validation (CV)

t∗i =
ε̂i

σ̂(i)

√
1− hii

,

where σ̂(i) is the estimator of σ in the linear model without the observation i. If
we suppose that ε ∼ N(0, σ2In) we can prove that

t∗i =
yi − ŷpi

σ̂(i)

√
1 + x′

i(X
′
(i)X(i))−1xi

∼ T (n− 1− p),

where X(i) is the matrix X without its ith row. We have (n− 1) observations and
therefore loose a degree of freedom.

Theorem 3.1 (Distribution of studentized residuals par VC)
If the matrix X is of full rank, if the εi ∼ Nare(0, σ2) distributed and if deleting a
row i does not modify the rank of the matrix, then CV studentized residuals, noted
t∗i , have a Student distribution with (n− p− 1) degrees of freedom.

Remark 3
The calculations carried out in the proof clearly show the relationship between the
prediction error yi − ŷpi and the estimation error yi − ŷi. We have

yi − ŷpi =
yi − ŷi
1− hii

. (3.1)

This result allows us to derive the prediction error without having to compute β̂(i)

for each observation i.
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3.2.2 Fitting Individual Observation

To analyses the quality of fit of an observation, we only need to look at its corre-
sponding residual. if this residual is very large, then the individual i is called an
outlier. We therefore need to understand the reason why (error of measurement,
individual belonging to a sub population) and eventually eliminate this point since
it can modify the estimates. An outlier is an observation which is not well ex-
plained by the model and has a large residual. This notion is defined by :

Definition 3.1 (Outlier)
An outlier is a point (x′

i, yi) which has a large t∗i value (compared to the critical
value provided by the Student distribution) : |t∗i | > tn−p−1(1− α/2).

In general outliers are detected by plotting the t∗i . Detecting outliers does not only
depend on the size of the residuals. Let us look at an randomly generated or
simulated example .
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Figure 3.1 – Studentized residuals (a) and studentized residuals with an outlier
as indicated by an arrow (b).

The plot (3.1.a) shows a satisfactory fit. None of the absolute values of the residuals
are large. We note that in theory α % of the observations are outliers. We therefore
look for residuals whose absolute values are clearly higher than tn−p−1(1 − α/2).
We therefore (3.1.b) only consider the individual indicated by an arrow as being
an outlier.
Once identified and noted, it is important to understand why we have these out-
liers : is it a measurement error or a recording error? We recommend to delete
these points from the analysis. But if you want to retain them then it is necessary
to ensure that these values are not influential: the coefficients and the interpre-
tations drawn from the model must not vary too much with or without these
observations.

Conclusion

It is necessary to plot the residuals on the y axis and either Ŷ , or the number
of the observation, or the time or any other potential factor of non independence
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on the x- axis. This type of plot allows us to identify the outliers, as well as
verify the hypotheses concerning the structure of the vector of variance ε. Other
graphs, such as those having the absolute value of the residuals on the y-axis allow
us to look at the structure of the variance. The analysis of the residuals allows
us to detect significant differences between the observed values and the fitted /
predicted values. Nevertheless, it doesn’t tell us anything about the variations of
the parameter estimators due to omitting an observation and hence the robustness
of the estimates. In the next section we consider measures adapted.

3.3 Analysis of the Projection Matrix

The projection matrix

PX = X(X ′X)−1X ′,

is the matrix which is used to calculate fitted values. More specifically,

Ŷ = PXY.

For row i, where hij is the element of the ith row and jth column of the projection
matrix PX , we write

ŷi =

n∑
j=1

hijyj = hiiyi +
∑
j ̸=i

hijyj .

this last expression allows us to measure the weight of the observation on its own
fitted value via hii.

Definition 3.2 (Weight of an observation i)
The “weight” of an observation i on its own estimate is hii.

The orthogonal projection matrix PX on the space spanned by the columns of X
whose elements are the hij has in particular the following properties
if hii = 1 then hij = 0 for each j ̸= i
and if hii = 0, then hij = 0 for each j ̸= i.
We have then the following extreme cases:

� if hii = 1, ŷi is fully specified by yi since hij = 0 for all j ;

� if hii = 0, yi has no leverage?? on ŷi (which is equal to zero).

We also know that tr(PX) =
∑

hii = p, therefore the average or mean of hii is
p/n. Thus if hii is “large”, yi has a large impact on ŷi. Different authors have
worked on this criterion and the following is their definition of “large” but we do
have our own definition

Definition 3.3 (Leverage points)
A point i is a leverage point if the value hii of the projection matrix is much bigger
than most of the values.
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Figure 3.2 – Example of a leverage point, indicated by the arrow, for a simple
regression model.

For a simple regression model whose points are represented on figure (3.2) the
point indicated by an arrow is a leverage point. Its position on the x axis is
different from the other points and its weight hii is much higher than the others
values. A high value of hii indicates that the corresponding individual is far away
from the center of gravity of points. Note that this is a leverage point but its it
not an outlier as it lies on the extension of the regression line and therefore its
residual is small.
Leverage points are therefore unusual points considering the explanatory variables.
Here again it is useful to identify them and to understand why these points are
different: measurement error, recording error, or they might belong to another
population. Even if these points are not influential, i.e. without these points the
estimates do not change, we can ask our self about the model validity. After some
consideration, these values can be omitted or kept. In the first case, we take no
risk at the edge of the domain, even if we delete a few points. In the second case,
the model is implicitly extended to include these points.
The analysis of the residuals allows us to find these unusual values in terms of the
values of the explanatory variable. The analysis of the projection matrix allows
us to find those unusual individuals as a function of the explanatory variables
(observations far from the mean/ overall average). Other criteria are combining
both analyses such as the Cook distance.
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Part II

Inference





Chapter 4

Inference in Regression

4.1 Introduction

Recall the following from the previous lessons:

Yn×1 = Xn×p βp×1 + εn×1,

under the assumptions

� H1 : rank(X) = p.

� H2 : E(ε) = 0, V(ε) = σ2In.

We are now assuming that the errors are normally distributed, therefore H2 be-
comes

� H3 : ε ∼ N (0, σ2In).

We note thatH3 impliesH2. Furthermore, in the case of the Gaussian distribution,
no correlation means independence. The hypothesis H3 is formulated as ε1, · · · , εn
are i.i.d. and N (0, σ2) distributed. The Gaussian hypothesis allows us to calculate
the likelihood and maximum likelihood estimators (MLE). This hypothesis also
allows us to calculate the confidence regions and provide tests. This is the objective
of the chapter

4.2 Maximum Likelihood Estimators

We start by calculating the likelihood of the sample. The likelihood is the density
of the sample as a function of the parameters. Because the errors are independent,
the observations are independent and the likelihood is written :

L(Y, β, σ2) =

n∏
i=1

fY (yi) =

(
1

2πσ2

)n/2

exp

− 1

2σ2

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2.
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We have therefore

L(Y, β, σ2) =

(
1

2πσ2

)n/2

exp

[
− 1

2σ2
∥Y −Xβ∥2

]
,

which yields, taking the log

L(Y, β, σ2) = logL(Y, β, σ2) = −n

2
log σ2 − n

2
log 2π − 1

2σ2
∥Y −Xβ∥2.

In order to get the maximum, we differentiate according to β and σ2 and obtain

∂L(Y, β, σ2)

∂β
=

1

2σ2

∂

∂β

(
∥Y −Xβ∥2

)
, (4.1)

∂L(Y, β, σ2)

∂σ2
= − n

2σ2
+

1

2σ4
∥Y −Xβ∥2. (4.2)

From(4.1), we evidently have β̂ML = β̂ and from (4.2) we have

σ̂2
ML =

∥Y −Xβ̂ML∥2

n

therefore σ̂2
ML = (n− p)σ̂2/n. The ML estimator is therefore biased as opposed to

the estimator σ̂2 obtained using least squares. In order to verif y that we have a
maximum, we need to look at the second derivatives.From now, σ̂2 will design the
LS estimator. Under the additional hypothesis H3, the properties given previously
are still valid (unbiased and minimum variance). However, we can show a set of
new properties.

4.3 New Statistical Properties

Because of the Gaussian hypothesis, we can “improve” on the Gauss-Markov the-
orem. The optimally of the estimators is widened and we no longer only consider
the unbiased linear estimators, but a larger class of unbiased estimators. Further-
more, the theorem now subsumes the estimator of σ2. The proof of this proposition
is given as an exercise.

Proposition 4.1 (Estimators distribution : variance known)
Under assumptions H1 and H3, we have

i) β̂ is a Gaussian vector with expectation the vector β and variance matrix σ2(X ′X)−1,
ii) (n− p)σ̂2/σ2 is χ2 distributed with n− p df (χ2

n−p),

iii) β̂ and σ̂2 are independent.

Proof
i) β̂ is a linear function of Gaussian variables and is therefore normally distributed
fully specified by its variance and expectation as calculated in the preceding chap-
ter.
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ii)

σ̂2 =
∥Y −Xβ̂∥2

n− p
=

1

n− p
∥ε̂∥2 =

1

n− p
∥PX⊥ε∥2 =

1

n− p
ε′PX⊥ε.

But ε ∼ N (0, σ2I) and PX⊥ is the orthogonal projection matrix on ℑ(X)⊥, a
space of dimension n− p. The result is derived using Cochran theorem.
iii) Note that β̂ is a function of PXY (β̂ = (X ′X)−1X ′PXY ) and σ̂2 is a function
of (I − PX)Y. The Gaussian vectors Ŷ and ε̂ have 0 covariance and are therefore
independent. Any fixed function of Ŷ remains independent of any fixed function
of ε̂, whence the result. □

We also derive a more general result in order to build the confidence regions.

Proposition 4.2 (Estimators distribution : estimated variance)
Under the assumptions H1 and H3, we have

i) for j = 1, · · · , p, Tj =
β̂j − βj

σ̂
√
[(X ′X)−1]jj

∼ T (n− p),

ii) given R a matrix of size q × p rank q (q ≤ p) then

1

qσ̂2
(R(β̂ − β))′

[
R(X ′X)−1R′]−1

R(β̂ − β) ∼ Fq,n−p.

Proof
i) The variance of the estimator β̂j is equal to σ2[X ′X]−1

jj , we have then

β̂j − βj

σ
√
[(X ′X)−1]jj

∼ N (0, 1).

