Exam: From MCMC to data-based generative models

23 October 2023

- i) Justify your answers and draw a box around your results.
- ii) Duration 2 hours.
- iii) All documents are allowed except electronic devices (laptop, tablets, phones...)

Exercise

We recall that the density of $\mathcal{N}(0, \sigma^2)$ is $f(x) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi\sigma}e^{-\frac{x^2}{2\sigma^2}}$.

1. Consider the Markov chain produced by the following recursion

$$
\forall k \geq 0, \quad X_{k+1} = X_k + |\eta_{k+1}|,
$$

where $\eta_1, \ldots, \eta_n, \ldots$ are i.i.d. of law $\mathcal{N}(0, \sigma^2)$. Write down $Q : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to [0, 1]$ its Markov kernel as $Q(x, dy) = 2l(x, y) dy$ for some function $l : \mathbb{R}^2 \to \mathbb{R}$ that you will specify.

2. We consider two intervals $I_1 = [a_1, b_1]$ and $I_2 = [a_2, b_2]$. Give a condition on a_1 and b_2 such that for any probability measure ν on \mathbb{R} ,

$$
\mathbb{P}_{\nu}(X_0 \in I_1, X_1 \in I_2) = 0.
$$

- 3. Is Q reversible relatively to any probability measure ν ?
- 4. Show that for any initialization $\lim_{k\to\infty} \frac{X_k}{k} = \mathbb{E}[|\eta_1|]$ almost-surely. To what quantity converges X_k ?

Let $\pi(dx) = \pi(x) dx$ be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with a density $\pi(x)$ relatively to the Lebesgue measure. We consider the extended space $X = \mathbb{R} \times \{-1, 1\}$ with its product sigma-algebra X and the extended distribution Π on X defined for any $A \in \mathcal{B}(\mathbb{R})$ as $\Pi(A \times \{1\}) =$ $\Pi(A \times \{-1\}) = \frac{1}{2}\pi(A)$. From this moment we are analyzing Algorithm [1.](#page-1-0)

- 5. Write down $P: \mathsf{X} \times \mathcal{X} \rightarrow [0, 1]$ the kernel of Algorithm [1.](#page-1-0)
- 6. We notice that P can be written as a product of two kernels $P = SR$, where $R(x, p, dy, dp') =$ $\delta_x(\mathrm{d}y)\delta_{-p}(\mathrm{d}p')$. Write down the kernel $S : \mathcal{X} \to [0,1]$. Notice that it is the kernel of a Metropolis-Hastings algorithm for which you will specify the proposal kernel $\bar{Q}: \mathcal{X} \to [0, 1]$ and the acceptance probability $\alpha(x, p_1, y, p_2)$.
- 7. Show the reversibility of S relatively to Π by checking the detailed balance condition. Show the reversibility of R.
- 8. Is Π an invariant distribution of P ? Is it reversible? Justify your answers.
- 9. Let $x \in \mathbb{R}$ and $A \in \mathcal{B}(\mathbb{R})$ be of positive (Lebesgue) measure. What are the conditions on x, A to obtain $P(x, 1, A, \{1\}) > 0$? On what conditions $P(x, 1, A, \{1\}) = 0$?
- 10. Show that P is irreducible relatively to some irreducibility measure ν on (X, \mathcal{X}) that you will specify. Deduce a way to approximate $\mathbb{E}_{X \sim \pi}[h(X)]$ through Algorithm [1,](#page-1-0) for any bounded function h.

Algorithm 1 Guided Random Walk. Input: $x_0 \in \mathbb{R}, \sigma > 0$.

 $X_0 = x_0 \in \mathbb{R}$, $p_0 \in \{-1, 1\}.$ for $k \geqslant 0$ do Sample $Z_{k+1} \sim \mathcal{N}(0, \sigma^2)$ and U_{k+1} independently from a uniform distribution on [0, 1]. $Y_{k+1} = X_k + p_k |Z_{k+1}|$ if $U_{k+1} \leq \frac{\pi(Y_{k+1})}{\pi(X_k)}$ $\frac{\pi(X_k+1)}{\pi(X_k)}$ then $(X_{k+1}, p_{k+1}) = (Y_{k+1}, p_k)$ else $(X_{k+1}, p_{k+1}) = (X_k, -p_k)$ end if end for

Problem: the Rejection Markov chain

Notation. We use the following notation:

- $F^+(\mathbb{R})$ is the set of non-negative measurable functions on $\mathbb R$
- $F_b(\mathbb{R})$ is the set of bounded measurable functions on \mathbb{R}
- $F_b^+(\mathbb{R}) = F^+(\mathbb{R}) \cap F_b(\mathbb{R})$
- For a given Markov kernel Q on $\mathbb{R} \times \mathcal{B}(\mathbb{R})$, we denote by $\mathbb{P}_{\xi}^{\mathcal{Q}}$ $\frac{Q}{\xi}$ the probability measure induced on ($\mathbb{R}^{\mathbb{N}}, \mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}$) by the Markov kernel *Q* and the initial distribution ξ. We write \mathbb{E}_{ξ}^Q $\frac{Q}{\xi}$ the associated expectation operator.

