
Chapter 3
Exercices Week 3

Definition 3.1 We define the hitting time and the return to a set A as:

τA = inf{k ⩾ 0 : Xk ∈ A}
σA = inf{k ⩾ 1 : Xk ∈ A} .

Similarly we define the n-th successive return times as

σ
(n)
A = inf

{
k > σ

(n−1)
A : Xk ∈ A

}
, σ

0
A = 0 .

3.1. Let τ and σ be two stopping times with respect to the canonical filtration (Fn)n≥0. Show that

1. for any n,m ∈ N, θ−1
m (Fn) = σ (Xm, . . . ,Xn+m)

2. Define the random variable

σ =

{
τ1 + τ0 ◦θτ1 if τ1 < ∞

∞ otherwise .

Show that σ is a stopping time and on {τ1 < ∞}∩{τ0 < ∞},

Xτ0 ◦θτ1 = Xσ . (3.1)

Let A⊂ X .

3. Show that {σ
(n)
A }n is a sequence of stopping times verifying for any n:

σA = 1+ τA ◦θ1 , (3.2)

σ
(n)
A = σ

(n−1)
A +σA ◦θ

σ
(n−1)
A

n ≥ 1 . (3.3)

3.2. Let C⊂ X . Show that

1. If for any x ∈ C, Px(σC < ∞) = 1, then for any n ≥ 1 and for any x ∈ C, Px(σ
(n)
C < ∞) = 1.

2. If for any x ∈ Cc, Px(σC < ∞) = 1, then for any n ≥ 1 and for any x ∈ X, Px(σ
(n)
C < ∞) = 1.

Definition 3.2 For any set C ∈ X , denote by XC the subset of X defined as

XC = {A∩C : A ∈ X } . (3.4)

It is easily seen that XC is a σ -field, often called the trace σ -field on C or the induced σ -field on C.
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Definition 3.3 (Induced kernel) For all C ∈ X , the induced kernel QC on C×XC is defined by

QC(x,B) = Px(XσC ∈ B, σC < ∞) , x ∈C , B ∈ XC . (3.5)

3.3. Let P be a Markov kernel on X×X and C ∈ X . Assume that Px(σC < ∞) = 1 for all x ∈C. Then,
for all x ∈C and n ∈ N, Px(σ

(n)
C < ∞) = 1. We set for all n ∈ N,

X̃n = X
σ
(n)
C
1
{σ

(n)
C <∞}

+ x∗1{σ
(n)
C =∞}

(3.6)

where x∗ is an arbitrary element of C.

(i) Show that, for all x ∈ C, the process {X̃n, n ∈ N} is under Px a Markov chain on C with kernel QC
(see Definition 3.3).

(ii) Let A ⊂C and denote by σ̃A the return time to the set A of the chain {X̃n}. Show that, for all x ∈C,
Ex[σA]≤ Ex[σ̃A]supy∈CEy[σC].

3.4 (Maximum principle). Let P be a Markov kernel on X×X . Show that for all x ∈ X and A ∈ X ,

U(x,A)≤ Px(τA < ∞)sup
y∈A

U(y,A) .

3.5. Show that for every A ∈ X , the function x 7→ Px(NA = ∞) is harmonic.

3.6. Let P be a Markov kernel on X×X . Let A ∈ X .

(i) Assume that there exists δ ∈ [0,1) such that supx∈APx(σA < ∞) ≤ δ . Show that for all p ∈ N∗,
supx∈APx(σ

(p)
A < ∞)≤ δ p and supx∈XPx(σ

(p)
A < ∞)≤ δ p−1. Moreover,

sup
x∈X

U(x,A)≤ (1−δ )−1 . (3.7)

(ii) Assume that Px(σA < ∞) = 1 for all x ∈ A. Show that for all p ∈ N∗, infx∈APx(σ
(p)
A < ∞) = 1.

Moreover, infx∈APx(NA = ∞) = 1 for all x ∈ A.

