Chapter 1
Exercices Week 2

1.1 Exercises

1.1. Let (Q,.7,{ %, k € T},P) be a filtered probability space and {(Xy, %), k €
T} be an adapted stochastic process. Show that the following properties are equiva-
lent.

() {(Xx, %), k € T} is a Markov chain.
(i) For every k € T and bounded o(X;, j > k)-measurable random variable Y,

E[Y|Z]=E[Y|X] P —as. (1.1)

(iii) For every k € T, bounded o (X ] = k)-measurable random variable ¥ and
bounded ﬁkx -measurable random variable Z,

E[YZ|X]|=E[Y|XJE[Z|X] P —as. (1.2)

Definition 1.1 (Absorbing set) A set B € 2" is called absorbing if P(x,B) = 1 for
allx € B.

This definition subsumes that the empty set is absorbing. Of course the interesting
absorbing sets are non-empty.

1.2. Let P be a Markov kernel on X x .2~ admitting an invariant probability measure
n. If B € 2 is an absorbing set, then 7z = 7(BN-) is an invariant finite measure.
Moreover, if the invariant probability measure is unique, then 7(B) € {0,1}.

Definition 1.2 Ler my,m; be two probability measure on (X, Z"). Then my, T <
A = my + m; and denoting f; = dm;/dA for i = 0,1, we define the two probability
measures:
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1.3. Let P be a Markov kernel on X x .2". Show that

(i) The set of invariant probability measures for P is a convex subset of M, (Z).

(if) For any two distinct invariant probability measures 7,7’ for P, the finite mea-
sures (T — 7')* and (7 — &)~ are non-trivial, mutually singular and invariant
for P.
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Solutions to exercises

1.1 [@)]=[GD)] Fix k € T and consider the property (where F,(X) is the set of
bounded measurable functions),

Zy): I) holds for all Y =[T}_( g;(Xx+,) where g; € F, (X) for all j > 0.

() is true. Assume that (Z,) holds and let {g;, j € N} be a sequence of functions
in F, (X). The Markov property (??) yields

E[g0(Xk) - - &n(Xksn)&nt1 Xiint1)| Fi]

=E[E[80(Xk)---8n(Xksn)&nt1 Xktnt1)| Ficyn]| Fi]
=E[g0o(Xt) - - 8n(Xirn)E [8nt1 X nt1)| Fisn] | Fi]
=E[g0(Xk) - - 8n(Xitn)E [8n+1 Kin+ 1) Xin] | Fi] -

The last term in the product being a measurable function of X, 4, the induction
assumption (&7,) yields

E[g0o(Xk) - - - &n(Xirn)8n+1(Xirnr1)| Fi]

[go(Xk) -8 Xirn)E [ 8n1 (Kt 1) | Xirn] | X
[gO(Xk) -8n (Xk+n)E[g,,+1(Xk+,,+])\ﬁk+,,]|Xk]
[go(

20(Xk) - - 8n(Xktn) gnt1 K1) Xa]

80
E
E
E

which proves (£, 1). Therefore, (£?,) is true for all n € N.
Consider the set

H={YeoX;,j=k :E[Y|.Z]=E[Y|X] P—as.} .

It is easily seen that 7 is a vector space. In addition, if {¥;,, n € N} is an increasing
sequence of nonnegative random variables in ¢ and if Y = lim,_,« Y;, is bounded,
then by the monotone convergence theorem for conditional expectations,

E[Y|.#] = imE[Y,| %] = imE[V,|X] =E[Y|X] P-as.

By ??, the space € contains all 6(X;, j > k) measurable random variables.
- = [(i)] If Y is a bounded o (X;, j > k)-measurable random variable and Z is
a bounded ﬁk measurable random variable, an application of |(11)| yields

E[YZ| %] =ZE[Y| %] = ZE Y| X{] P —a.s.
Thus,

E[YZ|X] =E[E[YZ| 7| X] = E [ZE [Y|X,]| Xi]
_E[ZIXJE[Y|X] P-as.

=[@)] If Z is bounded and .%;-measurable, we obtain
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E[f(Xk+1)Z] = E[E [ f(Xi1+1)Z| Xi]]
=E[E[f(Xir1)| X E [Z| Xi]] = E[E [ f (Xay1)| Xk Z] -

This proves



