
Regression and Classification, EMINES. Examination, 2024. 2 hours

Recall the notation [a : b] = {a, a+ 1, . . . , b} for any integers a < b.

Exercise 1 (Weighted optimal Bayes classifier.) Consider two random variables (X,Y )
taking values on Rd × {0, 1}. Let h : Rd → {0, 1} be a classifier. We are first interested in minimizing (with
respect to h) the weighted misclassification probability

M2(h) = αP(Y = 0, h(X) = 1) + (1− α)P(Y = 1, h(X) = 0)

where α ∈ [0, 1] is given. For example, the random variable Y may represent the illness of a patient, and in
this situation, a misclassification error when the patient is ill (Y = 1) may be much more severe than when
the patient is in good health (Y = 0). Hence, the coefficient α weights the importance we place on these
two types of errors. Finally, we aim to find the optimal classifier in this context, that is, we aim to solve the
minimization problem

h∗
2 = argminh∈HM2(h)

where H is the set of all measurable functions h : Rd → {0, 1}.
1. Show that

M2(h) = E
[
αP(Y = 0|X)1{h(X)=1} + (1− α)P(Y = 1|X)1{h(X)=0}

]
.

Solution.
We have

M2(h) = αE
[
1{Y =0}1{h(X)=1}

]
+ (1− α)E

[
1{Y =1}1{h(X)=0}

]
.

= αE
[
E[1{Y =0}|X]1{h(X)=1}

]
+ (1− α)E

[
E[1{Y =1}|X]1{h(X)=0}

]
where we have used that tower property (the expectation is the expectation of the conditional expectation wrt X).
Rearranging the terms and noting that E[1{Y =i}|X] = P(Y = i|X) yields the desired formula.

2. Deduce that M2(h) ⩾ E [min (αP(Y = 0|X), (1− α)P(Y = 1|X))].

Solution.
Denote a(X) = min (αP(Y = 0|X), (1− α)P(Y = 1|X)). We have

αP(Y = 0|X)1{h(X)=1} + (1− α)P(Y = 1|X)1{h(X)=0} ⩾ a(X)1{h(X)=1} + a(X)1{h(X)=0} = a(X)

Taking the expectation and combining with the previous question proves the result.

3. Deduce that in this context, the optimal classifier h∗
2 writes :

h∗
2(X) =

{
1 if P(Y = 1|X) ⩾ δ

0 otherwise

where δ should be expressed with respect to α.
Solution.

We wish to obtain equality in the inequality of the previous question for a particular classifier h∗
2. To do so, we wish to

have :
αP(Y = 0|X)1{h∗

2(X)=1} + (1− α)P(Y = 1|X)1{h∗
2(X)=0} = a(X)

Hence we will choose h∗
2 such that h∗

2(X) = 1 corresponds to the case where αP(Y = 0|X) = a(X), which holds if
and only if αP(Y = 0|X) ⩽ (1− α)P(Y = 1|X). Using P(Y = 0|X) = 1− P(Y = 1|X), we finally get

α(1− P(Y = 1|X)) ⩽ (1− α)P(Y = 1|X) ⇐⇒ α ⩽ P(Y = 1|X)

Hence, δ = α.

We now turn to the more general case where Y may take d values instead of only two values. Returning to
the example of a patient, the different values of Y may represent different states of illness for the patient. More
precisely, we consider two random variables (X,Y ) taking values on Rd×[0 : (d−1)]. Let h : Rd → [0 : (d−1)]
be a classifier. We are interested in minimizing the weighted misclassification probability

M(h) =

d−1∑
j=0

αjP(Y = j, h(X) ̸= j)
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where (αj)j∈[0:d−1] are non-negative coefficients satisfying
∑d−1

j=0 αj = 1. The minimization problem hence
writes

h∗ = argminh∈HM(h)

where H is the set of all measurable functions h : Rd → [0 : d− 1].

4. Show that

M(h) =

d−1∑
i=0

d−1∑
j=0

P(h(X) = i, Y = j)βi,j

where (βi,j)0⩽i,j⩽d−1 should be expressed in terms of (αj)0⩽j⩽d−1.
Solution.

We have

M(h) =

d−1∑
j=0

αjP(Y = j, h(X) ̸= j) =

d−1∑
j=0

d−1∑
i=0

1{i̸=j}αjP(Y = j, h(X) = i)

Hence βi,j = 1{i̸=j}αj .

5. Deduce that for any classifier h, M(h) ⩾ E
[
mini∈[0:d−1]

(∑
j ̸=i αjP(Y = j|X)

)]
.