Given A ∈ X , we define, for n ≥ 1 and B ∈ X ,

n
AP(x,B) = Px(Xn ∈ B , n ≤ σA) . (3.8)

Thus n
AP(x,B) is the probability that the chain goes from x to B in n steps without visiting the set A. It is

called the n-step taboo probability. Note that 1
AP = P and n

AP = (PIAc)n−1P where IA is the kernel defined
by IA f (x) = 1A(x) f (x) for any f ∈ F+(X)

3.7. 1. Show the first-entrance decomposition

Pn f (x) = n
AP f (x)+

n−1

∑
j=1

j
AP(1A ×Pn− j f )(x) . (3.9)

2. Show the last exit decomposition

Pn f (x) = n
AP f (x)+

n−1

∑
j=1

P j(1A ×
n− j

AP f )(x) . (3.10)

3.8. Let P be a Markov kernel on X×X . Let A ∈ X .
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1. Show that the following conditions are equivalent.

(i) A is accessible.
(ii) For every x ∈ X, there exists an integer n ≥ 1 such that Pn(x,A)> 0.
(iii) For every µ ∈M+(X ), there exists an integer n ≥ 1 such that µPn(A)> 0.
(iv) For every x ∈ Ac, Px(σA < ∞)> 0.

2. Show that, if A is accessible, for all a ∈M1
+(N) with a(k)> 0 for k ≥ 1, Ka(x,A)> 0 for all x ∈ X.

3. Show that if there exists a ∈M1
+(N) such that Ka(x,A)> 0 for all x ∈ X, then A is accessible.

Definition 3.4 (Domain of attraction of a set, attractive set) Let P be a Markov chain on X×X . The
domain of attraction C+ of a non empty set C ∈X is the set of states x ∈ X from which the Markov chain
returns to C with probability one:

C+ = {x ∈ X : Px(σC < ∞) = 1} . (3.11)

(i) If C ⊂C+, then the set C is said to be Harris recurrent.
(ii) If C+ = X, then the set C is said to be attractive.

If the domain of attraction C+ of C contains C, then it may happen that C+ ⊊X. Nevertheless, as shown
below, the set C+ is absorbing.

3.9. Let P be a Markov kernel on X×X . Let C ∈ X be a non-empty set such that C ⊂ C+. Show that
the set C+ is absorbing.
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Solutions to exercises

3.3 (i) Let x ∈C. Since Px(σ
(n)
C < ∞) = 1 for all x ∈C and n ∈ N, the strong Markov property applied

to the Markov chain {Xn} yields, for any B ∈ X ,

Px

(
X̃n+1 ∈ B

∣∣F
σ
(n)
C

)
= Px

(
X

σ
(n+1)
C

∈ B
∣∣∣∣Fσ

(n)
C

)
= Px

(
XσC ◦θ

σ
(n)
C

∈ B
∣∣∣∣Fσ

(n)
C

)
= PX

σ
(n)
C

(XσC ∈ B) = QC(X̃n,B) .

(ii) Since A ⊂C, we have σA = σ
(σ̃A)
C . Thus,

σA =
σ̃A−1

∑
n=0

{σ
(n+1)
C −σ

(n)
C }=

∞

∑
n=0

{σ
(n+1)
C −σ

(n)
C }1{n<σ̃A} =

∞

∑
n=0

σC ◦θ
σ
(n)
C
1{n<σ̃A} .

Let x ∈C. Note that {n < σ̃A}=∩n
i=1{X

σ (i) /∈ A} ∈F
σ (n) and applying again ??, we have Px(σ

(n)
C < ∞) =

1. We then obtain by the strong Markov property,

Ex[σA] =
∞

∑
n=0
Ex[σC ◦θ

σ
(n)
C
1{n < σ̃A}]

=
∞

∑
n=0
Ex[1{n < σ̃A}EX

σ
(n)
C

[σC]]≤ Ex[σ̃A]sup
y∈C
Ey[σC] .

3.4 By the strong Markov property, we get

U(x,A) = Ex

[
∞

∑
n=0

1A(Xn)

]
= Ex

[
∞

∑
n=τA

1A(Xn)1{τA < ∞}
]

=
∞

∑
n=0
Ex [1A(Xn ◦θτA)1{τA < ∞}]

=
∞

∑
n=0
Ex

[
1{τA < ∞}EXτA

[1A(Xn)]
]
≤ Px(τA < ∞)sup

y∈A
U(y,A) .