σ2 is unknown and its estimate is σ̂2. The next part follows from using (ii) and
(iii) from the preceding proposition.
ii) The rank of R is equal to q ≤ p according to our hypothesis, therefore the

rank of R(X ′X)−1R′ is equal to q. Rβ̂ is a Gaussian mean vector Rβ of variance
σ2R(X ′X)−1R′. We therefore have

1

σ2
(Rβ̂ −Rβ)′

[
R(X ′X)−1R′]−1

(Rβ̂ −Rβ) ∼ χ2
q. (4.3)

However σ2 is unknown. In order to eliminate σ2 from the equation (4.3), we
divide the left hand side by σ̂2/σ2. Recall that from (ii) we know that σ̂2/σ2

is χ2 distributed divided by its degree of freedom and that from (iii) σ̂2/σ2 is
independent from the left hand side of the equation (4.3). The rest follows from
the definition of the Fisher distribution (ratio of two independent χ2 distributions
divided by their respective degrees of freedom). □
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4.4 Confidence Intervals and Regions

Computer packages and some textbooks give CI for the parameters taken sep-
arately. Nevertheless, these CI do not take into account the dependence of the
estimates. We can obtain simultaneous CI for several parameters. The theorem
below provides all the types of CR : simple or simultaneous. This is the main
theorem of the interval estimation (the proof is devoted to an exercise). The value
tn−p(1 − α/2) denote the fractile of order 1 − α/2 of a Student distribution with
n− p df, that P (. > tn−p(1− α/2)) = α/2.

Theorem 4.1 (CI and CR of the parameters)
i) A 1− α bilateral CI for βj with j = 1, · · · , p is given by[
β̂j − tn−p(1− α/2)σ̂

√
[(X ′X)−1]jj , β̂j + tn−p(1− α/2)σ̂

√
[(X ′X)−1]jj

]
.

ii) A 1− α equal tails CI for σ2 is given by[
(n− p)σ̂2

c2
,

(n− p)σ̂2

c1

]
where P (c1 ≤ χ2

n−p ≤ c2) = 1− α.

iii) A 1− α CR for q (q ≤ p) parameters βj written (βj1 , · · · , βjq ) is given,

� when σ is known, by

CRα(Rβ)=

{
Rβ ∈ Rq,

1

σ2
[R(β̂ − β)]′[R(X ′X)−1R′]−1[R(β̂ − β)] ≤ χ2

q(1− α)

}
� when σ is unknown, by

CRα(Rβ) = {Rβ ∈ Rq,

1

qσ̂2
[R(β̂ − β)]′[R(X ′X)−1R′]−1[R(β̂ − β)] ≤ fq,n−p(1− α)

}
, (4.4)

where R is a matrix of q× p whose elements are all equal to 0 except for the
[R]iji which are equal to 1.

The critical values c1 and c2 are the fractiles of the χ
2
q distribution and fq,n−p(1−α)

the fractile (1− α) of the Fisher distribution with (q, n− p) df.

4.5 Prediction

Given x′
n+1 = (xn+1,1, · · · , xn+1,p) a new value, we want to predict yn+1. The

model shows that

yn+1 = x′
n+1β + εn+1,
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with the εi which are i.i.d. and N (0, σ2) distributed. From the n observations, we

have an estimate for β̂ and we predict yn+1

ŷpn+1 = x′
n+1β̂.

The expectation and variance of the prediction error εpn+1 = yn+1 − ŷpn+1 are :

E(yn+1 − ŷpn+1) = 0

V(ŷpn+1 − yn+1) = V(x′
n+1(β̂ − β)− εn+1)

= x′
n+1 V(β̂ − β)xn+1 + σ2

= σ2
[
x′
n+1(X

′X)−1xn+1 + 1
]
.

We obtain the following la proposition.

Proposition 4.3 (CI de prévision)
A (1− α) CI for yn+1 is given by[

x′
n+1β̂ ± tn−p(1− α/2)σ̂

√
x′
n+1(X

′X)−1xn+1 + 1
]
.

Proof
β̂ is normally distributed and xn+1 is fixed therefore ŷpn+1 is normally distributed.
The random value yn+1 to predict is normally distributed N (x′

n+1β, σ
2) and is

independent of the y1, · · · , yn by hypothesis H3.
We therefore have that yn+1 is independent of ŷpn+1 = x′

n+1β̂ because β̂ is a linear
combination of y1, · · · , yn. The prediction error yn+1−ŷpn+1 is normally distributed
and its mean and variance have been calculated. We have thus

N =
ŷpn+1 − yn+1

σ
√
x′
n+1(X

′X)−1xn+1 + 1
∼ N (0, 1).

However σ is unknown and its estimate is given by σ̂. We use the definition of
the Student distribution: if N has a Standard Normal distribution, if D is χ2

distributed on d df and if N and D are independent then the ratio of N/
√
D/d is

distributed according to a Student distribution on d df.
Proposition 4.2 shows that D = σ̂2(n− p)/σ2 is χ2 on (n− p) degrees of freedom

and that D is independent of β̂. However σ̂2 uniquely depends on the y1, · · · , yn
and is therefore independent of yn+1. The same goes for D. The randomness of N
comes from β̂ and of yn+1, we deduct from this that N and D are independent
hence

N√
D
d

=
ŷpn+1 − yn+1

σ̂
√
x′
n+1(X

′X)−1xn+1 + 1
∼ T (n− p), (4.5)

the confidence interval is derived from this result. □
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4.6 Hypothesis Testing

4.6.1 Introduction

Let us illustrate hypotheses testing on the ozone example. We have explained
ozone by T12, Vx and Ne12. It seems reasonable to ask the following questions:
(a) is the value of O3 influenced by Vx?
(b) is there a cloud cover effect?
(c) is the value of O3 influenced by Vx or T12?

Recall that the model adopted is the following:

O3 = β1 + β2T12+ β3Vx+ β4Ne12+ ε.

We can make the preceding three questions explicit using hypothesis tests:
(a) corresponds to H0 : β3 = 0, against H1 : β3 ̸= 0 ;
(b) corresponds to H0 : β4 = 0, against H1 : β4 ̸= 0 ;
(c) corresponds to H0 : β2 = β3 = 0, against H1 : β2 ̸= 0 or β3 ̸= 0.

We note that all these cases come down to testing the null hypothesis for all the
parameters together. In the c) case we talk about simultaneous null hypothesis
for all the coefficients. This means that under the H0 hypothesis some coefficients
are equal to zero, and therefore the variables corresponding to these coefficients
are not needed. This case corresponds by definition to comparing two models one
nested inside the other (one being a special case of the other).
The design matrix without these variables is noted X0 and the columns of X0 span
a subspace noted ℑ(X0). In order to simplify the notation, we write ℑ(X0) = ℑ0

and ℑ(X) = ℑX . The test level is fixed to the standard α level.

4.6.2 Test between Nested Models

First recall the model and the hypotheses used :

Y = Xβ + ε where ε ∼ N (0, σ2In),

This means that E(Y ) ∈ ℑX the space spanned by the columns of X.
To simplify the notation, lets assume that we want to test the hypothesis that the
model last q coefficients with q ≤ p are equal to zero. The problem is thus written
as:

H0 : βp−q+1 = · · · = βp = 0 against H1 : ∃j ∈ {p− q + 1, · · · , p} : βj ̸= 0.

What does H0 : βp−q+1 = · · · = βp = 0 mean in terms of the model? If the last q
coefficients are zero then the model becomes

Y = X0β0 + ε0 where ε0 ∼ N (0, σ2I),



4.6 Hypothesis Testing 39

where the matrix X0 is made of the first p− q columns of X. The columns of X0

span a space noted ℑ0 of dimension p0 = p−q. This subspace is clearly included in
ℑX . Under the null hypothesis H0, the expectation of Y belongs to this subspace.
Once the hypothesis tests are stated, we need a test statistic. We are going to
adopt a rather intuitive geometric approach here.

Geometrical Approach

Consider the subspace noted ℑ0. We have written that under H0 : E(Y ) ∈ ℑ0.
In this case, the least squares method consists in projecting Y not so much on
ℑX (and obtaining Ŷ ) but on ℑ0 and obtain Ŷ0. Let us visualize these different
projections with the following graph:

Y

Ŷ
Ŷ0

ε̂

ε̂0

ℑ(X)
ℑ0

Figure 4.1 – Representation of the projections.

The intuitive idea of the test, and therefore of the choice to keep or reject H0: if
the projection of Y in ℑ0, noted Ŷ0, is “close” to the projection of Y in ℑX , noted
Ŷ , then it seems logical to retain the null hypothesis. Equivalently, if the infor-
mation provided by the two models is the “same”, it is best to retain the smaller
model (principle of parsimony). We must of course quantify the term “close”.
Normally, we would calculate the Euclidean distance between Ŷ0 and Ŷ , or its
square, ∥Ŷ0 − Ŷ ∥2. However, this distance varies according to the data and to the
units used. For exemple compare these two different cases

Y

Y

Ŷ
Ŷ0

Ŷ
Ŷ0

ε̂ε̂0

ε̂0 ε̂

ℑ(X0)ℑ(X)ℑ(X0)ℑ(X)
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To avoid this problem of scale we are going to “standardize” this distance by
dividing it by the norm squared of the error ε̂. The quantities ε̂ and Ŷ0 − Ŷ do
not belong to spaces of same dimensions, we thus divide each of the term by its
respective degree of freedom. We thus have the following test statistic:

F =
∥Ŷ0 − Ŷ ∥2/q

∥Y − Ŷ ∥2/(n− p)
=
∥Ŷ0 − Ŷ ∥2/(p− p0)

∥Y − Ŷ ∥2/(n− p)
.

In order to use this test statistic, we need to know its distribution at least under
H0. Note that this statistic is the ratio of two norms squared. We therefore need
to decide on the distribution of the numerator and denominator and note their
independence. We know that

Ŷ0 − Ŷ = PX0
Y − PXY,

or ℑ0 ⊂ ℑX therefore

Ŷ0 − Ŷ = PX0
PXY − PXY = (PX0

− In)PXY = −PX⊥
0
P

X
Y.

