Chapter 3

Exercices Week 3

Definition 3.1 *We define the hitting time and the return to a set* A *as:*

$$\tau_{\mathsf{A}} = \inf\{k \geqslant 0 : X_k \in \mathsf{A}\}$$

$$\sigma_{\mathsf{A}} = \inf\{k \geqslant 1 : X_k \in \mathsf{A}\}$$

Similarly we define the n-th successive return times as

$$\sigma_{\mathsf{A}}^{(m)} = \inf\left\{k > \sigma_{\mathsf{A}}^{(n-1)} \,: X_k \in \mathsf{A}\right\} \quad , \quad \sigma_{\mathsf{A}}^0 = 0 \;.$$

- **3.1.** Let τ and σ be two stopping times with respect to the canonical filtration $(\mathscr{F}_n)_{n\geq 0}$. Show that
 - 1. for any $n,m \in \mathbb{N}$, $\theta_m^{-1}(\mathscr{F}_n) = \sigma(X_m,\ldots,X_{n+m})$
- 2. Define the random variable

$$\sigma = \left\{ \begin{array}{l} \tau_1 + \tau_0 \circ \theta_{\tau_1} \text{ if } \tau_1 < \infty \\ \infty \text{ otherwise }. \end{array} \right.$$

Show that σ is a stopping time and on $\{\tau_1 < \infty\} \cap \{\tau_0 < \infty\}$,

$$X_{\tau_0} \circ \theta_{\tau_1} = \theta_{\sigma} . \tag{3.1}$$

Let $A \subset \mathscr{X}$.

3. Show that $\{\sigma_A^{(n)}\}_n$ is a sequence of stopping times verifying for any n:

$$\sigma_{\mathsf{A}} = 1 + \tau_{\mathsf{A}} \circ \theta_1 \;, \tag{3.2}$$

$$\sigma_{\mathsf{A}}^{(n)} = \sigma_{\mathsf{A}}^{(n-1)} + \sigma_{\mathsf{A}}^{(n)} \circ \theta_{\sigma_{\mathsf{A}}^{(n-1)}} \qquad n \ge 1.$$
 (3.3)

3.2. Let $C \subset \mathcal{X}$. Show that

- 1. If for any $x \in C$, $\mathbb{P}_x(\sigma_C < \infty) = 1$, then for any $n \ge 1$ and for any $x \in C$, $\mathbb{P}_x(\sigma_C^{(n)} < \infty) = 1$.
- 2. If for any $x \in C^c$, $\mathbb{P}_x(\sigma_C < \infty) = 1$, then for any $n \ge 1$ and for any $x \in X$, $\mathbb{P}_x(\sigma_C^{(n)} < \infty) = 1$.

Definition 3.2 For any set $C \in \mathcal{X}$, denote by \mathcal{X}_C the subset of \mathcal{X} defined as

$$\mathscr{X}_C = \{ A \cap C : A \in \mathscr{X} \} . \tag{3.4}$$

It is easily seen that \mathscr{X}_C is a σ -field, often called the trace σ -field on C or the induced σ -field on C.

2 3 Exercices Week 3

Definition 3.3 (Induced kernel) For all $C \in \mathcal{X}$, the induced kernel Q_C on $C \times \mathcal{X}_C$ is defined by

$$Q_C(x,B) = \mathbb{P}_x(X_{\sigma_C} \in B, \ \sigma_C < \infty) , \qquad x \in C, \ B \in \mathscr{X}_C . \tag{3.5}$$

3.3. Let *P* be a Markov kernel on $X \times \mathcal{X}$ and $C \in \mathcal{X}$. Assume that $\mathbb{P}_x(\sigma_C < \infty) = 1$ for all $x \in C$. Then, for all $x \in C$ and $n \in \mathbb{N}$, $\mathbb{P}_x(\sigma_C^{(n)} < \infty) = 1$. We set for all $n \in \mathbb{N}$,

$$\tilde{X}_n = X_{\sigma_C^{(n)}} \mathbb{1}_{\{\sigma_C^{(n)} < \infty\}} + x_* \mathbb{1}_{\{\sigma_C^{(n)} = \infty\}}$$
(3.6)

where x_* is an arbitrary element of C.

- (i) Show that, for all $x \in C$, the process $\{\tilde{X}_n, n \in \mathbb{N}\}$ is under \mathbb{P}_x a Markov chain on C with kernel Q_C (see Definition 3.2).
- (ii) Let $A \subset C$ and denote by $\tilde{\sigma}_A$ the return time to the set A of the chain $\{\tilde{X}_n\}$. Show that, for all $x \in C$, $\mathbb{E}_x[\sigma_A] \leq \mathbb{E}_x[\tilde{\sigma}_A] \sup_{v \in C} \mathbb{E}_v[\sigma_C]$.
- **3.4 (Maximum principle).** Let *P* be a Markov kernel on $X \times \mathcal{X}$. Show that for all $x \in X$ and $A \in \mathcal{X}$,

$$U(x,A) \leq \mathbb{P}_x(\tau_A < \infty) \sup_{y \in A} U(y,A)$$
.