3.5 Define h(x) = Px(NA = ∞). Then Ph(x) = Ex[h(X1)] = Ex[PX1(NA = ∞)] and applying the Markov
property, we obtain

Ph(x) = Ex[Px (NA ◦θ = ∞ |F1)] = Px(NA ◦θ = ∞) = Px(NA = ∞) = h(x) .

3.6 (i) For p ∈ N, σ
(p+1)
A = σ

(p)
A +σA ◦ θ

σ
(p)
A

on {σ
(p)
A < ∞}. Applying the strong Markov property

yields

Px(σ
(p+1)
A < ∞) = Px

(
σ
(p)
A < ∞, σA ◦θ

σ
(p)
A

< ∞

)
= Ex

[
1

{
σ
(p)
A < ∞

}
PX

σ
(p)
A

(σA < ∞)

]
≤ δPx(σ

(p)
A < ∞) .

By induction, we obtain Px(σ
(p)
A < ∞)≤ δ p for every p ∈ N∗ and x ∈ A. Thus, for x ∈ A,
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U(x,A) = Ex[NA]≤ 1+
∞

∑
p=1
Px(σ

(p)
A < ∞)≤ (1−δ )−1 .

Since by ?? for all x ∈ X, U(x,A)≤ supy∈A U(y,A), (3.7) follows.

(ii) By ??, Px(σ
(n)
A < ∞) = 1 for every n ∈ N and x ∈ A. Then,

Px(NA = ∞) = Px

(
∞⋂

n=1

{σ
(n)
A < ∞}

)
= 1 .

3.7 1. Using the Markov property,

Pn f (x) = Ex[ f (Xn)] = Ex[1{n ≤ σA} f (Xn)]+
n−1

∑
j=1
Ex[1{σA = j} f (Xn)]

= n
AP f (x)+

n−1

∑
j=1
Ex
[
1{σA = j}EX j [ f (Xn− j)]

]
= n

AP f (x)+
n−1

∑
j=1
Ex[1{σA ≥ j}1A(X j)Pn− j f (X j)]

= n
AP f (x)+

n−1

∑
j=1

j
AP(1A ×Pn− j f )(x) . (3.12)

2. The last exit decomposition is established analogously.

Pn f (x) = Ex[ f (Xn)]

= Ex[1{n≤σA} f (Xn)]+
n−1

∑
j=1
Ex[1{X j ∈ A,X j+1 /∈ A, . . . ,Xn−1 /∈ A} f (Xn)]

= n
AP f (x)+

n−1

∑
j=1
Ex[1A(X j)EX j [1{X1 /∈ A, . . . ,Xn− j−1 /∈ A} f (Xn− j)]]

= n
AP f (x)+

n−1

∑
j=1
Ex[1A(X j)

n− j
AP f (X j)]

= n
AP f (x)+

n−1

∑
j=1

P j(1A ×
n− j

AP f )(x) . (3.13)

3.8 The assertion (iv) ⇒ (i) is the only non trivial one. It means that if A can be reached from Ac, then it
can be reached from A. Indeed, starting from A, either the chain remains in A, or it leaves A and then can
reach it again. Formally, applying the Markov property yields

Px(σA < ∞) = Px(X1 ∈ A)+Px(X1 ∈ Ac,σA ◦θ < ∞)

= Px(X1 ∈ A)+Ex[1Ac(X1)PX1(σA < ∞)] .

For each x ∈ X, either Px(X1 ∈ A) > 0 or Px(X1 ∈ A) = 0. In the latter case, it then holds that Px(σA <
∞) = Ex[1Ac(X1)PX1(σA < ∞)]> 0 if (iv) holds. Thus (iv) ⇒ (i).

3.9 Let x ∈C+. Then,
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0 = Px(σC = ∞)≥ Px(X1 ∈Cc , σC ◦θ = ∞)

≥ Px(X1 ∈Cc
+ , σC ◦θ = ∞) = Ex[1Cc

+
(X1)PX1(σC = ∞)] .

Since Py(σC = ∞)> 0 for y ∈Cc
+, this yields P(x,Cc

+) = Px(X1 ∈Cc
+) = 0.
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