We deduce from this that (Ŷ0 − Ŷ ) ∈ ℑ⊥
0 ∩ ℑX and therefore that (Ŷ0 − Ŷ ) ⊥

(Y − Ŷ ). The graph (4.1) allows us to visualize these notions of orthogonality. The
random vectors Ŷ0−Ŷ and Y −Ŷ are elements of orthogonal spaces, therefore their
covariance is zero. These two vectors are Gaussian, they are therefore independent
and any fixed function of these 2 vectors remains independent, in particular, the
norms of the numerator and denominator are independent.
Using the normal hypothesis H3 and applying the geometry Cochran theorem, we
deduce from it that these two norms follow a χ2 distribution.

1

σ2
∥PX⊥Y ∥2 ∼ χ2

n−p,

1

σ2
∥PX⊥

0 ∩XY ∥2 ∼ χ2
p−p0

(
1

σ2
∥PX⊥

0 ∩XXβ∥2
)
,

where the de-centering parameter ∥PX⊥
0 ∩XXβ∥2/σ2 is zero under H0 since in this

case Xβ ∈ ℑ0. We can conclude with the following theorem.

Theorem 4.2 (Test between nested models)
Given a regression model with p variables Y = Xβ + ε which satisfies H1 and
H3. We want to test the validity of a reduced model (nested model) where one
or more of the coefficients are zero. The design matrix without these variables is
written X0, the p0 columns of X0 span a subspace noted ℑ0 and the reduced model
is Y = X0β0 + ε0. We write the null hypothesis (reduced model) H0 : E(Y ) ∈ ℑ0

and the alternative hypothesis (full model) H1 : E(Y ) ∈ ℑ(X). To test these two
hypotheses, we use the test statistic F below which is distributed under H0 as:

F =
∥Ŷ0 − Ŷ ∥2/(p− p0)

∥Y − Ŷ ∥2/(n− p)
∼ Fp−p0,n−p.
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Note also an often used and equivalent way of writing it

F =
n− p

p− p0

SSR0−SSR

SSR
∼ Fp−p0,n−p.

The hypothesis H0 is rejected in favor of H1 if the observed statistic F exceeds the
critical value fp−p0,n−p(1− α), α being the test level.

Proof
How the test statistic F is obtained comes from the construction which precedes
the theorem. Recall that if N ∼ χ2 on n df and D ∼ χ2 on p df and if N and D
are independent then

N

D

d

n
∼ Fn,p.

or equivalently is obtained using the SSR notation by noticing that

∥Y − Ŷ0∥2 = ∥Y − PXY + PXY − PX0
Y ∥2

= ∥PX⊥Y + (In − PX0
)PXY ∥2

= ∥PX⊥Y ∥2 + ∥PX⊥
0 ∩XY ∥2

= ∥Y − Ŷ ∥2 + ∥Ŷ − Ŷ0∥2.

This geometric approach appears without connection with the classic tests statis-
tics, but we can show that the test F is simply a ratio test of maximum likelihoods.

Student Test for a Coefficient βj

We want to test H0 : βj = 0 against H1 : βj ̸= 0 (two tailed test for βj). According
to theorem 4.2, the test statistic is

F =
∥Ŷ − Ŷ0∥2

σ̂2
.

We reject H0 if the observed statistic F , noted F (w), is such that

F (ω) > f1,n−p(1− α),

since F has a Fisher distribution on 1 and (n− p) df.
This test is equivalent to the T-test on (n−p) df which allows us to test H0 : βj = 0
against H1 : βj ̸= 0 with the same test statistic

T =
β̂j

σ̂β̂j

which is under H0 Student distributed on (n− p) df. We reject H0 if the observed
T statistic, noted T (w), is such that

|T (ω)| > tn−p(1− α/2).

This is the form of the test we encounter in linear regression computer software.
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Fisher Test of Goodness of fit

If a priori knowledge of the phenomenon studied shows that a constant term exists
in the regression, then to test the influence on the response of the regressor terms
which are not constant in the regression, we test whether E(Y ) = µ belongs to the
diagonal ℑ0(X) = ∆ of Rn. We therefore test the overall model validity. This is
equivalent to saying all the coefficients are assumed to be zero, except the constant.
This test is called the goodness of fit test. In this case, Ŷ0 = Ȳ 1 and we have the
following test statistic :

∥PℑX
Y − Pℑ0

Y ∥2/(p− 1)

∥Y − PℑX
Y ∥2/(n− p)

=
∥PℑX

Y − Ȳ 1∥2/(p− 1)

∥Y − PℑX
Y ∥2/(n− p)

∼ Fp−1,n−p.

If we write the test statistic using R2, we obtain the ratio

F =
R2

1− R2

n− p

p− 1
.

This test is called R2 test in some statistical packages.



Part III

Dimension reduction





Chapter 5

Variable Selection

5.1 Introduction

In the preceding lessons, we have assumed that the model proposed

Y = Xβ + ε

was correct and that all the explanatory variables (X1, · · · , Xp) are useful. Never-
theless, in many statistical analyses, we have at hand a set of explanatory variables
to explain one variable and nothing tells us whether the variables play a role in
the modelling. The user therefore has a set of potential explanatory variables or
candidate variables available.
We have p variables (p < n) available and we assume, that the constant (vari-
able 1) is among the candidate variables, in other words, that one of the Xi is
equivalent to 1. If one wants to keep this special variable in his/her model, he/she
needs therefore to analyse (2p−1) potential model. Amongst these variables, we
suppose that there could exist variables which have been transformed (features
engineering) such as polynomial.

The main goal of this introduction is to understand the figure 7.2 below.
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Figure 5.1 – Evolution of the errors with the complexity.

� Let us explain the dashed line: as the number of explanatory variables in-
creases (ie model size or complexity), the model will adapt to the data and
the estimation error (the error done on the individual which have been
used in estimation) decreases and could be 0 in the interpolation cases.
This easily follows from the fact that the estimation error is defined by
∥Y − Ŷ ∥2 = ∥PX⊥Y ∥2 and when we add variables dim(ℑ(X)) increases and
thus ∥PX⊥Y ∥2 decreases to 0 and can reach it when there is enough variables
or transformed variables.

� On the opposite the solid line shows the prediction error (the error done on

new individual, ∥Y ∗ − X∗β̂∥2) and have a convex form: high with a few
variables (the model is too simple), decreases with reasonable number of
“suitable” variables, and increases again with a high number of variables:
as there is too many variables the estimation of β̂ is less precise and the
predictions get worse.

In conclusion to the analysis of figure 7.2 we need to find a trade-off between having
a lot of variables (high complexity model difficult to estimate, high variability but
a small estimation error since the model overfits the data) and too few variables
(small complexity, model easy to estimate, low variability and high estimation
error as the model is too simple, it underfits). This last sentence is summarised
by 5.2.
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Figure 5.2 – Under and Overfitting.

To have an idea of the prediction error in a suitable way, we need to have a set
of validation (a dataset which was not be used for estimation). If this set does
not exist, it is necessary to create it and therefore to reduce the training data.
Unfortunately there are numerous cases where the dataset is (very) small and
cannot be split: the model/variable selection have to be conducted on the same
dataset preventing us to estimate easily the prediction error.

Let us summarise the 3 possibilities to estimate the prediction error:

� We can split the data in estimation/prediction sets and on the prediction set

(denoted with ∗) we calculate ∥Y ∗ −X∗β̂∥2 (or another criterion). This is
the best choice when n is big enough,

� We can split the data in a cross validation way (coming soon in the next
sequence named ridge regression). This can be seen as an intermediate pos-
sibilities between the two others;

� Without splitting, use the “classical way” to choose variables. This can be
seen as a last choice strategy.

In the sequel we will focus en the last choice, the “classical variable selection”.
Before presenting the different criteria and procedures used in this approach, we
think that it is important to understand the consequences of a bad choice among
the set of selected variables, supposing that this set exists.

5.2 Notations

The notation used in this chapter are the following:

� X is the matrix composed of all the explanatory variables (of size n× p),
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� ξ is a subset (of indices/subscripts) of {1, 2, . . . , p}, its cardinal is denoted
by |ξ|, and its complementary (with respect of {1, 2, . . . , p}) is denoted ξ̄

� Xξ is a sub-matrix of X whose columns correspond to the subscripts con-
tained in ξ,

� in the model ξ selecting |ξ| variables, the corresponding parameters are writ-
ten βξ,

� the coordinates corresponding to ξ in the vector β̂ are [β̂]ξ. In general, [β̂]ξ ̸=
β̂ξ except if ℑ(Xξ) ⊥ ℑ(Xξ̄),

� with a new observation x⋆′ = [x⋆′
ξ , x

⋆′
ξ̄
], we have the following predictions:

ŷp = x⋆′β̂ ŷpξ = x⋆′
ξ β̂ξ.

5.3 Incorrect Variable Selection: consequences

The objective of this section is to understand the consequences of an incorrect
choice of explanatory variables. By incorrect, we mean either selecting too few,
or selecting the right number but not the correct ones, or selecting too many. We
obviously find all the ideas shown in section 5.1. We first analyse a simple example
and then generalise the results. The example treated here is the following : Assume
that we have three potential explanatory variables X1, X2 and X3 and that the
true model is

Y = β1X1 + β2X2 + ε = X12β12 + ε.

One of the variables is therefore not useful but this fact is unknown to the person
carrying out the regression. We can therefore analyse 7 different models, 3 models
with one variable; 3 with two variables and 1 with the three variables. We only
make the calculations explicit when ξ = {1}. We obtain therefore as estimators :

β̂1 = (X ′
1X1)

−1X ′
1Y

Ŷ1 = PX1Y

σ̂2
1 = ∥PX⊥

1
Y ∥2/(n− 1).

5.3.1 Estimators Bias

We analyse the bias of these estimators using the true model EY = β1X1+β2X2 =
X12β12.