Solution.
We have, using again the tower property,

M(h) =

d−1∑
i=0

d−1∑
j=0

P(h(X) = i, Y = j)βi,j =

d−1∑
i=0

d−1∑
j=0

E
[
1{h(X)=i}E

[
1{Y =j}|X

]]
βi,j

= E

d−1∑
i=0

1{h(X)=i}

d−1∑
j=0

βi,j︸︷︷︸
αj1i̸=j

P(Y = j|X)



⩾ E


d−1∑
i=0

1{h(X)=i}︸ ︷︷ ︸
=1

 min
i∈[0:d−1]

∑
j ̸=i

αjP(Y = j|X)




which concludes the proof.

6. Deduce the expression of the optimal classifier h∗.
Solution.

From the previous question, we deduce that

h∗(X) = argmini∈[0:d−1]

∑
j ̸=i

αjP(Y = j|X)

Exercise 2 Let Yn =

y1
...
yn

 ∈ Rn and Xn =

x
′
1
...
x′
n

 ∈ Mn,p(R). Define β̂n = argminβ∈Rp∥Yn − βXn∥2.

Define ŷn = x′
nβ̂n and ŷ−n = x′

nβ̂n−1. Define H = Xn(X
T
nXn)

−1XT
n , the orthogonal projection matrix on

I(Xn) (also called the hat matrix). In this exercise, we want to show that

yn − ŷ−n =
yn − ŷn
1− hn,n

where H = (hk,ℓ)1⩽k,ℓ⩽n.

1. Recall without proof the explicit expression of β̂n in terms of Xn and Yn.
Solution.

From the course, we get that β̂n = (XT
nXn)−1XT

nYn
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2. Define Ỹn = (ỹi)1⩽i⩽n ∈ Rn such that ỹi = yi for i ∈ {1, . . . , n− 1} and ỹn = ŷ−n . Show that for any
β ∈ Rp,

n∑
j=1

(ỹj − x′
jβ)

2 ⩾
n−1∑
j=1

(yj − x′
jβ)

2 ⩾
n−1∑
j=1

(yj − x′
j β̂n−1)

2

Solution.

We have, using first that (ỹn − xT
j β)2 ⩾ 0 and then that ỹi = yi for i ∈ {1, . . . , n− 1},

n∑
j=1

(ỹj − x′
jβ)

2 ⩾
n−1∑
j=1

(ỹj − x′
jβ)

2 =

n−1∑
j=1

(yj − x′
jβ)

2

which proves the first inequality. The last equality follows by definition of β̂n−1 = argminβ∈Rp∥Yn−1 − βXn−1∥2.

3. Deduce that β̂n−1 = argminβ∈Rp∥Ỹn −Xnβ∥2.
Solution.

If we plug β = β̂n−1 in the left hand side of the inequality (in the previous question), we get using that ỹi = yi for
i ∈ {1, . . . , n− 1} and ỹn = ŷ−n ,

n∑
j=1

(ỹj − x′
j β̂n−1)

2 =

n−1∑
j=1

(yj − x′
j β̂n−1)

2 + (ŷ−n − x′
nβ̂n−1︸ ︷︷ ︸

=0

)2 =

n−1∑
j=1

(yj − x′
j β̂n−1)

2

Hence equality holds in the inequality of the previous question for β = β̂n−1, which shows that the left hand side is
minimised at β̂n−1. Hence, β̂n−1 = argminβ∈Rp∥Ỹn −Xnβ∥2.

4. Deduce an expression of β̂n−1 in terms of Ỹn and Xn.
Solution.

From the previous question, we deduce that β̂n−1 = (XT
nXn)−1XT

n Ỹn.

5. Deduce that ŷ−n =
∑n

j=1 hn,j ỹj
Solution.

Since β̂n−1 = (XT
nXn)−1XT

n Ỹn, we get ŷ−n = x′
nβ̂n−1 =

∑n
j=1 hn,j ỹj

6. Show that ŷ−n = ŷn − hn,nyn + hn,nŷ
−
n .

Solution.

ŷ−n =

n∑
j=1

hn,j ỹj =

n−1∑
j=1

hn,jyj + hn,nŷ
−
n

ŷn =

n∑
j=1

hn,j ỹj =

n−1∑
j=1

hn,jyj + hn,nyn

Substracting these two equations yields : ŷ−n = ŷn − hn,nyn + hn,nŷ
−
n

7. Conclude.
Solution.

Finally, the previous question gives : (1− hn,n)ŷ
−
n = ŷn − hn,nyn. Hence ŷ−n =

ŷn−hn,nyn
1−hn,n

. Then,

yn − ŷ−n = yn −
ŷn − hn,nyn

1− hn,n
=

yn − ŷn

1− hn,n
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