- **3.5.** Show that for every $A \in \mathcal{X}$, the function $x \mapsto \mathbb{P}_x(N_A = \infty)$ is harmonic.
- **3.6.** Let *P* be a Markov kernel on $X \times \mathcal{X}$. Let $A \in \mathcal{X}$.
- (i) Assume that there exists $\delta \in [0,1)$ such that $\sup_{x \in A} \mathbb{P}_x(\sigma_A < \infty) \leq \delta$. Show that for all $p \in \mathbb{N}^*$, $\sup_{x \in A} \mathbb{P}_x(\sigma_A^{(p)} < \infty) \leq \delta^p$ and $\sup_{x \in X} \mathbb{P}_x(\sigma_A^{(p)} < \infty) \leq \delta^{p-1}$. Moreover,

$$\sup_{x \in X} U(x, A) \le (1 - \delta)^{-1} . \tag{3.7}$$

(ii) Assume that $\mathbb{P}_x(\sigma_A < \infty) = 1$ for all $x \in A$. Show that for all $p \in \mathbb{N}^*$, $\inf_{x \in A} \mathbb{P}_x(\sigma_A^{(p)} < \infty) = 1$. Moreover, $\inf_{x \in A} \mathbb{P}_x(N_A = \infty) = 1$ for all $x \in A$.

Given $A \in \mathcal{X}$, we define, for n > 1 and $B \in \mathcal{X}$,

$${}_{\Delta}^{n}P(x,B) = \mathbb{P}_{x}(X_{n} \in B, n \le \sigma_{A}). \tag{3.8}$$

Thus ${}_A^n P(x,B)$ is the probability that the chain goes from x to B in n steps without visiting the set A. It is called the n-step taboo probability. Note that ${}_A^1 P = P$ and ${}_A^n P = (PI_{A^c})^{n-1} P$ where I_A is the kernel defined by $I_A f(x) = \mathbb{I}_A(x) f(x)$ for any $f \in \mathbb{F}_+(X)$

3.7. 1. Show the first-entrance decomposition

$$P^{n} f(x) = {}_{A}^{n} P f(x) + \sum_{i=1}^{n-1} {}_{A}^{j} P(\mathbb{1}_{A} \times P^{n-j} f)(x) . \tag{3.9}$$

2. Show the last exit decomposition

$$P^{n}f(x) = {}_{A}^{n}Pf(x) + \sum_{j=1}^{n-1} P^{j}(\mathbb{1}_{A} \times {}_{A}^{n-j}Pf)(x).$$
 (3.10)

3.8. Let *P* be a Markov kernel on $X \times \mathcal{X}$. Let $A \in \mathcal{X}$.

3 Exercices Week 3

- 1. Show that the following conditions are equivalent.
 - (i) A is accessible.
 - (ii) For every $x \in X$, there exists an integer $n \ge 1$ such that $P^n(x,A) > 0$.
 - (iii) For every $\mu \in \mathbb{M}_+(\mathscr{X})$, there exists an integer $n \ge 1$ such that $\mu P^n(A) > 0$.
 - (iv) For every $x \in A^c$, $\mathbb{P}_x(\sigma_A < \infty) > 0$.
- 2. Show that, if *A* is accessible, for all $a \in \mathbb{M}^1_+(\mathbb{N})$ with a(k) > 0 for $k \ge 1$, $K_a(x,A) > 0$ for all $x \in X$.
- 3. Show that if there exists $a \in \mathbb{M}^1_+(\mathbb{N})$ such that $K_a(x,A) > 0$ for all $x \in X$, then A is accessible.

Definition 3.4 (Domain of attraction of a set, attractive set) *Let* P *be a Markov chain on* $X \times \mathcal{X}$. *The domain of attraction* C_+ *of a non empty set* $C \in \mathcal{X}$ *is the set of states* $x \in X$ *from which the Markov chain returns to* C *with probability one:*

$$C_{+} = \{ x \in X : \mathbb{P}_{x}(\sigma_{C} < \infty) = 1 \}$$
 (3.11)

- (i) If $C \subset C_+$, then the set C is said to be Harris recurrent.
- (ii) If $C_+ = X$, then the set C is said to be attractive.

If the domain of attraction C_+ of C contains C, then it may happen that $C_+ \subsetneq X$. Nevertheless, as shown below, the set C_+ is absorbing.

3.9. Let *P* be a Markov kernel on $X \times \mathcal{X}$. Let $C \in \mathcal{X}$ be a non-empty set such that $C \subset C_+$. Show that the set C_+ is absorbing.