Eβ̂1 = (X ′
1X1)

−1X ′
1EY = β1 + (X ′

1X1)
−1X ′

1X2β2

EŶ1 = X1β1 + PX1
X2β2.
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The bias is therefore:

B(β̂1) = E(β̂1)− β1 = (X ′
1X1)

−1X ′
1X2β2

B(Ŷ1) = E(Ŷ1)− E(Y ) = PX1
X2β2 −X2β2 = −PX⊥

1
X2β2.

The orthogonal projection matrix PX⊥
1
is not random (the choice ofX1 is not made

as a function of the data), and since the trace of a projector is the dimension of
its image space, we have

Eσ̂2
1 =

1

n− 1
E tr(Y ′PX⊥

1
Y ) =

1

n− 1
tr(PX⊥

1
E(Y Y ′))

=
1

n− 1
tr(PX⊥

1
(V (Y ) + E(Y )E(Y )′)) = σ2 +

1

n− 1
β′
12X

′
12PX⊥

1
X12β12

= σ2 +
1

n− 1
β2
2∥PX⊥

1
X2∥2.

The bias is equivalent to :

B(σ̂2
1) =

1

n− 1
β2
2∥PX⊥

1
X2∥2.

In carrying out the calculations for the 7 possible models, we have the table 5.1.

model estimations properties

Y1 = X1β1 + ε
Ŷ1 = X1β̂1 B(Ŷ1) = −PX⊥

1
X2β2

σ̂2
1 =

∥P
X⊥

1
Y ∥2

n−1 B(σ̂2
1) =

1
n−1β

2
2∥PX⊥

1
X2∥2

Y = X2β2 + ε
Ŷ2 = X2β̂2 B(Ŷ2) = −PX⊥

2
X1β1

σ̂2
2 =

∥P
X⊥

2
Y ∥2

n−1 B(σ̂2
2) =

1
n−1β

2
1∥PX⊥

2
X1∥2

Y = X3β3 + ε
Ŷ3 = X3β̂3 B(Ŷ3) = −PX⊥

3
X12β12

σ̂2
3 =

∥P
X⊥

3
Y ∥2

n−1 B(σ̂2
3) =

1
n−1β

′
12X

′
12PX⊥

12
X12β12

Y = X12β12 + ε
Ŷ12 = X12β12 B(Ŷ12) = 0

σ̂2
12 =

∥P
X⊥

12
Y ∥2

n−2 B(σ̂2
12) = 0

Y = X13β13 + ε
Ŷ13 = X13β̂13 B(Ŷ13) = −PX⊥

13
X12β12

σ̂2
13 =

∥P
X⊥

13
Y ∥2

n−2 B(σ̂2
13) =

1
n−2β

′
12X

′
12PX⊥

13
X12β12

Y = X23β23 + ε
Ŷ23 = X23β̂23 B(Ŷ23) = −PX⊥

23
X12β12

σ̂2
23 =

∥P
X⊥

23
Y ∥2

n−2 B(σ̂2
23) =

1
n−2β

′
12X

′
12PX⊥

23
X12β12

Y = X123β123 + ε
Ŷ123 = X123β̂123 B(Ŷ123) = 0

σ̂2
123 =

∥P
X⊥

123
Y ∥2

n−3 B(σ̂2
123) = 0

Table 5.1 – Bias of the different estimators.



50 Variable Selection

We note then that in the models which are “too small” (here with 1 variable), in
other words which have fewer variables than the “correct” model, the estimators
obtained are biased. On the other hand, when the models are “too big” (here with
3 variables), the estimators are not biased.

Proposition 5.1
1. β̂ξ and Ŷξ are in general biased.

2. σ̂2
ξ is in general positively biased, in other words, on average, the expectation

of σ̂2
ξ is equivalent to σ2 plus a positive quantity.

Bias estimation is difficult because x′β is unknown. We next analyse the estimator
variance in order to show that the bias and the variance evolve in the opposite
way (see figure 7.2, p.78).

5.3.2 Estimators Variance

The dimension of the estimators vary with the size of the model. Nevertheless,
using the formula for inverting by block, we can show that the estimators of the
common components have smaller variances in the smaller model.

V(β̂1) ≤ V([β̂12]1) ≤ V([β̂123]1).

where

Y = X1β1 + ε V (β̂1) = (X ′
1X1)

−1σ2

Y = X12β12 + ε V (β̂12) =

(
X ′

1X1 X ′
1X2

X ′
2X2

)
σ2

Y = X123β123 + ε V (β̂123) =

 X ′
1X1 X ′

1X2 X ′
1X3

X ′
2X2 X ′

2X3

X ′
3X3

σ2.

If we work with fitted values, we have the same phenomenon :

Y = X1β1 + ε V (Ŷ1) = PX1
σ2

Y = X12β12 + ε V (Ŷ12) = PX12
σ2 = PX1

σ2 + PX2∩X⊥
1
σ2

Y = X123β123 + ε V (Ŷ123) = PX123σ
2 = PX1σ

2 + PX23∩X⊥
1
σ2.

We can express this as a general result

Proposition 5.2
1. V([β̂]ξ) − V(β̂ξ) is a positive semi definite matrix, which means that the

components common to the two models are better estimated (vary less) in
the smaller model.

2. The variance of the fitted values in the smaller model is smaller than that of
the fitted values in the larger model V(Ŷ ) ≥ V(Ŷξ).
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If the criterion of model choice is the variance, the user chooses models which have
fewer parameters to estimate! (see figure 7.2, p.78) In general, it is best to obtain
a model which provides a good estimate of the mean (small bias) and has a small
variance. We have seen that a simple way to meet the first objective is to retain
all the variables that are available while the second is met by eliminating many
variables. The mean square error (MSE) helps us to meet these two objectives.

5.3.3 Mean Squared Error

The mean square error (MSE) of an estimator θ̂ of θ of dimension p is

EQM(θ̂) = E((θ − θ̂)(θ − θ̂)′)

= E(θ − θ̂)E(θ − θ̂)′ + V (θ̂),

in other words the bias “squared” plus the variance. A biased estimator can be
better than a unbiased one if its variance is smaller. We are going to use the MSE
as a comparison measure. We can compare either estimators β̂ξ ∈ R|ξ|, fitted

values x′
ξβ̂ξ ∈ R, where x′

ξ corresponds to a row of the matrix Xξ, or predicted

values x⋆
ξ
′β̂ξ ∈ R, where x⋆

ξ ∈ R|ξ| is a new observation. It is standard to treat the
choice of variables via the analysis of the fitted value or predicted value and not
via the estimators β̂ξ whose dimensions vary, namely |ξ|. The following definitions
introduces MSE and the prediction MSE.

Definition 5.1 (MSE)
We consider the regression model Y = Xβ+ε where β, the unknown model param-
eter, can have null coordinates. Given x ∈ Rp an observation column vector, we
have xξ ∈ R|ξ| and β̂ξ the least squares estimator obtained with these |ξ| variables.
The mean square error (MSE) is defined by

EQM(ŷξ) = E((x
′
ξβ̂ξ − x′β)2) = V(x′

ξβ̂ξ) +B2(x′
ξβ̂ξ),

where B(x′
ξβ̂ξ) = E(x

′
ξβ̂ξ)− x′β is the bias of x′

ξβ̂ξ.
If we have n observations xξ grouped in a matrix Xξ and the least squares estimator

β̂ξ obtained using these |ξ| variables, we define the trace of the MSE by

tr(EQM(Ŷξ)) = tr(V(Xξβ̂ξ)) +B(Xξβ̂ξ)
′B(Xξβ̂ξ).

Let us calculate the decomposition of the MSE trace of Ŷξ:

tr(EQM(Ŷξ)) = tr(V(Xξβ̂ξ)) +B(Xξβ̂ξ)
′B(Xξβ̂ξ)

= tr(V(PXξ
Y )) + (E(Xξβ̂ξ)−Xβ)′(E(Xξβ̂ξ)−Xβ)

= |ξ|σ2 + ∥(I − PXξ
)Xβ∥2. (5.1)

In order to take out PXξ
from the brackets of the variance, PXξ

needs to be fixed
and therefore the model choice Xξ does not depend on the data with which we
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evaluate the projection matrix otherwise the matrix is random. If the choice of
variables has been made on the same data set than the one used to estimate the
parameters, we should consider adding another bias term called selection bias.
Turning back to our example, we calculate the MSE of the 7 models

Y = β1X1 + β2X2 + ε = X12β12 + ε.

We consider the model with one variable X1, we have for the term tr(EQM), using
H2 and some projectors properties (symmetry, impotency and trace):

tr(EQM(X1β̂1)) = tr(V(X1β̂1)) +B(X1β̂1)
′B(X1β̂1)

= tr(V(PX1
Y )) + ∥E(X1β̂1)−X12β12∥2

= σ2 tr(PX1
) + ∥E(PX1

(X12β12 + ε))−X12β12∥2

= σ2 + ∥PX⊥
1
X12β12∥2.

We have thus :

tr(EQM(X1β̂1)) = σ2 + ∥PX⊥
1
X12β12∥2

tr(EQM(X2β̂2)) = σ2 + ∥PX⊥
2
X12β12∥2

tr(EQM(X3β̂3)) = σ2 + ∥PX⊥
3
X12β12∥2

tr(EQM(X12β̂12)) = 2σ2

tr(EQM(X13β̂13)) = 2σ2 + ∥PX⊥
13
X12β12∥2

tr(EQM(X13β̂13)) = 2σ2 + ∥PX⊥
13
X12β12∥2

tr(EQM(X23β̂23)) = 2σ2 + ∥PX⊥
23
X12β12∥2

tr(EQM(X123β̂123)) = 3σ2.

Choosing the model which has the smallest tr(EQM) among the seven initial mod-
els is equivalent to analysing the tr(EQM) of the following four models :

tr(EQM(X1β̂1)), tr(EQM(X2β̂2)), tr(EQM(X3β̂3)) and tr(EQM(X12β̂12)).

In order to make further comments, we assume now that

� we know all the unknown quantities

� the smallest squared norm between ∥PX⊥
1
X12β12∥2, ∥PX⊥

2
X12β12∥2 and ∥PX⊥

3
X12β12∥2

is ∥PX⊥
1
X12β12∥2.

