Simple Linear Regression: exercises

Exercice 1 (Estimation) By minimising

$$S(\beta_1, \beta_2) = \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i)^2.$$

Find the expression of $\hat{\beta}_1$ and $\hat{\beta}_2$.

Exercice 2 (Bias) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption \mathcal{H}_2 : $\mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the bias of $\hat{\beta}_2$ and $\hat{\beta}_1$.

Exercice 3 (Variance) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption \mathcal{H}_2 : $\mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the variance of $\hat{\beta}_2$ and $\hat{\beta}_1$.

Exercice 4 (Covariance) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption \mathcal{H}_2 : $\mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the covariance of $\hat{\beta}_2$ and $\hat{\beta}_1$.

Exercice 5 (Sum of residuals) Show that in a simple linear regression model the sum of the residuals is zero.