If $\xi = \delta_x$ for some $x \in \mathbb{R}$, we simply use $\mathbb{E}_x^Q := \mathbb{E}_\delta^Q$. $\frac{Q}{\delta_x}$. In what follows, π, resp. π̃, are probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and we assume that these distributions have **strictly positive densities** with respect to the Lebesgue measure λ . For simplicity, we also denote by π , resp. $\tilde{\pi}$, their densities with respect to λ , that is, $\pi(\mathrm{d}x) = \pi(x)\lambda(\mathrm{d}x) = \pi(x)\mathrm{d}x$ and $\tilde{\pi}(\mathrm{d}x) = \tilde{\pi}(x)\lambda(\mathrm{d}x) = \tilde{\pi}(x)\mathrm{d}x$ where $\pi(x) > 0$ and $\tilde{\pi}(x) > 0$ for any $x \in \mathbb{R}$ and where we recall the abuse of notation $\lambda(dx) = dx$.

The following assumption holds in all the exercise:

(A0) The Markov kernel *Q* is $\tilde{\pi}$ -invariant i.e. $\tilde{\pi}Q = \tilde{\pi}$

For any function $\rho : \mathbb{R} \to (0,1)$, define the rejection kernel S_{ρ} as follows:

$$
\forall h \in \mathsf{F}_b^+(\mathbb{R}), \quad S_\rho h(x) = \sum_{k=1}^\infty \mathbb{E}_x^{\mathcal{Q}} \left[h(\tilde{X}_k) \rho(\tilde{X}_k) \prod_{i=1}^{k-1} (1 - \rho(\tilde{X}_i)) \right] \tag{1}
$$

with the convention $\prod_{i=1}^{0} = 1$. In words, a transition according to S_p can be seen as follows: from the current state *x*, we run a Markov chain $(\tilde{X}_i)_{i\geqslant0}$ with Markov kernel Q and at each time step *k*, we flip a coin with success probability $\rho(\tilde{X}_k)$. The next state of our transition according to S_ρ corresponds to the first \tilde{X}_k with a successful coin.

- 1. For any $h \in \mathsf{F}_b^+(\mathbb{R})$, show that $S_\rho h = Q(\rho h) + Q(\bar{\rho} S_\rho h)$ where we set $\bar{\rho} = 1 \rho$.
- 2. Deduce that $vS_p = v$ where the probability measure v is defined by

$$
\mathbf{v}(A) = \frac{\int_A \rho(x)\tilde{\pi}(\mathrm{d}x)}{\int_{\mathbb{R}} \rho(x)\tilde{\pi}(\mathrm{d}x)}, \quad A \in \mathcal{B}(\mathbb{R}), \tag{2}
$$

[Hint: you can use the previous question and apply $\tilde{\pi}$ on both sides of the equation]

3. In the rest of the problem, , we assume that there exists a constant *M* such that

$$
\forall x \in \mathbb{R}, \quad \pi(x) < M\tilde{\pi}(x). \tag{3}
$$

Give a function ρ such that $\pi S_{\rho} = \pi$. In what follows, ρ is chosen as in this question.

- 4. Show that π is the unique invariant distribution for S_0 .
- 5. According to which theorem, we can obtain that for any measurable function *f* such that $\pi(|f|) < \infty$, we have $\mathbb{P}_{\pi} - a.s.$,

$$
\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}f(X_i)}{n}=\pi(h)
$$

where $\{X_n : n \in \mathbb{N}\}\$ is a Markov chain with Markov kernel S_p .

6. In the rest of the problem, we assume that any measurable bounded function h on $\mathbb R$ satisfying $Qh = h$ is a constant function. Assume that for some measurable bounded function h on R, we have $S_0 h = h$. Show that the function *h* is constant (**Hint:** Use the first question of the exercise).

7. Let *f* be a measurable function such that $\pi(|f|) < \infty$. Define

$$
A = \left\{ \lim_{n \to \infty} \frac{\sum_{i=0}^{n-1} f(X_i)}{n} = \pi(h) \right\}
$$

Denote $h(x) = \mathbb{E}_x[1_A]$. We admit that $S_\rho(h) = h$ (it is actually proved in the Lecture Notes). Deduce from the previous questions, that the Law of Large Numbers actually holds for $\{X_n : n \in \mathbb{N}\}\)$ starting from any initial distribution, that is, for any probability measure ξ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we have $\mathbb{P}_{\xi} - a.s.,$

$$
\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}f(X_i)}{n}=\pi(h)
$$