We must therefore choose between

Model {1}: tr(EQM(X1β̂1)) = σ2 + ∥PX⊥
1
X12β12∥2

Model {1, 2}: tr(EQM(X12β̂12)) = 2σ2 (supposed to be the true one)



5.3 Incorrect Variable Selection: consequences 53

In order to choose the model which has the smallest tr(EQM), we need to compare
σ2 to ∥PX⊥

1
X12β12∥2, all depends on the respective value of σ2 and ∥PX⊥

1
X12β12∥2.

In the example of figure 5.3, we select model 2 (the true model) since in this
case ∥PX⊥

1
X12β12∥2 > σ2. If on the other hand, ∥PX⊥

1
X12β12∥2 < σ2, we select

model 1, in other words a model which is slightly wrong (bias term) but more
precise (the variance is smaller) than the true model.

21 3

Squared Bias

Variance

High VarianceModel Size

M
S

E

High Bias

MSE

Small Bias (or null)

Small Variance

Figure 5.3 – Trade-off biass2/variance in the case where tr EQM(1) > 2σ2.

In general it is difficult to estimate the bias because the parameter value is un-
known. On the other hand it is easier to estimate the variance. We will look at
procedures for estimating MSE later on in this chapter but first we will introduce
one more definition which is easier to handle: the prediction MSE or its trace.

5.3.4 Mean Squared Prediction Error

MSE or its trace is a standard criterion in statistics, but it doesn’t involve the new
observations Y ⋆. If we want to evaluate the MSPE of these new observations Y ⋆

we have the following definition :

Definition 5.2 (MSPE)
Consider x⋆ ∈ Rp, a new observation, and x⋆

ξ its components corresponding to ξ.
The MSPE is defined by

EQMP(ŷpξ ) = E((x
⋆
ξ
′β̂ξ − y⋆)2) = EQM(x⋆

ξ
′β̂ξ) + σ2 − 2E([x⋆

ξ
′β̂ξ − x⋆′β]ε⋆).

If ε⋆ is not correlated with the ε (hypothesis H2), we then have

EQMP(ŷpξ ) = EQM(x⋆
ξ β̂ξ) + σ2.

If we possess n⋆ new observations x⋆ grouped in a matrix X⋆ we used trace of
EQMP

tr(EQMP(Ŷ p
ξ )) = tr(EQM(X⋆

ξ β̂)) + n⋆σ2 − 2E((X⋆
ξ β̂ξ −X⋆β)′ε⋆).
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If ε⋆ is not correlated with the ε, we then have

tr(EQMP(ŷpξ )) = tr(EQM(x⋆
ξ β̂ξ)) + n⋆σ2.

Going back to our previous example

Y = β1X1 + β2X2 + ε = X12β12 + ε

and assume that we have n⋆ new observations concatenated in the matrix X⋆. We
thus have

tr(EQMP(X⋆
1 β̂1)) = (n⋆ + 1)σ2 + ∥PX⊥

1
X⋆

12β12∥2

tr(EQMP(X⋆
2 β̂2)) = (n⋆ + 1)σ2 + ∥PX⊥

2
X⋆

12β12∥2

tr(EQMP(X⋆
3 β̂3)) = (n⋆ + 1)σ2 + ∥PX⊥

3
X⋆

12β12∥2

tr(EQMP(X⋆
12β̂12)) = (n⋆ + 2)σ2

tr(EQMP(X⋆
13β̂13)) = (n⋆ + 2)σ2 + ∥PX⊥

13
X⋆

12β12∥2

tr(EQMP(X⋆
23β̂23)) = (n⋆ + 2)σ2 + ∥PX⊥

23
X⋆

12β12∥2

tr(EQMP(X⋆
123β̂123)) = (n⋆ + 3)σ2.

If we apply blindly the definition of MSPE (made for new observations) on the
given estimation set X,Y we get for the first model:

tr(EQMP(Ŷ (X1)) = tr(E((Ŷ (X1)− Y )(Ŷ (X1)− Y )′)

that can be split in squared bias and variance leading to ∥PX⊥
1
Xβ∥2 + σ2(n− 1).

We can do the same calculation for all the three models, and we obtain

tr(EQMP(Ŷ (X1)) = ∥PX⊥
1
Xβ∥2 + σ2(n− 1)

tr(EQMP(Ŷ (X12)) = σ2(n− 2)

tr(EQMP(Ŷ (X123))) = σ2(n− 3).

The tr(EQMP) wrongly applied on estimation set tells us that we need to select
the model with the highest number of explanatory variables. In fact this criterion
makes no sense when it is used with data which has been used to estimate the
parameters. We just recover the same phenomenon as the one seen with the
estimation error.

5.4 Standard Criteria for Models Selection

We will look now at the standard methods of model selection. The main selection
criteria are AIC, BIC and their extensions; other exists such as Cp or R2 a but
they won’t be introduced here. On the other hand we have already seen that the
F test between nested models allows us to compare models between each other
using a classical/ standard test procedure and we will try to compare these three:
AIC, BIC and F .
Let us begin by the F test.
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5.4.1 Tests between Nested Models

If the competing models are nested within each other, it is then possible to use
a test procedure. We write the model ξ with |ξ| variables and the model ξ+1

corresponding to the model ξ to which we have added an additional variable.
In order to choose between these two nested models, we have the following test
statistic

F =
SSR(ξ)− SSR(ξ+1)

σ̂2
.

For F to be Fisher distributed, the σ̂2 estimate must have χ2 distribution inde-
pendent from the numerator. There are two different manners to obtain the σ2

estimate:

1. The σ2 estimator is derived using SSR(ξ+1)/(n− |ξ| − 1).
The σ2 estimator is obtained from the “larger” model, in other words the
(ξ+1) model. This solution is in general used by statistical packages ;

2. The σ2 estimator is derived using SSR(p)/(n− p).
The estimator is obtained from the full model.

We have therefore the following theorem.

Theorem 5.1 (Tests between nested models)
Given two models, the ξ and ξ+1 models. The test statistic which enables us to test
the hypothesis H0 : EY ∈ ℑ(Xξ) against the alternative hypothesis H1 : EY ∈
ℑ(Xξ+1), is

1. The variance σ2 is estimated using SSR(ξ+1)/(n− |ξ| − 1). If

F1 =
SSR(ξ)− SSR(ξ+1)

SSR(ξ+1)
× (n− |ξ| − 1) > f1,n−|ξ|−1(1− α)

then the ξ model is rejected at the α test level, in favour of the (ξ+1) model,
a variable is added to the model.

2. The variance σ2 is estimated by SSR(p)/(n− p). If

F2 =
SSR(ξ)− SSR(ξ+1)

SSR(p)
× (n− p) > f1,n−p(1− α).

the the ξ model is rejected at the α test level, in favour of the (ξ+1) model,
a variable is added to the model.

It is difficult to compare these two manners of proceeding since σ2 is not estimated
in the same way.
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5.4.2 Criteria using Likelihood

Under the normality assumption for the residuals, the log-likelihood of the sample
is

L(Y, β, σ2) = − 1

2σ2
∥Y −Xβ∥2 − n

2
(log σ2 + log 2π).

The log-likelihood (evaluated at the maximum likelihood estimator) for the model
with |ξ| variables is therefore equivalent to

L(Y, β, σ2
ξ ) = −n

2
log

SSR(ξ)

n
− n

2
(1 + log 2π).

Selecting a model using maximum likelihood is equivalent to selecting a model
having the smallest SSR . We need therefore to introduce a penalty. In order to
minimise a criterion, we proceed inversely to the log-likelihood and the criteria are
in general written

min
β,ξ
−2L(Y, β, σ2, ξ) + 2|ξ|f(n),

where f(n) is a penalty function depending n.

Akaike Information Criterion (AIC)

This criterion introduced by Akaike in 1973 is defined by a model containing the
indexed/ subscripted variables by ξ :

AIC(ξ) = −2 logL(ξ) + 2|ξ|.

By definition f(n) is equal to 1. AIC penalises the log-likelihood by twice the
number of parameters |ξ|. We obtain an equivalent definition

AIC(ξ) = cte+ n log
SSR(ξ)

n
+ 2|ξ|

Using this criterion is easy : we only need to calculate it for all the competing ξ
models and choose the one which has the smallest AIC.

Bayesian Information Criterion (BIC)

BIC defined by Schwarz in 1978 is defined as

BIC(ξ) = −2 logL(ξ) + |ξ| log n = cte+ n log
SSR(ξ)

n
+ |ξ| log n.

I also consists in penalising the log-likelihood by the number of |ξ| parameters
times a function of the observations (and no longer 2). By definition, f(n) is equal
to log n/2. So, as the number of observations n increases the penalty increases
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and in general larger than 2 (as soon as n > 7) and therefore BIC tends to select
smaller models than AIC.
Depending on the number of individuals n and the number of selected variables,
we can summarise the criteria and the size of the model in the following table:

Standard Criteria |ξ| size of model
TEST or BIC small

AIC bigger

Table 5.2 – Comparison of the |ξ| sizes of the selected models with n > 7.

5.5 Selection Procedure

Model selection can be seen as the search for an optimal model, in the sense of
the chosen criterion, among all the other possibilities. This can be seen as an
optimisation of an objective function (the criterion). Consequently, and similarly
to the options in optimisation, we can either do an exhaustive search since the
number of models is finite, or from a starting point use a method of optimising
the objective function.
We note in general that finding a global minimum of the objective function is not
guaranteed in the step by step procedure and only a local optimum depending on
the starting point will be found. If the explanatory variables are orthogonal, then
the optimum will always be a global optimum.

5.5.1 Exhaustive Search

When all the models with p variables are possible, there are 2p−1 possibilities and
therefore we cannot envisage to use this method when p is large. Some algorithmic
procedures however minimise the number of computations allowing us to consider
this possibility in the case of numbers of moderate size.
Note that this type of search makes no sense when we want to use tests since this
procedure only compare two models nested within each other.

5.5.2 Sequential Methods

This type of search is necessary for tests since we can only test nested models. On
the other hand, it does not allow in general to find a local optimum. It is best to
repeat this procedure from different starting points. Concerning other criteria, this
selection procedure can only be advised on when an exhaustive search is impossible
(n large, p large, etc.).

Forward Selection

At each step, a variable is added to the model.
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� If the forward selection method uses a F test, we add the variable Xi whose
(p-value) associated with the partial Fisher test statistic which compares two
models is smallest. We stop when all the variables have been added or when
the p-value is larger than a given threshold value.

