Chapter 4

Exercices Week 4

4.1 Dirichlet and Poisson problems

Definition 4.1 (Dirichlet Problem) *Let* P *be a Markov kernel on* $X \times \mathcal{X}$, $A \in \mathcal{X}$ *and* $g \in \mathbb{F}_+(X)$. *A nonnegative function* $u \in \mathbb{F}_+(X)$ *is a solution to the Dirichlet problem if*

$$u(x) = \begin{cases} g(x) , & x \in A ,\\ Pu(x) , & x \in A^c . \end{cases}$$
 (4.1)

For $A \in \mathcal{X}$, we define a submarkovian kernel P_A for $x \in X$ and $B \in \mathcal{X}$ by

$$P_A(x,B) = \mathbb{E}_x[\mathbb{1}_{\{\tau_A < \infty\}} \mathbb{1}_B(X_{\tau_A})] = \mathbb{P}_x(\tau_A < \infty, X_{\tau_A} \in B) , \qquad (4.2)$$

which is the probability that the chain starting from x eventually hits the set $A \cap B$.

4.1. For any $A \in \mathcal{X}$ and $g \in \mathbb{F}_+(X)$, the function $P_A g$ is a solution to the Dirichlet problem (4.1)

Definition 4.2 (Poisson problem) *Let P be a Markov kernel on* $X \times \mathcal{X}$, $A \in \mathcal{X}$ *and* $f : A^c \to \mathbb{R}_+$ *be a measurable function. A nonnegative function* $u \in \mathbb{F}_+(X)$ *is a solution to the Poisson problem if*

$$u(x) = \begin{cases} 0, & x \in A, \\ Pu(x) + f(x), & x \in A^c. \end{cases}$$
 (4.3)

For $A \in \mathscr{X}$ and $h \in \mathbb{F}_+(X)$ define

$$G_A h(x) = \mathbb{1}_{A^c}(x) \mathbb{E}_x \left[\sum_{k=0}^{\tau_A - 1} h(X_k) \right] = \mathbb{E}_x \left[\sum_{k=0}^{\tau_A - 1} h(X_k) \right], \tag{4.4}$$

where we have used the convention $\sum_{k=0}^{-1} \cdot = 0$. Note that $G_A h$ is nonnegative but we do not assume that it is finite.

4 Exercices Week 4

4.2. Let P be a Markov kernel on $X \times \mathcal{X}$, $A \in \mathcal{X}$ and $f : A^c \to \mathbb{R}_+$ be a measurable function. The function $G_A f$ is a solution to the Poisson problem (4.3).

Solutions to exercises

4.1 If $x \in A$, then by definition, $P_A g(x) = g(x)$. For $x \in X$, the identity $\sigma_A = 1 + \tau_A \circ \theta_1$ and the Markov property yield

$$\begin{aligned} PP_Ag(x) &= \mathbb{E}_x[P_Ag(X_1)] = \mathbb{E}_x[\{\mathbb{1}_{\{\tau_A < \infty\}}g(X_{\tau_A})\} \circ \theta_1] \\ &= \mathbb{E}_x[\mathbb{1}_{\{\tau_A \circ \theta_1 < \infty\}}g(X_{1+\tau_A \circ \theta_1})] = \mathbb{E}_x[\mathbb{1}_{\{\sigma_A < \infty\}}g(X_{\sigma_A})] \ . \end{aligned}$$

For $x \notin A$, then $\sigma_A = \tau_A$ $\mathbb{P}_x - a.s.$ and we obtain

$$PP_Ag(x) = \mathbb{E}_x[\mathbb{1}_{\{\tau_A < \infty\}}g(X_{\tau_A})] = P_Ag(x).$$

4.2 Set $u(x) = G_A f(x) = \mathbb{E}_x[S]$ where $S = \mathbb{1}_{A^c}(X_0) \sum_{k=0}^{\tau_A - 1} f(X_k)$. By convention u(x) = 0 for $x \in A$. Applying the Markov property and the relation $\sigma_A = 1 + \tau_A \circ \theta_1$, we obtain

$$Pu(x) = \mathbb{E}_{x}[u(X_{1})] = \mathbb{E}_{x}[\mathbb{E}_{X_{1}}[S]] = \mathbb{E}_{x}[\mathbb{E}_{x}[S \circ \theta_{1} \mid \mathscr{F}_{1}]]$$

$$= \mathbb{E}_{x}[S \circ \theta_{1}] = \mathbb{E}_{x}\left[\mathbb{1}_{A^{c}}(X_{1})\sum_{k=1}^{\tau_{A} \circ \theta_{1}} f(X_{k})\right] = \mathbb{E}_{x}\left[\sum_{k=1}^{\sigma_{A}-1} f(X_{k})\right],$$

$$(4.5)$$

where the last equality follows from $\mathbb{1}_A(X_1)\sum_{k=1}^{\sigma_A-1}f(X_k)=0$. For $x\notin A$, $\sigma_A=\tau_A$ \mathbb{P}_x – a.s. and thus

$$f(x) + Pu(x) = f(x) + \mathbb{E}_x \left[\sum_{k=1}^{\sigma_A - 1} f(X_k) \right] = \mathbb{E}_x \left[\mathbb{1}_{A^c}(X_0) \sum_{k=0}^{\tau_A - 1} f(X_k) \right] = u(x) .$$