
Chapter 1
Exercices Week 2

1.1 Exercises

1.1. Let (Ω ,F ,{Fk, k ∈ T},P) be a filtered probability space and {(Xk,Fk), k ∈
T} be an adapted stochastic process. Show that the following properties are equiva-
lent.

(i) {(Xk,Fk), k ∈ T} is a Markov chain.
(ii) For every k ∈ T and bounded σ(X j, j ≥ k)-measurable random variable Y ,

E [Y |Fk] = E [Y |Xk] P − a.s. (1.1)

(iii) For every k ∈ T , bounded σ(X j, j ≥ k)-measurable random variable Y and
bounded F X

k -measurable random variable Z,

E [Y Z|Xk] = E [Y |Xk]E [Z|Xk] P − a.s. (1.2)

Definition 1.1 (Absorbing set) A set B ∈ X is called absorbing if P(x,B) = 1 for
all x ∈ B.

This definition subsumes that the empty set is absorbing. Of course the interesting
absorbing sets are non-empty.

1.2. Let P be a Markov kernel on X×X admitting an invariant probability measure
π . If B ∈ X is an absorbing set, then πB = π(B∩ ·) is an invariant finite measure.
Moreover, if the invariant probability measure is unique, then π(B) ∈ {0,1}.

Definition 1.2 Let π0,π1 be two probability measure on (X,X ). Then π0,π1 ≪
λ = π0 + π1 and denoting fi = dπi/dλ for i = 0,1, we define the two probability
measures:
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(π0−π1)+(A)=
∫
A
( f0− f1)+(x)dλ (x) , (π0−π1)−(A)=

∫
A
( f0− f1)−(x)dλ (x) .

(1.3)

1.3. Let P be a Markov kernel on X×X . Show that

(i) The set of invariant probability measures for P is a convex subset of M+(X ).
(ii) For any two distinct invariant probability measures π,π ′ for P, the finite mea-

sures (π −π ′)+ and (π −π ′)− are non-trivial, mutually singular and invariant
for P.
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Solutions to exercises

1.1 (i) ⇒ (ii) Fix k ∈ T and consider the property (where Fb(X) is the set of
bounded measurable functions),

(Pn): (0.1) holds for all Y = ∏
n
j=0 g j(Xk+ j) where g j ∈ Fb(X) for all j ≥ 0.

(P0) is true. Assume that (Pn) holds and let {g j, j ∈N} be a sequence of functions
in Fb(X). The Markov property (??) yields

E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk]

= E [E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk+n]|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Fk+n]|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Xk+n]|Fk] .

The last term in the product being a measurable function of Xn+k, the induction
assumption (Pn) yields

E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Fk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Xk+n]|Xk]

= E [g0(Xk) . . .gn(Xk+n)E [gn+1(Xk+n+1)|Fk+n]|Xk]

= E [g0(Xk) . . .gn(Xk+n)gn+1(Xk+n+1)|Xk] ,

which proves (Pn+1). Therefore, (Pn) is true for all n ∈ N.
Consider the set

H =
{

Y ∈ σ(X j, j ≥ k) : E [Y |Fk] = E [Y |Xk] P − a.s.
}
.

It is easily seen that H is a vector space. In addition, if {Yn, n ∈N} is an increasing
sequence of nonnegative random variables in H and if Y = limn→∞ Yn is bounded,
then by the monotone convergence theorem for conditional expectations,

E [Y |Fk] = lim
n→∞

E [Yn|Fk] = lim
n→∞

E [Yn|Xk] = E [Y |Xk] P − a.s.

By ??, the space H contains all σ(X j, j ≥ k) measurable random variables.
(ii) ⇒ (iii) If Y is a bounded σ(X j, j ≥ k)-measurable random variable and Z is

a bounded Fk measurable random variable, an application of (ii) yields

E [Y Z|Fk] = ZE [Y |Fk] = ZE [Y |Xk] P − a.s.

Thus,

E [Y Z|Xk] = E [E [Y Z|Fk]|Xk] = E [ZE [Y |Xk]|Xk]

= E [Z|Xk]E [Y |Xk] P − a.s.

(iii) ⇒ (i) If Z is bounded and Fk-measurable, we obtain
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E [ f (Xk+1)Z] = E [E [ f (Xk+1)Z|Xk]]

= E [E [ f (Xk+1)|Xk]E [Z|Xk]] = E [E [ f (Xk+1)|Xk]Z] .

This proves (i).