� If the forward selection method uses a choice criterion, we add the variableXi

whose addition to the model leads to an optimisation of the choice criterion.
We stop when either all variables have been added or when none of the
variables allows the optimisation of the criterion of choice. (see also fig. 5.4).

Current Model = M0

Initial Model

Selected Model =M1

AIC comparison between M0 and M1

M1 replace M0

AIC of M0 worse
Add one Variable (this is done

for all variables not in M0)

Choice between all Models (smaller AIC)

AIC M0 better (smaller)

Current model M0 is chosen

Figure 5.4 – Forward procedure using AIC.

Backward Selection

First, all the variables are added to the model.

� If backward elimination uses a F test, we remove he variable Xi whose p-
value, associated to the partial Fisher test statistic is largest. We stop when
all the variables have been removed from the model or when the p-value is
smaller than a given threshold value.

� If the backward elimination procedure uses a choice criterion, we remove the
variable Xi which lead the biggest value of the criterion. We stop when all
the variables have been removed or when none of the variables allows an
increase of the choice criterion.
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Stepwise selection

It is the same principle than for the forward selection procedure , except that we
can remove variables already introduced. Indeed, it can happen that some of the
variables first introduced are no longer significant after the introduction of new
variables.

Intercept

We note that in general the “constant”, made of 1 and associated to the “inter-
cept”, is in general treated separately and is always present in the model. This
variable is the “general mean” of Y the variable to be explained. The other vari-
ables are seen to be refinement to explain better.
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Chapter 6

Ridge, Lasso and Elastic net

6.1 Ridge regression

The least squares problem consists in finding the coefficient vector β̂ that minimizes
the ordinary least squares, i.e.:

β̂ = argmin
β∈Rp

∥Y −Xβ∥2. (6.1)

The assumption H1 (the matrix X is of full rank) then allows us to find a unique

solution to the problem posed, namely β̂ = (X ′X)−1X ′Y . When rank(X) < p, the

matrix (X ′X) is not invertible and the relationship giving β̂ no longer makes sense.
We can still project Y onto ℑ(X), but Ŷ no longer admits a unique decomposition
on the columns of X, the model is then unidentifiable.
Finally, note that when X is full rank, the variance of β̂ is

V(β̂) = σ2(X ′X)−1.

and depends directly on the rank of X. So, even when X is of full rank but
Xj ≈

∑
i ̸=j αiXi (we often say the (explanatory) variables are highly correlated

empirically), the variance of the estimators will be high and the precision will
decrease. It is therefore important to use methods adapted to rank deficiency. A
fairly old method to make a matrix invertible is to modify its diagonal.

6.1.1 A historical solution

This method was proposed in the 70 and consists in replacing (X ′X)−1 by (X ′X+
λI)−1. We obtain the ridge estimator

β̂ridge(λ) = (X ′X + λI)−1X ′Y, (6.2)

where λ is a positive constant to be determined. The choice of λ is very important
for the method’s performance. This is because,
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� β̂ridge(λ) ≈ 0 for high λ values;

� β̂ridge(λ) ≈ β̂ for low values of λ and in the case where β̂ exists.

6.1.2 Minimizing penalized LS

We saw in the previous section that the presence of colinearities between the
columns of tends to increase the variance of the estimators. One approach to
reducing this variance is to penalize the LS criterion by the norm of the parameters.
This involves minimizing

∥Y −Xβ∥2 + λ∥β∥2. (6.3)

where λ ≥ 0 is a parameter to be calibrated. Other penalties are possible and will
be discussed later. To obtain the solution to this problem, we derive with respect
to β

2(−X ′)(Y −Xβ) + 2λβ.

And cancelling the derivative, we obtain the solution

β̂ridge(λ) = (X ′X + λI)−1X ′Y.

We note that the solution to the problem (6.3) is the ridge estimator.

6.1.3 Equivalence with a constraint on the norm of coeffi-
cients

Another way of looking at the ridge method is to minimize the LS criterion under
a constraint on the parameter norm. Consider the estimator β̃ defined by

β̃ = argmin
β∈Rp,∥β∥2≤δ

∥Y −Xβ∥2, (6.4)

where δ ≥ 0 is a parameter to be calibrated. We compute the Lagrangian to obtain
the solution of the problem

∥Y −Xβ∥2 + µ(∥β∥2 − δ).

A necessary optimum condition is given by the cancellation of its partial derivatives
derivatives at the optimum point (β̃, µ̃)

−2X ′(Y −Xβ̃) + 2µ̃β̃ = 0 (6.5)

∥β̃∥2 − δ = 0.

The first equation shows that the solution to this problem is the ridge estimator

β̃ = β̂ridge = (X ′X + µ̃I)−1X ′Y.
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In order to calculate the value of µ̃, pre-multiply (6.5) on the left by β̂′
ridge, we

get µ̃ = (β̂ridgeX
′Y − β̂′

ridgeX
′Xβ̂ridge)/∥β̂ridge∥2. We can also check that this pair

is indeed a minimum of the function by noting that the hessian is a symmetrical
matrix of the form A′A, i.e. positive semi-definite.
Geometrically, ridge regression amounts to searching in a ball of Rp of radius δ,
the coefficient β̂ridge closest in the least squares sense. Placing ourselves now in
the space of observations Rn, the image of the constraint ball by X is an ellipsoid
constraint. Since the ellipsoid is included in ℑ(X), in the case where δ is small,

the optimum β̂ridge is such that Xβ̂ridge is the projection of Xβ̂ onto this ellipsoid

constraint (see fig. 6.1). In the opposite case, where ∥β̂|2 ≤ δ, β̂ is in or on the the
ellipsoid and is indeed the solution.

ε̂Y

Xβ̂
X2

X1

Xβ̂ridge

Figure 6.1 – Coefficients constraint and ridge regression : β̂ridge represents the

ridge estimator and β̂ represents the the LS estimator.

6.1.4 Statistical properties of the ridge estimator β̂ridge

Let’s recall the main properties of the OLS estimator (non-penalized)

1. Existence and uniqueness: the fit (via LS) Ŷ = PXY + ȳ1 exists and is

unique, and we can always find one (and especially several) β̂ that satisfy

Ŷ = Xβ̂ + ȳ1. If hypothesis H1 is verified, then the vector β̂ is unique and
we have the explicit formula (closed form) β̂ = (X ′X)−1X ′Y .

2. Nullity of all coefficients of β̂: for LS, except in special cases (such as X ′Y =
0, all explanatory variables X are uncorrelated to Y ), there’s no reason to

get all coordinates of β̂ equal to zero.

3. Bias: the OLS estimator β̂ is unbiased (when the regression model is true
and E(ε) = 0)

4. Variance: we’ve already calculated the variance as σ2(X ′X)−1.

Let’s consider these four items for ridge estimator.
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1. Existence and uniqueness: the closed form formula for ridge estimator

β̂ridge = (X ′X + λI)−1X ′Y.

shows us that, as soon as λ > 0 fixed, existence and uniqueness of the ridge
estimator (the result of a function of λ), without having to use assumption

H1. However Ŷridge(λ) = Xβ̂ridge(λ) + ȳ1 is not a projection.

2. Nullity of all coefficients of β̂ridge: The same as LS estimator applies to the

ridge estimator: as soon as λ > 0 is finite, we have β̂ridge(λ) ̸= 0, except in
the very special case where X ′Y = 0.

3. Bias: let’s return to the definition of the LS estimator

β̂ = (X ′X)−1X ′Y

and pre-multiplying it on the left by X ′X, we have Xβ̂ = X ′Y that we can
put inside the closed form formula for ridge estimator giving us

β̂ridge = (X ′X + λI)−1X ′Xβ̂. (6.6)

This formula makes it easy to calculate the bias and variance of the ridge
estimator. Calculating the the expectation of the ridge estimator gives

E(β̂ridge) = (X ′X + λI)−1(X ′X)E(β̂)

= (X ′X + λI)−1(X ′X)β

= (X ′X + λI)−1(X ′X + λI− λI)β

= β − λ(X ′X + λI)−1β.

The bias of the ridge estimator is therefore

B(β̂ridge) = −λ(X ′X + λI)−1β. (6.7)

In general, this quantity is non-zero. ridge estimator is biased and the regres-
sion is said to be biased. This bias can be thought as a handicap compared
to the the LS estimator.

4. Variance: it can be calculated as follows

V (β̂ridge) = V((X ′X + λI)−1X ′Y )

= (X ′X + λI)−1X ′ V(Y )X(X ′X + λI)−1

= σ2(X ′X + λI)−1X ′X(X ′X + λI)−1. (6.8)

Compared to LS variance, the ridge estimator variance involves (X ′X+λI)−1

and not (X ′X)−1. As λI increases the eigenvalues of (X ′X + λI) it reduces
the variance.
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6.1.5 Comparison of ridge and LS estimators through MSE

The comparison of ridge and LS estimators is usually done using EQM. From the
expressions of the bias and variance (see previous subsection), we have

EQM(β̂) = σ2(X ′X)−1

EQM(β̂ridge) = E(β̂ridge − β)E(β̂ridge − β)′ + V (β̂ridge)

= λ2(X ′X + λI)−1ββ′(X ′X + λI)−1 + σ2(X ′X + λI)−1X ′X(X ′X + λI)−1

= (X ′X + λI)−1
[
λ2ββ′ + σ2(X ′X)

]
(X ′X + λI)−1.

It’s difficult to compare two matrices, so consider the trace of the MSE matrix,
we have

tr[EQM(β̂)] = σ2 tr((X ′X)−1) = σ2

 p∑
j=1

1

λj

 ,

where {λj}pj=1 are the eigenvalues of X ′X. Since some of these eigenvalues are zero
or almost zero, the trace of the MSE is infinite or very large. We can show that
the trace of the MSE matrix of the ridge estimator is equal to

tr[EQM(β̂ridge)] =

r∑
i=1

σ2λi + λ2[P ′β]2i
(λi + λ)2

where X ′X = P diag(λi)P
′.

