Chapter 2 Exercices Sheet 2

2.1 (Discrete autoregressive process). Consider the DAR(1) model defined by the recursion

$$X_k = V_k X_{k-1} + (1 - V_k) Z_k , \qquad (2.1)$$

where $\{V_k, k \in \mathbb{N}\}$ is a sequence of i.i.d. Bernoulli random variables with $\mathbb{P}(V_k = 1) = \alpha \in [0, 1), \{Z_k, k \in \mathbb{N}\}$ \mathbb{N} } are i.i.d. random variables with distribution π on a measurable space (X, \mathscr{X}) and $\{V_k, k \in \mathbb{N}\}$ and $\{Z_k, k \in \mathbb{N}\}\$ are mutually independent and independent of X_0 , whose distribution is ξ .

- 1. Show that $Pf(x) = \alpha f(x) + (1 \alpha)\pi(f)$.
- 2. Show that π is the unique invariant probability.

Assume that $X = \mathbb{N}$ and $\sum_{k=0}^{\infty} k^2 \pi(k) < \infty$ and that the distribution of X_0 is π .

- 3. Show that for any positive integer *h*, $Cov(X_h, X_0) = \alpha^h Var(X_0)$.
- **2.2.** Consider a scalar AR(1) process $\{X_k, k \in \mathbb{N}\}$ defined recursively as follows:

$$X_k = \phi X_{k-1} + Z_k , \qquad (2.2)$$

where $\{Z_k, k \in \mathbb{N}\}$ is a sequence of i.i.d. random variables, independent of X_0 , defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Assume that $\mathbb{E}[|Z_1|] < \infty$ and $\mathbb{E}[Z_1] = 0$.

- 1. Define the kernel *P* of this chain.
- 2. Show that for all $k \ge 1$, X_k has the same distribution as $\phi^k X_0 + B_k$ where $B_k = \sum_{i=0}^{k-1} \phi^j Z_j$.

Assume that $|\phi| < 1$.

- Show that B_k ^{P-a.s.}→ B_∞ = Σ_{j=0}[∞] φ^jZ_j.
 Show that the distribution of B_∞ is the unique invariant probability of *P*.

Assume that $|\phi| > 1$ and the distribution of $\sum_{j=1}^{\infty} \phi^{-j} Z_j$ is continuous.

5. Show that for all $x \in \mathbb{R}$, $\mathbb{P}_x(\lim_{n \to \infty} |X_n| = \infty) = 1$.