This last equation gives the form of the MSE as a function of the regression
parameter λ. We can find a sufficient condition find a sufficient condition on λ, a
condition that is independent of the explanatory variables,

λ ≤ 2σ2

β′β
,

which allows us to know that the MSE trace of the ridge estimator is smaller than
that of the LS estimator. In other words, when λ ≤ 2σ2/β′β, the ridge regression
is more accurate (in parameter estimation) than the LS estimator in the sense of
the MSE trace. However, this condition depends on unknown parameters β and
σ2 and it cannot be used to select a value for λ.
Note that if X is orthogonal, then by definition X ′X = I and so the definition of
ridge regression amounts to dividing β̂ = X ′Y the LS estimator by (1 + λ) and
thus shrink the coefficients of the same amount.

6.2 Problem of centering-scaling variables

Up to now, we’ve always considered the general model

Y = Xβ + ε
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and assumed that one of the explanatory variables could be the constant 1. This
variable had the same role as the other potential explanatory variables. However,
it is usual not to include it in the penalisation. For this reason, we will now
consider the following model

Y = µ1+Xβ + ε.

The value of a coefficient βj depends on the scale of the measurements of the
associated explanatory variableXj : for example, βj will be different if the variable
is measured in grams or in kilograms. In order to avoid penalizing or favoring
one coefficient over another (and by the way one variable against an other), it
is desirable that each coefficient be assigned in a similar way. A classical way of
achieving it is to reduce all the explanatory variables. A centered-scaled variable
X̃j from the variable Xj can be written as

X̃j = (Xj − x̄j1)/σ̂Xj ,

where x̄j is the empirical mean of Xj (i.e.
∑n

i=1 xij/n) and σ̂2
Xj

is an estimate

of the empirical variance (for example
∑n

i=1(xij − x̄j)
2/n). The matrix X̃ will

therefore contain centered-scaled variables. The model (6.9) then becomes

Y = µ̃1+ X̃β̃ + ε. (6.9)

The variables X̃ are centered (and scaled), so they are all orthogonal to the variable
1. Since variable 1 is excluded from the constraint and is orthogonal to the
others, its coefficient, estimated by a regression is simply the empirical mean of
the observations of Y : ̂̃µ = ȳ. After estimating the parameters with 1 and X̃
and Y , it is possible to predict a new value x′

n+1 = (xn+1,1, · · · , xn+1,p) using the
following formula:

ŷpn+1 = ̂̃µ+

p∑
j=1

(
xn+1,j − x̄j

σ̂Xj

) ̂̃
βj .

Note that this forecast can be written as a linear combination of the initial variables

ŷpn+1 =

̂̃µ− p∑
j=1

x̄j
β̂j

σ̂Xj

+

p∑
j=1

xn+1,j
β̂j

σ̂Xj

.

From now on, in order to have the simplest possible notations notations, we’ll
assume that the variables in the X matrix are centered and scaled, and that the
model is written as follows (remove the tildes):

Y = µ1+Xβ + ε.

6.3 Penalties: ridge, lasso, elasticnet. . .

Most of the penalties used to regularize the least squares criterion are based on
the l2 and l1 norms leading to the ridge and lasso estimators. For a given λ > 0,
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let’s consider the following minimization problems

(µ̂, β̂ridge(λ)) = argmin
µ∈R,β∈Rp

∥Y − µ1−Xβ∥2 + λ∥β∥22

and

(µ̂, β̂lasso(λ)) = argmin
µ∈R,β∈Rp

∥Y − µ1−Xβ|2 + λ∥β∥1.

Since the variables Xj are centered (scaled), they are orthogonal vector 1, the
estimator of µ does not depend on λ. Both problem is equivalent to the problem
of minimizing LS under constraints:

min
µ∈R,β∈Rp:∥β∥≤δ

∥Y − µ1−Xβ∥2.

Let’s illustrate the choice of the norm graphically via the formulation of LS under
constraints. Let’s choose a model with two explanatory variables X1 and X2 and
therefore two coefficients β1 and β2:

Y = Xβ + ε = X1β1 +X2β2 + ε.

The data in the table 6.1 are used to calculate β̂ which here is (1, 1)′ and we can
also obtain the graphical representation of the figure 6.2a. The plane of ℑ(X)
(seen from above) is given in figure 6.2b.

Y X1 X2

2 1 1
2 0 2
1 0 0

Table 6.1 – Data for 3D graphic illustration
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Figure 6.2 – Graphical presentation of table data 6.1.
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We will consider for the l2 norm squared (i.e. ∥β∥2 =
∑p

i=1 β
2
i ) which corresponds

to the ridge regression and a l1 norm ∥β|1 =
∑p

i=1 |βi|) which corresponds to the
lasso regression. Let’s represent with a norm 1 and 0.5 in each case in the subspace
ℑ(X) the constrained subspace in ℑ(X). In this example, we’ll assume that LS β̂

doesn’t satisfy the constraint, otherwise the solution to the problem is β̂.

−2 −1 0 1 2

−
2

−
1

0
1

2

+

+

X1

X2
Xβ̂

(a) J(β) is a l2 norm squared

−2 −1 0 1 2

−
2

−
1

0
1

2

(b) J(β) is a standard l1

Figure 6.3 – Representation of subspace ℑ(X) with constraints of norm .5 and
1.

In the case of ridge regression (fig. 6.3a) we see that among the points satisfying
the constraint (i.e. the (β1, β2)

′ inside or on the edges of the ellipse), the closest

to Xβ̂ (this is the ridge estimator) has neither of its two coordinates zero, for both
the 1 constraint and the 0.25 constraint. On the other hand, in the case of lasso
regression (fig. 6.3b), we see that among the points that the constraint (i.e. inside

or on the edges of the diamond), the closest to Xβ̂ (this is the lasso estimator)
has coordinates in the X1, X2 coordinate system (0, 1)′ or (0, 0.5)′ depending on
the constraint under consideration. In both cases, the variable variable X1 has
coefficient 0, so it is not selected. Only a constraint greater than 1 would allow to
be non-zero. The most frequently used regularization functions penalize vectors
that have too many coordinates. They are based on norms or mixtures of norms:

� Ridge regression: ∥β∥2 =
∑p

j=1 β
2
j , penalizes β vectors with strong coordi-

nates.

� Lasso regression: ∥β∥1 =
∑p

j=1 |βj |, penalizes β vectors with strong coordi-
nates, and also leads to variable selection (see discussion below).

� Regression elasticnet: α
∑p

j=1 |βj |+(1−α)
∑p

j=1 β
2
j , which provides a com-

promise between the two above solutions, at the cost of an additional coef-
ficient to choose α which in general is .5.

� Regression group lasso: the coefficients are naturally into K distinct groups,
and we wish to retain or eliminate as a whole, but you don’t want to eliminate
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just one variable in a group. The penalty is then
∑K

k=1 λk∥β(k)∥2 where β(k)

is the sub-vector of the coefficients corresponding to the group k.

� Regression fused lasso α∥β∥21 + (1 − α)
∑p−1

j=1 |βj+1 − βj |: enables you to
select a certain number of variables but also to limit the variations between
coefficients of consecutive variables.

6.4 Statistical properties of lasso

For a given λ > 0, let’s consider the following minimization problem

(µ̂, β̂lasso(λ)) = argmin
µ∈R,β∈Rp

∥Y − µ1−Xβ∥2 + λ∥β∥1.

Since the variables Xj are centered (scaled), they are orthogonal vector 1, the
estimator of µ does not depend on λ. Let’s look at point the following three
points for lasso estimator (see section 6.1.4, p.63 for ridge and LS).

1. Existence and uniqueness: The function

h(β) = ∥Y − µ1−Xβ∥2 + λ∥β∥1 = h1(β) + h2(β)

is the sum of two convex functions (since λ > 0 is fixed) and is therefore
convex on Rp. We deduce that it has a minimum. The set of points at which
this minimum is attained, set denoted {β̂lasso(λ)}, is non-empty, ensuring
existence.
As in ridge and LS we have that Xβ̂lasso(λ) is unique (see exercices). To

fulfill uniqueness of the vector β̂lasso(λ) we need to add the assumption H′
1 :

Xξ is of full rank, where Xξ is the matrix matrix X restricted to columns
j ∈ {1, . . . , p} for which where |zj | = λ, with z ∈ ∂h2 satisfying the equation
(6.10).

It would be nice (and practical) to have a formula that directly gives β̂lasso,

like the one (6.2) for β̂ridge (or the one for β̂). For lasso, the function h is not
differentiable for any λ (take 0p ∈ Rp as an example). This problem can be
circumvented by taking the sub-differential, but the equation obtained does
not allow us to find β̂lasso with an explicit formula (except in the orthogo-
nal orthogonal case, see section 6.4.2) and an iterative algorithm must be
implemented (see section 6.4.2).

2. Nullity of all coefficients of the estimator vector : the lasso estimator is the
argument of the minimum of the function. For a convex function x 7→ f(x),
we have the following equivalence:

x̂ ∈ argmin
x∈Rp

f(x)⇔ 0 ∈ ∂f(x̂)

which, applied to our case, tells us that for lasso estimators β̂lasso(λ), the
sub-differential of vector 0 ∈ Rp. Using the fact that the sub-differential of
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a sum of two convex functions is the sum of the two sub-differentials and
that the sub-differential of a differentiable function (namely h1(β)) is the
singleton limited to the gradient (so here ∂h1(β) = {∇h1(β)} = {−2X ′(Y −
µ1−Xβ)}), we then have

0 ∈ {−2X ′(Y − µ1−Xβ̂lasso(λ))}+ ∂h2(β̂lasso(λ)).

Finally, using the fact that the sub-differential of ∥.∥1 norm is known:

z ∈ ∂h2(β)⇔

{
zj = λ sign(βj) = λ

βj

|βj | if βj ̸= 0,

zj ∈ [−λ, λ] if βj = 0,

we therefore have a necessary and sufficient condition for β̂lasso(λ) to be an
argument of the minimum of h:

−2X ′(Y − µ1−Xβ̂lasso(λ)) + z = 0 (6.10)

with z ∈ ∂h2(β). Unfortunately, and as announced, this equation doesn’t

give a closed form formula for β̂lasso(λ). However, we can deduce an inter-
esting fact about the lasso. Recall that X is centered thus Xj ⊥ 1 ∀j and
X ′1 = 0. From the equation (6.10), we have, with z ∈ ∂h2(β):

2X ′Xβ̂lasso(λ) = 2X ′Y − z,

which, pre-multiplying by β̂′
lasso(λ) gives

0 ≤ 2β̂′
lasso(λ)X

′Xβ̂lasso(λ) = β̂′
lasso(λ)(2X

′Y − z).

If we call ξ the set of explanatory variables for which the the coefficient of
β̂′
lasso(λ) is non-zero, then we have by replacing z by its value:

0 ≤
∑
j∈ξ

[β̂lasso(λ)]j(2[X
′Y ]j − λ sign([β̂lasso(λ)]j)).

In order for this necessary condition to be met the following conditions are
needed:

� if [β̂lasso(λ)]j is positive then 2[X ′Y ]j > λ sign([β̂lasso(λ)]j) ≥ 0 ;

� if [β̂lasso(λ)]j is negative then 2[X ′Y ]j < λ sign([β̂lasso(λ)]j) ≤ 0.

Taking the largest absolute element of vector X ′Y (denoted ∥X ′Y ∥∞ =
maxj |[X ′Y ]j |), we have that if λ ≥ 2∥X ′Y ∥∞ then neither of the above two

points can be verified, meaning that for λ ≥ 2∥X ′Y ∥∞ we have β̂lasso(λ) = 0.

In conclusion, the counterpart of point 2) for the lasso is as follows: if λ ≥
2∥X ′Y ∥∞ then the vector β̂lasso(λ) has all its coordinates zero, no variable
is selected.
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As soon as the value of λ falls below this threshold, the first variable, the one
whose index corresponds to ∥X ′Y ∥∞, is added to the model. Recall that if
the X and Y variables are centered, X ′Y represents, to the nearest 1/n, the
correlation between each X variable and the Y variable. In this case, this
corresponds to the explanatory variable most correlated explanatory variable
with Y , i.e. the same variable as in a bottom-up selection from a model with
just the constant.

3. Bias and variance: as we have no explicit formula for the lasso estimator
(except in the orthogonal case), it is more difficult to obtain them.

6.4.1 Special case: X orthogonal

When the matrix X is orthogonal (thus X ′X = Ip), the LS and ridge estimators
ridge estimators are simplified:

β̂ =(X ′X)−1X ′Y = X ′Y

β̂ridge(λ) =(X ′X + λI)−1X ′Y =
X ′Y

1 + λ
.

The ridge estimator is a contracted version of the OLS estimator: the jth compo-
nent of the ridge estimator is equal to β̂j/(1 + λ) where β̂j is the jth component
of the LS estimator and therefore each of its coordinates has been divided by
1 + λ > 1 (as soon as λ > 0).

We denote by β̂lasso(λ) the lasso estimator obtained by

β̂lasso(λ) = argmin
β
∥Y −Xβ∥2 + λ∥β∥1.

We have assumed that X is an orthogonal matrix; this assumption provides an
explicit formula for the the lasso estimator. The equation (6.10) becomes

2β̂lasso(λ) = 2X ′Y − z

which becomes for each coordinate j

[β̂lasso(λ)]j = [X ′Y ]j −
zj
2
.

If the coordinate [β̂lasso(λ)]j is not zero, we have that zj = λ sign([β̂lasso(λ)]j),
which gives us for each non-zero coordinate:

[β̂lasso(λ)]j = [X ′Y ]j −
λ sign([β̂lasso(λ)]j)

2
= [X ′Y ]j −

λ sign([X ′Y ]j)

2
.

If the coordinate is positive, we deduce that [X ′Y ]j > 0 and furthermore that that
[X ′Y ]j > λ/2. If the coordinate is negative, we deduce that [X ′Y ]j < 0 and that
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[X ′Y ]j < −λ/2. We therefore have that [X ′Y ]j has the same sign as [β̂lasso(λ)]j ,

which allows us to replace sign([β̂lasso(λ)]j) with the sign of [X ′Y ]j , or
[X′Y ]j
|[X′Y ]j | :

[β̂lasso(λ)]j = [X ′Y ]j(1−
λ

2|[X ′Y ]j |
)+

and we keep the positive part of the factor furthest to the right to signs are
identical.
Recall that the OLS estimator in this case is β̂j = [X ′Y ]j . Thus the j

th component
of the estimator lasso estimator is

sign(β̂j)(|β̂j | − λ/2)+

where (x)+ = max(x, 0). The lasso sets to 0 the components for which for which
the OLS estimator is smaller in absolute value than 2. The other components are
simply simply the components of the corresponding OLS estimator shrunk to 0 by
λ/2.
The figure 6.4 represents the behavior of the ridge and lasso estimators as a func-
tion of the value of the LS estimator. We speak of soft tresholding for ridge and
hard tresholding for lasso. for lasso.

2

1

0

-1

-2

-2 -1 0 1 2

Figure 6.4 – Ridge (dotted), lasso (dashed) and OLS (solid) estimators as a
function of the OLS estimator with λ = 1

.

6.4.2 Lasso algorithm

The most popular algorithm, introduced in 1998, is a coordinate-by-coordinate
descent. As we shall see, if we fix all β coordinates except jth, we can easily find
an explicit way of writing this coordinate [β̂lasso(λ)]j as a function of the data and
the other coordinates. The idea of this algorithm is to perform this minimization
each of the j coordinates iteratively, and stop when the algorithm is no longer
progressing.
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Let’s show that, if we assume that all β coordinates except jth are fixed, then we
have an explicit formula for it. Note that βj 7→ h(β) is convex and, moreover,

derivable as soon as βj ̸= 0. We then have, leaving aside the notation β̂lasso(λ) for

a lighter β̂, that the derivative (with respect to βj) is zero in β̂j :

−2X ′
j(Y − ȳ1−

∑
k ̸=j

β̂kXk) + 2β̂jX
′
jXj + λ

β̂j

|β̂j |
= 0 si β̂j ̸= 0.

Noting Rj = X ′
j(Y − ȳ1−

∑
k ̸=j β̂kXk), we get

2Rj = 2β̂jX
′
jXj + λ

β̂j

|β̂j |
si β̂j ̸= 0.

Since λ > 0 and X ′
jXj > 0, we deduce that the sign of Rj is the same as that of

β̂j and we can therefore replace replace
β̂j

|β̂j |
by

Rj

|Rj | , which gives us

β̂j =
Rj

X ′
jXj

(1− λ
1

2|Rj |
) si β̂j ̸= 0.

Since β̂j is of the same sign as Rj , in order to guarantee this condition in the
previous equation, we need to consider only the positive part of the right-most
factor:

β̂j =
Rj

X ′
jXj

(1− λ
1

2|Rj |
)+

We thus obtain the algorithm 1.

Algorithm 1: Lasso regression by coordinate-by-coordinate descent (with X
variables centered scaled)

β0 ∈ Rp

k ← 0 repeat
for j ← 1 to p do

βk+1
j ← Rj

X′
jXj

(1− λ
2|Rj | )+ with Rj = X ′

j(Y − ȳ1−
∑

k ̸=j β
k
kXk)

end
k ← k + 1

until βk+1 ≈ βk

6.5 Choice of λ by cross validation

The choice of λ is crucial. A small λ and the estimator will be very close to the S
estimator and a large λ and the estimator will be close to the origin. Classically
the value for λ is obtained via K fold cross validation : the data are split in K
groups, we use K − 1 groups to estimate the parameters and then use the last
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group for prediction. This is done K times. Let us illustrate that procedure with
K = 4 (usual choice for K is K = 10)
� First define a grid for λ.
This is clearly a choice left to the user but the classical grid choice for lasso is

the following:

1. Calculate the maximal value for λ:

λ0 = 2∥X ′Y ∥∞

2. Choose a grid length T , usually T = 100

3. the grid is:

λj = λ010
−4j
T−1 , 0 ≤ j ≤ 99

For elasticnet divide the grid values by α and for ridge one can divide by 0.01 or
0.001.
� Then split the data in K groups. Use K−1 groups to estimate for the first value
of the grid and predict the last group to obtain Ŷ for the remaining group denoted
Ŷλ0 .

A

B

C

D

XY Ŷλ0

Do the same for the other values of λ.

A

B

C

D

XY

.........

Ŷλ0 ŶλT
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Change the group you want to predict

A

C

D

XY

.........B

Ŷλ0 ŶλT

� At the end, every one has been predicted for all the different λ from the grid.
It is possible to evaluate the predicted error for all the values of the grid using
∥Y − Ŷλj

∥2 (or other loss function)

A

B

C

D

XY

.........

Ŷλ0 ŶλT

error0 errorT

and then just choose the best λ and use all the data to estimate the chosen esti-
mator !
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Chapter 7

Models comparison

7.1 Introduction

We have collected data (Xi, Yi)1,··· ,n where Y is a real an we have p potentially
explanatory variables to predict Y . So far, we have at our disposal 5 algorithms
to predict Y

� Least square

� Least square with variables selection (different methods are available)

� Ridge estimator

� Lasso estimator

� Elastic net estimator

Which one suits the best to our data ? It is important to remenber the graph
where the estimation error decreases with the complexity (here the number of
variables).
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Figure 7.1 – Evolution of the errors with the complexity.

In our case, the LS estimator is the one having more variables and so the highest
complexity compare to the 4 other algorithms. So on the estimation error, the LS
will be on the rigth part of the graph. But do we overfit ?

E
rr

o
r

Model size

Underfitting Overfitting

Figure 7.2 – Evolution of the errors with the complexity.

In order to answer that question, we need to estimate the prediction error and we
are going to use again K−fold cross validation.

7.2 Cross validation

The data are splitted in K groups, we use K − 1 groups to estimate the different
algorithms and then use the last group for prediction. This is done K times.
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A

B

C

D

XY

.........

Ŷλ0 ŶλT

A

B

C

D

XY

.........

Ŷλ0 ŶλT

A

B

C

D

XY

.........

Ŷλ0 ŶλT

error0 errorT

We choose the method with the smallest error and estimate the corresponding
parameters with all the data. It is interesting to note here that using penalised
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regression needs to select λ which is usually done in Cross Validation so in fact we
usually perform a cross validation for selecting the parameters in a cross validation
for selecting the best method.

7.3 Moving forward: feature ingeniering

you maay want to add variables by transforming the one you have such as taking
the square or some polynom transformation (usually up to degree 3), you could
use interaction by multiplying variables together X12 = X1 ∗X2....
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